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Set-Valued Observers and Optimal
Disturbance Rejection

Jeff S. Shammalember, IEEE and Kuang-Yang TuMember, IEEE

Abstract—A set-valued observer (also called guaranteed state on exogenous signals, we present a construction of the set of
estimator) produces a set of possible states based on outputpossible state values. We then relate the centers of these sets
measurements and models of exogenous signals. In this paper, W&q the ¢t optimal estimation problem considered in [33]. In

consider the guaranteed state estimation problem for linear time- ticul how that th t | timal i6°a
varying systems with a priori magnitude bounds on exogenous particular, we show that the centers are also optimal id-an

signals. We provide an algorithm to propagate the set of possible induced-norm sense.

states based on output measurements and show that the centers We then investigate the utility of set-valued observers for
of these sets provide optimal estimates in ari®-induced norm  />°.induced norm optimal disturbance rejection. References
sense. We then consider the utility of set-valued observers for dis- 130] ang [31] considered this disturbance rejection problem
turbance rejection with output feedback and derive the following . . .

general separation structure. An optimal controller can consist of in the SpeCIaI case of noise-free Stfate fee_dbaCk and. showed
a set-valued observer followed by a static nonlinear function on that optimal controllers can be static nonlinear functions of
the observedsetof possible states. A general construction of this the state. This is in contrast to [15] which showed that
function is provided in the scalar control case. Furthermore, in  gptimal linear controllers may be dynamic and of arbitrarily
the special case of full-control, ie., the number of control inputs high order. In this paper, we consider noisy output feedback.
equals the number of states, optlmal output feedback controllers We sh that timal troll take the followi

can take the form of an optimal estimate of the full-state feedback €s QW ,a opumal controflers can take the following
controller. separation-like structure: 1) a set-valued observer plus 2) a
static nonlinear function on theetof possible states. A general
construction of this function is provided in the scalar control
case. Furthermore, in the special case of full-control, i.e., the
number of control inputs equals the number of states, optimal

. INTRODUCTION output feedback controllers can take the form of an optimal

TOCHASTIC state estimation provides optimal state esg@stimate of the full-state feedback controller.

ates based on probabilistic models of exogenous signalsThe remainder of this paper is organized as follows.
An alternative is to model exogenous signals as determinisg€ction Il contains preliminary definitions and notation.
unknown but bounded quantities. The problem is then fgction Ill presents an algorithm which propagates the
construct aset of possible state values based on measuré@t-valued estimates based on output measurements and
outputs. Such an approach has received considerable atteri@fives the/> induced-norm optimality of the centers of
in the controls literature. References [12] and [24] present Hifse sets. Section IV discusses applications to disturbance
overview of work in this area, and [22] contains a collectiofegjection. Finally, Section V contains a simulation example,
of related conference papers. and Section VI has concluding remarks.

Related to the deterministic setting is induced-norm opti-
mal state estimation. This framework provides optimal state I
estimates which minimize the induced-norm from exogenous
signals to estimation errors. Reference [26] considers the case_ . .
where exogenous signals and estimation errors are measu e@as,lc Notation
using the/?-norm, or signal energy, which leads to & For x € R", let x; denote theith component ofr and
optimal estimation problem. Reference [33] measures exogtsfine x| = max; |z;|.
nous signals and estimation errors by #¥e norm, or signal  Let Z* denote the set of nonnegative integers. K&t
magnitude, which leads to ah optimal estimation problem. denote the set of bounded one-sided sequencégg™inFor
In this paper, we consider guaranteed state estimation for= {f(0), f(1), f(2),---} € £°°, define
linear time-varying systems. Under an assuraguliori bound
£l = sup [f(&)]-
keZ+

Index Terms—Disturbance rejection, state estimation, obser-
vers.
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A set-valued map, denotefl: X ~ Y, is a mapping from  Assumption 3.1:The exogenous inputs satisty € B~

pointsz € X to subsetsF(z) C Y. and the initial condition satisfies(0) € Bro. .
We are interested in constructing an estimate of the state
B. Projections of Convex Sets vector based on output measurements. Toward this end, define

n . poo + Ny
For M € RO andm € RY, let Set(M,m) denote the set-valued mapV’: £° x ZT +» R"> as
the subset ofR™ associated with(A,m) defined by the
constraints Wy, k) = {{w,z,) € Bpee X Broa:

Set(M,m) ={x: Mz < m}. y(J) = Tyow + Tya,%0)(j), 5 =0, k}.

£xn 4 4 H
For M, < R, Mz € RY, andm € R® consider the subset, | other words, iV (y, k) denotes the set of admissible exoge-
S, of R™ defined by nous signals and initial conditions consistent with measured
S = {x: M1z + Mow < m for somew € R}. data up to timek. Similarly, define the set-valued: ¢>° x
Defi Zt «» R™ given by
efine

Rack[(M1  Ma),m] ) X(y, k) = {z € R™: & = (Touww + Tow,x,) ()
= {(M,m) € R™ x R": § = Set(M,m)} for some(w,z,) € W(y,k)}

i.e., Rack[(M; M>,m] is the set of matrix pairs which give a

direct characterization of. While the setS is unique, its ma- i.e., X(y, k) denotes the set of possible state-vectors at fime
trix representation is not. HencBack[M; M-, m] represents consistent with the measured data up to tim&inally, define
a setof possible matrix representations. The construction 8ie set-valued{: R ~ R"= by

an element oRack[M; M>, m] may be achieved through the

Fourier—Motzkin algorithm which is described in [21]. X(y) ={r € R™:y = Cx +n for somejn| < 1}.
Now define
Rack?[M,m] = Rack[Rack[M, m]] The setX(y) represents the set of possible states based on a

single measurement.

and recursively define The following algorithm (see also [12, Sec. 20]) propagates

Rack*[M, m] = Rack[Rack*~[M, m]]. the set of possible states.

. 4 L o Algorithm 3.1: Let £°° be a prescribed measurement
The notationRack*[M, m] is simply a multivariable form of traje?:tory v e P
Rack[M,m]. For M; € R and M, € R“** redefine the S

Initialization:
subsetS C R" as
S = {x: Myz 4+ Myw < m for somew € R*}. X(y.0) = X(5(0)) N Broa .
Then Rack®[(M, M), m] is the set of matrix pairs which
give a direct characterization d. Propagation:
[ll. SET-VALUED ESTIMATION Xy, k) ={z: x = A(k — 1)& + B(k — 1)d for some

X d <1}n X(y(k
A. Set Propagation T € X(y, k—1)|d <1}nX(y(k)).

This section considers the time-varying discrete-time lineffste that all sets are constructed witkausaldependence on

system the measurement trajectory,
a(k +1) = A(k)z(k) + B(k)d(k), 2(0) = z, The following theorem describes a computational imple-
y(k) = O(k)x(k) + n(k) 1) mentation of Algorithm 3.1.

Theorem 3.1:In the framework of Algorithm 3.1
where z(k) € R™ is the state-vectory(k) € R™ is the
measured outpuy(k) € R"¢ is a process disturbance, and X(y(k)) _ Set(M(k),m(k))
n(k) € R™ is a measurement noise.

Definew = (¢). In input—output form, system (1) takes the
o inew = (%). In input—outpu y (1)  here

CTwt T n, M(k):<0(k) ) m(k):(”y(k))

whereT,,, denotes the mapping frome to % with the initial

conditionz, = 0, andZ,,,  denotes the mapping from, to

y with the inputw = 0. Similarly defineT,,, and T, . and
The following assumption reflects the (deterministi)

priori model of the exogenous signals and initial condition. X(y, k) = Set(M(k), m(k))
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where we have the equation, shown at the bottom of the pageln caseA(% — 1) is not invertible, the requirements arik)

in caseA(k — 1) is invertible. If not, then become
I -Alk-1) -Bk-1)
(M (), m(k)) - A(k—-1) B(k-1) L
I —A(k-1) —B(k-1) 0 0 ”]i( )1
ST A(-1)  Blk-1) 0 0 1 ok 1)
etna 0 0 I M(k 0 0
€ Rack 0 0 1 é ) M(k—1) 0
M((k) 0 0 0
0  M(k-1) 0 0
0 1
0 = 1
1 m(k)
1 ) m(k—1)
(k)

for somed. An application of theRack™ ™"¢[.] operator leads
to the desired result. [ |

Proof: The conditionz(k) € X (y(k)) is equivalent to The matrices\/(0) andm(0) are initialized as

[y(k) — C(R)a(B)] < 1 wo=(5)  no=(})

to reflect thepriori assumptionz, € Bgrn. .
We see that the set of possible states forms a polytope
C(k) 1+ y(k) described by a cQIIecFion of inqualities. The computational
<—O(k)) (k) < <1 _ y(k)) burden of a real-time implementation amounts to the compu-
tation of theRack[-] operator, which essentially requires the
which is the matrix description of((k). solution_ of sev_eral small linear programs to remove redundant
Now according to Algorithm 3.1, the condition(k) € constraints. Since these sets may be described by several

X (y, k) is equivalently described by the two conditiong:) € inequalities, the real-time applicability of these methods is

which is equivalent to

X(y(k)) and guestionable. This consideration has led to the construction of
approximate simplified descriptions &f(y, k), in particular
2(k) = Ak — Da(k — 1) + B(k — 1)d ) through bounding ellipsoids. See [12], [24], and references
contained therein for further discussion on these topics.
for somexz(k — 1) € X(y,k — 1) and|d| < 1. Note that we have made no statements regarding the ob-

In caseA(k — 1) is invertible, condition (2) is equivalent to Servability of the original system. The above characterization
holds regardless of observability or detectability assumptions.
AN E - Da(k) — A Y k—=1)B(k—1)d € X(y,k—1) However, it is straightforward to show that an appropriate no-
tion of detectability implies that the sefs(y, k) are bounded
for some|d| < 1. Using thatX(y,k — 1) = Set(M(k — uniformly.
1), m(k — 1)) leads to the equivalent statement Finally, we note that the above algorithms easily may be
modified to accommodate a known input (such as a control)

M(k—1)A""(k=1) —M(k—-1)A"(k—1)B(k—1)\ into the state dynamics or a different set of initial conditions.
0 I Such changes will be needed in the forthcoming section on

0 -1 disturbance rejection.

M((k) 0
m(k—1) B. £ Induced-Norm Optimal Estimation

<xg€)> < 1 In this section, we show that the set-valued observer in
. 1k Section 1ll-A can be used to provide optimal estimates in an

m(k) induced-norm sense.

for somed. An application of theRack™*[-] operator leads to Define the scalar variable

the desired result. z(k) = H(k)x(k).
Mk-1DAYk—1) —MkE-1)AYk-1)B(k-1) m(k — 1)
(M(k),m(k)) € Rack™ 8 _II ) !
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In casez is vector-valued, an optimal estimate can be obtainedReference [33] considers the uniformly optimal estimation
from optimal estimates of the individual components. As iproblem. In the case of zero-initial conditions and time-
Section lll-A, define?,, and 7., as the mappings from invariant dynamics, the uniformly optimal estimation problem
exogenous signals and initial conditions, respectively;.to  can be solved as a standatdmodel-matching problem (cf.,

We now define our optimal estimation problem. [14]). For nonzero initial conditions, the model matching prob-
Definition 3.1: An estimatoris any causal (possibly non-lem is time-varying, and the optimal estimate at tilnequires
linear) mapping®: £° — £°°, storage of all measuremenfs(0),- - -, y(k)}. Reference [33]
Definition 3.2: The estimato®* is pointwise optimalf for goes on to provide an approximately optimal estimator which
any other estimatorp is recursive after a fixed number of time-steps.
(Toww + Tow,) (k) — (@%y) (k)| The following proposition summarizes the results of [33]
sup (w0, )] needed here.
(10,0) €W (k) e Proposition 3.1 [33]: There exists a uniformly optimal lin-
< sup [(Toww + T2a,) (k) — (Py) (/f)|7 ear (time-varying) estimato€). Furthermore, the associated
(w,0)EW (y,k) [|(w, )| worst case estimation errer(k), defined by
Vke Zt
. o v(k) = sup
for all possible measurement trajectories. (w,2,)CBgoo X Brna
The estimator®* is uniformly optimalif for any other Y=Tyww+Tyao o
estimator & MZeww 4+ Tow o) (k) — (Qu) (K|
sup (Loww + Tea, ) () — (27y) (K)] ICRED]
(u;io)yib;)(rTji/;:a. || (w7 .Z'o) || satisfies
< sup |(Tzww + szoxo) (k) — ((I)y) (k)| k) = ||(Tzww + Tzwoxo) (k)H
- W, T, )E Bpoo X Bpn, ||(w7$0)|| 7 K o . Sup
R Goyneyeye ool
Vke ZT.

Pointwi imality i h i Proposition 3.1 states that the cost of the uniformly optimal
_0|nt_W|se O_p“”_‘a ity IS a _stronger property than uni OMstimator (at any fixed) is given by the worst case estimation
optimality. Pointwise optimality assures that the current estly or incurred for the measurement trajectgry: 0

mation error 1s the smallest possmle for mrentmeasure- The present estimation problem considers nonzero initial
ment trajectory, whereas uniform optimality assures that t%nditions and time-varying dynamics. We will show that

current estimation error is smaller than the smallest worst C3RE setvalued observer in Section I-A defines a pointwise
estimation error over all trajectories. Thus if the measureme timal estimator

irajectory is benign in some sense, the pointwise optimal est "Definition 3.3: Consider the set-valued observer of Algo-
mation error can b&essthan the uniformly optimal estimation . .

. . .rﬁhm 3.1. Define
error. However, there exists a worst case trajectory for whic

both errors coincide. (y,k) = min{z: z € Z(y,k)}

The above measures of estimation performance take the f
form of induced-norms over bounded sets. Another estimation #(y, k) = max{z: z € Z(y, k)}
performance measure is simply direct estimation error, i.e., 2oy, k) = 2y, k) + 2(y, k)
“C\d ) - 2
sup |(TCoww + T2p,) (k) — (@y) (K)]- 3)

(w,20)EW (y,k) dof
pere Z(y, k) = H(k)X(y,k). The central estimator

Here, the error is not normalized by the size of the exogeno . .
y g ¢ — ¢°°_is defined as

signals and initial condition which produced the error. In thé<*
case of linear system dynamics and linear observers, the two
notions coincide. Such an unnormalized measure of estimation (@ey) (k) = zc(y, k).

performance was considered in [24]. Unnormalized measures

of estimation performance are natural in the present case ofour main result of this section is the following.

bounded exogenous signals and initial conditions. However,Theorem 3.2:The central estimato®. is pointwise opti-

a benefit of induced-norm optimality is that it assures thanal.

“overbounding” the exogenous signals and initial conditions Note that the central estimate is obviously the optimal for
does not deteriorate the estimation performance. For examphe unnormalized estimation error (3) (cf., [24]).

while the a priori assumptions assurew|| < 1, the actual ~ The remainder of this section is devoted to the proof of
exogenous signals might satisfjw|| <« 1. Induced-norm Theorem 3.2.

optimality assures that the resulting estimation errors are notSince we are interested in pointwise optimality, we will
affected by the conservative bound. Furthermore, inducetbnsider a single “experiment,” i.e., a fixed measurement
norm optimality can be useful when establishing robustnesajectory y and estimation time:. This will simplify the
properties. presentation a great deal by dropping notational dependence on
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y andk throughout. Thus, for thisxedmeasurement trajectory  Claim 3.2: Supposez. < z; < zZ. Supposed(z1) < .
y and estimation timé we will use the following shorthand Then ¢(z2) > ¢(z) for all z2 > 2.
notation: Proof: Let (wi,xz,1) producez; with minimum norm,
* 2,%, and z.—rather thare(y, k), z(y, k), and z.(y, k);  1-€., (w1, 201) € W(y, k)
» zg—rather than(Qy) (k);
» y—rather thanvy(k);
where Q is the uniformly optimal estimator as in Proposi&nd
tion 3.1 andvy(k) is the associated cost at tinke 21 = (Towwy + Tep, w01) (k).
Definer: [z,z] — R* by

(w1, zo1)|| = 7(21)

Let (w.., ©,+) € By X Br=. correspond to the worst case ex-

r(2) = min{[|(w, zo)||: (w,z,) € W(y, k) and ogenous signal/initial condition pair for the uniformly optimal
2= Toww+Top, o) (B).}. observer as in Proposition 3.1. That is
In other words,r(%) is the size of the smallest exogenous y= (LTowwws + Lea, o) (K)|
signal/initial condition pair which can produce the measured [(wa, 2o+ )|
output as well as the valug and
Similarly, define¢: [2,Z] — R by
; 0= (Tywws + Ty, xo- ) (k).
S\ Z = Re
H2) = r(2) Without loss of generality, assume that
Then the estimation error associated withcan be expressed Ze = (Towi + Lo x0 ) (k) > 0.
alternatively as .
ety Choose some; > 2;. One way to produce; is through
su z
2C[£Z] 19(2) (w27$02) = (wl,xol) + h(w*7$o*)
(compare to Definition 3.2). where/ is appropriately scaled so that

Note that ha. — 29 — 2
S — R2 T A1

() =r(z)=1. . . . .
n(z) =r() By construction,(w., z,2) IS consistent with the measured

This is a result of the underlying linear dynamics. Moréata. However, it may be thadl{ws,z.2)|| > 1.
precisely, the exogenous signals/initial condition which pro- We now comparej(z2) and ¢(z1). First

duce eitherz or z are the result of an appropriate linear 2y — 2. 2o — 2,
program. Thus the exogenous signals/initial conditions which P(z2) = r(z2) — (w2, z02)]
achieve the extreme valugsand z are actively constrained 29 — 7’
by ||(w,z,)]| < 1. As a result 2 - .
Y it zo)lf < (s, 200+ Fll(n, 200
$(2) = —¢(2)- Thus proving the claim can be achieved by testing whether
However, ¢(-) need not be a symmetric (odd) function. Fur- Z2 — Zc 21— R $(z)
thermore, we see and ¢ can be derived from appropriate  |[(wy, zo1)|| + Al[(ws, 7o)|| = (Wi zor)]|  ~
Egzlsmum distance problems and are batbntinuousfunc- Toward this end, we see that
Claim 3.1: The following inequality holds: F2 T e > LT e
S, [[Cwrs 2o}l 4 Al (we, o)l (w1, o1
Z— 2 &
5 <7

. (22 = 21) + (21 — 2e)l[ (w1, za1) |
In case of equalityz. = zg.

H : : fofi > (21— “c sy Lo #y L o*
Proof: The uniformly optimal estimator satisfies 2 (21 = ze) ([(wr, o) + All (-, 20)]])
&
zZ—zo| < yr(Z
2= 24l = 7(2) (2 = 2)ll (. wo)l| 2 A — 20,0
and o
zy — Z
|2 = zq| < vr(2)- (22 — 20| (w1, zo1)|| > Z—— (21 = zo)|(wa, 700 )|
23
Sincer(z) = r(z) = 1, this leads to <
z y= TR = (a)
Fmzs 2y (w20 )| = Mws, o)l ~ 7
In the case of equalityzo = 2. is necessary. For example
if 2o <z Using the hypothesis
Z — 29 >yr(Z) P(z1) <

which is a contradiction. m completes the proof. [ |
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Claim 3.3: Supposez, > 21 > z. Suppose—¢(z1) < ~. Assumption 4.1:

Then ¢(z2) < ¢(z1) for all 22 < 2. 1) The exogenous inputs satisfy € By
Proof: The proof is similar to the proof of Claim 3.1 2) The matricesB; and C; have rankn,.

Claim 3.4: The function¢ is monotonically nondecreasing 3) The pair[4, C,] is detectable.
over the interval[z, z].

Proof: Claims 3.2 and 3.3 imply that is monotonic for
all 2 such that|p(2)| < +.

Note that¢(z.) = 0. Thus by continuity,¢ is monotonic
until ¢(2') = ~ for somez’ € (z,%z). Assume that such &
satisfies?’ > z.. Similar arguments hold in cagé < ~.. Since
z > %/, Claim 3.2 implies¢(z) > ~, and hencep(z) < —~.
Claim 3.1 then implies that actually

The objective is to design a controller which maintains
llz|] € ~ in the presence of allw|| < 1 using only output
feedbacky. This objective is related t4' optimal control for
linear systems [14].

This objective is stated more precisely as follows. We will
say that a controller is any operator which maps a vector,
2, € R™=, and output sequencéy(0), y(1),y(2),---}, into a
control sequencefu(0),w(1),%(2),---} in a causal manner.

H(Z) =5 = —¢(2) This relationship is denoted = X[%,]y. The vectort, is used
. to initialize the controller and can be viewed as an approximate
andz. = zq. Sincez. = zq initial condition for (4).
. 2 —zg We now state precisely our performance objective.
$(2) = r(2) <7 Definition 4.1: Let S and FE be compact convex sets Ri*«

_ . . . . with0 € £ C S. A controller K achieves a performance of
Thus, if ever¢(z') = v, then ¢(2) < v for all 2 € [z,Z],  overthe set¢S, E) if for any &, € S and any initial condition

which completes the proof. . B 2(0) € (&, 4+ E)N S, all solutions to (4) satisfy
The proof of Claim 3.4 shows that the functignsaturates
at £ if it ever achieves these values. In this cage= zg. ll2]] <~

Furthermore, monoticity implies that always achieves its
extreme values at and z.

We can now show that. is the pointwise optimal estimate.
The cost of an alternative estimate, may be expressed

The setS represents a class of admissible initial conditions,
while the setFE represents uncertainty in the controller’s
knowledge of the initial condition.

In the following, we present a theoretical determination of
whetherany controller can achieve a performance~pover

max (/2

ke sets(.S, E) which are yet to be specified. The presentation here
where and in [30] and [31] follows the language of viability theory
. 5 [1] for differential inclusions. However, similar methods have
¢'(2) = r(z) been used in a variety of different contexts including viability
theory and differential inclusions [1], [2], [17], [27], [28], dy-
In case?’ <z, then namic programming [3], [4], systems with control constraints
¢ (2) > ¢(2). [5], [6], [13], [18]-[21], construction of reachable sets [10],
[11], and time-varying system analysis [8], [8], [29], as well
In casez’ > z., then as optimal disturbance rejection [7], [9], [16], [23].
¢ (2) < $(2). For v> 0 define K, as
In either case Ky =z [Crz] < v
max |¢'(2)| > max |p(2)] Assumption 4.1 assures that, is bounded. Clearly for a
AClz7] 2€lz7 controller K to achieve a performance of, it must assure
which completes the proof of Theorem 3.2. that z(k) € K, always. However, this is only a necessary
condition. Also required is that themwaysexists a control
IV. APPLICATION TO DISTURBANCE REJECTION valueu(k) which assures:(k + 1) € K, as well. Define the
set-valued regulation maflx_ : R" ~» R"« as
A. Controlled Invariance with Output Feedback Ry (2) = {u: Az + Bid + Bou € K., V|d| < 1}.

We will consider discrete-time systems of the form . .
In words, the regulation map determines the set of control

x(k +1) = Ax(k) + Bid(k) + Bou(k) values which assure(k +1) € K.,. In terms of the regulation
2(k) = Cra(k) map, achieving a performance gfrequires 1y:(k) € K.; 2)
_ Ry _(x(k)) is nonempty; and 3) there existsuék) such that
k) = Cox(k) + Dain(k 4 e
y(k) 2(k) + Daun(k) @ xz(k 4+ 1) has properties 1) and 2).
with the additional dimensions beingk) € R™ andz(k) € We see that achieving a performance pfis essentially
R"=, equivalent to maintaining controlled invariance within the set

Let w = (Z) The following assumptions hold throughouif states having the above properties 1) and 2). Reference
Section IV. Additional special assumptions will be stated 481] exploited these notions in the noise-free state feedback
needed. case to construct controllers which achieve a performance of
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~ whenever possible. Briefly, the state equation portion of (4) Now let iw C X denote the subsets @™+ which satisfy
was written as the difference inclusion the following conditions. A sef{ belongs toiw if
1) X C K
2k +1) € Gla(t) u(t) ®) 2) Neex Ry (x) is nonempty.
whereG: R™ xR" ~~ R is the set-valued map defined by\we see that in order to achieve a performance,af controller
(2,1) — {Azx + Bid + Bou: |d| < 1}. must assure thatX (k) € i_w always. Thus the origi_nal _
problem of controlled invariance for the state dynamics is

It was shown that a performance fis achievable if and transformed to a problem of controlled invariance for the
only if Cinv(K.,) is nonempty, where 8v is the controlled difference inclusion in (6).
invariance kernel defined in Appendix A. The following separation structure is an immediate conse-

Now consider the case of noisy output feedback. Let thgience of this alternative interpretation of disturbance rejec-
set of possible state values at time be denotedX(k), tion. Let the termseparation structure controllerefer to a
where the explicit dependence on the output measuremertstroller such that
(as in Section IlI-A) and control inputs is suppressed. More
demanding than the state feedback case, we now must find u(k) = g(X (k)

a single control value which “works” for alt(k) € X(k). whereg: & — R™ is a static nonlinear function on the current
In terms of the regulation map),cxu) R, (z) must be getof possible statesx (k).

nonempty. Again, this is only a necessary condition. Similarly Theorem 4.1:1f any controller achieves a performance of
to the state-feedback case, we must assure thal(k) C K; 4 over specified set$S, E), then there exists a separation
2) Nzex Ri, () is nonempty; and 3) there existsudk)  structure controller which achieves a performanceyaiver
such thatX(k + 1) has properties 1) and 2). the sets(S, E).

This discussion reveals that achieving a performance of Proof: Let K be any controller which achieves a perfor-
in the output feedback case also is equivalent to maintainiggynce ofy, and suppose we constructed a set-valued observer
controlled invariance. But the invariance is now referring tgy the system (4) under treepriori assumptions of: 1) known
all possiblesets of states. The similarities between outpupgunds omw; 2) known initial condition se{#, + E) N S;
feedback and state feedback become more apparent if @ 3) known control trajectory;. (Note that the set-valued
express the evolution of thget of possible state values asppserver algorithms of Section I1l-A can easily be modified to
a controlled difference inclusion. incorporate alternate initial condition sets and known inputs.)

Toward this end, let. denote the complete metric spacerhen each exogenous input trajectory leads to a trajectory of
of all nonempty compact subsets &f'+ equipped with the gpserved sets of possible states. Let this relation be denoted
Hausdorff metric [25, p. 279]. Define the set-valued map Txw(K[Zo], %(0)).

F: ¥ x R™ ~ ¥ as follows. Suppose the current set of Now let ©* 5 denote the set of reachable sets of states

possible state values i¥ (k). Based onX(k), let Y(k+1) starting from anyz, € S andz(0) € (#, + £) N S. Then
be the set of possible output measurements at time. This  x+ ¢ s+ if and only if

set depends on the specific control inpgk) and all possible

disturbances and noises. Thus X" = (Ixw(K[Zo], 2(0))w) (k)
Y(k+1)={y: y = Co(Ax + B1d + Byu(k)) for somew € By, k € 2%, i, € S, and z(0) €
+n for somez € X(k),|d| < 1,|n| < 1}. (Z, + E)n S. Clearly X* is a controlled invariant set for

the difference inclusion (6). Furthermore, sin€eachieves a

As in Algorithm 3.1, the set of state values at tirher 1 is performance ofy over (S, E), we have that: 1)5* ¢ iw

given by and 2) (&, + E)N S € X, Thus for anyX* € ¥* : 1) X*
X(k+1) ={z: 2 = A7 + B1d + Bou(k) for some C K, and 2)N;ex~ Ry (x) is nonempty. Furthermore, by
i e XY 1dl < 1Y A X(u(k + 1)), controlled invariance, there existsuasuch thatF'(X™, u) C
e X(k)ld <1} (y(k+1)) ¥ C X,. We may then define the following regulation map
Define F' to be the set-valued mapping R 5~ RM:
F(X(k), u(k)) R*(X) = {u: F(X,u) C ©*}.

= {{z: 2 = A + Byd + Byu(k) for some This leads to a family of separation structure controllers which

@€ X(k)d| <1} n X (y(k +1)): achieve the desired performance. The only requirement is that
y(k+1) e Y(k+ 1)} u(k) € R*(X(k)), e.g.,
In words, F(X (k),u(k)) represents the set of candidates for g(X(k)) = min{|u|: v € R*(X(k))}.

X(k + 1) based onX(k) and w(k). Thus anelementof . - . . .

: . The existence of a minimum is assured sid€e:) is always

F(X k), u(k)) Is asetof possible states. compact convex set. The definition gffor sets not in:*
With this definition, we now may describe the system undér P Vex set. inition o '

output feedback by the controlled difference inclusion IS not important because Of. controlled invariance. M
We do not attempt to derive any regularity properties, such

X(k+1) e F(X(k),uk)). (6) as continuity, of the separation structure controller. Theo-
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rem 4.1 is a direct consequence of theerpretationof distur- achieves a performance of over the setg X,,,, E), where

bance rejection with output feedback as controlled invarianée is arbitrary.

for the difference inclusion (6), and hence is primarily of It is easy to see that the statedin Theorem 4.2 is the

conceptual value. smallest possible performance level under output feedback.
The controlled invariance kernel algorithm of Appendix Brherefore, the given controller is, in fact, optimal. This con-

can be used to construct theoretically an invariant set if oteller resembles an optimal estimate of the optimal state

exists. However, it is believed that the set-valued mappirigedback controlu(k) = — B, * Az(k). However, an optimal

F is not lower semicontinuous (since matrix intersection isstimate is required fofAz) (k), rather thanz(k). This is

not lower semicontinuous), and hence this procedure may matt surprising since it is the value 6fiz) (k) which actually

lead to a closed invariant-set. determines the current state’s effects on future trajectories.
We close this section with a proof of Theorem 4.2. The state
B. Special Cases dynamics with the above controller take the form
Theorem 4.1 does not provide a constructive solution to x(k+1) = (Ax(k) — (Az).(k)) + B1d(k).

deriving a separation structure controller. However, there are ) ) ) ) o
two special cases for which an explicit construction is possibiEl€ desired performance is achieved if for any admissible
1) Full Control: In this section, we make the following frajectory, the state satisfies

restrictive assumptions. 1T (A (k) — (Ax)o(k))| < max |eF Xuoz]
Assumption 4.2: £CX o
1) B is invertible. for all k € 2Z+. A slight modification of Proposition 3.1 to
2) ¢ = I accommodate known inputs assures that the above bound is

The situation in whichB, is invertible is referred to as satisfied.
“full control” since the number of controls equals the number 2) Scalar Control: As opposed to full control, we now
of states. consider the other extreme of a scalar control variable. In
We will need to define the sets particular, we will state conditions which assure that the
X (k) = {2(k): w € B with (0) = 0 _regulation map intersection over the_set of possible states
is always nonempty. In terms of Section IV-A, we can then
u(j) =y(j) =0, =0,---,k} explicitly construct a separation structure controller.
SO0 v s We start with the following special assumptions.
Kuo = U Ko (k). Assumption 3:
1) The control signal is scalar-valued.
The setX,,, (k) is the set of states which are reachable at time 2) There exists a compadt’ C K., which is controlled
k from zero initial conditions while maintainingy € By, invariant under full-state feedback.
u = 0, andy = 0. The setX,, is the closure of the union 3) The regulation map
of such sets. As seen previously (cf., Proposition 3.1), this
set plays an important role #t°-optimal estimation. In some Ry (z) = {u: Az + Bid + Byu € K, V|d| <1}
senseX,, represents a set of unobservable states in the sense agmits the representation
that the disturbance and noise may drive the state to anywhere
in X, without providing the controller with any additional () = {u: max—f; + af & <w < min B + ] @}
information. The detectability assumption assures fiaf is ’ (7)
bounded. ~ for appropriate vectors; € R"= and scalarg; > 0.
Let v (k) denote the component-by-component central esti- congition 4.3-2 is clearly necessary for the existence of an
mates of the vectar(k). Thus, the set of possible state vectors, it feedback controller which achieves the desired perfor-

has a central estimate of.(k). This set, in turn, leads t0 500 Reference [31] shows that regulation maps generally
a set of possible values fadz(k) with a central estimate ;g1 the above form.

of (Az).(k). Note that(Az).(k) generallydoes notequal  1he following theorem is derived in [32].

A(z.(k)). At any time k these sets of possible values areé Thaorem 4.3 Define the scalar parameters
defined by: 1) the measurements up to tilme2) the control

inputs up to timek; and 3) thea priori disturbance and initial s; = max{al z: 7 € Xyuo} (8)
condition assumptions. a; = max{o] z:x € K}. 9)
Theorem 4.2:Let

keZ+

There exists an output feedback controller which achieves a

v = max (max |¢] Bid| + max |¢] Az|) performance ofy = 1 over (K, X,,) if and only if for all
1<i<n, |d|<1 zEX 4o ..
i,7and allz € K
wheree; denotes the standarith basis vector ifR™. The Bi— s >0 (10)
controller P

(af — ch)x < max{f; — si, i — (a; — al )}

u(k) = =By ' (Az).(k) + max{f3; — s;,3; — (a; + afa:)} (11)
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In terms of the discussion of Section IV-A, Theorem 4.3 V. A NUMERICAL EXAMPLE

provides conditions under which the intersection This section provides an illustrative numerical example of
the set-valued observer. Let
ﬂ RK(QZ)

RN 2k +1) = <_0(f7 8;Z)x(k) - G)d(k)

is never empty. Therefore, a separation structure controller y(k) =1 Dz(k) +n(k).

can achieve the desired performance with the static mapping

g(X (%)) being any selection strategy from the above interse\¥e are interested in estimating the statén optimal estimate
tion. The conditions of Theorem 4.3 can be testqutiori by of the state amounts to optimal estimates of the individual
solving appropriate linear programs. componentse; and z».
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Fig. 3. Estimation error functios for = = =z at timek = 2.
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Fig. 4. Estimation error functiong, for = = z; at time k = 3.

This simulation horizon was = 0, 1,2, 3. The disturbance ¢(%) at timesk = 2, 3, respectively, for the estimate= .
and noise histories used in the simulation were Note that¢ is not symmetric, but is monotone as expected.
d(0,1,2,3) = (1,~1, 1, 1) Furthermoreg for t!mek =2 saturates_at(2) whigh impligs
T o7 that the central estimate equals the uniformly optimal estimate.
n(0,1,2,3) = (1,-1,1, —1).

The true initial condition was set to(0) = 0. VI. CONCLUDING REMARKS

Figs. 1 and 2 show the set of admissible states at timeWe have considered the guaranteed state estimation problem
k = 2,3, respectively. Also shown are the true state, thier discrete-time linear time-varying systems. Based oraan
central estimate, and the uniformly optimal estimate. Nomiori model of initial conditions and exogenous signals, a
that at timek = 3, the uniformly optimal estimate doesset-valued observer was constructed which computes the set
not lie within the set of admissible states. This illustrates thaf possible state vectors consistent with measured output data.
pointwise optimality of the central estimate. Figs. 3 and 4 pldt was shown that the centers of these sets correspond to the
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optimal state estimate which minimizes the induced norm frofrhen
exogenous signals/initial conditions to estimation error. The

algorithms easily can be modified in the case of known initial Onvv() =) 5
conditions and known inputs simply by changing toeriori §=0
assumptions.

We also considered the utility of set-valued observers for Proof: We first show that if2; is closed, the;,
disturbance rejection with output feedback and derived i% closed. Let{s,} be a sequence i;;. Since¥;, is
general, but conceptual, separation structure. An explicit cdfRunded, we may assunfe,, } converges to some,. Let u,,
struction is possible in the scalar control case. In the sped§ Such that

case of full control, optimal output feedback controllers can F(sn,un) C 3.
. . YN a3
resemble an optimal estimate of the full-state feedback con-
troller. The stated assumptions assure the sequéngé must be

While set-valued observers are of theoretical importandegunded. Therefore, we may assume that the sequence con-
their real-time applicability to systems with fast dynamics igerges to some:,. By lower semicontinuity, for any-, €
questionable because of the considerable computational burdé&n,, «,), there existr, € F(s,,u,) C X; such that the
in constructing the set-valued estimates. An important reseafgh } converge tor,. Thusr, € 3; since; is closed. This
direction toward alleviating this burden is the derivation afplies F(s,,u,) C %;, and hences, € ¥;,;.
fixed-complexity suboptimal set-valued estimates (cf., [24]). CIearIyCINv(i), if it exists, is contained im?,, ij. Since
the ¥, are nested compact sefs2,, >; is empty if and only
if ij is empty for somej. In this case the proposition holds
trivially. ,

In this Appendix, we present some material of indepen- In casen;Z, 2]» is nonempty, we will show it is controlled
dent interest regarding controlled difference inclusions amgvariant. Define the set-valued regulation mapg >; ~
controlled invariance. The material essentially follows [3IR™ by
Sec. IV], but with somewhat greater generality. The present .
discussion employs the language of viability theory. However, Rj(s) = {u: F(s,u) C X1}
as mentioned in the main text, similar methods have been u%qfhilar arguments as above show that for ang N2, 5

in a variety of different contexts.
: the R;(s) are nested compact sets. Thereforg,, R;
Let ¥ be a complete metric space. LBt ¥ x R™ ~ X be i(5) P o Bils)

a set-valued mapping whose domain is the erfire R™. In nonempt_y for every € M7=, X;. Thus for anys € N7Z, Ej’
this section, we consider the controlled difference inclusiontn€ré exists a € N7, R;(s) such thatF'(s, ) C N7, ¥,
which implies the desired controlled invariance. [ |
s(k+1) € F(s(k),u(k)). In caseF is not lower semicontinuous, the above algorithm
Definition A.1: A subset> c ¥ is controlled invariantif Still produces the largest invariant set. However, a largest
for everys € 3, there exists a € R™ such thatt'(s,«) c &,  closedinvariant set may not exist.

Definition A.2: The largest closed subset Bf ¢ ¥ which
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