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Set-Valued Observers and Optimal
Disturbance Rejection
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Abstract—A set-valued observer (also called guaranteed state
estimator) produces a set of possible states based on output
measurements and models of exogenous signals. In this paper, we
consider the guaranteed state estimation problem for linear time-
varying systems with a priori magnitude bounds on exogenous
signals. We provide an algorithm to propagate the set of possible
states based on output measurements and show that the centers
of these sets provide optimal estimates in aǹ1-induced norm
sense. We then consider the utility of set-valued observers for dis-
turbance rejection with output feedback and derive the following
general separation structure. An optimal controller can consist of
a set-valued observer followed by a static nonlinear function on
the observedsetof possible states. A general construction of this
function is provided in the scalar control case. Furthermore, in
the special case of full-control, i.e., the number of control inputs
equals the number of states, optimal output feedback controllers
can take the form of an optimal estimate of the full-state feedback
controller.

Index Terms—Disturbance rejection, state estimation, obser-
vers.

I. INTRODUCTION

STOCHASTIC state estimation provides optimal state esti-
mates based on probabilistic models of exogenous signals.

An alternative is to model exogenous signals as deterministic
unknown but bounded quantities. The problem is then to
construct aset of possible state values based on measured
outputs. Such an approach has received considerable attention
in the controls literature. References [12] and [24] present an
overview of work in this area, and [22] contains a collection
of related conference papers.

Related to the deterministic setting is induced-norm opti-
mal state estimation. This framework provides optimal state
estimates which minimize the induced-norm from exogenous
signals to estimation errors. Reference [26] considers the case
where exogenous signals and estimation errors are measured
using the -norm, or signal energy, which leads to an
optimal estimation problem. Reference [33] measures exoge-
nous signals and estimation errors by the norm, or signal
magnitude, which leads to an optimal estimation problem.

In this paper, we consider guaranteed state estimation for
linear time-varying systems. Under an assumeda priori bound
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on exogenous signals, we present a construction of the set of
possible state values. We then relate the centers of these sets
to the optimal estimation problem considered in [33]. In
particular, we show that the centers are also optimal in an
induced-norm sense.

We then investigate the utility of set-valued observers for
-induced norm optimal disturbance rejection. References

[30] and [31] considered this disturbance rejection problem
in the special case of noise-free state feedback and showed
that optimal controllers can be static nonlinear functions of
the state. This is in contrast to [15] which showed that
optimal linear controllers may be dynamic and of arbitrarily
high order. In this paper, we consider noisy output feedback.
We show that optimal controllers can take the following
separation-like structure: 1) a set-valued observer plus 2) a
static nonlinear function on thesetof possible states. A general
construction of this function is provided in the scalar control
case. Furthermore, in the special case of full-control, i.e., the
number of control inputs equals the number of states, optimal
output feedback controllers can take the form of an optimal
estimate of the full-state feedback controller.

The remainder of this paper is organized as follows.
Section II contains preliminary definitions and notation.
Section III presents an algorithm which propagates the
set-valued estimates based on output measurements and
derives the induced-norm optimality of the centers of
these sets. Section IV discusses applications to disturbance
rejection. Finally, Section V contains a simulation example,
and Section VI has concluding remarks.

II. M ATHEMATICAL PRELIMINARIES

A. Basic Notation

For let denote the th component of and
define

Let denote the set of nonnegative integers. Let
denote the set of bounded one-sided sequences inFor

define

The dimension is suppressed in for notational conve-
nience. The unit balls in and are denoted and

respectively.
Define1 and0 to be vectors of 1’s or 0’s, respectively, of

appropriate length.
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A set-valued map, denoted is a mapping from
points to subsets

B. Projections of Convex Sets

For and let denote
the subset of associated with defined by the
constraints

For and consider the subset,
of defined by

for some

Define

i.e., is the set of matrix pairs which give a
direct characterization of While the set is unique, its ma-
trix representation is not. Hence, represents
a set of possible matrix representations. The construction of
an element of may be achieved through the
Fourier–Motzkin algorithm which is described in [21].

Now define

and recursively define

The notation is simply a multivariable form of
For and redefine the

subset as

for some

Then is the set of matrix pairs which
give a direct characterization of

III. SET-VALUED ESTIMATION

A. Set Propagation

This section considers the time-varying discrete-time linear
system

(1)

where is the state-vector, is the
measured output, is a process disturbance, and

is a measurement noise.
Define In input–output form, system (1) takes the

form

where denotes the mapping from to with the initial
condition and denotes the mapping from to

with the input Similarly define and
The following assumption reflects the (deterministic)a

priori model of the exogenous signals and initial condition.

Assumption 3.1:The exogenous inputs satisfy
and the initial condition satisfies

We are interested in constructing an estimate of the state
vector based on output measurements. Toward this end, define
the set-valued map as

In other words, denotes the set of admissible exoge-
nous signals and initial conditions consistent with measured
data up to time Similarly, define the set-valued

given by

for some

i.e., denotes the set of possible state-vectors at time
consistent with the measured data up to timeFinally, define
the set-valued by

for some

The set represents the set of possible states based on a
single measurement.

The following algorithm (see also [12, Sec. 20]) propagates
the set of possible states.

Algorithm 3.1: Let be a prescribed measurement
trajectory.

Initialization:

Propagation:

for some

Note that all sets are constructed with acausaldependence on
the measurement trajectory,

The following theorem describes a computational imple-
mentation of Algorithm 3.1.

Theorem 3.1:In the framework of Algorithm 3.1

where

and
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where we have the equation, shown at the bottom of the page,
in case is invertible. If not, then

Proof: The condition is equivalent to

which is equivalent to

which is the matrix description of
Now according to Algorithm 3.1, the condition

is equivalently described by the two conditions
and

(2)

for some and
In case is invertible, condition (2) is equivalent to

for some Using that
leads to the equivalent statement

for some An application of the operator leads to
the desired result.

In case is not invertible, the requirements on
become

for some An application of the operator leads
to the desired result.

The matrices and are initialized as

to reflect thepriori assumption
We see that the set of possible states forms a polytope

described by a collection of inequalities. The computational
burden of a real-time implementation amounts to the compu-
tation of the operator, which essentially requires the
solution of several small linear programs to remove redundant
constraints. Since these sets may be described by several
inequalities, the real-time applicability of these methods is
questionable. This consideration has led to the construction of
approximate simplified descriptions of in particular
through bounding ellipsoids. See [12], [24], and references
contained therein for further discussion on these topics.

Note that we have made no statements regarding the ob-
servability of the original system. The above characterization
holds regardless of observability or detectability assumptions.
However, it is straightforward to show that an appropriate no-
tion of detectability implies that the sets are bounded
uniformly.

Finally, we note that the above algorithms easily may be
modified to accommodate a known input (such as a control)
into the state dynamics or a different set of initial conditions.
Such changes will be needed in the forthcoming section on
disturbance rejection.

B. Induced-Norm Optimal Estimation

In this section, we show that the set-valued observer in
Section III-A can be used to provide optimal estimates in an
induced-norm sense.

Define the scalar variable
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In case is vector-valued, an optimal estimate can be obtained
from optimal estimates of the individual components. As in
Section III-A, define and as the mappings from
exogenous signals and initial conditions, respectively, to

We now define our optimal estimation problem.
Definition 3.1: An estimator is any causal (possibly non-

linear) mapping
Definition 3.2: The estimator is pointwise optimalif for

any other estimator,

for all possible measurement trajectories.
The estimator is uniformly optimal if for any other

estimator

Pointwise optimality is a stronger property than uniform
optimality. Pointwise optimality assures that the current esti-
mation error is the smallest possible for thecurrent measure-
ment trajectory, whereas uniform optimality assures that the
current estimation error is smaller than the smallest worst case
estimation error over all trajectories. Thus if the measurement
trajectory is benign in some sense, the pointwise optimal esti-
mation error can belessthan the uniformly optimal estimation
error. However, there exists a worst case trajectory for which
both errors coincide.

The above measures of estimation performance take the
form of induced-norms over bounded sets. Another estimation
performance measure is simply direct estimation error, i.e.,

(3)

Here, the error is not normalized by the size of the exogenous
signals and initial condition which produced the error. In the
case of linear system dynamics and linear observers, the two
notions coincide. Such an unnormalized measure of estimation
performance was considered in [24]. Unnormalized measures
of estimation performance are natural in the present case of
bounded exogenous signals and initial conditions. However,
a benefit of induced-norm optimality is that it assures that
“overbounding” the exogenous signals and initial conditions
does not deteriorate the estimation performance. For example,
while the a priori assumptions assure the actual
exogenous signals might satisfy Induced-norm
optimality assures that the resulting estimation errors are not
affected by the conservative bound. Furthermore, induced-
norm optimality can be useful when establishing robustness
properties.

Reference [33] considers the uniformly optimal estimation
problem. In the case of zero-initial conditions and time-
invariant dynamics, the uniformly optimal estimation problem
can be solved as a standardmodel-matching problem (cf.,
[14]). For nonzero initial conditions, the model matching prob-
lem is time-varying, and the optimal estimate at timerequires
storage of all measurements Reference [33]
goes on to provide an approximately optimal estimator which
is recursive after a fixed number of time-steps.

The following proposition summarizes the results of [33]
needed here.

Proposition 3.1 [33]: There exists a uniformly optimal lin-
ear (time-varying) estimator Furthermore, the associated
worst case estimation error defined by

satisfies

Proposition 3.1 states that the cost of the uniformly optimal
estimator (at any fixed) is given by the worst case estimation
error incurred for the measurement trajectory

The present estimation problem considers nonzero initial
conditions and time-varying dynamics. We will show that
the set-valued observer in Section III-A defines a pointwise
optimal estimator.

Definition 3.3: Consider the set-valued observer of Algo-
rithm 3.1. Define

where The central estimator,
is defined as

Our main result of this section is the following.
Theorem 3.2:The central estimator is pointwise opti-

mal.
Note that the central estimate is obviously the optimal for

the unnormalized estimation error (3) (cf., [24]).
The remainder of this section is devoted to the proof of

Theorem 3.2.
Since we are interested in pointwise optimality, we will

consider a single “experiment,” i.e., a fixed measurement
trajectory and estimation time This will simplify the
presentation a great deal by dropping notational dependence on
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and throughout. Thus, for thisfixedmeasurement trajectory
and estimation time we will use the following shorthand

notation:

• and —rather than and
• —rather than
• —rather than

where is the uniformly optimal estimator as in Proposi-
tion 3.1 and is the associated cost at time

Define by

and

In other words, is the size of the smallest exogenous
signal/initial condition pair which can produce the measured
output as well as the value

Similarly, define by

Then the estimation error associated withcan be expressed
alternatively as

(compare to Definition 3.2).
Note that

This is a result of the underlying linear dynamics. More
precisely, the exogenous signals/initial condition which pro-
duce either or are the result of an appropriate linear
program. Thus the exogenous signals/initial conditions which
achieve the extreme valuesand are actively constrained
by As a result

However, need not be a symmetric (odd) function. Fur-
thermore, we see and can be derived from appropriate
minimum distance problems and are bothcontinuousfunc-
tions.

Claim 3.1: The following inequality holds:

In case of equality,
Proof: The uniformly optimal estimator satisfies

and

Since this leads to

In the case of equality, is necessary. For example
if

which is a contradiction.

Claim 3.2: Suppose Suppose
Then for all

Proof: Let produce with minimum norm,
i.e.,

and

Let correspond to the worst case ex-
ogenous signal/initial condition pair for the uniformly optimal
observer as in Proposition 3.1. That is

and

Without loss of generality, assume that

Choose some One way to produce is through

where is appropriately scaled so that

By construction, is consistent with the measured
data. However, it may be that

We now compare and First

Thus proving the claim can be achieved by testing whether

Toward this end, we see that

Using the hypothesis

completes the proof.
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Claim 3.3: Suppose Suppose
Then for all

Proof: The proof is similar to the proof of Claim 3.2.
Claim 3.4: The function is monotonically nondecreasing

over the interval
Proof: Claims 3.2 and 3.3 imply that is monotonic for

all such that
Note that Thus by continuity, is monotonic

until for some Assume that such a
satisfies Similar arguments hold in case Since

Claim 3.2 implies and hence
Claim 3.1 then implies that actually

and Since

Thus, if ever then for all
which completes the proof.

The proof of Claim 3.4 shows that the functionsaturates
at if it ever achieves these values. In this case,
Furthermore, monoticity implies that always achieves its
extreme values at and

We can now show that is the pointwise optimal estimate.
The cost of an alternative estimate,, may be expressed

where

In case then

In case then

In either case

which completes the proof of Theorem 3.2.

IV. A PPLICATION TO DISTURBANCE REJECTION

A. Controlled Invariance with Output Feedback

We will consider discrete-time systems of the form

(4)

with the additional dimensions being and

Let The following assumptions hold throughout
Section IV. Additional special assumptions will be stated as
needed.

Assumption 4.1:

1) The exogenous inputs satisfy
2) The matrices and have rank
3) The pair is detectable.

The objective is to design a controller which maintains
in the presence of all using only output

feedback, This objective is related to optimal control for
linear systems [14].

This objective is stated more precisely as follows. We will
say that a controller is any operator which maps a vector,

and output sequence, into a
control sequence, in a causal manner.
This relationship is denoted The vector is used
to initialize the controller and can be viewed as an approximate
initial condition for (4).

We now state precisely our performance objective.
Definition 4.1: Let and be compact convex sets in

with A controller achieves a performance of
over the sets if for any and any initial condition

all solutions to (4) satisfy

The set represents a class of admissible initial conditions,
while the set represents uncertainty in the controller’s
knowledge of the initial condition.

In the following, we present a theoretical determination of
whetherany controller can achieve a performance ofover
sets which are yet to be specified. The presentation here
and in [30] and [31] follows the language of viability theory
[1] for differential inclusions. However, similar methods have
been used in a variety of different contexts including viability
theory and differential inclusions [1], [2], [17], [27], [28], dy-
namic programming [3], [4], systems with control constraints
[5], [6], [13], [18]–[21], construction of reachable sets [10],
[11], and time-varying system analysis [8], [8], [29], as well
as optimal disturbance rejection [7], [9], [16], [23].

For define as

Assumption 4.1 assures that is bounded. Clearly for a
controller to achieve a performance of it must assure
that always. However, this is only a necessary
condition. Also required is that therealwaysexists a control
value which assures as well. Define the
set-valued regulation map as

In words, the regulation map determines the set of control
values which assure In terms of the regulation
map, achieving a performance ofrequires 1) 2)

is nonempty; and 3) there exists a such that
has properties 1) and 2).

We see that achieving a performance ofis essentially
equivalent to maintaining controlled invariance within the set
of states having the above properties 1) and 2). Reference
[31] exploited these notions in the noise-free state feedback
case to construct controllers which achieve a performance of
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whenever possible. Briefly, the state equation portion of (4)
was written as the difference inclusion

(5)

where is the set-valued map defined by

It was shown that a performance of is achievable if and
only if CINV is nonempty, where CINV is the controlled
invariance kernel defined in Appendix A.

Now consider the case of noisy output feedback. Let the
set of possible state values at time be denoted
where the explicit dependence on the output measurements
(as in Section III-A) and control inputs is suppressed. More
demanding than the state feedback case, we now must find
a single control value which “works” for all
In terms of the regulation map, must be
nonempty. Again, this is only a necessary condition. Similarly
to the state-feedback case, we must assure that: 1)
2) is nonempty; and 3) there exists a
such that has properties 1) and 2).

This discussion reveals that achieving a performance of
in the output feedback case also is equivalent to maintaining
controlled invariance. But the invariance is now referring to
all possiblesets of states. The similarities between output
feedback and state feedback become more apparent if we
express the evolution of theset of possible state values as
a controlled difference inclusion.

Toward this end, let denote the complete metric space
of all nonempty compact subsets of equipped with the
Hausdorff metric [25, p. 279]. Define the set-valued map

as follows. Suppose the current set of
possible state values is Based on let
be the set of possible output measurements at time This
set depends on the specific control input and all possible
disturbances and noises. Thus

for some

As in Algorithm 3.1, the set of state values at time is
given by

for some

Define to be the set-valued mapping

for some

In words, represents the set of candidates for
based on and Thus an elementof

is a set of possible states.
With this definition, we now may describe the system under

output feedback by the controlled difference inclusion

(6)

Now let denote the subsets of which satisfy
the following conditions. A set belongs to if

1)
2) is nonempty.

We see that in order to achieve a performance ofa controller
must assure that always. Thus the original
problem of controlled invariance for the state dynamics is
transformed to a problem of controlled invariance for the
difference inclusion in (6).

The following separation structure is an immediate conse-
quence of this alternative interpretation of disturbance rejec-
tion. Let the termseparation structure controllerrefer to a
controller such that

where is a static nonlinear function on the current
set of possible states

Theorem 4.1:If any controller achieves a performance of
over specified sets then there exists a separation

structure controller which achieves a performance ofover
the sets

Proof: Let be any controller which achieves a perfor-
mance of and suppose we constructed a set-valued observer
for the system (4) under thea priori assumptions of: 1) known
bounds on 2) known initial condition set
and 3) known control trajectory, (Note that the set-valued
observer algorithms of Section III-A can easily be modified to
incorporate alternate initial condition sets and known inputs.)
Then each exogenous input trajectory leads to a trajectory of
observed sets of possible states. Let this relation be denoted
by

Now let denote the set of reachable sets of states
starting from any and Then

if and only if

for some and
Clearly is a controlled invariant set for

the difference inclusion (6). Furthermore, sinceachieves a
performance of over we have that: 1)
and 2) Thus for any 1)

and 2) is nonempty. Furthermore, by
controlled invariance, there exists asuch that

We may then define the following regulation map
:

This leads to a family of separation structure controllers which
achieve the desired performance. The only requirement is that

e.g.,

The existence of a minimum is assured since is always
a compact convex set. The definition offor sets not in
is not important because of controlled invariance.

We do not attempt to derive any regularity properties, such
as continuity, of the separation structure controller. Theo-
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rem 4.1 is a direct consequence of theinterpretationof distur-
bance rejection with output feedback as controlled invariance
for the difference inclusion (6), and hence is primarily of
conceptual value.

The controlled invariance kernel algorithm of Appendix B
can be used to construct theoretically an invariant set if one
exists. However, it is believed that the set-valued mapping

is not lower semicontinuous (since matrix intersection is
not lower semicontinuous), and hence this procedure may not
lead to a closed invariant-set.

B. Special Cases

Theorem 4.1 does not provide a constructive solution to
deriving a separation structure controller. However, there are
two special cases for which an explicit construction is possible.

1) Full Control: In this section, we make the following
restrictive assumptions.

Assumption 4.2:

1) is invertible.
2)

The situation in which is invertible is referred to as
“full control” since the number of controls equals the number
of states.

We will need to define the sets

with

The set is the set of states which are reachable at time
from zero initial conditions while maintaining

and The set is the closure of the union
of such sets. As seen previously (cf., Proposition 3.1), this
set plays an important role in -optimal estimation. In some
sense, represents a set of unobservable states in the sense
that the disturbance and noise may drive the state to anywhere
in without providing the controller with any additional
information. The detectability assumption assures that is
bounded.

Let denote the component-by-component central esti-
mates of the vector Thus, the set of possible state vectors
has a central estimate of This set, in turn, leads to
a set of possible values for with a central estimate
of Note that generally does notequal

At any time these sets of possible values are
defined by: 1) the measurements up to time2) the control
inputs up to time and 3) thea priori disturbance and initial
condition assumptions.

Theorem 4.2:Let

where denotes the standardth basis vector in The
controller

achieves a performance of over the sets where
is arbitrary.
It is easy to see that the statedin Theorem 4.2 is the

smallest possible performance level under output feedback.
Therefore, the given controller is, in fact, optimal. This con-
troller resembles an optimal estimate of the optimal state
feedback control, However, an optimal
estimate is required for rather than This is
not surprising since it is the value of which actually
determines the current state’s effects on future trajectories.

We close this section with a proof of Theorem 4.2. The state
dynamics with the above controller take the form

The desired performance is achieved if for any admissible
trajectory, the state satisfies

for all A slight modification of Proposition 3.1 to
accommodate known inputs assures that the above bound is
satisfied.

2) Scalar Control: As opposed to full control, we now
consider the other extreme of a scalar control variable. In
particular, we will state conditions which assure that the
regulation map intersection over the set of possible states
is always nonempty. In terms of Section IV-A, we can then
explicitly construct a separation structure controller.

We start with the following special assumptions.
Assumption 3:

1) The control signal is scalar-valued.
2) There exists a compact which is controlled

invariant under full-state feedback.
3) The regulation map

admits the representation

(7)
for appropriate vectors and scalars

Condition 4.3-2 is clearly necessary for the existence of an
output feedback controller which achieves the desired perfor-
mance. Reference [31] shows that regulation maps generally
take the above form.

The following theorem is derived in [32].
Theorem 4.3:Define the scalar parameters

(8)

(9)

There exists an output feedback controller which achieves a
performance of over if and only if for all

and all

(10)

(11)
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Fig. 1. Set of possible states at timek = 2: � := SVO, � := `1; := x1:

Fig. 2. Set of possible states at timek = 3: � := SVO, � := `1; := x1:

In terms of the discussion of Section IV-A, Theorem 4.3
provides conditions under which the intersection

is never empty. Therefore, a separation structure controller
can achieve the desired performance with the static mapping

being any selection strategy from the above intersec-
tion. The conditions of Theorem 4.3 can be testeda priori by
solving appropriate linear programs.

V. A NUMERICAL EXAMPLE

This section provides an illustrative numerical example of
the set-valued observer. Let

We are interested in estimating the stateAn optimal estimate
of the state amounts to optimal estimates of the individual
components and



262 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 2, FEBRUARY 1999

Fig. 3. Estimation error function� for z = x1 at time k = 2:

Fig. 4. Estimation error function,�; for z = x1 at time k = 3:

This simulation horizon was The disturbance
and noise histories used in the simulation were

The true initial condition was set to
Figs. 1 and 2 show the set of admissible states at time

respectively. Also shown are the true state, the
central estimate, and the uniformly optimal estimate. Note
that at time the uniformly optimal estimate does
not lie within the set of admissible states. This illustrates the
pointwise optimality of the central estimate. Figs. 3 and 4 plot

at times respectively, for the estimate
Note that is not symmetric, but is monotone as expected.
Furthermore, for time saturates at which implies
that the central estimate equals the uniformly optimal estimate.

VI. CONCLUDING REMARKS

We have considered the guaranteed state estimation problem
for discrete-time linear time-varying systems. Based on ana
priori model of initial conditions and exogenous signals, a
set-valued observer was constructed which computes the set
of possible state vectors consistent with measured output data.
It was shown that the centers of these sets correspond to the
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optimal state estimate which minimizes the induced norm from
exogenous signals/initial conditions to estimation error. The
algorithms easily can be modified in the case of known initial
conditions and known inputs simply by changing thea priori
assumptions.

We also considered the utility of set-valued observers for
disturbance rejection with output feedback and derived a
general, but conceptual, separation structure. An explicit con-
struction is possible in the scalar control case. In the special
case of full control, optimal output feedback controllers can
resemble an optimal estimate of the full-state feedback con-
troller.

While set-valued observers are of theoretical importance,
their real-time applicability to systems with fast dynamics is
questionable because of the considerable computational burden
in constructing the set-valued estimates. An important research
direction toward alleviating this burden is the derivation of
fixed-complexity suboptimal set-valued estimates (cf., [24]).

APPENDIX

CONTROLLED INVARIANCE AND DIFFERENCEINCLUSIONS

In this Appendix, we present some material of indepen-
dent interest regarding controlled difference inclusions and
controlled invariance. The material essentially follows [31,
Sec. IV], but with somewhat greater generality. The present
discussion employs the language of viability theory. However,
as mentioned in the main text, similar methods have been used
in a variety of different contexts.

Let be a complete metric space. Let be
a set-valued mapping whose domain is the entire In
this section, we consider the controlled difference inclusion

Definition A.1: A subset is controlled invariantif
for every there exists a such that

Definition A.2: The largest closed subset of which
is controlled invariant is thecontrolled invariance kernelof
and is denoted CINV

Define is nonempty.
Definition A.3 [1, p. 56]: Let and be metric spaces. A

set-valued map is calledlower semicontinuousif
for any and sequence
converging to there exists a sequence of elements

converging to
Proposition A.1 (Controlled Invariance Kernel Algorithm):

Suppose the set-valued mappingsatisfies the following.

1) is lower-semicontinuous.
2) The set

is bounded if and only if the sequences and
are bounded.

Let be compact, and define recursively the subsets
by

for some

Then

Proof: We first show that if is closed, the
is closed. Let be a sequence in Since is
bounded, we may assume converges to some Let
be such that

The stated assumptions assure the sequence must be
bounded. Therefore, we may assume that the sequence con-
verges to some By lower semicontinuity, for any

there exist such that the
converge to Thus since is closed. This

implies and hence
Clearly if it exists, is contained in Since

the are nested compact sets, is empty if and only
if is empty for some In this case the proposition holds
trivially.

In case is nonempty, we will show it is controlled
invariant. Define the set-valued regulation maps

by

Similar arguments as above show that for any
the are nested compact sets. Therefore is
nonempty for every Thus for any
there exists a such that
which implies the desired controlled invariance.

In case is not lower semicontinuous, the above algorithm
still produces the largest invariant set. However, a largest
closedinvariant set may not exist.
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