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Abstract--- We propose a new approach for the stability analysis of continuous Sugeno Types II and III 

fuzzy systems. We introduce the concept of fuzzy positive definite and fuzzy negative definite functions and 

use them in arguments similar to those of traditional Lyapunov stability theory to derive new conditions 

for stability and asymptotic stability for continuous Type II/III fuzzy systems. To demonstrate the new 

approach, we apply it to a numerical example. 

I. Introduction 

Although the stability analysis of fuzzy systems has been the subject of extensive research, no general 

approach is available [1].  Furthermore, the nonlinear structure and many types of fuzzy systems make the 

development of a general approach highly unlikely.  We must therefore start with a classification of fuzzy systems 

and then proceed to the development of stability analysis tools for each class. 

Sugeno [1] classified fuzzy systems into three types. Type I, which was first introduced by Mamdani, uses 

fuzzy rules of the form: 

nnnn iiiiiiii isTHENisIFR ............ 1111
: HyAx  

 (1) 
Type II, or Takagi-Sugeno-Kang fuzzy systems use the simplified fuzzy rules: 

nnnn iiiiiiii THENisIFR ............ 1111
: hyAx =  

 (2) 
Type II is a special case of Type III Takagi-Sugeno-Kang (TSK) systems whose rules are in the form:  

)(: ............ 1111
xfyAx

nnnn iiiiiiii THENisIFR =  
 (3) 



 2

where [ ]Tnxx L1=x , jj Ni ,,1 K= , nj ,,1K= , [ ]Ti
n

i
ii

n
n

AA L1
1 1... =A , [ ]Tii

m
ii

ii
nn

n
HH ......

1...
11

1
L=H , ji

jA  and 
niiH L1

  are 

fuzzy sets, [ ] ,......
1...

11
1

Tii
m

ii
ii

nn
n

hh L=h nii
jh ...1  is a singleton, and [ ]Tii

m
ii

ii
nn

n
ff )()()( ......

1...
11

1
xxxf L= . Most authors use the 

affine form where )(...1 xnii
jf , j = 1,…, m are of the form: 

∑
=

+=+=
n

i

ii
j

Tii
j

ii
ji

ii
ij

ii
j

nnnnn aaxaf
1

...
0,

......
0,

...
,

... 11111 )( xax  

 (4) 
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j
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j

nnn aa ...
,

...
1,

... 111 L=a . 

Recently, the stability analysis of Type III systems has attracted considerable interest in the fuzzy system 

literature [2]-[10]. For a comprehensive review of these results, the reader is referred to [1]. Most of these results 

require the existence of a common quadratic Lyapunov function [2]-[5].  Unfortunately, conditions for the 

existence of such functions are restrictive and difficult to establish [11], [12]. For example, the search for a 

common Lyapunov function can be posed as a convex optimization problem in terms of linear matrix inequalities 

(LMIs) [9]. However, the standard LMI conditions for quadratic stability are often conservative when applied to 

fuzzy systems. Moreover, the convex optimization problem typically involves a large number of LMIs and its 

computational load increases dramatically with the number of inputs [10]. 

Several authors were able to analyze the stability of fuzzy systems without the need for a common Lyapunov 

function [6],[9], [10]. Lo and Chen [6] used Kharitonov theory to derive a sufficient condition for fuzzy controller 

stability. However, Johansen and Slupphaug [7] showed, by a counterexample, that the conditions proposed in [6] 

are not sufficient for stability.  Dvorakova and Husek [8] also analyzed the results in [6] and showed that Lo and 

Chen’s computational procedure is only valid for fuzzy systems three or fewer rules.  Johansson and Rantzer [9] 

presented a stability analysis approach for fuzzy systems based on piecewise-continuous quadratic Lyapunov 

functions. The approach gives stability conditions that can be verified via convex optimization over LMIs. Feng 

and Harris [10] also used a piecewise-continuous quadratic Lyapunov functions. Their approach exploited the 

properties of the input membership functions to reduce the number of candidate Lyapunov functions and the 

associated LMIs. 
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To date, there are no stability tests available for Type I systems [1].  Sugeno [1] and Sonbol and Fadali [13], 

[14], [15], addressed the issue of stability of fuzzy systems described by fuzzy rules with singleton consequents 

(Type II).  To our knowledge, these are the only published results on Type II system stability.  Sugeno gave 

stability conditions for both discrete-time and continuous time system.  Sonbol and Fadali derived general 

stability results for Type III and then specialized these results to Type II. 

In this paper, we introduce the concept of fuzzy positive definite and fuzzy negative definite functions.  We 

then use them to derive Lyapunov conditions for the stability analysis of continuous Type II and the affine case of 

Type III systems.  We provide conditions for stability in the sense of Lyapunov, asymptotic stability, and 

exponential stability. 

The paper is organized as follows. Section II introduces basic definitions and concepts, explains some 

properties of TSK fuzzy systems. In Section III, we derive conditions for Lyapunov stability, asymptotic stability, 

and exponential stability of continuous Type II/III fuzzy systems. All proofs are given in the Appendix. Finally, 

we provide an illustrative example in Section IV. 

II. Preliminary Definitions and Concepts 

In this section, we introduce concepts and definitions that we need for the stability analysis of Type II/III TSK 

fuzzy systems. In the sequel, we first provide definitions and derive results for continuous Type III fuzzy systems 

and then specialize to obtain the corresponding expressions for continuous Type II systems. 

We begin with the definition of the class of TSK fuzzy systems to be analyzed throughout this paper. 

Definition 1: TSK Fuzzy Systems 

TSK fuzzy systems comprise four principal components [11], [16]: 

1. A singleton fuzzifier that maps to triangular, complete, and consistent fuzzy sets. 

2. A continuous and normal fuzzy rule base of the form (3). 

3. A product inference engine. 

4. A weighted-average defuzzifier. 
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Lemma 1: If )( jA
xji

j
µ  are normal, complete, and consistent triangular membership functions, of the fuzzy sets 
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Using Lemma 1, the TSK output formula can be rewritten as: 
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Figure 1 Triangular membership functions. 

 
Definition 2: Continuous dynamic TSK Type II/III Fuzzy Systems 

Continuous Type III dynamic fuzzy systems have fuzzy rules of the form: 

)()(:
1111

xfxAx
nnnn iiiiiiii THENiskIFR KKKK & =  

 (7) 
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We can calculate x& , for normal, complete, and consistent membership functions, by taking the weighted 

average of consequents as follows: 
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Type II systems are a special case of Type III systems, where the functions )(

1
xf

nii K  reduce to constant vectors 

nii K1h , and where (7) and (8), respectively, reduce to 
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nnnn iiiiiiii THENiskIFR KKKK &
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 (10) 
In [1], Proposition 1, Sugeno stated that any 2×1 interval vector x, with entries in the range [ai, bi], i = 1,2, can 

be represented by a Type II fuzzy system, with triangular membership functions, whose input and output are both 

equal to the vector x. The fuzzy sets in this Type II system can be chosen arbitrarily and then the consequents of 

the fuzzy rules are chosen to be equal to the value of the vector x at the centers of the chosen fuzzy sets. Here, We 

generalize Sugeno’s result to the case of an n×1 vector x. 

Lemma 2: Any interval vector x, with entries xi ∈ [ai, bi], i = 1,…,n, can be represented by a Type II fuzzy 

system with input and output equal to x. 

We now define fuzzy definite functions that play the same role in the stability analysis of fuzzy systems that 

crisp definite functions play in traditional Laypunov stability theory. Positive definite functions serve as “ energy” 

quantifiers while negative definite functions characterize the rate of change of the “energy” along the trajectories 

of a stable system. 

Definition 3: Positive definite fuzzy function 

 A fuzzy function that comprises the four principal components of Definition 1 and has a scalar output y is 

positive definite if and only if y > 0 for all xi ≠ 0, and y = 0 for all xi = 0, i = 1, …, n. 

Definition 4: Positive semi-definite fuzzy function 

A fuzzy function that comprises the four principal components of Definition 1 and has a scalar output y is 

positive semi-definite if and only if y ≥ 0 for all xi ≠ 0, and y = 0 for all xi = 0, i = 1, …, n. 

Definition 5: Negative definite fuzzy function 

A fuzzy function that comprises the four principal components of Definition 1 and has a scalar output y is 

negative definite if and only if y < 0 for all xi ≠ 0, and y = 0 for all xi = 0, i = 1, …, n. 
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Definition 6: Negative semi-definite fuzzy function 

A fuzzy function that comprises the four principal components of Definition 1 and has a scalar output y is 

negative definite if and only if y ≤ 0 for all xi ≠ 0, and y = 0 for all xi = 0, i = 1, …, n. 

The following lemma provides sufficient conditions for a fuzzy definite function in terms of its consequents. 

Lemma 3: Consider the Type III fuzzy function z comprising:  

(i) The four principal components of Definition 1, 

(ii) Input sets 
T

i
n
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n
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(iii) A scalar output y. 

1. The fuzzy function z is positive definite if  
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2. The fuzzy function z is positive semi-definite if  
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3. The fuzzy function z is negative definite if  
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4. The fuzzy function z is negative semi-definite if  
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where ij = 1,…,Nj −1, *
jj ii ≠ ,  lj = 0, 1 , j = 1,…,n, [ ]Ti

n
i

ii
n

n
ee LK

1
1 1=e . 

Remark 1: For Type II, conditions (11)-(14) reduce, respectively, to 

1. The fuzzy function z is positive definite if and only if 

0...
1
1 >niih  

 (15) 
2. The fuzzy function z is positive semi-definite system if and only if 
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0...
1
1 ≥niih  

 (16) 
3. The fuzzy function z is negative definite system if and only if 

0...
1
1 <niih  

 (17) 
4. The fuzzy function z is negative semi-definite system if and only if 

0...
1
1 ≤niih  

 (18) 
where ij = 1,…,Nj, *

jj ii ≠ ,  j = 1,…,n. 

The proofs of (15)-(18) are use almost identical arguments so we only discuss (15) and omit the discussion of 

(16)-(18).  The sufficiency of (15) follows easily from the fact that the weighted sum of positive numbers is 

positive.  To prove the necessity of (15) by contradiction, assume that the fuzzy function z is positive definite but 

does not satisfy condition (15).  Then 0>y  for all x ≠ 0.  Since niihy K1
1=  when 

niiis K1
Ax , ij = 1,…,Nj, *

jj ii ≠ ,  

j = 1,…,n, then 01
1 >niih K , which contradicts the above assumption. 

Lemma 3 allows us to easily check the definiteness of a function using its consequents.  

III. Stability Analysis 

In this section we give new sufficient conditions for the stability, asymptotic stability, exponential stability of 

continuous Type II/III systems using arguments similar to those of Lyapunov stability theory [17]. We start by 

stating the following stability theorem due to, Hahn [18], without proof. 

Theorem 1: If there exists a function V(x) for the system )(xx f=&  with the equilibrium 0x = , which satisfies, ∀x 

∈ Rn, x ≠ 0, the conditions 

1. V(x) is a positive-definite function. 

2. DV(x) = 0))(())((suplim
0

<
∆

−∆+

→∆ t
tVttV

t

xx  

then the equilibrium 0x =  is asymptotically stable. 

• 
Remark: DV(x) is the analytic expression of the derivative of V(x) along the trajectories [18]. If V(x) has 

continuous first order partial derivatives with respect to x, the DV(x) reduces to 
t

tVttVV
t ∆

−∆+
=

→∆

))(())((lim)(
0

xxx& . 
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Theorem 1 shows that stability conditions can be established without requiring continuity of the derivative of 

V(x) along the trajectories. This give us some freedom in choosing a function V(x) that suits Type II/III dynamic 

fuzzy systems. 

Definition 7: The derivative of a fuzzy function 

Consider the continuous Type III dynamic fuzzy system z and the fuzzy Lyapunov function candidate )(xV , 

the derivative of )(xV  in the direction of the trajectories of f is the fuzzy system DV(x) defined by:  

t
tVttVDV

t ∆
−∆+

=
→∆

))(())((suplim)(
0

xxx  

The next theorem establishes stability and asymptotic stability for continuous Type III dynamic fuzzy systems. 
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Bδ δ 
0 

r 

 
Figure 2 Geometric representation of the sets in the proof of Theorem 1. 

 
Theorem 2: Let z be a continuous Type III dynamic fuzzy system. Consider the fuzzy Lyapunov function 

candidate )(xV  defined by 

nnnn iiiiiiii CVTHENisIFR ............ 1111
: =Ax  

 (19) 
Consider the derivative DV(x) defined by:  
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where 

niiC ...1
 are positive constants that satisfy the condition  
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where ij = 1,…,Nj−1, lj = 0, 1, and j = 1,…,n, then z is stable in the sense of Lyapunov. 
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where ij = 1,…,Nj−1, lj = 0, 1, and j = 1,…,n, then z is asymptotically stable. 

Corollary 1: Let z be a continuous Type II dynamic fuzzy system. Consider the fuzzy Lyapunov function 

candidate )(xV  defined by (19) with derivative DV(x) defined by:  
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 (24) 
1. If ∃ 

niiC ...1
 > 0 such that DV(x) ≤ 0, then z is stable in the sense of Lyapunov. 

2. If ∃ 
niiC ...1

 > 0 such that DV(x) < 0, then z is asymptotically stable. 

The next theorem establishes exponential stability for continuous Type III dynamic fuzzy systems. 

Theorem 3: A continuous Type III dynamic fuzzy system z is exponentially stable if there exists b = [b1… bn]T > 

0 such that 

nnnnn ii
T

iililiii
T

......))...((... 11111
)()( ebefxSb α−≤++  

 (25) 
where { })sgn(,),sgn()( 1 nxxdiag L=xS , ij = 1,…,Nj−1, lj = 0, 1, and j = 1,…,n, and αα s

nii ≤< ...1
0 . 

Corollary 2: A continuous Type II dynamic fuzzy system z is exponentially stable if there exists b = [b1… bn]T > 

0 such that  

nnn ii
T

iiii
T

......... 111
)( ebhxSb α−≤  

 (26) 
where { })sgn(,),sgn()( 1 nxxdiag L=xS , and αα s

nii ≤< ...1
0 . 

In the next section, we provide an example that demonstrates stability testing using fuzzy Lyapunov analysis. 

In the example, we present the rule base of a fuzzy system in the form of a table of consequents. 
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IV. Example 

Determine the stability of the discrete Type II fuzzy system with the consequents of Table 1. 

Table 1 Consequents for the fuzzy system. 
1
1e  2

1e  3
1e   

−2 0 2 
1
2e  −2 




4
8  




2
2  



−

3
5  

2
2e  0 




−1
4  




0
0  



−

1
2  

3
2e  2 




− 3
6  




−
−

2
1  




−
−

5
4  

By Corollary 1, the consequents of )(xDV  are as shown in Table 2. We next select a vector b = [b1  b2]T > 0 

that makes )(xDV  a fuzzy negative-definite function. We can check for the existence of the vector b by solving a 

linear programming feasibility problem using widely available software, such as MATLAB, Maple, or Lingo. 

Table 2 Consequents of DV(x). 
1
1e  2

1e  2
1e  3

1e   

−2 0 0 2 
1
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−
−

4
8 bT






−
−

2
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− 2
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−
−

3
5

2
2e  0 bT





−

1
4 bT






0
0  bT






0
0  bT






−
−

1
2

2
2e  0 bT






−
−

1
4 bT






0
0  bT






0
0  bT





−

1
2

3
2e  2 bT






−
−

3
6 bT






− 2
1 bT






−
−

2
1 bT






−
−

5
4

 

Clearly, if we choose b = [1.55 3.0]T then )(xDV  is negative definite and the system is asymptotically stable.  

This is confirmed by the simulation results of Figure 3.   

x1 
x2 

x1 
x2 
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Figure 3 Trajectories of the fuzzy system. 

 

For all initial conditions tested, the trajectories of the system converge asymptotically to the origin. )(xV , 

shown in Figure 4, is indeed a positive definite function because it only assumes positive values except at x = [0 

0]T. The contours, Figure 5, show that )(xV  is a piecewise linear function. )(xDV , shown in Figure 6, is a 

negative-definite function because it only assumes negative values except at x = [0 0]T. 
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Figure 4 The function )(xV . 
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Figure 5 The contours of )(xV . 
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Figure 6 The function DV(x). 

 
V. Conclusion 

This paper introduces a new approach for the stability analysis of continuous Sugeno Types II/III fuzzy 

systems.  We use fuzzy positive definite and fuzzy negative definite functions in arguments similar to those of 

standard Lyapunov stability theory. We show that if a fuzzy positive definite function has fuzzy negative definite 

changes along the trajectories of a discrete Type II/III dynamic fuzzy system, then the system is asymptotically 

stable.  Similarly, we derive conditions for stability in the sense of Lyapunov and for exponential stability.  The 

main contribution of this work is that it eliminates the difficult condition of a common Lyapunov function.  In 

addition, it simultaneously solves the stability problem for Type II and Type III systems. 

 



 13

Appendix A 

In this appendix, we will prove all the lemmas and theorems of this paper. 

Proof of Lemma 1: 

From Figure 1, we define )( jA
xji

j
µ  for xj ∈ [ 11, +− jj i

j
i
j ee ] as follows: 
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Then for normal and consistent fuzzy sets 
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From Figure 1, (5) can be rewritten as: 
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Expanding the last summation in the RHS of (29) and using (28) gives 
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Repeating the last step for li, i = 1,…,n−1, completes the proof. 

• 

Proof of Lemma 2: 

Define a Type II fuzzy system with input x and with the corresponding fuzzy sets and rule base: 

nnnn iiiiiiii THENisIFR KKKK 1111
: eyAx =  

 (30) 
Let triangular membership functions )( jA

xji
j

µ  characterize the input fuzzy sets ji
jA . Then the output of the fuzzy 

system of (30) is calculated as 
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Expanding the last summation in (31) 
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We substitute for )(1 nA
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i

il

i

il

Ti
nnil

n

nn
jl

j
n

jl
j

n

nn

n
n

xx

xex

µ

µ

K

K

L

LL

e

ey
where [ ]Ti

n
i

ii
n

n
ee 11

1
11 −=
−

LKe . 

Repeating the last step for li, i = 1,…,n−1, completes the proof.  

• 

Proof of Lemma 3: 

Using the rule base (3) and (4), we write the output of z as 

∑ ∑ ∏
+

=

+

= =






 +=

1 1

1
0,11

1

11

11 )(
i

il

i

il

n

j
jA

llTlln

nn
il
j

nn xay µKKL xa  

Next, we substitute for x from (31) and simplify 

( ) ∏∑ ∑ ∏

∑ ∑

∏∑ ∑ ∏

∑ ∑

∏∑ ∑ ∏

∑ ∑

=

+

=

+

= =

+

=

+

=

=

+

=

+

= =

+

=

+

=

=

+

=

+

= =

+

=

+

=













=


















 +

=












+











=

n

j
jA

i

ik

i

ik

n

j
jAkk

kk

i

il

i

il

n

j
jA

i

ik

i

ik

n

j
jA

ll
kk

Tll

i

il

i

il

n

j
jA

ll
i

ik

i

ik

n

j
jAkk

Tll

i

il

i

il

xxf

xxa

xax

y

il
j

n

nn
ik

jn
n

n

nn

il
j

n

nn
ik

j

n
n

n

n

nn

il
j

n
n

nn
ik

jn
n

n

nn

1

1 1

1
1

1 1
1

1 1

1
0,11

1 1
1

0,1

1 1

1
1

1 1

)()(

)()(

)()(

1

11
1

1

1

11

1

11

1
1

1

1

11

1
1

11
1

1

1

11

µµ

µµ

µµ

K
K

K
K

K

K
K

K

L

L

L

L

L

L

e

ea

ea
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Substituting conditions (11)-(14) completes the proof for 1-4, respectively. 

• 
Proof of Theorem 1:  

Using Lemma 1, the output of )(xV can be written as 

( )∑ ∑ ∏
+

=

+

= =
=

1 1

1

1

11
1

)(
i

il

i

il

n

j
jAll

n

nn
jl

j
n

xCV µKLx  

 (33) 
Using (28) to expand the last summation in (33), we obtain 

( )
( ) ( )



 −+

=

+

−

−−

+

+

=

+

=

−

=
∑ ∑ ∏

nAllllll

i

il

i

il

n

j
jA

xCCC

xV

nlnnnn

n

nn
jl

j

)1(111

1

11

1

11

)1(

1 1 1

1
)(

µ

µ

KKK

Lx
 

 (34) 
Expanding the last summation in (34) and using (28), we obtain 

( )
( ) ( )

( ) ( )
−


 −+

=

−+

+

+

=

+

=

−

=

+−
−

−

+

−

−−

∑ ∑ ∏

1)1(

)1(

1 1 2

1

)11(
1

111

)1(111

1

11

2

22

)(

nAlllll

nAllllll

i

il

i

il

n

j
jA

xCC

xCCC

xV

nl
n

nnn

nlnnnn

n

nn
jl

j

µ

µ

µ

KK

KKK

Lx

 

 (35) 
Repeating the last step with the remaining summations in (35), we obtain 

( ) ( )
[ ] )(

)(

11111

)1(111

)1()1(

1
)1(

xµ

x

nnnnn

ji
j

njnjn

iiiiiiiiii

n

j
jAiiiiiiii

CCCCC

xCCCV

KKKKK

KKKKK

L −−+=

−+=

++

=
+∑ +µ  

 (36) 

where ( )
T

nAA
xx njn

j 



= ++ )()( )1()11(

1
1 µµ Lxµ and )( jA

xji
j

µ  are defined by (27). Using (27), we have: 

( ) ( )
nnn iii

n
i
n

ii eeee
diag KL

111 1
1

1
1

1,,1 exxµ −












−−
=

++
 

 (37) 

where [ ]Ti
n

i
ii

n
n

ee LK
1

1 1=e . 

Using (37), we can write ( ))( ttV ∆+x  as  

[ ] ))((
))((

1111

1

)1()1( ttCCCC
CttV

nnnn

n

iiiiiiii

ii

∆+−−
+=∆+

++ xµ
x

KKKK

K

L
 

 (38) 
Using (36) and (38), we can write DV(x) as 
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[ ]

t
ttt

CCCCDV
nnnn iiiiiiii

t

∆
−∆+

−−= ++
→∆

))(())((

suplim)(
1111 )1()1(

0
xµxµ

x KKKK L

 

 (39) 
Using (37), we can rewrite (39) as 

xx &L
KKKK













−

−

−

−
=

+
+

+
+

nn

nnnn
i
n

i
n

iiii
ii

iiii

ee

CC

ee

CC
DV 1

)1(

1
1

1

)1( 11

11

11sup)(  

 (40) 
Because the entries of )(

1
xf

nii K  are affine functions, conditions (22) and (23) are sufficient for the function in (40) 

to be negative semi-definite and negative definite, respectively. 

Given 0>ε , choose ],0( ε∈r  such that 

{ } DrkkB n
r ⊂≤∈= )(|)( xRx  

Let )(min x
x

V
r=

=α . Then 0>α since it is the minimum of a positive continuous function over a compact set. Take 

),0( α∈β  and let { }β≤∈=Ωβ )(| xx VBr  

Then βΩ  is entirely inside rB  (see Figure 2). Let 0)( ≤xDV , then 

( ) ( ) β≤≤∆+ )()( tVttV xx  

Since )(xV  is continuous and ( ) 0=0V , there exist 0>δ  such that 

β≤⇒δ≤ )(xx V  

Hence, we have rBB ⊂Ω⊂ βδ  and 

rBtttttBt ∈∆+⇒Ω∈∆+⇒Ω∈⇒∈ ββδ )()()()( xxxx  

Therefore, ε≤<∆+⇒δ≤ rttt )()( xx  and 0x =  is stable in the sense of Lyapunov.  

Similarly, we can show that 0x =  is stable in the sense of Lyapunov for the case when 0)( <xDV . To establish 

asymptotic stability, we prove convergence to the origin.  )(xV  decreases continuously along the system 

trajectories and is lower bounded by zero 0)( ≥→ LV x  as t → ∞. We show that L is zero by contradiction. Let L > 

0 and consider the set { }cVL ≤=Ω )(| xx  

Select a ball LdB Ω⊂ , then the trajectories of the system remain outside dB .  Let 
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0)(sup)(
)(

<=−
≤≤

x
x

DVk
rkd

γ  and consider the function 

( ) ( ) ( ) ( ) tVdVVtV
t

γττ −≤+= ∫ )0()()0()(
0

xxxx  

which tends to −∞ as t → ∞.  This contradicts the lower boundedness of )(xV .  

• 

Proof of Corollary 1: 

For continuous Type II systems, conditions (22) and (23) reduce, respectively, to 

0

,0

1
11

11

11

1
11

11

11

1
)1(

1
1

1

)1(

1
)1(

1
1

1

)1(

<












−

−

−

−

≤












−

−

−

−

+
+

+
+

+
+

+
+

nnn

nnnn

nnn

nnnn

iij
n

j
n

jjjj
jj

jjjj

iij
n

j
n

jjjj
jj

jjjj

ee

CC

ee

CC
ee

CC

ee

CC

K
KKKK

K
KKKK

L

L

h

h

 

 (41) 
These conditions correspond to a fuzzy negative semi-definite or fuzzy negative definite function )(xDV , 

respectively, (see Definitions 5 and 6). 

The proof of sufficiency is identical to the proof of sufficiency of Theorem 1. 

• 

Proof of Theorem 2:  

Assume that V(x) and the derivative DV(x) are defined respectively by  

nnnn ii
T

iiiiii VTHENisIFR ............ 1111
: ebAx =  

 (42) 
)()(: ............ 1111

xfxSbAx
nnnn ii

T
iiiiii DVTHENisIFR =  

 (43) 
where b = [b1… bn]T, { })sgn(,),sgn()( 1 nxxdiag L=xS .  

∏∑∑
=

+

=

+

=
=

n

j
jA

i

il
ll

T
i

il
xDV jl

j

n

nn
n

1

1

...

1
)()()()(

1

1

11

µxfxSbx L  

 (44) 
Using (25), we can rewrite (44) as 
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)(

)(

1

...

1

1

......

1

1

1

11

11

1

11

xeb

ebx

Vss

DV

n

nn
n

n

nn
n

i

il
ll

T
i

il

i

il
ll

T
ll

i

il

αα

α

−=−≤

−≤

∑∑

∑∑
+

=

+

=

+

=

+

=

L

L

 

 (45) 
 • 

Proof of Corollary 2:  

Assume that V(x) and the derivative DV(x) are defined by (42) and (43), respectively. In the case of Type II 

systems, (44) reduces to  

∏∑∑
=

+

=

+

=
=

n

j
jA

i

il
ll

T
i

il
xDV jl

j

n

nn
n

1

1

...

1
)()()(

1

1

11

µhxSbx L  

 (46) 
Using (26), we rewrite (46) in the form (45). 

• 
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