
On the Composition of SecureMulti-Party Protocols
Thesis for the Ph.D. DegreebyYehuda Lindell

Under the Supervision ofProfessors Oded Goldreich and Moni NaorDepartment of Computer Science and Applied MathematicsThe Weizmann Institute of Science
Submitted to the Feinberg Graduate School ofthe Weizmann Institute of ScienceRehovot 76100, IsraelJuly 16, 2002

AbstractIn the setting of multi-party computation, sets of two or more parties with private inputs wishto jointly compute some (predetermined) function of their inputs. This computation should besuch that the outputs received by the parties are correctly distributed, and none of the partieslearn anything beyond their prescribed output. This encompasses any distributed computing taskand includes computations as simple as coin-tossing and broadcast, and as complex as electronicvoting, electronic auctions, electronic cash schemes and anonymous transactions. The feasibility(and infeasibility) of multi-party computation has been extensively studied, resulting in a seeminglycomprehensive understanding of what can and cannot be securely computed, and under whatassumptions. However, most of this research relates only to the stand-alone setting, in which asingle set of parties execute a single protocol in isolation. In contrast, in modern network settings,it is usually the case that many parties run many protocol executions. In this thesis, we study thefeasibility of secure multi-party computation under this more realistic setting of general compositionof protocols and executions. The main results presented are as follows:1. We show that the basic task of achieving secure broadcast is strictly harder under composition.Speci�cally, in the stand-alone model, it is known that digital signatures can be used in orderto obtain broadcast that is secure for any number of corrupted parties. In contrast, weshow that it is impossible to obtain a secure broadcast protocol that composes in parallel orconcurrently (even assuming digital signatures), unless one assumes that strictly less thanone third of the parties are corrupted.2. The above impossibility result has a serious impact on the composition of secure multi-partyprotocols (when a third or more of the parties may be corrupted). This is because all knownprotocols for secure multi-party computation assume a broadcast channel, and implement thischannel in a point-to-point network using a protocol for secure broadcast. Therefore, thesemulti-party protocols do not compose. We bypass this problem as follows. First, we providea new de�nition of secure multi-party computation that is a mild relaxation of previousde�nitions. Next, we show that under this de�nition, secure computation of any function canbe achieved without broadcast by adapting known protocols. As a corollary we obtain securemulti-party protocols that compose (concurrently, when an honest majority is assumed, andin parallel when any number of parties may be corrupted).3. Finally, we study the feasibility of obtaining \universally composable" secure multi-partycomputation. The composition operation considered in the framework of universal compos-ability is very general. In particular, it guarantees that a secure protocol remains secureeven when run concurrently with other arbitrary protocols. This captures the security re-quirements of protocols in real settings (like that of the Internet). Previously, it has beenshown that when a majority of the parties are assumed to be honest, universally composableprotocols can be constructed for any functionality (in the standard model). It has also beeni

ii shown that when only a minority of the parties are honest, there are important functionali-ties that cannot be securely realized in a universally composable way in the standard model.Thus, an important open question is whether or not there exists a reasonable model in whichuniversally composable multi-party computation of general functionalities can be achieved,for an honest minority. We show that in the common reference string model, universallycomposable protocols exist for any two-party and multi-party functionality and for any num-ber of corrupted parties. This result establishes the feasibility of obtaining secure two-partyand multi-party computation (without an honest majority) under the most stringent securityde�nition currently known.

AcknowledgementsFirst and foremost, I would like to thank my thesis advisors Oded Goldreich and Moni Naor. Iam most grateful to Moni for helping me �nd my way in my �rst year. Although I spent most ofthis year studying (rather than researching), Moni continually threw research questions at me frommany di�erent �elds of theoretical computer science. Eventually I found my way to Cryptography,and by the time Moni went away for sabbatical I already had a large stack of problems to look at.My work with Oded began in the second year of my studies and his contribution to me on botha personal and research level has been enormous. It was always a pleasure to work with Oded; hisdemand for excellence on the one hand and positive encouragement on the other served as greatmotivating factors throughout the ups and downs of the last few years. Oded has served as a rolemodel for me and I am sure that he will continue to be a source of inspiration. I have learnt manythings from Oded; both technically and also regarding ones attitude and approach to research. Ihope that I will have many opportunities to continue working with Oded in the future.I feel greatly privileged to have been given the opportunity to carry out my Ph.D. research atthe Weizmann Institute. I am convinced that the atmosphere of the Computer Science department,generated by both the faculty and students, signi�cantly contributed to the success of my studies.My time at Weizmann has been most enjoyable, and I believe this to be a necessary condition forsuccessful research. Throughout my graduate studies, I learnt much from the faculty members ofthe department and from fellow students. I would like to especially mention Sha� Goldwasser, withwhom I was very fortunate to work with. My work together with Sha� was both enjoyable andenlightening. I would also like to thank my o�ce-mate Alon Rosen for the many discussions thatwe had, ranging from the \philosophy of science" to technical issues in our research. Although Ihave no joint paper with Alon, I feel that he has been one of my closest research collaborators. Ihope that in the future we will have the opportunity to work together. Special thanks also to BoazBarak for fruitful joint work and many helpful discussions.Many thanks to my other co-authors: Ran Canetti, Anna Lysyanskaya, Benny Pinkas and TalRabin. I enjoyed working with them all and learnt much from each of them. I would like toespecially thank Ran, who was always quick and thorough in answering my questions. Ran was ofgreat help to me even before I met him and our ensuing joint work (although being torturous towrite) was very enjoyable. It was also a great pleasure to work together with Tal. Beyond our jointwork together, I feel much gratitude to Tal from my Summer Internship at the cryptography groupat IBM T.J.Watson in 2001. Beyond being a surprisingly productive summer, the atmosphere inthe group was fun and social. Table tennis (or, ping-pong) after lunch and working in the parkturned out to actually improve productivity (which is of course the only reason we did it). Talwas also most helpful with all the technical side of moving and settling in. Many thanks! Otherpeople that I worked with and learnt from include Marc Fischlin, Rosario Gennaro, Shai Halevi,Nick Howgrave-Graham, Jonathan Katz, Eyal Kushilevitz, Michael Langberg, Daniele MicciancioKobbi Nissim, Omer Reingold and Salil Vadhan. Thanks to you all.iii

iv Finally, I wish to acknowledge my co-authors on the results that make up this thesis. Chapter 2is due to joint work with Anna Lysyanskaya and Tal Rabin [66], Chapter 3 is joint work with Sha�Goldwasser [54], and Chapter 4 is joint work with Ran Canetti, Ra� Ostrovsky and Amit Sahai[20].Last and not least, I would like to thank my beautiful wife Yael for all her support. Thepressures of a Ph.D. are sometimes taxing, and Yael's understanding throughout was always feltand appreciated.

Contents
1 Introduction 11.1 Secure Computation . 11.2 Protocol Composition . 31.2.1 Types of Protocol Composition . 31.2.2 Feasibility of Protocol Composition . 41.3 Our Results . 51.3.1 The Composition of Authenticated Byzantine Agreement 61.3.2 Secure Computation Without Agreement . 61.3.3 Universally Composable Multi-Party Computation 71.3.4 An Apparent Contradiction . 81.4 Organization . 82 The Composition of Authenticated Byzantine Agreement 92.1 Introduction . 92.2 De�nitions . 122.2.1 Computational Model . 122.2.2 Byzantine Generals/Agreement . 122.2.3 Composition of Protocols . 132.3 Impossibility Result . 152.4 Authenticated Byzantine Agreement using Unique Identi�ers 193 Secure Computation Without Agreement 233.1 Introduction . 233.1.1 Background . 233.1.2 Our Results . 253.1.3 Related Work . 283.2 De�nitions { Secure Computation . 293.2.1 Execution in the ideal model . 303.2.2 Execution in the real model . 333.2.3 Security as emulation of a real execution in the ideal model 343.3 Broadcast with Abort . 353.3.1 Strengthening Broadcast with Abort . 363.4 Secure Computation with Abort and No Fairness . 373.5 Secure Computation with Abort and Partial Fairness 44v

vi CONTENTS4 Universally Composable Multi-Party Computation 494.1 Introduction . 494.2 Overview . 514.2.1 The model . 524.2.2 An outline of the results and techniques . 534.3 Preliminaries . 584.3.1 Universally Composable Security: The general framework 584.3.2 Universal Composition with Joint State . 644.3.3 Well-Formed Functionalities . 674.4 Two-party Secure Computation for Semi-Honest Adversaries 694.4.1 Universally Composable Oblivious Transfer 694.4.2 The General Construction . 754.5 Universally Composable Commitments . 844.6 Universally Composable Zero-Knowledge . 934.7 The Commit-and-Prove Functionality Fcp . 954.7.1 Securely Realizing Fcp for static adversaries 954.7.2 Securely Realizing Fcp for adaptive adversaries 1004.8 Two-Party Secure Computation for Malicious Adversaries 1044.8.1 The Protocol Compiler . 1044.8.2 Conclusions . 1094.9 Multi-party Secure Computation . 1094.9.1 Multi-party Secure Computation for Semi-Honest Adversaries 1104.9.2 Authenticated Broadcast . 1154.9.3 One-to-Many Commitment, Zero-Knowledge and Commit-and-Prove 1174.9.4 Multi-party Secure Computation for Malicious Adversaries 122A Abstracts of Additional Results 127A.1 Secure Protocols . 127A.2 Zero-Knowledge . 128A.3 Miscellaneous . 129References 130

Chapter 1Introduction1.1 Secure ComputationIn a secure multi-party computation, a set of n parties with private inputs wish to jointly andsecurely perform a computation based on their individual inputs. This computation should be suchthat each party receives its correct output (correctness), and none of the parties learn anythingbeyond their prescribed output (privacy). For example, in an election protocol, correctness ensuresthat no coalition of parties can inuence the outcome of the election beyond just voting for theirpreferred candidate, whereas privacy ensures that no parties learn anything about the individualvotes of other parties. Secure multi-party computation can be viewed as the task of carrying outa distributed computation, while protecting honest parties from the malicious intents of dishonest(or corrupted) parties. Speci�cally, a protocol execution involves the n participating parties and anadversary who has control over a subset of t of these parties. The adversary is therefore an active,inside attacker who attempts to somehow \harm" the honest participants (e.g., in an election, theadversary may attempt to sway the outcome or learn the honest parties' private votes).Security in multi-party computation. A number of di�erent de�nitions have been proposedfor secure multi-party computation. These de�nitions aim to ensure a number of important securityproperties. The most central of these are:� Privacy: No party should learn anything more than its prescribed output. In particular, theonly information that should be learned about other parties' inputs is what can be derived fromthe output itself.� Correctness: Each party is guaranteed that the output that it receives is correct.� Independence of Inputs: Corrupted parties must choose their inputs independently of the honestparties' inputs.� Guaranteed Output Delivery: Corrupted parties should not be able to prevent honest partiesfrom receiving their output. In other words, the adversary should not be able to carry out adenial of service attack.� Fairness: Corrupted parties should receive their outputs if and only if the honest parties alsoreceive their outputs. The scenario where a corrupted party obtains output and an honest partydoes not should not be allowed to occur. 1

2 CHAPTER 1. INTRODUCTIONThe standard de�nition today (cf. [13] following [53, 4, 69]) formalizes the above requirements (andothers) in the following general way. Consider an ideal world in which an external trusted party iswilling to help the parties carry out their computation. An ideal computation takes place in theideal world by having the parties simply send their inputs to the trusted party who computes thedesired function and passes each party its prescribed output. Notice that all of the above securityproperties (and more) are ensured in this ideal computation. The security of a real protocol isestablished by comparing the outcome of the protocol to the outcome of an ideal computation.Speci�cally, a real protocol that is run by the parties (in a world where no trusted party exists)is said to be secure, if no adversary controlling a coalition of corrupted parties can do more harmin a real execution that in the above ideal computation. This is stated more formally as follows:for any adversary attacking a real protocol execution there exists an adversary attacking an idealexecution such that the input/output distributions of the parties in the real and ideal executionsare essentially the same. Since the adversary is unable to cause any harm in an ideal execution,this means that security is also guaranteed in a real protocol execution.We remark that the above informal description is \overly ideal" in the following sense. It is aknown fact that unless an honest majority is assumed, it is impossible to obtain general protocolsfor secure multi-party computation that guarantee output delivery and fairness (e.g. [58, 23]).These requirements are therefore relaxed when no honest majority is assumed. In particular, undercertain circumstances, honest parties may not receive their prescribed output, and fairness is notalways guaranteed. In fact, a number of di�erent levels of fairness have been considered. On oneextreme, complete fairness states that corrupted parties receive their outputs if and only if honestparties receive their outputs (this is the notion of fairness described above). On the other extreme,no fairness states that corrupted parties may receive their outputs even if honest parties do not.An intermediate notion called partial fairness has the following property. There exists a speci�edparty (say P1) such that if P1 is honest then complete fairness is achieved. However, if P1 is corruptthen no fairness is achieved. That is, sometimes fairness is obtained and sometimes it is not (andthe fairness is thus partial).Feasibility of secure multi-party computation. Wide reaching feasibility results regardingsecure multi-party computation were presented in the mid to late 1980's. The most central of theseare as follows (recall that t equals the number of corrupted parties):1. For t < n=3, secure multi-party protocols (with complete fairness and guaranteed outputdelivery) can be achieved for any function in a point-to-point network and without any setupassumptions. This can be achieved both in the computational setting [52] (assuming theexistence of trapdoor permutations), and in the information theoretic (private channel) setting[10, 22].12. For t < n=2, secure multi-party protocols (with complete fairness and guaranteed outputdelivery) can be achieved for any function assuming that the parties have access to a broadcast1In the information theoretic setting of secure computation, the adversary is not bound to any complexity class (andin particular, is not assumed to be polynomial-time). Results in this model require no complexity or cryptographicassumptions and hold unconditionally. The only assumption used is that parties are connected via ideally privatechannels (i.e., it is assumed that the adversary cannot eavesdrop on the communication between honest parties).In contrast, in the computational setting the adversary is assumed to be a probabilistic polynomial-time machine(or a polynomial-size family of circuits). Results in this model typically assume cryptographic assumptions like theexistence of trapdoor permutations. We note that in this model, it is not necessary to assume that the parties haveaccess to ideally private channels (because such channels can be implemented using public-key encryption).

1.2. PROTOCOL COMPOSITION 3channel. This can be achieved in the computational setting [52] (with the same assumptionsas above), and in the information theoretic setting [76].3. For t � n=2, secure multi-party protocols with partial fairness (and without guaranteeingoutput delivery) can be achieved assuming that the parties have access to a broadcast channeland in addition assuming the existence of trapdoor permutations [81, 52, 44]. Some worksattempting to provide higher levels of fairness have also appeared [81, 42, 53, 8].We stress that all of the above results have been proven in the stand-alone model of computationonly. However, the fact that a protocol is secure in the stand-alone model does not (necessarily)mean that it remains secure when run in a multi-execution setting. This leads us to ask the followingfundamental question: Do analogous feasibility results hold in more general multi-execution settings(i.e., under composition)?1.2 Protocol CompositionIn general, the notion of \protocol composition" refers to a setting where the participating partiesare involved in many protocol executions. Furthermore, the honest parties participate in eachexecution as if it is running in isolation (and therefore obliviously of the other executions takingplace). In particular, this means that honest parties are not required to coordinate between di�erentexecutions or remember the history of past executions. Requiring parties to coordinate betweenexecutions is highly undesirable and sometimes may even be impossible (e.g., it is hard to imaginesuccessful coordination between protocols that are designed independently of each other). We notethat in contrast to the honest parties, we assume that the adversary may coordinate its actionsbetween the protocol executions. This asymmetry is due to the fact that some level of coordinationis clearly possible. Thus, although it is undesirable to rely on it in the construction of protocols, itwould be careless to assume that the adversary cannot utilize it to some extent.1.2.1 Types of Protocol CompositionAs we have described, the notion of protocol composition relates to settings in which many protocolexecutions take place. However, there are actually many ways to interpret this notion. We describetwo important interpretations here:1. Self-composition: In the stand-alone model, a single set of parties carry out a single protocolexecution. Furthermore, these parties are assumed to be the only parties in the network. Incontrast, a protocol is said to self-compose (or compose with respect to itself) if it remainssecure when a single set of parties carry out many protocol executions. We stress that thehonest parties run each protocol execution obliviously of the other executions. In summary,in self-composition, the same set of parties run many independent copies of the same protocol(and it is assumed that they are the only parties in the network).22. General-composition: In this type of composition, many sets of parties carry out many ex-ecutions of arbitrary protocols. Thus, general-composition di�ers from self-composition inthe following two ways. First, di�erent sets of (possibly overlapping) parties interact in the2Another type of self-composition considers a scenario where many sets of parties carry out executions of the sameprotocol. The model studied in work on non-malleability [32] falls under this category. In particular, they considertwo pairs of parties running the same protocol concurrently and an adversary who controls the 2nd party in the 1stexecution and the 1st party in the 2nd execution.

4 CHAPTER 1. INTRODUCTIONnetwork. Second, the parties run arbitrary protocols that may be designed independently ofeach other. A protocol is said to maintain security under general-composition if its security(as de�ned by comparing it to an ideal execution) is maintained even when it is run in sucha scenario.In both of the above notions of composition, many protocol executions take place. However thescheduling of these executions is also an important factor when considering composition. We nowdescribe the three main types of scheduling that appear in the literature:1. Sequential: a new execution begins strictly after the previous one terminates.2. Parallel: all executions begin at the same time and proceed at the same rate (i.e., in asynchronous fashion).3. Concurrent: the scheduling of the protocol executions, including when they start and the rateat which they proceed, is maliciously determined by the adversary. That is, the adversaryhas full control over when messages sent by the parties are delivered (as is typical in anasynchronous network).Another type of scheduling, called concurrent with timing [33], lies somewhere between paralleland concurrent scheduling. Here, the adversary can determine when protocols begin but is limitedin its ability to vary the rate at which the protocols proceed. (In particular, the adversary cannotdelay the delivery of messages for an arbitrary long period of time.)1.2.2 Feasibility of Protocol CompositionMost of the research on protocol composition considers the question of obtaining security underself-composition. Much of this research has been focused on zero-knowledge. Speci�cally, it hasbeen shown that sequential composition of (auxiliary input) zero-knowledge always holds [51],whereas parallel composition does not necessarily hold [48]. In contrast, zero-knowledge protocolsthat do compose in parallel have been demonstrated [47, 46]. The question of zero-knowledge thatcomposes concurrently was initiated by [33] who considered the above-mentioned timing model. Thefeasibility of concurrent zero-knowledge with arbitrary scheduling was later demonstrated by [77].In general, the issue of concurrent zero-knowledge has received much attention, culminating in arather exact characterization of the round complexity of black-box concurrent zero-knowledge [61,79, 17, 60, 74] (work on non black-box concurrent zero-knowledge appears in [1]). Another speci�cproblem that has been studied in the context of concurrent self-composition is that of oblivioustransfer [43]. We stress that all of the above work deals with self-composition only.In addition to the above work on speci�c protocol problems, research has been carried outregarding the composition of protocols for (general) secure multi-party computation. This researchis typically more de�nitional in nature. That is, papers present a de�nition, show that protocolscompose under this de�nition, and then (hopefully) proceed to present protocols that achievethe de�nition.3 The sequential composition of secure multi-party protocols was considered bothregarding self-composition [5], and general-composition [69, 13]. It seems safe to say that we havea good understanding of the sequential composition of protocols. For example, it is known thatany multi-party functionality can be securely computed under sequential general-composition, andfor any number of corrupted parties [52, 13].3This is in contrast to the work on the composition of zero-knowledge, for example, where the de�nition is generallyaccepted and the challenge is in �nding protocols that meet the de�nition.

1.3. OUR RESULTS 5Recently, a robust notion of security, called universal composability, was put forward in [14].This de�nition follows the standard paradigm of comparing a real protocol execution to an idealmodel involving a trusted party. However, it also di�ers in a very important way. The traditionalmodel considered for secure computation includes the parties running the protocol, plus an adver-sary A that controls a set of corrupted parties. However, in the universally composable framework,an additional adversarial entity called the environment Z is introduced. This environment gener-ates the inputs to all parties, reads all outputs, and in addition interacts with the adversary in anarbitrary way throughout the computation. (As is hinted by its name, Z represents the externalenvironment that consists of arbitrary protocol executions that may be running concurrently withthe given protocol.) A protocol is said to securely realize a given functionality f if for any real-modeladversary A that interacts with the protocol, there exists an ideal-model adversary A0, such thatno environment Z can tell whether it is interacting with A and parties running the protocol, orwith A0 and parties that are running in the ideal model for f . Such a protocol is called universallycomposable. (In a sense, Z serves as an \interactive distinguisher" between a run of the protocoland an ideal execution involving a trusted party.) The importance of this new de�nition is due to a\composition theorem" that states that any universally composable protocol remains secure underconcurrent general-composition [14]. An important advantage of universally composable security isthat it enables the modular design of protocols. In particular, it is not necessary to design an entire\secure system". Rather, protocols are designed independently and once proven secure (under thisde�nition), can be safely run in any system.It has been shown that in the case of an honest majority, universally composable protocolsexist for any multi-party functionality [14] (building on [10, 76]). However, prior to our work,very little was known of the honest minority and two-party cases. Additional work on parallel andconcurrent general-composition in more limited settings appears in [30] who deal speci�cally withthe information theoretic setting and assume ideally private channels, and in [73] who relate toa setting where a single protocol execution takes place concurrently to another arbitrary protocol(that is, the \amount" of concurrency is strictly limited).We conclude that the question of general and self composition of multi-party protocols whenan honest majority is not assumed was largely unanswered. In particular, it was not known howto achieve concurrent general-composition, or even concurrent self-composition. The parallel casehas also received almost no attention. Speci�cally, nothing was known regarding parallel general-composition and there is no protocol for which security under parallel self-composition has beenproved.4 In this thesis, we solve some of these questions.1.3 Our ResultsThis thesis studies the feasibility of protocols under di�erent types of composition. We presentlower bounds regarding the fault tolerance of broadcast protocols that remain secure under parallelself-composition. This result has a signi�cant impact on the composability of secure multi-partyprotocols as they typically rely extensively on the use of a broadcast primitive. Nevertheless, weshow that the lower bound can be bypassed in the context of secure multi-party computationsuch that concurrent and parallel self-composition can be achieved. Finally, we present universallycomposable protocols for securely realizing any multi-party functionality in the common reference4We conjecture that the protocol of [52] self composes in parallel when the zero-knowledge proofs and proofs ofknowledge used are such that simulation and knowledge extraction can be executed under parallel composition. Wehave not veri�ed this conjecture.

6 CHAPTER 1. INTRODUCTIONstring model.5 (Recall that such protocols achieve concurrent general-composition.) Each chapterof this thesis is preceded by a detailed introduction. Here, we briey state the results and explainhow they relate to each other.1.3.1 The Composition of Authenticated Byzantine AgreementWe begin by studying the speci�c and basic problem of achieving secure broadcast in a point-to-point network. This problem is known as Byzantine Agreement (or Generals) and has been the focusof much research. Pease et al. [71, 62] showed that Byzantine Agreement can be achieved in thestandard model if and only if strictly less than 1=3 of the parties may be corrupted. They furthershowed that by augmenting the network with a public-key infrastructure for digital signatures, it ispossible to obtain secure protocols for any number of corrupted parties. This augmented problemis called \authenticated Byzantine Agreement".We ask whether protocols for authenticated Byzantine Agreement self-compose in parallel orconcurrently. This question is answered in the negative. In fact, we prove an impossibility resultstating that authenticated Byzantine Agreement cannot be self-composed in parallel (even twice),if 1=3 or more of the parties are corrupted. In contrast, it is easily shown that any protocol forByzantine Agreement in the standard model self-composes concurrently. Thus, on the one hand,if less than 1=3 of the parties are corrupted, protocols for Byzantine Agreement in the standard(i.e., \non-authenticated") model can be used, and composition is achieved. On the other hand, if1=3 or more of the parties are corrupted (and parallel or concurrent composition is required), theneven authenticated Byzantine Agreement cannot be used. We conclude that the augmentation ofthe standard model with a public-key infrastructure is of no bene�t when parallel or concurrentcomposition is needed.Conceptually, this result demonstrates that achieving security under composition (even a rel-atively weak type of composition such as two execution parallel self-composition) can be strictlyharder than achieving security in the stand-alone model. It also shows that any protocol thatachieves composition will have to necessarily do so without the help of authenticated ByzantineAgreement. This conclusion is bothersome because all known protocols for secure multi-partycomputation in the case that a third or more of the parties may be corrupted (e.g., [52, 76, 9])rely extensively on broadcast, and indeed implement it using authenticated Byzantine Agreement.Thus, none of these protocols compose in the point-to-point model.1.3.2 Secure Computation Without AgreementAs we have mentioned, an immediate concern that arises out of the previous result relates to thefeasibility of obtaining composition of secure multi-party protocols in a point-to-point network.This concern motivates the following question: Is it possible to obtain secure multi-party compu-tation without relying on a broadcast channel (and thus without using authenticated ByzantineAgreement) when a third or more of the parties are corrupted?We answer this question in the a�rmative. Speci�cally, we mildly relax the de�nition of securecomputation allowing abort (i.e., when output delivery is not guaranteed), and show how thisde�nition can be achieved without the use of a broadcast channel, and for any number of corruptedparties. The novelty of our de�nition is in decoupling the issue of agreement from the centralsecurity issues of privacy and correctness in secure computation. The only di�erence between ourde�nition and previous ones is as follows. Previously, it was required that if one honest party5In the common reference string model, all parties are given a common, public reference string that is ideallychosen from a given distribution.

1.3. OUR RESULTS 7aborted then all other honest parties also abort. Thus, the parties agree on whether or not theprotocol execution terminated successfully or not. In our new de�nition, it is possible that somehonest parties abort while others receive output. Thus, there is no agreement regarding the successof the protocol execution. We stress that in all other aspects, our de�nition remains the same (inparticular, the properties of privacy, correctness and independence of inputs are all preserved). Animportant corollary of this result is the existence of multi-party protocols that self-compose for thecase that a third or more of the parties may be corrupted.1.3.3 Universally Composable Multi-Party ComputationThe broadest type of composition described above is that of concurrent general-composition. As wehave mentioned, universally composable protocols remain secure under this type of composition.The feasibility of obtaining universally composable secure multi-party computation is therefore ofgreat interest. The following results are known regarding universal composability in the standardmodel (where no setup phase is assumed). On the one hand, it has been shown that in the case ofan honest majority, universally composable protocols exist for any multi-party functionality [14].On the other hand, it has also been shown that universally composable protocols for the basic two-party functionalities of commitment, zero-knowledge and coin-tossing cannot be obtained [16, 14].These impossibility results can actually be extended to include a very large class of natural func-tionalities [19]. (We note that two-party computation is a special case of multi-party computationwhen there is no honest majority, and thus these results also rule out the possibility of obtaininguniversally composable multi-party computation for an honest minority.) Thus, a natural and im-portant question to ask is whether or not there exists a reasonable model in which it is possible toobtain general universally composable secure computation for the two-party and honest-minoritymulti-party cases?Universally composable protocols for the speci�c two-party functionalities of commitment andzero-knowledge have been constructed in the common reference string model [16, 25]. In this model,all parties are given access to some string that is ideally chosen from a given distribution. The stringmust be chosen in a trusted manner, and therefore this setup assumption is de�nitely undesirable.However, due to the impossibility results of the standard model mentioned above, some setupassumption is required, and that of a common reference string seems rather minimal. We note thatthere are some scenarios where the use of a common reference string is very reasonable. Take forexample the case of a large organization that wishes to have its employees use secure protocols fora number of di�erent tasks. Then, in this context, the organization itself is trusted to properlychoose a common reference string.We ask whether or not there exist universally composable protocols for general functionalitiesin the common reference string model, in the two-party case, and in the multi-party case when nohonest majority is assumed. We answer this question in the a�rmative and prove the followingfeasibility result:There exist universally composable protocols in the common reference string model forsecurely computing any multi-party functionality and that tolerate any number of cor-rupted parties.An important corollary of this result is the feasibility of obtaining universally composable two-partycomputation for any functionality. We stress that previous feasibility results for secure computation(in the case of an honest minority) related to the stand-alone model only. Thus, our result is the �rstgeneral construction to guarantee security under concurrent general-composition, without assumingan honest majority.

8 CHAPTER 1. INTRODUCTIONRemark: Another important feature of our construction relates to the speci�c adversarial modelused. We di�erentiate between two types of adversaries: static and adaptive. A static adversarycontrols a set of corrupted parties that is �xed at the onset of the computation (but whose identitiesare of course unknown to the honest parties). In contrast, an adaptive adversary actively corruptsparties throughout the computation. We stress that an adaptive adversary has full power to choosewho to corrupt and when, and can base this choice on its view of the computation so far. We presentuniversally composable protocols for both the static and adaptive adversarial models. Our protocolsare actually the �rst general constructions to guarantee security against adaptive adversaries in thecase of an honest minority. (All previous protocols for the adaptive adversarial model [15, 6, 24],even in the stand-alone model, assumed an honest majority.)1.3.4 An Apparent ContradictionWe conclude with a remark regarding the connection between the results described in Sections 1.3.1and 1.3.3. On the one hand, in Section 1.3.1 we claim that it is impossible to construct a protocolfor the broadcast functionality (i.e., Byzantine Agreement) that self-composes in parallel, when1=3 or more of the parties are corrupted. (This impossibility result holds also in the commonreference string model, see Section 2.2.2.) On the other hand, in Section 1.3.3 we claim that forany functionality (and, in particular, for the broadcast functionality), there exists a protocol in thecommon reference string model that remains secure under concurrent general-composition and forany number of corrupted parties. Thus, it would seem that these claims contradict each other.However, there is actually no contradiction because the results are in di�erent models. Speci�-cally, the impossibility result of Section 1.3.1 is demonstrated in a model where guaranteed outputdelivery is required (i.e., all honest parties must receive their output and the adversary cannot carryout a denial of service attack). In contrast, the de�nition of universal composability, similarly tothe de�nitions of Section 1.3.2, does not guarantee output delivery and thus honest parties mayabort (the outline of the de�nition of universal composability in Section 1.2.2 is very brief andtherefore does not include this point). We stress that the proof of the impossibility result for com-posing (authenticated) Byzantine Agreement relies heavily on the requirement that parties mustreceive output; whereas the fact that output delivery is not required is essential for achieving uni-versal composability in the case of an honest minority. Thus, this di�erence in modeling is actuallycentral to both of the results. See the formal de�nitions of Byzantine Agreement and universalcomposability in Sections 2.2 and 4.3, respectively, for a full description of the model used in eachresult.61.4 OrganizationAlthough the results of this thesis are all on the subject of the composition of secure protocols, eachresult can be viewed in its own right. Therefore, despite the risk of a small amount of repetition,each chapter is presented in a self-contained manner, enabling a reader to focus on one chapterwithout having to read the others. We also provide an appendix containing abstracts of other workdone by the author during graduate studies at the Weizmann Institute of Science.6There is another technical di�erence between the models in that the current formalization of universal compos-ability assumes that each execution is assigned a unique session identi�er. In such a case, it is actually possible toachieve authenticated Byzantine Agreement that self-composes concurrently, for any number of corrupted parties; seeSection 2.4. Nevertheless, we believe that the feasibility result for universal composability holds even when uniquesession identi�ers are not assumed.

Chapter 2The Composition of AuthenticatedByzantine AgreementIn this chapter we show that the basic problem of achieving secure broadcast in a distributednetwork is strictly harder when composition is required. In particular, assuming a public-keyinfrastructure for digital signatures, it is known that secure broadcast can be achieved for anynumber of corrupted parties in the stand-alone model. In this chapter, we show that an analogousresult that composes cannot be achieved. That is, when a third or more of the parties maybe corrupted, it is impossible to obtain secure broadcast that remains secure under parallel self-composition, (even given a public-key infrastructure). Notice that our impossibility result holdseven for the relatively weak notion of parallel self-composition.2.1 IntroductionThe Byzantine Generals (Byzantine Agreement1) problem is one of the most researched areas indistributed computing. Numerous variations of the problem have been considered under di�erentcommunication models, and both positive results (i.e., protocols) and negative results (i.e., lowerbounds on e�ciency and fault tolerance) have been established. The reason for this vast interestis the fact that the Byzantine Generals problem is the algorithmic implementation of a broadcastchannel within a point-to-point network. In addition to its importance as a primitive in its ownright, broadcast is a key tool in the design of secure protocols for multi-party computation.The problem of Byzantine Generals is (informally) de�ned as follows. The setting is that of nparties connected via a point-to-point network, where one party is designated as the General (ordealer) who holds an input message x. In addition, there is an adversary who controls up to t ofthe parties and can arbitrarily deviate from the designated protocol speci�cation. The aim of theprotocol is to securely simulate a broadcast channel. Thus, �rst and foremost, all (honest) partiesmust receive the same message. Furthermore, if the General is honest, then the message receivedby the honest parties must be x (i.e., the adversary is unable to prevent an honest General fromsuccessfully broadcasting its given input message).Pease et al. [71, 62] provided a solution to the Byzantine Generals problem in the standardmodel, i.e. the information-theoretic model with point-to-point communication lines (and no setupassumptions). For their solution, the number of corrupted parties, t, must be less than n=3.Furthermore, they complemented this result by showing that the requirement for t < n=3 is in fact1These two problems are essentially equivalent. 9

10 CHAPTER 2. THE COMPOSITION OF AUTHENTICATED BYZANTINE AGREEMENTinherent. That is, no protocol which solves the Byzantine Generals problem in the standard modelcan tolerate a third or more corrupted parties.The above bound on the number of corrupted parties in the standard model is a severe limitation.It is therefore of great importance to �nd a di�erent (and realistic) model in which it is possibleto achieve higher fault tolerance. One possibility involves augmenting the standard model suchthat messages sent can be authenticated. By authentication, we mean the ability to ascertain thata message was in fact sent by a speci�c party, even when not directly received from that party.This can be achieved using a trusted preprocessing phase in which a public-key infrastructure fordigital signatures (e.g. [78, 56]) is set up. (We note that this requires that the adversary becomputationally bounded. However, there exist preprocessing phases which do not require anycomputational assumptions; see [72].) Indeed, Pease et al. [71, 62] use such an augmentation andobtain a protocol for the Byzantine Generals problem which can tolerate any number of corruptedparties (this is very dramatic considering the limitation to 1/3 corrupted in the standard model).The Byzantine Generals problem in this model is called authenticated Byzantine Generals. Weoften informally refer to this model as the \authenticated model".A common use of Byzantine Generals is to substitute a broadcast channel in multi-party pro-tocols. As such, it is likely to be executed many times. The question of whether these protocolsremain secure when executed concurrently, in parallel or sequentially is thus an important one.However, existing work on this problem (in both the standard and authenticated models) focusedon the security and correctness of protocols in the stand-alone model only.It is not di�cult to show that the unauthenticated protocol of Pease et al. [71], and in fact allprotocols in the standard model, do compose concurrently (and hence in parallel and sequentially).However, this is not the case with respect to authenticated Byzantine Generals. The �rst to noticethat composition in this model is problematic were Gong et al. [57], who also suggest methodsfor overcoming the problem. Our work shows that these suggestions and any others are in factfutile because composition in this model is impossible (as long as 1/3 or more of the parties maybe corrupted). (We note that by composition, we actually refer to stateless composition; seeSection 2.2.3 for a formal discussion.)Our Results. The main result of this chapter is a proof that authenticated Byzantine Generalsprotocols, both deterministic and randomized, cannot be self-composed in parallel (and thus con-currently). This is a powerful statement with respect to the value of enhancing the standard modelby the addition of authentication. Indeed, it shows that despite popular belief, this enhancementdoes not provide the ability to improve fault tolerance when composition is required. That is, ifthere is a need for parallel composition, then the number of corrupted players cannot be n=3 ormore, and hence the authenticated model provides no advantage over the standard model. Thisresult is summarized in the following theorem:Theorem 2.1.1 No protocol for authenticated Byzantine Agreement that self-composes in parallel(even twice) can tolerate n=3 or more corrupted parties.On the Use of Unique Session Identi�ers. As will be apparent from the proof of Theo-rem 2.1.1, the obstacle to achieving agreement in this setting is the fact that honest parties cannottell in which execution of the protocol a given message was authenticated. This allows the adversaryto \borrow" messages from one execution to another, and by that attack the system. In Section 2.4,we show that if we further augment the authenticated model so that unique and common indices

2.1. INTRODUCTION 11are assigned to each execution, then security under many concurrent executions can be achievedfor any number of corrupted parties.Thus, on the one hand, our results strengthen the common belief that session identi�ers arenecessary for achieving authenticated Byzantine Generals. On the other hand, we show that suchidenti�ers cannot be generated within the system. Typical suggestions for generating session iden-ti�ers in practice include having the General choose one, or having the parties exchange randomstrings and then set the identi�er to be the concatenation of all these strings. However, Theo-rem 2.1.1 rules out all such solutions. Rather, one must assume the existence of some trustedexternal means for coming up with unique and common indices. This seems to be a very di�cult,if not impossible, assumption to realize.A natural question to ask here relates to the fact that unique and common session identi�ersseem to be necessary for carrying out any form of concurrent composition. This is because partiesneed to be able to allocate messages to protocol executions, and this requires a way of distinguishingexecutions from each other. Indeed, a natural solution to this problem is to provide unique andglobal session identi�ers to every execution. However, in such a case, these identi�ers can also beused for achieving broadcast. Nevertheless, it is possible to correctly allocate messages to protocolexecutions without the use of of global identi�ers. This can be achieved as follows. When a partyPi begins a new execution, it chooses a unique, local identi�er sid(Pi) and sends it to all the otherparties. Then, whenever a party Pj wishes to send a message to Pi in this execution, it concatenatesthe identi�er sid(Pi) to the message. In this way, Pi is able to route all messages that it receives tothe correct executions. In general, it is guaranteed that all the honest parties in a given executionsuccessfully di�erentiate this execution from others.2 Most importantly, this is achieved withoutany global identi�ers whatsoever.Implications for Secure Multi-Party Computation. As we have stated above, one importantuse for Byzantine Generals protocols is to substitute the broadcast channel in a multi-party protocol.In fact, all known solutions for general multi-party computation assume a broadcast channel. Theimplicit claim is that this channel can be substituted by a Byzantine Generals protocol withoutany complications. However, our results show that the use of authenticated Byzantine Generalsin such a way prevents the composition of the larger protocol (even if this protocol does composewhen using a physical broadcast channel).Another important implication of our result is due to the fact that any secure protocol for solvinggeneral multi-party tasks can be used to solve Byzantine Generals (by the standard de�nition ofsecure computation for honest majority). Therefore, none of these protocols can be composed inparallel or concurrently, unless more than 2=3 of the parties are honest or a physical broadcastchannel is available. This issue is dealt with in more depth in Chapter 3.A Comparison to Zero-Knowledge. It is instructive to compare our results to the work ofGoldreich and Krawzcyk [48] on zero-knowledge. They show that there exist protocols that are zero-knowledge when executed stand-alone, and yet do not remain zero-knowledge when composed inparallel (even twice). Thus, they show that zero-knowledge does not necessarily compose in parallel.Completing this picture, we note that there exist zero-knowledge protocols that do compose inparallel (for example, see [47, 46]). In contrast, we show that it is impossible to obtain any protocolfor Byzantine Agreement that will compose in parallel (even twice).2There are no guarantees regarding messages sent by corrupted parties. However, corrupted parties can anywaysend arbitrary messages, so this makes no di�erence.

12 CHAPTER 2. THE COMPOSITION OF AUTHENTICATED BYZANTINE AGREEMENT2.2 De�nitions2.2.1 Computational ModelWe consider a setting involving n parties, P1; : : : ; Pn, that interact in a synchronous point-to-pointnetwork. In such a network, each pair of parties is directly connected, and it is assumed that theadversary cannot modify messages sent between honest parties. Each party is formally modeledby an interactive Turing machine with n�1 pairs of communication tapes. The communication ofthe network proceeds in synchronized rounds, where each round consists of a send phase followedby a receive phase. In the send phase of each round, the parties write messages onto their outputtapes, and in the receive phase, the parties read the contents of their input tapes.This paper refers to the authenticated model, where some type of trusted preprocessing phaseis assumed. This is modeled by all parties also having an additional setup-tape that is generatedduring the preprocessing phase. Typically, in such a preprocessing phase, a public-key infrastructureof signature keys is generated. That is, each party receives its own secret signing key, and inaddition, public veri�cation keys associated with all other parties. (This enables parties to use thesignature scheme to authenticate messages that they receive, and is thus the source of the name\authenticated".) However, we stress that our lower bound holds for all preprocessing phases (eventhose that cannot be e�ciently generated).In this model, a t-adversary is a party that controls up to t < n of the parties P1; : : : ; Pn(these parties are said to be corrupted). The adversary receives the corrupted parties' views anddetermines the messages that they send. These messages need not be according to the protocolexecution, but rather can be computed by the adversary as an arbitrary function of its view. Inthis work, we consider static adversaries for whom the set of corrupted parties is �xed before theexecution begins. (By taking a weaker adversary, we strengthen our impossibility result.) Finally,our impossibility results hold for adversaries (and honest parties) whose running time is of anycomplexity. In fact, our lower bound holds as long as the adversary is allowed to be of the samecomplexity as the honest parties.2.2.2 Byzantine Generals/AgreementThe existing literature de�nes two related problems: Byzantine Generals and Byzantine Agreement.In the �rst problem, there is one designated party, the General or dealer, who wishes to broadcast itsvalue to all the other parties. In the second problem, each party has an input and the parties wishto agree on a value, with a validity condition that if a majority of honest parties begin with the samevalue, then they must terminate with that value. These problems are equivalent in the sense thatany protocol solving one can be used to construct a protocol solving the other, while tolerating thesame number of corrupted parties. We relax the standard requirements on protocols for the aboveByzantine problems in that we allow a protocol to fail with probability that is negligible in somesecurity parameter. This relaxation is needed for the case of authenticated Byzantine protocolswhere signature schemes are used (and can always be forged with some negligible probability). Wepresent the formal de�nition for the Byzantine Agreement problem only and all references fromhere on will be with respect to this problem.De�nition 2.2.1 (Byzantine Agreement): Let P1; : : : ; Pn be n parties with associated inputs x1; : : : ; xnand let A be an adversary who controls up to t of the parties. Then, a protocol solves the ByzantineAgreement problem, tolerating t corruptions, if for any adversary A the following two propertieshold (except with negligible probability):

2.2. DEFINITIONS 131. Agreement: All honest parties output the same value.2. Validity: If more than n=2 honest parties have the same input value x, then all honest partiesoutput x.We note that the validity requirement is sometimes stated so that it must hold only when morethan n=3 honest parties have the same input value.Authenticated Byzantine Agreement: In the model for authenticated Byzantine Agreement,some trusted preprocessing phase is run before any executions begin. In this phase, a trusted partydistributes keys to every participating party. Formally,De�nition 2.2.2 (Authenticated Byzantine Agreement): A protocol for authenticated ByzantineAgreement is a Byzantine Agreement protocol with the following augmentation:� Each party has an additional setup-tape.� Prior to any protocol execution, an ideal (trusted) party chooses a series of strings s1; : : : ; snaccording to some distribution, and sets party Pi's setup-tape to equal si (for every i = 1; : : : ; n).Following the above preprocessing stage, the protocol is run in the standard communication modelfor Byzantine Generals/Agreement protocols.As we have mentioned, a natural example of such a preprocessing phase is one where the stringss1; : : : ; sn constitute a public-key infrastructure. That is, the trusted party chooses veri�cation andsigning key-pairs (vk1; sk1); : : : ; (vkn; skn) from a secure signature scheme, and sets the contentsof party Pi's tape to equal si = (vk1; : : : ; vki�1; ski; vki+1; : : : ; vkn). In other words, all parties aregiven their own signing key and the veri�cation keys of all the other parties. We note that thispreprocessing phase can also be used to setup a common reference string to be accessed by allparties (in this case, all the si's are set to the desired common reference string).We remark that the above-de�ned preprocessing phase is very strong. First, it is assumed thatit is run completely by a trusted party. Furthermore, there is no computational bound on the powerof the trusted party generating the keys. Nevertheless, our impossibility results hold even for sucha preprocessing phase.2.2.3 Composition of ProtocolsThis paper deals with the security of authenticated Byzantine Agreement protocols, when theprotocol is executed many times (rather than just once). We de�ne the composition of protocolsto be stateless. This means that the honest parties act upon their view in a single execution only.In particular, this means that the honest parties do not store in memory their views from previousexecutions or coordinate between di�erent executions occurring at the current time. Furthermore,in stateless composition, there is no unique session identi�er that is common to all participatingparties. (See the Introduction for a discussion on session identi�ers and their role.) We notethat although the parties are stateless, the adversary is allowed to maliciously coordinate betweenexecutions and record its view from previous executions. Formally, parallel composition is capturedby the following process:De�nition 2.2.3 (parallel self-composition): Let P1; : : : ; Pn be parties for an authenticated Byzan-tine Agreement protocol � and let I � [n] (jIj � t) be the set of corrupted parties controlled by anadversary A. Then, the parallel self-composition of � involves the following process:

14 CHAPTER 2. THE COMPOSITION OF AUTHENTICATED BYZANTINE AGREEMENT� Run the preprocessing phase associated with � and obtain the strings s1; : : : ; sn. Then, for everyj, set the setup-tape of Pj to equal sj.� Repeat the following process a polynomial number of times in parallel:1. The adversary A chooses an input vector x1; : : : ; xn.2. Fix the input tape of every honest Pj to be xj and the random-tape to be a uniformly (andindependently) chosen random string.3. Invoke all parties for an execution of � (using the strings generated in the preprocessingphase above). The execution is such that for i 2 I, the messages sent by party Pi aredetermined by A (who also sees Pi's view). On the other hand, all other parties follow theinstructions as de�ned in �.Protocol � is said to remain secure under parallel self-composition if each of the parallel executionsconstitutes a secure Byzantine Agreement protocol tolerating t corruptions.We stress that the preprocessing phase is executed only once and all executions use the stringsdistributed in this phase. Furthermore, we note that De�nition 2.2.3 implies that all honest partiesare oblivious of the other executions that have taken place (or that are taking place in parallel).This is implicit in the fact that in each execution the parties are invoked with no additional stateinformation, beyond the contents of their input, random and setup tapes (i.e., the composition isstateless). In contrast, the adversary A can coordinate between the executions, and its view at anygiven time includes all the messages received in all other executions.3Concurrent composition is de�ned analogously, with the only di�erence being that the adver-sary can determine the scheduling of the executions (i.e., when they begin and at what rate theyproceed). Before continuing, we show that any Byzantine Generals (or Agreement) protocol in thestandard model composes concurrently.Proposition 2.2.4 Let � be a protocol that solves the Byzantine Agreement problem in the stan-dard model and tolerates t corruptions. Then, � remains secure under concurrent self-composition.4Proof (sketch): We reduce the security of � under concurrent composition to its security for asingle execution. Assume by contradiction that there exists an adversary A who runs N concurrentexecutions of �, such that with non-negligible probability, in one of the executions the outputs ofthe parties do not meet the requirement on a Byzantine Agreement protocol. Then, we constructan adversary A0 who internally incorporates A and attacks a single execution of �. Intuitively, A0simulates all executions apart from the one in which A succeeds in its attack. Formally, A0 beginsby choosing an index i 2R f1; : : : ; Ng. Then, for all but the ith execution of the protocol, A0 playsthe roles of the honest parties in an interaction with A (this simulation is internal to A0). However,for the ith execution, A0 externally interacts with the honest parties and passes messages betweenthem and A. The key point in the proof is that the honest parties hold no secret information (anddo not coordinate between executions). Therefore, the simulation of the concurrent setting by A0for A is perfect. Thus, with probability 1=N , the ith execution is the one in which A succeeds.However, this means that A0 succeeds in breaking the protocol for a single execution (where A0'ssuccess probability equals 1=N times the success probability of A). This contradicts the stand-alonesecurity of �.3The analogous de�nition for the composition of unauthenticated Byzantine Agreement is derived from De�ni-tion 2.2.3 by removing the reference to the preprocessing stage and setup-tapes.4It can actually be shown that � remains secure even under concurrent general-composition.

2.3. IMPOSSIBILITY RESULT 152.3 Impossibility ResultIn this section we show that it is impossible to construct an authenticated Byzantine Agreementprotocol that self-composes in parallel (or concurrently), and is secure when n=3 or more partiesare corrupted. This result is analogous to the [71, 62] lower bounds for Byzantine Agreement in thestandard model (i.e., without authentication). We stress that our result does not merely show thatauthenticated Byzantine Agreement protocols do not necessarily compose; rather, we show thatone cannot construct protocols that will compose. Since there exist protocols for unauthenticatedByzantine Agreement that are resilient for any t < n=3 corrupted parties and compose concur-rently, this shows that the advantage gained by the preprocessing step in authenticated ByzantineAgreement protocols is lost when composition is required.Intuition. Let us �rst provide some intuition into why the added power of the preprocessing stepin authenticated Byzantine Agreement does not help when composition is required. (Recall that onthe one hand in the stand-alone setting, there exist authenticated Byzantine Agreement protocolsthat tolerate any number of corrupted parties. On the other hand, under parallel composition, onlyt < n=3 corruptions can be tolerated.) An instructive step is to �rst see how authenticated Byzan-tine Agreement protocols typically utilize a public-key infrastructure (set up in the preprocessingstep) in order to increase fault tolerance. Consider three parties A, B and C participating in astandard (unauthenticated) Byzantine Agreement protocol. Furthermore, assume that during theexecution A claims to B that C sent it some message x. Then, B cannot di�erentiate between thecase that C actually sent x to A, and the case that C did not send this value and A is corrupted.Thus, B cannot be sure that A really received x from C. Indeed, such a model has been calledthe \oral message" model, in contrast to the \signed message" model of authenticated ByzantineAgreement [62]. The use of signature schemes helps to overcome this exact problem: If C hadsigned on the message x and sent this signature to A, then A could forward the signature to B.Since A cannot forge C's signature, this would then constitute a proof that C had indeed sent xto A. Utilizing the unforgeability property of signatures, it is thus possible to achieve ByzantineAgreement for any number of corrupted parties.However, the above intuition holds only in a setting where a single execution of the agreementprotocol takes place. Speci�cally, if a number of executions were to take place, then A may send Ba value x along with C's signature on x, yet B would still not know whether C signed on x in thisexecution, or in a di�erent (concurrent or parallel) execution. Thus, the mere fact that A producesC's signature on a value does not provide proof that C signed this value in this execution. As wewill see in the proof, this is enough to render the public-key infrastructure useless under parallelcomposition.Theorem 2.3.1 (Theorem 2.1.1 { restated): No protocol for authenticated Byzantine Agreementthat self-composes in parallel (even twice) can tolerate n=3 or more corrupted parties.Proof: Our proof of Theorem 2.1.1 uses ideas from the proof by Fischer et al. [38] that nounauthenticated Byzantine Agreement protocol can tolerate n=3 or more corrupted parties. Webegin by proving the following lemma:Lemma 2.3.2 There exists no protocol for authenticated Byzantine Agreement for three parties,that composes in parallel (even twice) and can tolerate one corrupted party.Proof: Assume, by contradiction, that there exists a protocol � that solves the Byzantine Agree-ment problem for three parties A, B and C, where one may be corrupt. Furthermore, � remains

16 CHAPTER 2. THE COMPOSITION OF AUTHENTICATED BYZANTINE AGREEMENTsecure even when composed in parallel twice. Exactly as in the proof of Fischer et al. [38], we de�nea hexagonal system S that intertwines two independent copies of �. That is, let A0; B0, C0 and A1,B1 and C1 be independent copies of the three parties participating in �. By independent copies,we mean that A0 and A1 are the same party A with the same key tape, that runs in two di�erentparallel executions of �, as de�ned in De�nition 2.2.3. The system S is de�ned by connecting partyA0 to C1 and B0 (rather than to C0 and B0); party B0 to A0 and C0; party C0 to B0 and A1; andso on, as in Figure 2.1.
A

B C

0 0

0

1

1
Π S

1

A

C

BA

C

B

1

1

0

00

1Figure 2.1: Combining two copies of � in a hexagonal system S.In the system S, parties A0, B0, and C0 have input 0; while parties A1, B1 and C1 have input 1.Note that within S, all parties follow the instructions of � exactly. We stress that S is not aByzantine Agreement setting (where the parties are joined in a complete graph on three nodes),and therefore the de�nitions of Byzantine Agreement tell us nothing directly of what the parties'outputs should be. However, S is a well-de�ned system and this implies that the parties havewell-de�ned output distributions. The proof proceeds by showing that if � is a correct ByzantineAgreement protocol, then we arrive at a contradiction regarding the output distribution in S. Webegin by showing that B0 and C0 output 0 in S. We denote by rounds(�) the upper bound on thenumber of rounds of � (when run in a Byzantine Agreement setting).Claim 2.3.3 Except with negligible probability, parties B0 and C0 halt within rounds(�) steps andoutput 0 in the system S.Proof: We prove this claim by showing that there exists an adversary A controlling A1 and A2who participates in two parallel copies of � and simulates the system S, with respect to B0 andC0's view. (We stress that A controlling A1 and A2 is considered one corruption because these areboth copies of the same party.) The adversary A (and the other honest parties participating inthe parallel executions) work within a Byzantine Agreement setting where there are well-de�nedrequirements on their output distribution. Therefore, by analyzing their output in this parallelexecution setting, we are able to make claims regarding their output in the system S.Let A0, B0 and C0 be parties running an execution of �, denoted �0, where B0 and C0 bothhave input 0. Furthermore, let A1, B1 and C1 be running a parallel execution of �, denoted �1,where B1 and C1 both have input 1. Recall that B0 and B1 are independent copies of the party Bwith the same key tape (as in De�nition 2.2.3); likewise for C0 and C1.

2.3. IMPOSSIBILITY RESULT 17Now, let A be an adversary who controls both A0 in �0 and A1 in �1 (recall that the corruptedparty can coordinate between the di�erent executions). Party A's strategy is to maliciously generatean execution in which B0's and C0's view in �0 is identical to their view in S. A achieves thisby redirecting edges of the two parallel triangles (representing the parallel execution), so that theoverall system has the same behavior as S; see Figure 2.2.
C

A
1

C

B

0

0

0

1

1

1

1

A

C

B

0 0

0

A

1

B

S

A

B

C

0

Π

1 1

0

1

1

0

0

1

0

0

1

0

1

Π

Figure 2.2: Redirecting edges of �0 and �1 to make a hexagon.Speci�cally, the (A0; C0) and (A1; C1) edges of �0 and �1 respectively are removed, and the (A0; C1)and (A1; C0) edges of S are added in their place. A is able to make such a modi�cation because itonly involves redirecting messages to and from parties that it controls (i.e., A0 and A1).Before proceeding, we present the following notation: let msgi(A0; B0) denote the message sentfrom A0 to B0 in the ith round of the protocol execution. We now formally show how the adversaryA works. A invokes parties A0 and A1, upon inputs 0 and 1 respectively. We stress that A0 andA1 follow the instructions of protocol � exactly. However, A provides them with their incomingmessages and sends their outgoing messages for them. The only malicious behavior of A is in theredirection of messages to and from A0 and A1. A full description of A's code is as follows (werecommend the reader to refer to Figure 2.2 in order to clarify the following):1. Send outgoing messages of round i: A obtains messages msgi(A0; B0) and msgi(A0; C0) fromA0 in �0, and messages msgi(A1; B1) and msgi(A1; C1) from A1 in �1 (these are the round imessages sent by A0 and A1 to the other parties; as we have mentioned, A0 and A1 computethese messages according to the protocol de�nition and based on their view).� In �0, A sends B0 the message msgi(A0; B0) and sends C0 the message msgi(A1; C1) (andthus the (A1; C1) directed edge is replaced by the directed edge (A1; C0)).� In �1, A sends B1 the message msgi(A1; B1) and sends C1 the message msgi(A0; C0) (andthus the (A0; C0) directed edge is replaced by the directed edge (A0; C1)).2. Obtain incoming messages from round i: A receives messages msgi(B0; A0) and msgi(C0; A0)from B0 and C0 in round i of �0, and messages msgi(B1; A1) and msgi(C1; A1) from B1 andC1 in round i of �1.� A passes A0 in �0 the messages msgi(B0; A0) and msgi(C1; A1) (and thus the (C1; A1)directed edge is replaced by the directed edge (C1; A0)).� A passes A1 in �1 the messages msgi(B1; A1) and msgi(C0; A0) (and thus the (C0; A0)directed edge is replaced by the directed edge (C0; A1)).

18 CHAPTER 2. THE COMPOSITION OF AUTHENTICATED BYZANTINE AGREEMENTWe now claim that B0 and C0's view in �0 is identical to B0 and C0's view in S.5 This holdsbecause in the parallel execution of �0 and �1, all parties follow the protocol de�nition (includingA0 and A1). The same is true in the system S, except that party A0 is connected to B0 andC1 instead of to B0 and C0. Likewise, A1 is connected to B1 and C0 instead of to B1 and C1.Furthermore, by the de�nition of A, the messages seen by all parties in the parallel execution of�0 and �1 are exactly the same as the messages seen by the parties in S (e.g., the messages seenby C0 in �0 are those sent by B0 and A1, exactly as in S). Therefore, the views of B0 and C0 inthe parallel execution maliciously controlled by A, are identical to their views in S.6By the assumption that � is a correct Byzantine Agreement protocol that composes twice inparallel, we have that in �0 both B0 and C0 halt within rounds(�) steps and output 0 (except withnegligible probability). The fact that they both output 0 is derived from the fact that B0 and C0are an honest majority with the same input value 0. Therefore, they must output 0 in the faceof any adversarial A0; in particular this holds with respect to the speci�c adversary A describedabove. Since the views of B0 and C0 in S are identical to their views in �0, we conclude that in thesystem S they also halt within rounds(�) steps and output 0 (except with negligible probability).This completes the proof of the claim.Using analogous arguments, we obtain the following two claims:Claim 2.3.4 Except with negligible probability, parties A1 and B1 halt within rounds(�) steps andoutput 1 in the system S.In order to prove this claim, the adversary is C who controls C1 and C2 and works in a similarway to A in the proof of Claim 2.3.3 above. (The only di�erence is regarding the edges that areredirected.)Claim 2.3.5 Except with negligible probability, parties A1 and C0 halt within rounds(�) steps andoutput the same value in the system S.Similarly, this claim is proven by de�ning an adversary B who controls B1 and B2 and follows asimilar strategy to A in the proof of Claim 2.3.3 above.Combining Claims 2.3.3, 2.3.4 and 2.3.5 we obtain a contradiction. This is because, on the onehand C0 must output 0 in S (Claim 2.3.3), and A1 must output 1 in S (Claim 2.3.4). On the otherhand, by Claim 2.3.5, parties A1 and C0 must output the same value. We conclude that there doesnot exist a 3-party protocol for Byzantine Agreement that tolerates one corruption and composestwice in parallel. This concludes the proof of the lemma.Theorem 2.1.1 is derived from Lemma 2.3.2 in the standard way [71, 62] by showing that if thereexists a protocol that is correct for any n � 3 and n=3 corrupted parties, then one can construct aprotocol for 3 parties that can tolerate one corrupted party. This is in contradiction to Lemma 2.3.2,and thus Theorem 2.1.1 is implied.The following corollary, referring to concurrent composition, is immediately derived from the factthat parallel composition (where the scheduling of the messages is �xed and synchronized) is merelya special case of concurrent composition (where the adversary controls the scheduling).5In fact, the views of all the parties in the parallel execution with A are identical to their views in the system S.However, in order to obtain Claim 2.3.3, we need only analyze the views of B0 and C0.6We note the crucial di�erence between this proof and that of Fischer et al. [38]. In [38], the corrupted party A isable to simulate the entire A0{C1{B1{A1 segment of the hexagon system S by itself. Thus, in a single execution of� with B0 and C0, party A can simulate the hexagon. Here, due to the fact that the parties B1 and C1 have secretinformation that A does not have access to, A is unable to simulate their behavior itself. Rather, A needs to redirectmessages from the parallel execution of �1 in order to complete the hexagon.

2.4. AUTHENTICATED BYZANTINE AGREEMENT USING UNIQUE IDENTIFIERS 19Corollary 2.3.6 No protocol for authenticated Byzantine Agreement that self-composes concur-rently (even twice) can tolerate n=3 or more corrupted parties.Sequential composition. The above results relate to the feasibility of parallel and concurrentcomposition. However, sequential composition is also an important concern. We note that lowerbounds also hold for deterministic protocols. In particular, a deterministic protocol for ByzantineAgreement that runs for r rounds and tolerates t � n=3 corrupted parties, can be composedsequentially at most 2r�1 times. On the other hand, randomized protocols can be used to overcomethis lower bound. We refer the interested reader to [66] for further details.2.4 Authenticated Byzantine Agreement using Unique Identi�ersIn this section we consider an augmentation to the authenticated model in which each execution isassigned a unique and common identi�er. We show that in such a model, it is possible to achieveByzantine Agreement that composes concurrently, for any number of corrupted parties. We stressthat in the authenticated model itself, it is not possible for the parties to agree on unique andcommon identi�ers, without some external help. This is because by the results of this section,agreeing on a common identi�er amounts to solving the Byzantine Agreement problem, and wehave proven that this cannot be achieved for t � n=3 when composition is required. Therefore,these identi�ers must come from outside the system (and as such, assuming their existence is anaugmentation to the authenticated model).Intuitively, the existence of unique identi�ers helps in the authenticated model for the followingreason. Recall that our lower bound is based on the ability of the adversary to borrow signed mes-sages from one execution to another. Now, if each signature also includes the session identi�er, thenthe honest parties can easily distinguish between messages signed in this execution and messagessigned in a di�erent execution. It turns out that this is enough. That is, we give a transformationfrom stand-alone Byzantine Agreement protocols based on signature schemes, to protocols thatcompose concurrently when unique identi�ers exist. Our transformation holds for protocols thatutilize the signature scheme in a natural way (as will be seen below).The Transformation: Let � be a protocol for authenticated Byzantine Agreement that uses asecure signature scheme. We de�ne a modi�ed protocol �(id) that works as follows:� Each party is given the identi�er id as auxiliary input.� If a party Pi has an instruction in � to sign a given message m with its signing key ski, then Pisigns upon id �m instead (where � denotes concatenation).� If a party Pi has an instruction in � to verify a given signature � on a message m with averi�cation key vkj , then Pi veri�es that � is a valid signature for the message id �m.Secure signature schemes. Before proceeding, we present an informal de�nition of secure sig-nature schemes. A signature scheme is a triplet of algorithms (G;S; V), where G is a probabilisticgenerator that outputs a pair of signing and veri�cation keys (sk; vk), S is a signing algorithm andV is a veri�cation algorithm. The validity requirement for signature scheme states that for everymessage m, V (vk;m; S(sk;m)) = 1, where (vk; sk) G(1n) (i.e., honestly generated signaturesare always accepted). The validity can be relaxed so that it holds with overwhelming probability,where the probability is taken over the random coin tosses of the di�erent algorithms.

20 CHAPTER 2. THE COMPOSITION OF AUTHENTICATED BYZANTINE AGREEMENTThe security requirement of a signature scheme states that the probability that an e�cientforging algorithm S� succeeds in generating any forgery, even when given oracle access to thesigning oracle, is negligible. Of course, a successful forgery is only with respect to a message forwhich S� did not receive a signature from its oracle. More formally, the following experiment isde�ned: The generator G is run, outputting a key-pair (vk; sk). Then, S� is given vk and oracleaccess to the signing oracle S(sk; �). At the conclusion of the experiment, S� outputs a pair (m�; ��).Let Qm be the set of oracle queries by S�. Then, we say that S� succeeds if V (vk;m�; ��) = 1 andm� 62 Qm. (That is, S� output a message along with a valid signature, and S� did not query itsoracle with this message.) A signature scheme is existentially secure against chosen-message attacksif for every probabilistic polynomial-time S�, the probability that S� succeeds is negligible.Modifying the de�nition. For our purposes here, we consider a modi�cation of the abovede�nition where we somewhat restrict the forging algorithm S�. That is, let id be any string.Then, the modi�cation is such that S� is given access to a restricted signing algorithm S:id(sk; �)that signs on any message m that does not have pre�x id. Furthermore, S� must output a pair(m�; ��) where the pre�x of m� equals id. As before, S� is said to succeed if V (vk;m�; ��) = 1and m� 62 Qm. It is not hard to see that any signature scheme that is existentially secure againstchosen-message attacks is also secure with this modi�cation. This is because a successful forgeryhere contains a message m� with pre�x id. Since S� only has access to S:id(sk; �), it cannot havequeried its oracle with m�. Thus, a regular forging algorithm can also use S� to generate a forgery.It is also not hard to see that protocols that use a signature scheme in a natural way, remainsecure when the modi�ed de�nition is used and the appropriate id is required on all messagesthat are veri�ed (as in our transformation of Byzantine Agreement protocols). This is because theinfeasibility of forging messages containing id is preserved and this is the only property of signatureschemes usually utilized. We are now ready to state the theorem:Theorem 2.4.1 Let � be a secure protocol for authenticated Byzantine Agreement which uses apublic-key infrastructure for a signature scheme that is existentially secure against chosen messageattacks. Furthermore, the parties use their secret keys for signing on messages only. Let �(id)be obtained from � as in the above transformation, and let id1; : : : ; id` be a series of ` uniquestrings. If the stand-alone protocol �(id) remains secure even when the adversary is given accessto restricted signing oracles S:id(sk; �) for the secret keys of all the honest parties, then the protocols�(id1); : : : ;�(id`) all solve the Byzantine Agreement problem, even when run concurrently.Proof: Intuitively, the security of the protocols �(id1); : : : ;�(id`) is due to the fact that signaturesfrom �(idi) cannot be of any help to the adversary in �(idj). This is because in �(idj), the honestparties ignore any signature that includes an identi�er that is not idj . Since idi 6= idj , we havethat signatures sent in �(idi) are useless in �(idj). Our formal proof of this intuition proceeds byshowing how an adversary for a single execution of �(id) can internally simulate the concurrentexecutions of �(id1); : : : ;�(id`), thereby reducing the security of the concurrent setting to thestand-alone setting.Let A be an adversary who attacks the concurrent executions �(id1); : : : ;�(id`). By contra-diction, assume that A succeeds in \breaking" one of the �(idi) executions with non-negligibleprobability. We construct an adversary A0 who internally incorporates A and attacks a single ex-ecution of �(id) as follows. Intuitively, A0 simulates all executions apart from the one in whichA succeeds in its attack. Formally, A0 �rst randomly selects an execution i 2R f1; : : : ; `g. Then,A0 sets idi = id and chooses unique identi�ers idj (for every j 6= i). Next, A0 invokes A andemulates the concurrent executions of �(id1); : : : ;�(id`) for A. Adversary A0 does this by playing

2.4. AUTHENTICATED BYZANTINE AGREEMENT USING UNIQUE IDENTIFIERS 21the roles of the honest parties in all but the ith execution �(idi). In contrast, in �(idi) adversaryA0 externally interacts with the honest parties and passes messages between them and A. Since A0is given access to the restricted signing oracles of all the honest parties and the honest parties usetheir signing keys to generate signatures only, A0 is able to generate the honest parties' messagesin all the executions �(idj) for j 6= i. (Recall that in these executions, the pre�x of every signedmessage is idj 6= idi and thus the restricted oracle su�ces.) Therefore, the emulation by A0 ofthe concurrent executions for A is perfect. This implies that A0 succeeds in \breaking" �(id) withsuccess probability that equals 1=` times A's success probability in the concurrent setting. Thus,A0 succeeds with non-negligible probability and this contradicts the assumed stand-alone securityof �(id) even when A0 is given access to the restricted oracles.It is easy to verify that the protocols of [71, 62, 34] for authenticated Byzantine Agreement all ful�llthe requirements in the assumption of Theorem 2.4.1. We therefore obtain the following corollary:Corollary 2.4.2 There exist protocols for authenticated Byzantine Agreement that tolerate anyt < n corruptions and remain secure under concurrent executions, assuming that global uniqueidenti�ers are allocated to each execution.We conclude by noting that it is not at all clear how the augmentation to the authenticated modelof unique identi�ers can be achieved in practice. In particular, requiring the on-line participation ofa trusted party who assigns identi�ers to every execution is clearly impractical. (Furthermore, sucha party could just be used to directly implement broadcast.) However, we do note one importantscenario where Theorem 2.4.1 can be applied. As we have mentioned, secure protocols often usemany invocations of a broadcast primitive. Furthermore, in order to improve round e�ciency, in anygiven round many broadcasts may be simultaneously executed. The key point here is that withinthe secure protocol, unique identi�ers can be allocated to each broadcast by the protocol designer.Therefore, authenticated Byzantine Agreement can be used. Of course, this does not change thefact that the secure protocol itself will not compose in parallel or concurrently. However, it doesmean that its security is guaranteed in the stand-alone setting, and a physical broadcast channelis not necessary.

22 CHAPTER 2. THE COMPOSITION OF AUTHENTICATED BYZANTINE AGREEMENT

Chapter 3Secure Computation WithoutAgreementIn the previous chapter, we have shown that authenticated Byzantine Agreement protocols cannotbe composed concurrently (or even in parallel) when a third or more of the parties are corrupted.An immediate and important rami�cation of this result relates to the self-composition of securemulti-party computation. All known protocols for general secure multi-party computation stronglyrely on the extensive use of a broadcast primitive. When a third or more of the parties are corrupted,this broadcast is implemented using authenticated Byzantine Agreement. Essentially, this use ofByzantine Agreement cannot be eliminated since the standard de�nition of secure computation(for the case that less than 1=2 of the parties are corrupted) actually implies Byzantine Agreement.Moreover, it is accepted folklore that the use of a broadcast channel is essential for achieving securemultiparty computation, in the case that 1=3 or more of the parties are corrupted. Due to theabove state of a�airs, there are currently no known composable protocols for secure multi-partycomputation in the point-to-point network model.In this chapter we show that secure computation can be achieved without a broadcast channel,and thus without authenticated Byzantine Agreement. Speci�cally, we present a new de�nition ofsecure computation that only mildly relaxes previous de�nitions and that can be achieved withoutusing a broadcast channel. The new de�nition separates the issue of agreement from the centralsecurity issues of privacy and correctness in secure computation. As a result the lower bounds ofByzantine Agreement no longer apply to secure computation. Indeed, we prove that secure multi-party computation can be achieved for any number of corrupted parties and without a broadcastchannel (or trusted preprocessing phase as required for running authenticated Byzantine Agree-ment). An important corollary of the results in this chapter is the ability to obtain multi-partyprotocols in a point-to-point network that self-compose.3.1 Introduction3.1.1 BackgroundSecurity in multi-party computation. A secure multi-party protocol should protect honestparties from the malicious behavior of corrupted parties. In particular, malicious parties shouldnot be able to learn anything more than their prescribed output (privacy) and the outputs ofthe computation should be as presribed (correctness). The security of multi-party computation[53, 4, 69, 13] is formalized in the following way. Consider an ideal world in which an external23

24 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTtrusted party is willing to help the parties carry out their computation. An ideal computationtakes place in the ideal world by having the parties simply send their inputs to the trusted party.This trusted party then computes the desired function and passes each party its prescribed output.A real protocol that is run by the parties (in a world where no trusted party exists) is said tobe secure, if no adversary controlling a coalition of corrupted parties can do more harm in a realexecution that in the above ideal computation. More formally, security is said to hold if a realexecution can be emulated within the ideal model.Notice that in an ideal computation, the above-mentioned properties of privacy and correctnessare trivially guaranteed. Additional important properties that are implied are independence ofinputs (meaning that corrupted parties must choose their inputs independently of the honest par-ties), guaranteed output delivery (meaning that all parties receive output and the adversary cannotconduct a denial of service attack), and fairness (meaning that corrupted parties receive output ifand only if honest parties do). Since these properties all hold in the ideal model, and since realexecutions of secure protocols can be emulated in the ideal model, it follows that these propertiesalso all hold in a real execution of a secure protocol. We remark that guaranteeing output deliveryand fairness is actually impossible unless a strict majority of the parties are honest. Therefore,when this is not the case (i.e., when t � n=2), the ideal model is modi�ed so that these propertiesare not implied. Speci�cally, under certain conditions, parties are allowed to abort (in which casethey output a special symbol ? rather than their speci�ed output). In addition, fairness takes ondi�erent meanings for di�erent values of t. We will single out a few forms of fairness. On the oneextreme, we have \complete fairness" that guarantees that if a corrupt party gets its output thenall honest parties also get their output. (As we have mentioned, this is only possible when t < n=2.)On the other extreme, we have \no fairness" in which the adversary always gets its output andhas the power to decide whether or not the honest parties also get output. An intermediate notionthat we call \partial fairness" singles out a speci�ed party such that if this speci�ed party is honestthen complete fairness is achieved. On the other hand, if the speci�ed party is corrupt, then nofairness is achieved. Thus, fairness is partial.Byzantine agreement and secure multi-party computation. There is a close connectionbetween Byzantine agreement and secure multi-party computation. First, Byzantine agreement (orbroadcast) is used as a basic and central tool in the construction of secure protocols. In particular,all known protocols for general multi-party computation use a broadcast channel (and implement itusing Byzantine agreement or authenticated Byzantine agreement). Second, Byzantine agreementis actually a special case of secure computation (this holds by the standard de�nition taken for thecase that t < n=2 where output delivery is guaranteed). Therefore, all the lower bounds relatingto Byzantine agreement immediately apply to secure multi-party computation. In particular, theByzantine agreement problem cannot be solved for any t � n=3 [71]. Thus, it is also impossible toachieve secure computation with guaranteed output delivery in a point-to-point network for t � n=3.On the other hand, for t < n=2 it is possible to obtain secure computation with guaranteed outputdelivery assuming a broadcast channel. This means that in order to achieve such secure computationfor the range of n=3 � t < n=2, either a physical broadcast channel or a trusted pre-processingphase for running authenticated Byzantine agreement must be assumed.In the previous chapter, it was shown that authenticated Byzantine agreement cannot be com-posed (concurrently or even in parallel), unless t < n=3. This has the following rami�cations.On the one hand, in the range of n=3 � t < n=2, it is impossible to obtain secure computa-tion that composes without using a physical broadcast channel. This is because such a protocolin the point-to-point network model and with trusted pre-processing would imply authenticated

3.1. INTRODUCTION 25Byzantine agreement that composes. On the other hand, as we have mentioned, in the range oft � n=2 the de�nitions of secure computation do not imply Byzantine agreement. Nevertheless, allprotocols for secure computation in this range make extensive use of a broadcast primitive. Theimpossibility of composing authenticated Byzantine agreement puts this whole body of work intoquestion when composition is required. Speci�cally without using a physical broadcast channel,none of these protocols compose (even in parallel). In summary, there are no known protocols forsecure computation in a point-to-point network that compose in parallel or concurrently, for anyt � n=3. Needless to say, the requirement of a physical broadcast channel is very undesirable (andoften unrealistic).3.1.2 Our ResultsWe present a mild relaxation of the standard de�nition of secure multi-party computation thatdecouples the issue of agreement from the issue of secure multi-party computation. In particular,our de�nition focuses on the central issues of privacy and correctness. Loosely speaking, ourde�nition is di�erent in the following way. As we have mentioned, for the case of t � n=2, it isimpossible to guarantee output delivery and therefore some parties may conclude with a specialabort symbol ?, and not with their output. Previously [44], it was required that either all honestparties receive their outputs or all honest parties output ?.1 Thus the parties all agree on whetheror not output was received. On the other hand, in our de�nition some honest parties may receiveoutput while some receive ?, and the requirement of agreement is removed. We stress that this isthe only di�erence between our de�nition and the previous ones.We show that it is possible to achieve secure computation according to the new de�nition forany t < n and without a broadcast channel or setup assumption (assuming the same computationalassumptions made, if any, by corresponding protocols that did use broadcast channels.) Thus, thelower bounds for Byzantine agreement indeed do not imply lower bounds for secure multi-partycomputation. We note that our result holds in both the information theoretic and the computationalmodels.A hierarchy of de�nitions. In order to describe our results in more detail, we present a hier-archy of de�nitions for secure computation. All the de�nition ful�ll the properties of privacy andcorrectness. The hierarchy that we present here relates to the issues of abort (or failure to receiveoutput) and fairness.1. Secure computation without abort: According to this de�nition, all parties are guaranteed toreceive their output. (This is what we previously called \guaranteed output delivery".) Thisis the standard de�nition for the case of honest majority (i.e., t < n=2). Since all honestparties receive output, complete fairness is always obtained here.2. Secure computation with unanimous abort: In this de�nition, it is ensured that either all hon-est parties receive their outputs or all honest parties abort. This de�nition can be consideredwith di�erent levels of fairness:(a) Complete fairness: Recall that when complete fairness is achieved, the honest partiesare guaranteed to receive output if the adversary does. Thus, here one of two casescan occur. Either all parties receive output or all parties abort. Thus, the adversary1We note that in private communication, Goldreich stated that the requirement in [44] of having all parties abortor all parties receive output was only made in order to simplify the de�nition.

26 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTcan conduct a denial of service attack, but nothing else. (This de�nition can only beachieved in the case of t < n=2.)(b) Partial fairness: As in the case of complete fairness, the adversary may disrupt thecomputation and cause the honest parties to abort without receiving their prescribedoutput. However, unlike above, the adversary may receive the corrupted parties' outputs,even if the honest parties abort (and thus the abort is not always fair). In particular, theprotocol speci�es a single party such that the following holds. If this party is honest, thencomplete fairness is essentially achieved (i.e., either all parties abort or all parties receivecorrect output). On the other hand, if the speci�ed party is corrupt, then fairness maybe violated. That is, the adversary receives the corrupted parties' outputs �rst, and thendecides whether or not the honest parties all receive their correct output or all receiveabort (and thus the adversary may receive output while the honest parties do not).Although fairness is only guaranteed in the case that the speci�ed party is not corrupted,there are applications where this feature may be of importance. For example, in a sce-nario where one of the parties may be \more trusted" than others (yet not too trusted),it may be of advantage to make this party the speci�ed party. Another setting wherethis can be of advantage is one where all the participating parties are trusted. However,the problem that may arise is that of an external party \hacking" into the machine ofone of the parties. In such a case, it may be possible to provide additional protection tothe speci�ed party.(c) No fairness: This is the same as in the case of partial fairness except that the adversaryalways receives the corrupted parties' outputs �rst (i.e., there is no speci�ed party).We stress that in all the above three de�nitions, if one honest party aborts then so do all honestparties, and thus all are aware of the fact that the protocol did not successfully terminate.This feature of having all parties succeed or fail together may be an important one in someapplications.3. Secure computation with abort: The only di�erence between this de�nition and the one imme-diately preceding it, is that some honest parties may receive output while others abort. Thatis, the requirement of unanimity with respect to abort is removed. This yields two di�erentde�nitions, depending on whether partial fairness or no fairness is taken. (Complete fairnessis not considered here because it only makes sense in a setting where all the parties, includingthe corrupted parties, either all receive output or all abort. Therefore, it is not relevant inthe setting of secure computation with non-unanimous abort.)Using the above terminology, the de�nition proposed by Goldreich [44] for the case of any t < n isthat of secure computation with unanimous abort and partial fairness. Our new de�nition is thatof secure computation with abort, and as we have mentioned, its key feature is a decoupling of theissues of secure computation and agreement (or unanimity).Achieving secure computation with abort. Using the terminology introduced above, ourresults show that secure computation with abort and partial fairness can be achieved for any t < n,and without a broadcast channel or a trusted pre-processing phase. We achieve this result in thefollowing way. First, we de�ne a weak variant of the Byzantine Generals problem, called broadcastwith abort, in which not all parties are guaranteed to receive the broadcasted value. In particular,there exists a single value x such that every party either outputs x or aborts. Furthermore, whenthe broadcasting party is honest, the value x equals its input, similarly to the validity condition of

3.1. INTRODUCTION 27Byzantine Generals. (Notice that in this variant, the parties do not necessarily agree on the outputsince some may output x while others abort.) We call this \broadcast with abort" because aswith secure computation with abort, some parties may output x while other honest parties abort.We show how to achieve this type of broadcast with a simple deterministic protocol that runs in2 rounds. Secure multi-party computation is then achieved by replacing the broadcast channelin known protocols with a broadcast with abort protocol. Despite the weak nature of agreementin this broadcast protocol, it is nevertheless enough for achieving secure multi-party computationwith abort. Since our broadcast with abort protocol runs in only 2 rounds, we also obtain a verye�cient transformation of protocols that work with a broadcast channel into protocols that requireonly a point-to-point network. In summary, we obtain the following theorem:Theorem 3.1.1 (e�cient transformation): There exists an e�cient protocol compiler that receivesany protocol � for the broadcast model and outputs a protocol �0 for the point-to-point model suchthat the following holds: If � securely computes a functionality f with unanimous abort and withany level of fairness, then �0 securely computes f with abort and with no fairness. Furthermore,if � tolerates up to t corruptions and runs for R rounds, then �0 tolerates up to t corruptions andruns for O(R) rounds.Notice that in the transformation of Theorem 3.1.1, protocol �0 does not achieve complete fairnessor partial fairness, even if � did. Thus, fairness may be lost in the transformation. Nevertheless,meaningful secure computation is still obtained and at virtually no additional cost.When obtaining some level of fairness is important, Theorem 3.1.1 does not provide a solution.We show that partial fairness can be obtained without a broadcast channel for the range of t � n=2(recall that complete fairness cannot be obtained in this range, even with broadcast). That is, weprove the following theorem:Theorem 3.1.2 (partial fairness): For any probabilistic polynomial-time n-party functionality f ,there exists a protocol in the point-to-point model for computing f that is secure with abort, partiallyfair and tolerates any t < n corruptions.The theorem is proved by �rst showing that fairness can be boosted in the point-to-point model.That is, given a generic protocol for secure multi-party computation that achieves no fairness, onecan construct a generic protocol for secure multi-party computation that achieves partial fairness.(Loosely speaking, a generic protocol is one that can be used to securely compute any e�cient func-tionality.) Applying Theorem 3.1.1 to known protocols for the broadcast model, we obtain securemulti-party computation that achieves no fairness. Then, using the above \fairness boosting", weobtain Theorem 3.1.2. We note that the round complexity of the resulting protocol is of the sameorder of the \best" generic protocol that works in the broadcast model. In particular, based onthe protocol of Beaver et al. [9], we obtain the �rst constant-round protocol in the point-to-pointnetwork for the range of n=3 � t < n=2.2 That is:Corollary 3.1.3 (constant round protocols without broadcast for t < n=2): Assume that thereexist public-key encryption schemes (or, alternatively, assume the existence of one-way functionsand a model with private channels). Then, for every probabilistic polynomial-time functionality f ,there exists a constant round protocol in the point-to-point network for computing f that is securewith abort, partially fair and tolerates t < n=2 corruptions.2For the range of t < n=3, the broadcast channel in the protocol of [9] can be replaced by the expected constant-round Byzantine agreement protocol of Feldman and Micali [37]. However, there is no known authenticated Byzantineagreement protocol with analogous round complexity.

28 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTComposition of secure multi-party protocols. An important corollary of our new de�nitionis the ability to obtain secure multi-party protocols for t > n=3 that self-compose in parallel orconcurrently, without a broadcast channel. Since our protocols do not use a broadcast channel (orauthenticated Byzantine agreement), the lower bound of Chapter 2 does not apply. Speci�cally, if aprotocol composes when using a broadcast channel, then the transformed protocol in the point-to-point network also composes. This is in contrast to all previous protocols that used authenticatedByzantine agreement in order to replace the broadcast channel.3 Jumping ahead, we comparethe composition achieved here to that obtained in Chapter 4. In Chapter 4, the strong notionof concurrent general composition is obtained. However, the protocol there relies on a commonreference string. In contrast, in this chapter, we obtain only the weaker notion of self-composition.Nevertheless, our protocols are in the standard model and do not require any setup assumptions.Discussion. We propose that the basic de�nition of secure computation should focus on the issuesof privacy and correctness (and independence of inputs). In contrast, the property of agreementshould be treated as an additional, and not central, feature. The bene�t of taking such a position(irrespective of whether one is convinced conceptually) is that the feasibility of secure computationis completely decoupled from the feasibility of Byzantine agreement. Thus, the lower boundsrelating to Byzantine agreement (and authenticated Byzantine agreement) do not imply anythingregarding secure computation. Indeed, as we show, \broadcast with abort" is su�cient for securecomputation. However, it lacks any avor of agreement in the classical sense. This brings usto an important observation. Usually, proving a lower bound for a special case casts light on thedi�culties in solving the general problem. However, in the case of secure computation this is not thecase. Rather, the fact that the lower bounds of Byzantine agreement apply to secure computationis due to marginal issues relating to unanimity regarding the delivery of outputs, and not due tothe main issues of security.3.1.3 Related WorkWe have recently learned of two independent and concurrent results [39, 40] studying a problemsimilar to ours, although apparently for di�erent motivation.4 In [39], Fitzi et al. study the questionof multi-party computation in the case that the number of faults is t < n=2. They show that inthis case, it is possible to achieve weak Byzantine agreement (where loosely speaking, either allhonest parties abort or all honest parties agree on the broadcasted value). (We note that theirprotocol is probabilistic and \breaks" the t < n=3 lower-bound on deterministic weak ByzantineAgreement protocols of Lamport [63].) They further show how this can be used in order to obtainsecure computation with unanimous abort and complete fairness for the case of t < n=2. Thus forthe range of n=2 � t < n=3 their solution achieves complete fairness whereas ours achieves onlypartial fairness.In subsequent work [40], Fitzi et al. studied the question of Byzantine agreement for any t < nand whether its relaxation to weak Byzantine Agreement can be achieved without preprocessing.They show that it is indeed possible to achieve (randomized) weak Byzantine Agreement for any3Unfortunately, full proofs regarding the composition of protocols using a broadcast channel do not appear in theliterature. In this footnote we momentarily allow ourselves to rely on the belief/conjecture that in the broadcastmodel the protocol of [76] for t < n=2 self-composes concurrently, and the protocol of [52] for any t < n self-composesin parallel. We can therefore conclude that in the point-to-point network, concurrent self-composition of securemulti-party computation is possible for t < n=2, and parallel self-composition is possible for any t.4We were informed of this work while presenting our work at a seminar at MIT, February 14 2002.

3.2. DEFINITIONS { SECURE COMPUTATION 29t < n, in O(t) rounds. They also show how their weak Byzantine Agreement protocol can be usedto obtain secure computation with unanimous abort and partial fairness for any t < n.In comparison, we achieve secure computation with (non-unanimous) abort and partial fairnessfor any t < n. However, our focus is di�erent. In particular, our results emphasize the fact that theissue of agreement is not central to the task of secure computation. Furthermore, removing thisrequirement enables us to remove the broadcast channel with almost no cost. This also results inour obtaining a round-preserving transformation of secure protocols in the broadcast model to thosein the point-to-point model. This is in contrast to [39, 40] who use their weak Byzantine agreementprotocol in order to setup a public-key infrastructure for authenticated Byzantine agreement. Theytherefore incur the cost of setting up this infrastructure along with a cost of t + 1 rounds forsimulating every broadcast in the original protocol. Our protocols are therefore signi�cantly moreround e�cient.5 Finally we note that we can use the weak Byzantine Agreement protocol of [40]to transform any generic r-round protocol for secure computation with abort into an (r+t)-roundprotocol with unanimous abort (and the same level of fairness). This is achieved by having theparties broadcast whether they received outputs or not after the protocol with abort concludes.It is enough to use weak Byzantine agreement for this broadcast. We therefore reduce the O(tr)round complexity of [40] to O(r+t), while achieving the same level of security.Recall that Canetti in [14] introduced a communication model where the adversary has controlover the delivery of messages. Essentially, this de�nition also decouples secure computation fromagreement because parties are never guaranteed to get output. In particular, the adversary isallowed to deliver output to whomever it wishes, and only these parties will ever receive output.However, the motivation of [14] is di�erent; it aims to decouple the issue of guaranteed outputdelivery from the main issues of secure computation. On the other hand, we focus on the questionof agreement by the parties on whether or not output was delivered.3.2 De�nitions { Secure ComputationIn this section we present de�nitions for secure multi-party computation. The basic descriptionand de�nitions are based on [44], which in turn follows [53, 4, 69, 13]. We actually consider anumber of de�nitions here. In particular, we present formal de�nitions for secure computationwith unanimous abort and with abort, with complete fairness, partial fairness, and no fairness. Inaddition, we refer to secure computation without abort. This is the standard de�nition used whenmore than half the parties are honest. According to this de�nition, all parties receive the outputand the adversary cannot disrupt the computation. However, we will not formally present thisde�nition here.Notation: We denote by Uk the uniform distribution over f0; 1gk ; for a set S we denote s 2R Swhen s is chosen uniformly from S; �nally, computational indistinguishability is denoted by c� andstatistical closeness by s�. The security parameter is denoted by k.5We note one subtle, yet important caveat. Given a generic protocol for secure computation that uses a broadcastchannel and runs for r rounds, we obtain an O(r)-round protocol that is secure with abort and partially fair (thisis in contrast to the O(tr) round complexity of [39, 40]). However, given a protocol that solves a speci�c securecomputation problem, our transformation does not achieve partial fairness. In order to achieve partial fairness, wemust revert to a generic protocol. On the other hand, the transformation of [39, 40] works for any protocol. Thus,given a very e�cient protocol for a speci�c problem that achieves partial fairness, it may be \cheaper" to use [39, 40]rather than our results.

30 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTMulti-party computation. A multi-party protocol problem (for n parties P1; : : : ; Pn) is cast byspecifying a random process that maps vectors of inputs to vectors of outputs (one for each party).We refer to such a process as an n-ary functionality and denote it f : (f0; 1g�)n ! (f0; 1g�)n, wheref = (f1; : : : ; fn). That is, for a vector of inputs x = (x1; : : : ; xn), the output-vector is a randomvariable (f1(x); : : : ; fn(x)) ranging over vectors of strings. The output for the ith party (with inputxi) is de�ned to be fi(x).Adversarial behavior. Loosely speaking, the aim of a secure multi-party protocol is to protectthe honest parties against dishonest behavior from the corrupted parties. This \dishonest behavior"can manifest itself in a number of ways; in this paper we focus on malicious adversaries. Suchan adversary may arbitrarily deviate from the speci�ed protocol. When considering maliciousadversaries, there are certain undesirable actions that cannot be prevented. Speci�cally, partiesmay refuse to participate in the protocol, may substitute their local input (and enter with a di�erentinput) and may cease participating in the protocol before it terminates.Formally, the adversary is modeled by a non-uniform Turing machine: in the computationalmodel this machine is polynomial-time whereas in the information-theoretic model it is unbounded.(We note that by standard arguments, we can assume that the adversary is deterministic.) Forsimplicity, in this work we consider a static corruption model. Therefore, at the beginning of theexecution, the adversary is given a set I of corrupted parties which it controls. Then, throughoutthe computation, the adversary obtains the views of the corrupted parties, and provides them withthe messages that they are to send.Security of protocols (informal). The security of a protocol is analyzed by comparing what anadversary can do in the protocol to what it can do in an ideal scenario that is secure by de�nition.This is formalized by considering an ideal computation involving an incorruptible trusted party towhom the parties send their inputs. The trusted party computes the functionality on the inputs andreturns to each party its respective output. Loosely speaking, a protocol is secure if any adversaryinteracting in the real protocol (where no trusted party exists) can do no more harm than if itwas involved in the above-described ideal computation. We begin by formally de�ning this idealcomputation.3.2.1 Execution in the ideal modelThe ideal model di�ers for each of the de�nitions. We therefore present each one separately (seeSection 3.1.2 for an outline of the di�erent de�nitions).1. Secure computation with unanimous abort and complete fairness: This de�nitionrequires complete fairness. That is, either all parties (including the corrupted parties) receive outputor all parties abort. Therefore, the abort is also unanimous. We note that this de�nition is onlyachievable when the number of corrupted parties is less than n=2 (i.e., jIj < n=2), even assuminga broadcast channel. Recall that a malicious party can always substitute its input or refuse toparticipate. Therefore, the ideal model takes these inherent adversarial behaviors into account; i.e.,by giving the adversary the ability to do this also in the ideal model. An ideal execution proceedsas follows:Inputs: Each party obtains its respective input from the input vector x = (x1; : : : ; xn).

3.2. DEFINITIONS { SECURE COMPUTATION 31Send inputs to trusted party: An honest party always sends its input x to the trusted party. Thecorrupted parties may, depending on their inputs fxigi2I , either abort or send modi�ed valuesx0i 2 f0; 1gjxij to the trusted party. Denote the sequence of inputs obtained by the trustedparty by x0 = (x01; : : : ; x0n) (for honest parties, x0 = x always).Trusted party answers the parties: In case x0 is a valid input sequence, the trusted party computesf(x0) and sends fi(x0) to party Pi for every i. Otherwise (i.e., in case a corrupted partyaborted or sent a non-valid input), the trusted party replies to all parties with a special abortsymbol ?.Outputs: An honest party always outputs the message that it received from the trusted party,whereas the corrupted parties output nothing (say, �). On the other hand, the adversaryoutputs an arbitrary function of the initial inputs fxigi2I and the messages the corruptedparties received from the trusted party.De�nition 3.2.1 (ideal-model computation with unanimous abort and complete fairness): Letf : (f0; 1g�)n ! (f0; 1g�)n be an n-ary functionality, where f = (f1; : : : ; fn), and let I � [n] besuch that for every i 2 I, the adversary A controls Pi (this is the set of corrupted parties). Then,the joint execution of f under (A; I) in the ideal model on input vector x = (x1; : : : ; xn), denotedideal(1)f;(A;I)(x), is de�ned as the output vector of P1; : : : ; Pn and A resulting from the above describedideal process.2. Secure computation with unanimous abort and partial fairness: As before, a maliciousparty can always substitute its input or refuse to participate. However, when there are a half orless honest parties, it is not possible to continue computing in the case that the adversary ceasesprematurely (this de�nition is usually used when the number of corrupted parties is not limited inany way). Thus, we cannot prevent the \early abort" phenomenon in which the adversary receivesits output, whereas the honest parties do not receive theirs. Nevertheless, party P1 is speci�edso that if it is honest, then complete fairness is achieved. In contrast, if it corrupted, then theadversary receives the corrupted parties' outputs �rst and then can decide whether or not thehonest parties receive output or abort. We note that the abort is unanimous and thus if one honestparty aborts, then so do all honest parties. An ideal execution proceeds as follows:Inputs: Each party obtains its respective input from the input vector x = (x1; : : : ; xn).Send inputs to trusted party: An honest party always sends its input x to the trusted party. Thecorrupted parties may, depending on their inputs fxigi2I , either abort or send modi�ed valuesx0i 2 f0; 1gjxij to the trusted party. Denote the sequence of inputs obtained by the trustedparty by x0 = (x01; : : : ; x0n) (for honest parties, x0 = x always).Trusted party answers �rst party: In case x0 is a valid input sequence, the trusted party computesf(x0) and sends f1(x0) to party P1. Otherwise (i.e., in case a corrupted party aborted or senta non-valid input), the trusted party replies to all parties with a special symbol, ?.Trusted party answers remaining parties: If the �rst party is not corrupted (i.e., 1 62 I), then thetrusted party sends fj(x0) to party Pj , for every j.In case the �rst party is corrupted, then for every i 2 I, the trusted party sends fi(x) toparty Pi (i.e., the corrupted parties receive their outputs �rst). Then P1, depending on the

32 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTviews of all the corrupted parties and controlled by the adversary, instructs the trusted partyto either send fj(x0) to Pj for every j 62 I, or to send ? to Pj for every j 62 I.6Outputs: An honest party always outputs the message that it received from the trusted party,whereas the corrupted parties output nothing (say, �). On the other hand, the adversaryoutputs an arbitrary function of the initial inputs fxigi2I and the messages the corruptedparties received from the trusted party.De�nition 3.2.2 (ideal-model computation with unanimous abort and partial fairness): Let f :(f0; 1g�)n ! (f0; 1g�)n be an n-ary functionality, where f = (f1; : : : ; fn), and let I � [n] be suchthat for every i 2 I, the adversary A controls Pi (this is the set of corrupted parties). Then,the joint execution of f under (A; I) in the ideal model on input vector x = (x1; : : : ; xn), denotedideal(2)f;(A;I)(x), is de�ned as the output vector of P1; : : : ; Pn and A resulting from the above describedideal process.3. Secure computation with unanimous abort and no fairness: This de�nition is verysimilar to the previous one, except that there is no speci�ed party. Rather, the adversary �rstreceives the output of the corrupted parties. Then, it decides whether all the honest parties receiveoutput or they all abort. Formally,Inputs: Each party obtains its respective input from the input vector x = (x1; : : : ; xn).Send inputs to trusted party: An honest party always sends its input x to the trusted party. Thecorrupted parties may, depending on their inputs fxigi2I , either abort or send modi�ed valuesx0i 2 f0; 1gjxij to the trusted party. Denote the sequence of inputs obtained by the trustedparty by x0 = (x01; : : : ; x0n) (for honest parties, x0 = x always).Trusted party answers adversary: In case x0 is a valid input sequence, the trusted party computesf(x0) and sends fi(x0) to party Pi for every i 2 I. Otherwise (i.e., in case a corrupted partyaborted or sent a non-valid input), the trusted party replies to all parties with a specialsymbol, ?.Trusted party answers remaining parties: The adversary, depending on the views of all the cor-rupted parties, instructs the trusted party to either send fj(x0) to Pj for every j 62 I, or tosend ? to Pj for every j 62 I.Outputs: An honest party always outputs the message that it received from the trusted party,whereas the corrupted parties output nothing (say, �). On the other hand, the adversaryoutputs an arbitrary function of the initial inputs fxigi2I and the messages the corruptedparties received from the trusted party.De�nition 3.2.3 (ideal-model computation with unanimous abort and no fairness): Let f : (f0; 1g�)n !(f0; 1g�)n be an n-ary functionality, where f = (f1; : : : ; fn), and let I � [n] be such that for everyi 2 I, the adversary A controls Pi (this is the set of corrupted parties). Then, the joint executionof f under (A; I) in the ideal model on input vector x = (x1; : : : ; xn), denoted ideal(3)f;(A;I)(x), isde�ned as the output vector of P1; : : : ; Pn and A resulting from the above described ideal process.6An equivalent de�nition to this one says that P1 always instructs the trusted party to send the outputs or ?.However, an honest P1 always instructs the trusted party to provide all parties with outputs. In contrast, a corruptedparty can decide whatever it wishes.

3.2. DEFINITIONS { SECURE COMPUTATION 33The above three de�nitions all relate to the case of secure computation with unanimous abort. Wenow present the analogous de�nitions for the case of secure computation with abort. The onlydi�erence between the de�nitions is regarding the \trusted party answers remaining parties" item.In the above de�nitions all honest parties either receive their output or they receive ?. However,here some of these parties may receive their (correct) output and some may receive ?. We onlypresent de�nitions for partial and no fairness (complete fairness only makes sense if all parties,including the adversary, either receive their outputs or ?).4. Secure computation with abort and partial fairness: As we have mentioned, the onlydi�erence between this de�nition and the analogous de�nition with unanimous abort is that ifparty P1 is corrupted, then it may designate who does and does not receive output. We repeatonly the relevant item:Trusted party answers remaining parties: If the �rst party is not corrupted (i.e., 1 62 I), then thetrusted party sends fj(x0) to party Pj , for every j.In case the �rst party is corrupted, then for every i 2 I, the trusted party sends fi(x0) to Pi(i.e., the corrupted parties receive their output �rst). Then P1, depending on the views of allthe corrupted parties and controlled by the adversary, chooses a subset of the honest partiesJ � [n] n I and sends J to the trusted party. The trusted party then sends fj(x0) to Pj forevery j 2 J , and ? to all other honest parties.De�nition 3.2.4 (ideal-model computation with abort and partial fairness): Let f : (f0; 1g�)n !(f0; 1g�)n be an n-ary functionality, where f = (f1; : : : ; fn), and let I � [n] be such that for everyi 2 I, the adversary A controls Pi (this is the set of corrupted parties). Then, the joint executionof f under (A; I) in the ideal model on input vector x = (x1; : : : ; xn), denoted ideal(4)f;(A;I)(x), isde�ned as the output vector of P1; : : : ; Pn and A resulting from the above described ideal process.5. Secure computation with abort and no fairness: This de�nition is very similar to theprevious one, except that the �rst party P1 does not receive its output �rst. Rather, the adversaryalways receives the output of the corrupted parties �rst. Then, it designates which honest partiesreceive their output and which receive ?. We repeat only the relevant item:Trusted party answers remaining parties: The adversary, depending on the views of all the cor-rupted parties, chooses a subset of the honest parties J � [n] n I and sends J to the trustedparty. The trusted party then sends fj(x0) to Pj for every j 2 J , and ? to all other honestparties.De�nition 3.2.5 (ideal-model computation with abort and no fairness): Let f : (f0; 1g�)n !(f0; 1g�)n be an n-ary functionality, where f = (f1; : : : ; fn), and let I � [n] be such that for everyi 2 I, the adversary A controls Pi (this is the set of corrupted parties). Then, the joint executionof f under (A; I) in the ideal model on input vector x = (x1; : : : ; xn), denoted ideal(5)f;(A;I)(x), isde�ned as the output vector of P1; : : : ; Pn and A resulting from the above described ideal process.3.2.2 Execution in the real modelWe now de�ne a real model execution. In the real model, the parties execute the protocol in asynchronous network with rushing. That is, the execution proceeds in rounds: each round consistsof a send phase (where parties send their message from this round) followed by a receive phase

34 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENT(where they receive messages from other parties). We stress that the messages sent by an honestparty in a given round depend on the messages that it received in previous rounds only. On theother hand, the adversary can compute its messages in a given round based on the messages thatit receives from the honest parties in the same round. The term rushing refers to this additionaladversarial capability.In this work, we consider a scenario where the parties are connected via a fully connectedpoint-to-point network (and there is no broadcast channel). We refer to this model as the point-to-point model (in contrast to the broadcast model where the parties are given access to a physicalbroadcast channel in addition to the point-to-point network). The communication lines betweenparties are assumed to be ideally authenticated and private (and thus the adversary cannot modifyor read messages sent between two honest parties).7 We assume that any message sent by an honestparty to another honest party is received immediately. Finally, we note that we do not assume apreprocessing setup phase.Throughout the execution, the honest parties all follow the instructions of the prescribed pro-tocol, whereas the corrupted parties receive their (arbitrary) instructions from the adversary. Like-wise, at the conclusion of the execution, the honest parties output their prescribed output from theprotocol, whereas the corrupted parties output nothing. On the other hand, the adversary outputsan arbitrary function of its view of the computation (which contains the views of all the corruptedparties). Without loss of generality, we assume that the adversary always outputs its view (andnot some function of it). Formally,De�nition 3.2.6 (real-model execution): Let f be an n-ary functionality and let � be a multi-party protocol for computing f . Furthermore, let I � [n] be such that for every i 2 I, the adversaryA controls Pi (this is the set of corrupted parties). Then, the joint execution of � under (A; I) inthe real model on input vector x = (x1; : : : ; xn), denoted real�;(A;I)(x), is de�ned as the outputvector of P1; : : : ; Pn and A resulting from the protocol interaction, where for every i 2 I, partyPi computes its messages according to A, and for every j 62 I, party Pj computes its messagesaccording to �.3.2.3 Security as emulation of a real execution in the ideal modelHaving de�ned the ideal and real models, we can now de�ne security of protocols. Loosely speaking,the de�nition asserts that the adversary can do no more harm in a real protocol execution that inthe ideal model (where security trivially holds). This is formulated by saying that adversaries inthe ideal model are able to simulate adversaries in an execution of a secure real-model protocol.The de�nition of security comes in two avors. In the �rst, we consider polynomial-time boundedadversaries, and require that the simulation be such that the real-model and ideal-model output7We note that when the parties are assumed to be computationally bounded, privacy can be achieved overauthenticated channels by using public-key encryption. Therefore, in such a setting, the requirement that the channelsbe private is not essential. However, we include it for simplicity.One can argue that achieving authenticated and private channels in practice essentially requires a trusted pre-processing phase for setting up a public-key infrastructure. Therefore, there is no reason not to utilize this prepro-cessing phase in the secure multi-party computation as well. In such a case, the preprocessing phase could be usedin order to implement authenticated Byzantine Agreement (and thereby achieve secure broadcast for any numberof corrupted parties). However, we claim that the issue of achieving \secure communication channels" should beseparated from the issue of achieving \secure broadcast". An example of why this is important was demonstrated inChapter 2 where we showed that authenticated Byzantine Agreement does not compose (in parallel or concurrently)when 2/3 or less of the parties are honest. On the other hand, secure channels can be achieved without any limitationon the protocol using them [18]; in particular, without restrictions on composability and the number of faults.

3.3. BROADCAST WITH ABORT 35distributions are computationally indistinguishable. On the other hand, in the second, we considerunbounded adversaries and require that the simulation be such that the output distributions of thetwo models are statistically close.De�nition 3.2.7 (computational security): Let f and � be as above. We say that protocol �is a protocol for computational t-secure computation with unanimous abort (resp., with abort) andwith complete fairness (resp., with partial fairness or with no fairness), if for every non-uniformpolynomial-time adversary A for the real model, there exists a non-uniform polynomial-time adver-sary S for the ideal model, such that for every I � [n] with jIj < t,fideal(�)f;(S;I)(x)gk2N;x2(f0;1gk)n c� freal�;(A;I)(x)gk2N;x2(f0;1gk)nwhere the value of � 2 f1; 2; 3; 4; 5g depends on whether secure computation with unanimous abortor with abort is being considered, and whether complete fairness, partial fairness or no fairness isrequired.De�nition 3.2.8 (information-theoretic security): Let f and � be as above. We say that protocol� is a protocol for information-theoretic t-secure computation with unanimous abort (resp., with abort)and with complete fairness (resp., with partial fairness or with no fairness), if for every non-uniformadversary A for the real model, there exists a non-uniform adversary S for the ideal model suchthat for every I � [n] with jIj < t,fideal(�)f;(S;I)(x)gk2N;x2(f0;1gk)n s� freal�;(A;I)(x)gk2N;x2(f0;1gk)nwhere the value of � 2 f1; 2; 3; 4; 5g depends on whether secure computation with unanimous abortor with abort is being considered, and whether complete fairness, partial fairness or no fairness isrequired.3.3 Broadcast with AbortIn this section, we present a weak variant of the Byzantine Generals problem, that we call \broadcastwith abort". The main idea is to weaken both the agreement and validity requirements so that someparties may output the broadcast value x while others output ?. Formally,De�nition 3.3.1 (broadcast with abort): Let P1; : : : ; Pn, be n parties and let P1 be the dealerwith input x. In addition, let A be an adversary who controls up to t of the parties (which mayinclude P1). A protocol solves the broadcast with abort problem, tolerating t corruptions, if for anyadversary A the following three properties hold:1. Agreement: If an honest party outputs x0, then all honest parties output either x0 or ?.2. Validity: If P1 is honest, then all honest parties output either x or ?.3. Non-triviality: If all parties are honest, then all parties output x.(The non-triviality requirement is needed to rule out a protocol in which all parties simply output ?and halt.) We now present a simple protocol that solves the broadcast with abort problem for anyt. As we will see later, despite its simplicity, this protocol su�ces for obtaining secure computationwith abort. The protocol appears in Figure 3.1.

36 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTProtocol BWA� Input: P1 has a value x to broadcast.� The Protocol:1. P1 sends x to all parties.2. Denote by xi the value received by Pi from P1 in the previous round. Then, every partyPi (for i > 1) sends its value xi to all other parties.3. Denote the value received by Pi from Pj in the previous round by xij (recall that xi denotesthe value Pi received from P1 in the �rst round). Then, Pi outputs xi if this is the onlyvalue that it saw (i.e., if xi = xi2 = � � � = xin). Otherwise, it outputs ?.We note that if Pi did not receive any value in the �rst round, then it always outputs ?.Figure 3.1: The broadcast with abort protocolProposition 3.3.2 Protocol BWA of Figure 3:1 solves the broadcast with abort problem, and tol-erates any t < n corruptions.Proof: The fact that the non-triviality condition is ful�lled is immediate. We now prove the othertwo conditions:1. Agreement: Let Pi be an honest party, such that Pi outputs a value x0. Then, it must bethat Pi received x0 from P1 in the �rst round (i.e., xi = x0). Therefore, Pi sent this value toall other parties in the second round. Now, a party Pj will output xj if this is the only valuethat it saw during the execution. However, as we have just seen, Pj de�nitely saw x0 in thesecond round. Thus, Pj will only output xj if xj = x0. On the other hand, if Pj does notoutput xj , then it outputs ?.2. Validity: If P1 is honest, then all parties receive x in the �rst round. Therefore, they willonly output x or ?.This completes the proof.3.3.1 Strengthening Broadcast with AbortA natural question to ask is whether or not we can strengthen De�nition 3.3.1 in one of the followingtwo ways (and still obtain a protocol for t � n=3):1. Strengthen the agreement requirement: If an honest party outputs a value x0, then all honestparties output x0. (On the other hand, the validity requirement remains unchanged.)2. Strengthen the validity requirement: If P1 is honest, then all honest parties output x. (On theother hand, the agreement requirement remains unchanged.)It is easy to see that the above strengthening of the agreement requirement results in the de�nitionof weak Byzantine Generals. (The validity and non-triviality requirements combined together areequivalent to the validity requirement of weak Byzantine Generals.) Therefore, there exists nodeterministic protocol for the case of t � n=3. For what can be done if one utilizes probabilistic

3.4. SECURE COMPUTATION WITH ABORT AND NO FAIRNESS 37protocols, see the section on recent related work (Section 3.1.3). Regarding the strengthening of thevalidity requirement, the resulting de�nition implies a problem known as \Crusader Agreement".This was shown to be unachievable for any t � n=3 by Dolev in [31]. We therefore conclude thatthe \broadcast with abort" requirements cannot be strengthened in either of the above two ways(for deterministic protocols), without incurring a t < n=3 lower bound.3.4 Secure Computation with Abort and No FairnessIn this section, we show that any protocol for secure computation (with unanimous abort and anylevel of fairness) that uses a broadcast channel can be \compiled" into a protocol for the point-to-point network that achieves secure computation with abort and no fairness. Furthermore, thefault tolerance of the compiled protocol is the same as the original one. Actually, we assume thatthe protocol is such that all parties terminate in the same round. We say that such a protocol hassimultaneous termination. Without loss of generality, we also assume that all parties generate theiroutput in the last round. The result of this section is formally stated in the following theorem:Theorem 3.4.1 (Theorem 3.1.1 { restated): There exists a (polynomial-time) protocol compilerthat takes any protocol � (with simultaneous termination) for the broadcast model, and outputsa protocol �0 for the point-to-point model such that the following holds: If � is a protocol forinformation-theoretic (resp., computational) t-secure computation with unanimous abort and anylevel of fairness, then �0 is a protocol for information-theoretic (resp., computational) t-securecomputation with abort and no fairness.Combining Theorem 3.4.1 with known protocols (speci�cally, [76] and [52]8), we obtain the followingcorollaries:Corollary 3.4.2 (information-theoretic security { compilation of [76]): For any probabilistic polynomial-time n-ary functionality f , there exists a protocol in the point-to-point model, for the information-theoretic n=2-secure computation of f with abort and no fairness.We note that this result is optimal in the following sense. Ben-Or et al. [10] showed that there arefunctions for which there do not exist information-theoretically private protocols when t � n=2.The de�nition of a \private" (rather than \secure") protocol, is regarding the behavior of corruptedparties. In a private protocol, corrupted parties follow the protocol speci�cation, but attempt tolearn more information than intended (such adversarial behavior is known as passive or semi-honest). Therefore, security with abort implies privacy, and this means that for information-theoretic security, resilience of t � n=2 is not possible. On the other hand, the result is notoptimal regarding fairness. (In particular, the recent [39] achieve an analogous result with completefairness.)Corollary 3.4.3 (computational security { compilation of [52]): For any probabilistic polynomial-time n-ary functionality f , there exists a protocol in the point-to-point model, for the computationalt-secure computation of f with abort and no fairness, for any t.We now proceed to prove Theorem 3.4.1.8Both the [76] and [52] protocols have simultaneous termination

38 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTProof of Theorem 3.4.1: Intuitively, we construct a protocol for the point-to-point model froma protocol for the broadcast model, by having the parties in the point-to-point network simulatethe broadcast channel. When considering \pure" broadcast (i.e., Byzantine Generals), this is notpossible for t � n=3. However, it su�ces to simulate the broadcast channel using a protocol for\broadcast with abort". Recall that in such a protocol, either the correct value is delivered to allparties, or some parties output ?. The idea is to halt the computation in the case that any honestparty receives ? from a broadcast execution. The point at which the computation halts dictateswhich parties (if any) receive output. The key point is that if no honest party receives ?, thenthe broadcast with abort protocol perfectly simulates a broadcast channel. Therefore, the result isthat the original protocol (for the broadcast channel) is simulated perfectly until the point that itmay prematurely halt.Components of the compiler:1. Broadcast with abort executions: Each broadcast of the original protocol (using the assumedbroadcast channel) is replaced with an execution of the broadcast with abort protocol.2. Blank rounds: Following each broadcast with abort execution, a blank round is added inwhich no protocol messages are sent. Rather, these blank rounds are used by parties to notifyeach other that they have received ?. Speci�cally, if a party receives ? in a broadcast withabort execution, then it sends ? to all parties in the blank round that immediately follows.Likewise, if a party receives ? in a blank round, then it sends ? to all parties in the nextblank round (it also does not participate in the next broadcast).Thus each round of the original protocol is transformed into 3 rounds in the compiled protocol(2 rounds for broadcast with abort and an additional blank round). We now proceed to formallyde�ne the protocol compiler:Construction 1 (protocol compiler): Given a protocol �, the compiler produces a protocol �0.The speci�cation of protocol �0 is as follows:� The parties use broadcast with abort in order to emulate each broadcast message of protocol �.Each round of � is expanded into 3 rounds in �0: broadcast with abort is run in the �rst 2rounds, and the third round is a blank round. Point-to-point messages of � are sent unmodi�edin �0. The parties emulate � according to the following instructions:1. Broadcasting messages: Let Pi be a party who is supposed to broadcast a message m in thejth round of �. Then, in the jth broadcast simulation of �0 (i.e., in rounds 3j and 3j + 1of �0), all parties run an execution of broadcast with abort in which Pi plays the dealerrole and sends m.2. Sending point-to-point messages: Any message that Pi is supposed to send to Pj over thepoint-to-point network in the jth round of � is sent by Pi to Pj over the point-to-pointnetwork in round 3j of �0.3. Receiving messages: For each message that party Pi is supposed to receive from a broadcastin �, party Pi participates in an execution of broadcast with abort as a receiver. If itsoutput from this execution is a message m, then it appends m to its view (to be used fordetermining its later steps according to �).If it receives ? from this execution, then it sends ? to all parties in the next round (i.e., inthe blank round following the execution of broadcast with abort), and halts immediately.

3.4. SECURE COMPUTATION WITH ABORT AND NO FAIRNESS 394. Blank rounds: If a party Pi receives ? in a blank round, then it sends ? to all parties inthe next blank round and halts. In the 2 rounds preceding the next blank round, Party Pidoes not send any point-to-point messages or messages belonging to a broadcast execution.(We note that if this blank round is the last round of the execution, then Pi simply halts.)5. Output: If a party Pi received ? at any point in the execution (in an execution of broadcastwith abort or in a blank round), then it outputs ?. Otherwise, it outputs the value speci�edby �.In order to prove that �0 is t-secure with abort and no fairness, we �rst de�ne a di�erent trans-formation of � to ~� which is a hybrid protocol between � and �0. In particular, ~� is still run inthe broadcast model. However, it provides the adversary with the additional ability of prematurelyhalting honest parties. We now de�ne the hybrid protocol ~� and show that it is t-secure with abortand no fairness:Lemma 3.4.4 Let � be a protocol in the broadcast model that is computational (resp., information-theoretic) t-secure with unanimous abort and any level of fairness. Then, de�ne protocol ~� (alsofor the broadcast model) as follows:1. Following each round of �, add a blank round.2. If in a blank round, Pi receives a ? message, then Pi sends ? to Pj for all j 6= i in the nextblank round and halts. Pi also does not broadcast any message or send any point-to-pointmessages in the next round of � (before the blank round where it sends all the ? messages).3. Apart from the above, the parties follow the instructions of �.4. Output: If a party Pi received ? in any blank round, then it outputs ?. Otherwise, it outputsthe value speci�ed by �.Then, ~� is computational (resp., information-theoretic) t-secure with abort and no fairness.Proof: We prove this theorem for the case that � is computationally t-secure with unanimous abortand partial fairness. The other cases (information theoretic security and security with completefairness or no fairness) are proved in a similar way. Let ~A be a real-model adversary attacking~�. Our aim is to construct an ideal-model simulator ~S for ~A. In order to do this, we must usethe fact that for any adversary A attacking protocol �, there exists an ideal-model simulator S.Unfortunately we cannot apply S to ~A because S is a simulator for protocol � and ~A participatesin protocol ~�. We therefore �rst construct an adversary A that attacks � from the adversary ~Athat attacks ~�. The construction of A is such that the output distribution of an execution of �with A is very similar to the output distribution of an execution of ~� with ~A. Having constructedA, it is then possible to apply the simulator S that we know is guaranteed to exist. We thereforeobtain a simulator ~S for ~A by �rst \transforming" ~A into A and then applying S. As we will show,the resulting simulator ~S is as required for ~�. Details follow.As we have mentioned, we �rst de�ne the adversary A who attacks �. Adversary A internallyinvokes ~A and therefore has internal communication with ~A and external communication with thehonest parties executing �.

40 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTAdversary A for �:� Input: A receives an input sequence fxigi2I and a series of random-tapes frigi2I . (Recall that~A controls all parties in the set I. Thus, corrupted party Pi's input and random-tape equal xiand ri, respectively.)� Execution:1. Invoke ~A: A begins by invoking ~A upon input sequence fxigi2I and random-tapes frigi2I .2. Emulation before ~A sends any ? messages: A internally passes to ~A all the messagesthat it externally receives from the honest parties (through broadcast or point-to-pointcommunication). Likewise, A externally broadcasts in � any message that ~A broadcastsin ~�, and A externally sends Pj in � any message that ~A sends Pj in ~�.3. Emulation after ~A sends a ? message: Once ~A sends a ? message in an execution of ~�,the honest parties in � and ~� may behave di�erently (in particular, a party receiving ?may continue to send messages in �, whereas it would halt in ~�). Therefore, A �ltersmessages sent by honest parties in � so that ~A's view equals what it would in an executionof ~�. That is:In the round of � following the �rst ? message sent by ~A, adversary A forwards to ~A onlythe point-to-point and broadcast messages sent by a party Pj who did not receive ? from ~Ain the previous (simulated) blank round of ~�. Furthermore, A simulates for ~A the sendingof all the ? messages that would be sent in the next blank round of ~� (if one exists), andhalts.4. Output: A outputs whatever ~A does.Before proceeding, we show that the only di�erence between an execution of � with A, and ~�with ~A, is that some additional honest parties may output ? in the execution of ~�. That is, weclaim that the joint distribution of the outputs of all parties not outputting ? and the adversary,is identical in � and ~�. We begin with some notation:� Let real�;(A;I)(x; r) be the global output of an execution of � with adversary A, inputsx, and random-tapes r (i.e., r = (r1; : : : ; rn) where Pi receives random-tape ri). (Thus,real�;(A;I)(x) = freal�;(A;I)(x;Ujrj)g.)� For any subset J � [n], denote by real�;(A;I)(x; r) jJ , the restriction of real�;(A;I)(x; r) tothe outputs of A and all parties Pj for j 2 J . We stress that A's output is included in thisrestriction.� In any execution of ~�, it is possible to divide the parties into those who output ? and thosewho do not output ?. We note that the set of parties outputting ? is chosen by the adversary~A and is dependent on the parties' inputs x and random-tapes r. We denote by J = J ~A(x; r)the set of parties who do not output ? in an execution of ~� with adversary ~A (and where theinputs and random-tapes are x and r). (Notice that J ~A is a �xed function depending only onx and r.) We also denote by J ~A(x) a random variable taking values over J ~A(x; r) for uniformlydistributed r.We now consider the joint distribution of the outputs of the adversary and the parties in J ~A(x; r)(i.e., those not outputting ?). We claim that these distributions are identical in � with A and in~� with ~A. Using the above notation, we claim that for every adversary ~A and set of corruptedparties I, and for all input and random-tape sequences x and r,real�;(A;I)(x; r)jJ ~A(x;r)= real~�;(~A;I)(x; r)jJ ~A(x;r) (3.1)

3.4. SECURE COMPUTATION WITH ABORT AND NO FAIRNESS 41where A is as de�ned above. We now prove Eq. (3.1). First, it is clear that ~A's view in a realexecution of ~� is identical to its view in the simulation by A. Therefore, A's output in � equals ~A'soutput in ~�. Next, notice that if there exists an honest party that does not output ? in ~�, thenit must be that ? messages were sent in the last blank round only. However, this means that anyhonest party not receiving such a message has an identical view in � and ~�. Therefore, the outputsof all such parties are identical in � and ~�. Eq. (3.1) follows. We stress that the parties whooutput ? in ~A may have very di�erent outputs in A (and in particular may output their prescribedoutputs). Nevertheless, at this stage we are only interested in those parties not outputting ?.We now proceed to construct a simulator ~S for ~A. Intuitively, ~S works by using the simulatorS for A, where A is derived from ~A as above. Recall that A is an adversary for the secure protocol�, and thus a simulator S is guaranteed to exist for A.Simulator ~S: First consider an adversary A for � constructed from the adversary ~A as describedabove. By the security requirements of �, for every adversary A there exists an ideal-modelsimulator S for A. Simulator ~S for ~A works by emulating an ideal execution for S. Recall that ~Sworks in an ideal model for secure computation with abort and no fairness, whereas S works in anideal model for secure computation with unanimous abort and partial fairness. Further recall thatwhere partial fairness holds, there are two cases depending on whether or not P1 is corrupted. IfP1 is not corrupted, then essentially all parties receive output at the same time. If P1 is corrupted,then the adversary receives the corrupted parties' outputs �rst and then decides whether the honestparties all receive output or all abort.We now describe the simulator: ~S receives input series fxigi2I and internally invokes S uponthe same inputs fxigi2I . Then, ~S works as an intermediary between S and the trusted party. Thatis, ~S obtains the input values fx0igi2I sent by S and externally sends these same values to thetrusted party. Once ~S forwards these inputs to the trusted party, it receives back all the corruptedparties' outputs (recall that ~S interacts in an ideal model with no fairness). ~S then forwards theseoutputs to S. We distinguish two cases:1. P1 is not corrupted: in this case, S concludes at this point, outputting some value.2. P1 is corrupted: in this case, S �rst instructs the trusted party to either send all the honestparties their outputs or send them all ?. S then concludes, outputting some value.~S ignores the instruction sent to the trusted party in the second case, and sets its output to bewhatever S output.It remains to de�ne the set J that ~S sends to the trusted party in the \trusted party answersremaining parties" stage of its ideal execution (recall that all honest parties in J receive theiroutput and all others receive ?). First notice that the string output by S is computationallyindistinguishable to A's output from a real execution. However, by the de�nition of A, this outputcontains ~A's view of an execution of ~�. Furthermore, ~A's view fully de�nes which honest partiesin an execution of ~� output ? and which receive their output. In particular, if ~A sent a ? messagebefore the last blank round, then all honest parties abort (and J = �). Otherwise, all parties receiveoutput except for those receiving ? messages in the last blank round. Therefore, ~S examines thisview and de�nes the set J accordingly. Once J is de�ned, ~S sends it to the trusted party and halts.This completes the description of ~S.We now wish to show that the output of an ideal execution with abort and no fairness with adversary~S is computationally indistinguishable to the output of a real execution of ~� with ~A. We begin byshowing an analog to Eq. (3.1) in the ideal model. That is, we show that the outputs of parties

42 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTnot outputting ? in an execution of ~� are the same in an ideal execution (by Def. 2) with S andin an ideal execution (by Def. 5) with ~S. Formally, we claim the following: For every set I, everyset of inputs x and every random-tape r (for S or ~S),ideal(5)f;(~S;I)(x; r)jJ ~S(x;r)= ideal(2)f;(S;I)(x; r)jJ ~S(x;r) (3.2)where S and ~S are invoked with random-tape r, and where J ~S(x; r) equals the set of parties inthe ideal execution with ~S who do not output ?. (I.e., J ~S(x; r) equals the set J sent by ~S tothe trusted party when the input vector equals x and its random-tape equals r.) In order to seethat Eq. (3.2) holds, notice the following. First, ~S (upon input fxigi2I and random-tape r) sendsexactly the same inputs to the trusted party as S does (upon input fxigi2I and random-tape r).Now, the outputs of all honest parties not outputting ? are �xed by x and the inputs sent to thetrusted party by the simulators S or ~S. Therefore, if S and ~S send the same inputs, it follows thatall parties not outputting ? have exactly the same output. In addition, ~S outputs exactly the samestring that S outputs. Eq. (3.2) therefore follows.By assumption, � is computationally t-secure with unanimous abort and partial fairness. Ittherefore holds that for every set I � [n] such that jIj < t, and for every set J � [n]nideal(2)f;(S;I)(x)jJo c� nreal�;(A;I)(x)jJoNext, notice that the sets J ~S and J ~A are fully de�ned given ~A and ~S's outputs respectively. (Recallthat J ~S equals the set of parties not outputting ? in an ideal execution with ~S, and J ~A equals theset of parties not outputting ? in a real execution of ~� with ~A.) Furthermore, by the de�nitionsof A and S, it follows that their outputs also fully de�ne J ~S and J ~A. Therefore, J ~S (resp., J ~A) ispart of the global output of ideal (resp., real). This implies that,nideal(2)f;(S;I)(x)jJ ~S(x)o c� nreal�;(A;I)(x)jJ ~A(x)o (3.3)(Otherwise, we could distinguish ideal(2)f;(S;I)(x) from real�;(A;I)(x) by comparing the restrictionto J ~S or to J ~A, respectively.) Combining Eq. (3.3) with Equations (3.1) and (3.2), we have thatnideal(5)f;(~S;I)(x)jJ ~S(x)o c� nreal~�;(~A;I)(x)jJ ~A(x)oIt remains to show that the entire output distributions (including the honest parties not in J) arecomputationally indistinguishable. However, this is immediate, because for every party Pi for whichi 62 J , it holds that Pi outputs ? (this is true for both the real and ideal executions). Therefore,nideal(5)f;(~S;I)(x)o c� nreal~�;(~A;I)(x)ocompleting the proof of Lemma 3.4.4.Recall that our aim is to show the security of the compiled protocol �0 (and not ~�). However,intuitively, there is no di�erence between ~� and �0. The reason is as follows: in ~�, the adversarycan instruct any honest party Pi to halt by sending it ? in a blank round. On the other hand,in �0, the same e�ect can be achieved by having the \broadcast with abort" terminate with Pireceiving ?. Therefore, whatever an adversary attacking �0 can achieve, an adversary attacking ~�can also achieve. Formally:

3.4. SECURE COMPUTATION WITH ABORT AND NO FAIRNESS 43Lemma 3.4.5 Let � be a protocol in the broadcast model that is information-theoretic or computa-tional t-secure with unanimous abort and with any level of fairness, and let ~� be the transformationof � as described in Lemma 3:4:4. Then, for every real-model adversary A0 for �0 of Construction 1,there exists a real-model adversary ~A for ~�, such that for every I � [n] with jIj < t,nreal~�;(~A;I)(x)o � nreal�0;(A0;I)(x)oProof: We begin by describing the adversary ~A. Intuitively, ~A works by simulating the executionsof broadcast with abort for A0. If a party receives ? in �0 (in a broadcast with abort executionor in a blank round), then ~A sends the appropriate ? messages in a blank round of ~�. Thisstrategy works because in �0, there is no di�erence if a party receives ? in a broadcast with abortexecution or in the following blank round. Formally, adversary ~A invokes A0 and in every round ofthe execution of ~� works as follows:1. Receiving messages in rounds r; r + 1: ~A receives the broadcast and point-to-point messagesfrom the honest parties in ~�. For every message broadcast by an honest party, ~A simulatesa \broadcast with abort" execution, playing the honest parties' roles (where A0 plays thecorrupted parties' roles). In addition, ~A forwards any point-to-point messages unchanged toA0.2. Sending messages in round r; r+1: ~A plays the honest parties' roles in \broadcast with abort"executions, in which A0 broadcasts messages to the honest parties. Consider a particularexecution in which a corrupted party P plays the dealer. If all the honest parties receive ?in this execution, then ~A broadcasts nothing in ~�. On the other hand, if at least one honestparty outputs a message m, then ~A broadcasts m. As before, point-to-point messages areforwarded unchanged.3. Blank round following round r+1: Let P denote the set of honest parties receiving ? in anyof the above simulated \broadcast with abort" executions (i.e., for the broadcast of rounds rand r + 1). Then, for every Pi 2 P, adversary ~A sends ? to Pi in this blank round.At the conclusion of the execution, ~A outputs whatever A0 does. This completes the descriptionof ~A. The fact that ~A perfectly simulates an execution of �0 with A0 follows directly from thede�nition of �0. That is, the only di�erence between ~� and �0 is that in �0 the broadcast channelis replaced by broadcast with abort. This means that some parties may receive ? instead of thebroadcasted message. However, in this case, ~A knows exactly who these parties are and can sendthem ? in the following blank round. The key point is that in �0 it makes no di�erence if ? isreceived in a broadcast with abort execution or in the following blank round. We conclude thatthe outputs of all the honest parties and ~A in ~�, are identically distributed to the outputs of thehonest parties and A0 in �0.Concluding the proof of Theorem 3.4.1: LetA0 be an adversary attacking �0. By Lemma 3.4.5,we have that there exists an adversary ~A attacking ~� such that the output distributions of �0 withA0, and ~� with ~A are identical. Then, by Lemma 3.4.4, we have that for real-model adversary ~Afor ~�, there exists an ideal-model simulator ~S such that the output distributions of a real executionwith ~A and an ideal execution (with abort and no fairness) with ~S are computationally indistin-guishable (or statistically close). We conclude that the output distribution of a real execution of �0

44 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTwith adversary A0 is computationally indistinguishable (or statistically close) to an ideal execution(with abort and no fairness) with ~S. That is, �0 is t-secure with abort and no fairness, as required.The complexity of protocol �0: We remark that the transformation of � to �0 preserves theround complexity of �. In particular, the number of rounds in �0 equals exactly 3 times the numberof rounds in �. On the other hand, the bandwidth of �0 is the same as that of � except for the costincurred in simulating the broadcast channel. Notice that in the \broadcast with abort" protocol,if a dealer sends a k-bit message, then the total bandwidth equals n � k. (If the dealer cheats andsends di�erent messages, then the bandwidth is upper-bound by the length of the longest messagetimes n.) Therefore, the number of bits sent in an execution of �0 is only n times that sent in anexecution of �.3.5 Secure Computation with Abort and Partial FairnessIn this section we show that for any functionality f , there exists a protocol for the computationalt-secure computation of f with abort and partial fairness, for any t. (This construction assumes theexistence of trapdoor permutations.) Furthermore, for any functionality f , there exists a protocolfor information-theoretic n=2-secure computation of f with abort and partial fairness (and withoutany complexity assumptions).Outline: We begin by motivating why the strategy used to obtain secure computation with abortand no fairness is not enough here. The problem lies in the fact that due to the use of a \broadcastwith abort" protocol (and not a real broadcast channel), the adversary can disrupt communicationbetween honest parties. That is, of course, unless this communication need not be broadcast. Now,in the de�nition of security with abort and partial fairness, once an honest P1 receives its output,it must be able to give this output to all honest parties. That is, the adversary must not be allowedto disrupt the communication, following the time that an honest P1 receives its output. This meansthat using a \broadcast with abort" protocol in the �nal stage where the remaining parties receivetheir outputs is problematic.We solve this problem here by having the parties compute a di�erent functionality. This func-tionality is such that when P1 gets its output, it can supply all the other parties with their outputdirectly and without broadcast. On the other hand, P1 itself should learn nothing of the otherparties' outputs. As a �rst attempt, consider what happens if instead of computing the originalfunctionality f , the parties �rst compute the following:First attempt:Inputs: x = (x1; : : : ; xn)Outputs:� Party P1 receives its own output f1(x). In addition, for every i > 1, it receivesci = fi(x)� ri for a uniformly distributed ri.� For every i > 1, party Pi receives the string ri.That is, for each i > 1, party Pi receives a random pad ri and P1 receives an encryption of fi(x)with that random pad. Now, assume that the parties use a protocol that is secure with abort and no

3.5. SECURE COMPUTATION WITH ABORT AND PARTIAL FAIRNESS 45fairness in order to compute this new functionality. Then, there are two possible outcomes to sucha protocol execution: either all parties receive their prescribed output, or at least one honest partyreceives ?. In the case that at least one honest party receives ?, this party can notify P1 who canthen immediately halt. The result is that no parties, including the corrupted ones, receive output(if P1 does not send the ci values, then the parties only obtain ri which contains no informationon fi(x)). In contrast, if all parties received their prescribed output, then party P1 can send eachparty Pi its encryption ci, allowing it to reconstruct its output fi(x). The key point is that theadversary is unable to prevent P1 from sending these ci values and no broadcast is needed in thislast step. Of course, if P1 is corrupted, then it will learn all the corrupted parties' outputs �rst.However, under the de�nition of partial fairness, this is allowed.The aw in the above strategy arises in the case that P1 is corrupted. Speci�cally, a corruptedP1 can send the honest parties modi�ed values, causing them to conclude with incorrect outputs.This is in contradiction to what is required of all secure protocols. Therefore, we modify thefunctionality that is computed so that a corrupted P1 is unable to cheat. In particular, the aim isto prevent the adversary from modifying ci = fi(x)� ri without Pi detecting this modi�cation. Ifthe adversary can be restrained in this way, then it can choose not to deliver an output; however,any output delivered is guaranteed to be correct. The above-described aim can be achieved usingstandard (information-theoretic) authentication techniques, based on pairwise independent hashfunctions. That is, let H be a family of pairwise independent hash functions h : f0; 1gk ! f0; 1gk .Then, the functionality that the parties compute is as follows:Functionality F :Inputs: x = (x1; : : : ; xn)Outputs:� Party P1 receives its own output f1(x). In addition, for every i > 1, it receivesci = fi(x)� ri for a uniformly distributed ri, and ai = hi(ci) for hi 2R H.� For every i > 1, party Pi receives the string ri and the description of the hashfunction hi.Notice that as in the �rst attempt, P1 learns nothing of the output of any honest Pi (since fi(x)is encrypted with a random pad). Furthermore, if P1 attempts to modify ci to c0i in any way, thenthe probability that it will generate the correct authentication value a0i = hi(c0i) is at most 2�k (bythe pairwise independent properties of hi). Thus, the only thing a corrupt P1 can do is refuse todeliver the output. The protocol for computing f , as motivated here, appears in Figure 3.2.We now proceed to show that Protocol 3.2 achieves security with abort and partial fairness.Theorem 3.5.1 (Theorem 3.1.2 { restated): For any probabilistic polynomial-time n-ary function-ality f , there exists a protocol in the point-to-point model for the computational t-secure computationof f with abort and partial fairness, for any t. Furthermore, there exists a protocol in the point-to-point model for the information-theoretic n=2-secure computation of f with abort and partialfairness.Proof: The protocol referred to in the theorem statement is that of Protocol 3.2, where thesubprotocol used for Stage 1 is computationally t-secure (for the �rst part of the theorem) or9By Corollaries 3.4.2 and 3.4.3 in Section 3.4, such protocols exist for any t assuming the existence of trapdoorpermutations. Furthermore, for the case of t > n=2, no assumptions are required.

46 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTProtocol 3.2The parties execute the following three steps:1. Stage 1 { computation: The parties use any protocol for secure (computational or information-theoretic) computation with abort and no fairness in order to compute the functionality Fde�ned above.9Thus, P1 receives f1(x) and a pair (ci; ai) for every i > 1, and each Pi (i > 1)receives (ri; hi) such that ci = fi(x)� ri and ai = hi(ci).2. Stage 2 { blank round: After the above protocol concludes, a blank-round is added so that ifany party receives ? for its output from Stage 1, then it sends ? to P1 in this blank round.3. Stage 3 { outputs: If P1 received any ?-messages in the blank round, then it sends ? toall parties and halts outputting ?. Otherwise, for every i, it sends (ci; ai) to Pi and halts,outputting f1(x).Party Pi outputs ? if it received ? from P1 (it ignores any ? it may receive from otherparties). If it received (ci; ai) from P1 (and not ?), then it checks that ai = hi(ci). If yes, itoutputs fi(x) = ci � ri. Otherwise, it outputs ?.Figure 3.2: A protocol for secure computation with abort and partial fairness for any finformation-theoretically n=2-secure (for the second part of the theorem). Intuitively, the securityof Protocol 3.2 is derived from the fact that Stage 1 is run using a protocol that is secure withabort (even though it has no fairness property). Consider the two cases regarding whether or notP1 is corrupted:1. P1 is corrupt: in this case, A receives all the outputs of the corrupted parties �rst. Fur-thermore, A can decide exactly which parties to give output to and which not. However,this is allowed in the setting of secure computation with abort and partial fairness, and so is�ne. We stress that A cannot cause an honest party to output any value apart from ? or itscorrect output. This is because the authentication properties of pairwise independent hashfunctions guarantee that A does not modify ci, and the correctness of the protocol of Stage 1guarantees that ci � ri equals the correct output fi(x).2. P1 is honest: there are two possible cases here; either some honest party received ? in thecomputation of Stage 1 or all honest parties received their correct outputs. If some honestparty received ?, then this party sends ? to P1 in Stage 2 and thus no parties (including thecorrupted parties) receive output. (Similarly, if A sends ? to P1 in Stage 2 then no partiesreceive output.) On the other hand, if all honest parties received their outputs and A doesnot send ? to P1 in Stage 2, then all parties receive outputs and the adversary cannot causeany honest party to abort. We therefore have that in this case complete fairness is achieved,as required.In order to formally prove the security of the protocol, we use the sequential composition theorem ofCanetti [13]. This theorem states that we can consider a hybrid model in which an ideal call is usedfor Stage 1 of the protocol, whereas the other stages are as described above. That is, the partiesall interact with a trusted party for the computation of Stage 1 (where the ideal model for thiscomputation is that of secure computation with abort and no fairness). Then, Stages 2 and 3 takeplace as in a real execution. The result is a protocol that is a hybrid of real and ideal executions. Inorder to prove the security of the (real) protocol, it su�ces to construct an ideal-model simulator

3.5. SECURE COMPUTATION WITH ABORT AND PARTIAL FAIRNESS 47for the hybrid protocol. Thus, the description of the parties and adversary below relate to thishybrid model (the parties send messages to each other, as in a real execution, and to a trustedparty, as in an ideal execution). The proof of [13] is stated for secure computation without abort(and complete fairness); however it holds also for secure computation with abort and no fairness.Let A be an adversary attacking Protocol 3.2 in the above-described hybrid model. Notice thatin the ideal call of Stage 1, A receives all the corrupted parties' outputs �rst and then decides whichhonest parties receive output (this is because there is no fairness in the computation of Stage 1).We now construct an ideal-model adversary S who works in an ideal model with abort and partialfairness. We stress that A works in a hybrid model in which the \ideal model" part has no fairness;whereas, S works in an ideal model with partial fairness. S has external communication with thetrusted party of its ideal model and internal, simulated communication with the adversary A. Inour description of S, we di�erentiate between the cases that P1 is corrupt and P1 is honest:1. P1 is corrupt: S invokes A and receives the inputs that A intends to send to the trusted partyof the hybrid model. Then, S externally sends these inputs unmodi�ed to the trusted partyof its ideal model for computing f . If the inputs are not valid, then in the hybrid model allparties receive ? as output. Therefore, S internally hands ? to A as its output from Stage 1and simulates all honest parties sending ? in Stage 2 (as would occur in a hybrid execution).S then halts, outputting whatever A does. Otherwise, if the inputs are valid, S receives allthe corrupted parties outputs ffi(x)gi2I (this is the case because S controls P1 and by partialfairness, when P1 is corrupt the adversary receives the corrupted parties' outputs �rst). Sthen constructs the corrupted parties' outputs from Stage 1 that A expects to see in thehybrid execution. S de�nes P1's output as follows: First, P1's personal output is f1(x). Next,for every corrupted party Pi, party P1's output contains the pair (ci = fi(x) � ri; hi(ci)) forri 2R f0; 1gk and hi 2R H. Finally, for every honest party Pj , party P1's output containsa pair (cj ; aj) where cj ; aj 2R f0; 1gk . This de�nes P1's output. We now de�ne how Sconstructs the other corrupted parties' outputs: for every corrupted Pi, simulator S de�nesPi's output to equal (ri; hi) where these are the values used in preparing the correspondingpair (ci; hi(ci)) in P1's output. (We note that S can prepare these values because it knowsfi(x) for every corrupted party Pi.) S then internally passes A all of these outputs. In thehybrid model, after receiving the outputs from Stage 1, A sends a set J 0 to the trusted partyinstructing it to give outputs to the parties speci�ed in this set (all other parties receive ?).S obtains this set J 0 from A and records it.S continues by simulating Pl sending ? to P1 in the blank round, for every honest party Pl forwhich l 62 J 0 (as would occur in a hybrid execution). Then, in the last stage, A (controllingP1) sends to each honest party Pj a pair (c0j ; a0j) or ?. S receives these strings and de�nesthe set of parties J to receive outputs to equal those parties in J 0 to whom A sends the same(cj ; aj) that S gave A in Stage 1. (These are the parties who do not see ? in the executionand whose checks of Stage 3 succeed; they therefore do not abort.) S concludes by externallysending J to the ideal-model trusted party and outputting whatever A does.2. P1 is honest: In this case, S begins in the same way. That is, S invokes A and receives theinputs that A intends to send the trusted party of the hybrid model. However, unlike in theprevious case, S does not forward these inputs to its trusted party; rather it just recordsthem.10 (If any of these inputs are invalid, then S internally sends ? to all corrupted parties,10S cannot forward the inputs to the trusted party yet, because in the model of partial fairness as soon as it doesthis all parties receive output. However, in the execution of Protocol 3.2, A can cause the execution to abort at alater stage.

48 CHAPTER 3. SECURE COMPUTATION WITHOUT AGREEMENTexternally sends invalid inputs to the trusted party and halts. In the sequel, we assume thatall inputs sent by A are valid.) Now, A expects to receive outputs from Stage 1 before itsends the trusted party the set J 0 of honest parties receive output from Stage 1. However,S does not have the corrupted parties' outputs yet. Fortunately, when P1 is honest, S canperfectly simulate the corrupted parties outputs from Stage 1 by merely providing them with(ri; hi) where ri 2R f0; 1gk and hi 2R H. After internally passing A the simulated corruptedparties' outputs, S obtains a set J 0 from A, instructing the trusted party of the hybrid modelwhich parties should receive output.S continues by simulating Stages 2 and 3 of the protocol. As above, S simulates every honestparty Pl for which l 62 J 0 sending ? to P1 in Stage 2. Furthermore, S obtains any messagessent by A in this stage. If A sends ? to P1 in Stage 2, then S simulates P1 sending ? to allparties, sends invalid inputs to the trusted party and halts. Likewise, if J 0 does not containall the honest parties, then S internally simulates P1 sending ? to all the corrupted parties,and externally sends invalid inputs to the trusted party. (These cases correspond to the casethat no parties receive their prescribed output.)In contrast, if J 0 contains all the honest parties (i.e., no honest party received ? from Stage 1)and A did not send ? to P1 in Stage 2 of the simulation, then S externally sends the trustedparty the inputs that it recorded from A above, receiving back all of the corrupted partiesoutputs ffi(x)gi2I . Then, for each corrupted party's output fi(x), simulator S generatesthe pair that corrupted Pi would see in a hybrid execution. In particular, previously in thesimulation S provided Pi with a pair (ri; hi) where ri 2R f0; 1gk and hi 2R H. Now, Ssimulates P1 sending corrupted party Pi the pair (ci; ai) where ci = fi(x)� ri and ai = hi(ci).(S can do this because it knows the random-pad ri and the hash function hi.) Finally, Soutputs whatever A does and halts.The fact that the global output in the hybrid execution with S is identically distributed to theglobal output in a real execution with A is derived from the following observations. First, A'soutputs from Stage 1 can be perfectly simulated, both when P1 is corrupt and when P1 is honest.Second, the honest parties' messages in Stage 2 can be perfectly simulated given only the set J 0sent by A to the hybrid-model trusted party in the ideal execution of Stage 1. Therefore, A's viewin the hybrid-model execution is identical to its view in a real execution. It remains to show thatthe honest parties' outputs are also correctly distributed.First, consider the case that P1 is corrupt. In this case, with overwhelming probability, theset of honest parties receiving output in the real model are exactly those parties Pj for whomP1 (controlled by A) sends the exact pair (cj ; aj) that it received as output from Stage 1 (andwho did not see ? at any time in the execution). This is due to the authentication properties ofpairwise independent hash functions. Likewise, in the ideal-model simulation, S designates thesesame parties to be the ones receiving output. Therefore, except with negligible probability, the setJ sent by S to the trusted party contains exactly those parties who would receive output in a realexecution.Next, consider the case that P1 is honest. In this case, all parties receive output unless P1 sees? in Stage 2. This can happen if A sends P1 such a value, or if any honest party received ? fromStage 1. Both of these cases are detected by S in the hybrid-model simulation, and therefore thecase that all parties abort in the hybrid model corresponds to this case in the real model (andlikewise for the case that all parties receive output). This completes the proof of Theorem 3.5.1

Chapter 4Universally Composable Multi-PartyComputationIn this chapter we prove a fundamental result stating that secure multi-party computation thatremains secure under concurrent general-composition can be achieved, for any number of corruptedparties. That is, we consider an asynchronous multi-party network and an adversary that canadaptively corrupt as many parties as it wishes. We present protocols that allow any subset ofparties in this setting to securely realize any desired functionality of their inputs, and be guaranteedthat security is preserved regardless of the activity in the rest of the network. Our protocols are inthe common reference string model and rely on standard intractability assumptions.4.1 IntroductionAs we have seen, the model of \stand-alone computation" does not fully capture the security re-quirements from cryptographic protocols in a modern computer network. In such networks, aprotocol execution may run concurrently with an unknown number of other protocols. These ar-bitrary protocols may be executed by the same parties or other parties, they may have potentiallyrelated inputs and the scheduling of message delivery may be adversarially coordinated. Further-more, the local outputs of a protocol execution may be used by other protocols in an unpredictableway. These concerns, or \attacks" on a protocol are not captured by the stand-alone model.One way to guarantee that protocols withstand some speci�c security threats in multi-executionenvironments is to explicitly incorporate these threats into the security model and analysis. Suchan approach was taken, for instance, in the case of non-malleability of protocols [32], and regardingthe concurrent composition of zero-knowledge [33, 77] and oblivious transfer [43]. However, thisapproach is inherently limited since it needs to explicitly address each new concern, whereas in arealistic network setting, the threats may be unpredictable. Furthermore, it inevitably results inde�nitions with ever-growing complexity.In contrast, we take the approach where a protocol is designed and analyzed as \stand alone",and security in a multi-execution environment is guaranteed via a secure composition theorem. Inparticular, we use the recently proposed framework of universally composable security [14]. Herea generic de�nition is given for what it means for a protocol to \securely realize a given idealfunctionality", where an \ideal functionality" is a natural algorithmic way of capturing the desiredfunctionality of the protocol problem at hand. In addition, it is shown that security of protocolsis preserved under a general composition operation called universal composition. This essentially49

50 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONmeans that any protocol that securely realizes an ideal functionality when considered as stand-alone, continues to securely realize the same functionality even when composed with any other setof protocols that may be running concurrently in the same system. (In other words, the protocolremains secure under concurrent general-composition.) A protocol that is secure within the [14]framework is called universally composable (UC).It has been shown that any ideal functionality can be securely realized in a universally compos-able way using known constructions, as long as a majority of the participants remain uncorrupted[14] (building upon [10, 76, 15]). However, this result does not hold when half or more of the partiesmay be corrupted. In particular, it does not hold for the important case of two-party protocols,where each party wishes to maintain its security even if the other party is corrupted. In fact, it wasshown in [16, 14] that in the standard model, a number of basic two-party functionalities (such ascommitment, zero-knowledge, and common coin-tossing) cannot be securely realized in this frame-work by two-party protocols. Nonetheless, protocols that securely realize the commitment andzero-knowledge functionalities in the common reference string (CRS) model were shown in [16, 26].(In the CRS model all parties are given a common, public reference string that is ideally chosenfrom a given distribution. This model was originally proposed in the context of non-interactivezero-knowledge proofs [12] and since then has proved useful in other cases as well.)Our results. Loosely speaking, we show that any functionality can be realized in a universallycomposable way, in the CRS model, regardless of the number of corrupted parties. More speci�cally,consider an asynchronous multi-party network where the communication is open and delivery ofmessages is not guaranteed. (For simplicity, we assume that delivered messages are authenticated.This can be achieved using standard methods.) The network contains an unspeci�ed number ofparties, and any number of these parties can be adaptively corrupted throughout the computation.In this setting, we show how arbitrary subsets of parties can securely realize any functionality oftheir inputs in a universally composable way. The functionality may be reactive, namely it mayreceive inputs and generate outputs multiple times throughout the computation.In addition to our general constructions for two-party and multi-party computation, we alsopresent a new adaptively secure UC commitment scheme in the CRS model, assuming only theexistence of trapdoor permutations. (UC commitment schemes are protocols that securely realizethe ideal commitment functionality [16]. Existing constructions of UC commitments [16, 25] relyon speci�c cryptographic assumptions.) Since UC zero-knowledge can be obtained given a UCcommitment scheme [16], we can plug our new scheme into the UC zero-knowledge protocol of [16]and thereby obtain an adaptively secure UC zero-knowledge protocol in the CRS model, for any NPrelation, and based on any trapdoor permutation. Beyond being interesting in its own right, we usethis commitment scheme in order to base our constructions on general cryptographic assumptions.Adaptive security. Our protocol is the �rst general construction that guarantees security againstadaptive adversaries in the two-party case and in the case of multi-party protocols with honestminority. (We note that no adaptively secure general construction was known in these cases evenin the traditional stand-alone model; all previous adaptively secure protocols for general multi-partycomputation assumed an honest majority.) We remark that, in contrast to the case of stand-aloneprotocols, in our setting adaptive security is a relevant concern even for protocols with only twoparticipants. Furthermore, it is important to protect even against adversaries that eventually breakinto all the participants in an interaction. This is because we consider multiple interactions thattake place between di�erent sets of parties in the system. Therefore, all the participants in oneinteraction may constitute a proper subset of the participants in another interaction. Our results

4.2. OVERVIEW 51hold even in a model where no data can ever be erased.Cryptographic assumptions. Our protocols are based on the following cryptographic assump-tions. For the non-adaptive case (both semi-honest and malicious) we assume the existence of trap-door permutations only. For the adaptive case we additionally assume the existence of augmentednon-committing encryption protocols [15]. The augmentation includes oblivious key generation andinvertible samplability [24]. Loosely speaking, oblivious key generation states that public keys canbe generated without knowing the corresponding private keys, and invertible samplability statesthat given a public/private key-pair it is possible to obtain the random coin tosses of the key gen-erator when outputting this key-pair (the oblivious key generator should also be invertible). Suchencryption schemes are known to exist under the RSA and DDH assumptions.As we have mentioned, our protocols are in the CRS model. The above assumptions su�ce ifwe use a common reference string that is not uniformly distributed (but is rather taken from somedi�erent distribution). If a uniformly distributed common reference string is to be used, then weadditionally assume the existence of dense cryptosystems [27].Related work. In a concurrent and independent work [25], Damgard and Nielsen consider afunctionality that has great resemblance to our commit-and-prove functionality, and constructuniversally composable protocols that realize this functionality under speci�c number-theoreticassumptions. Our commit-and-prove protocol is based on more general assumptions, whereas theirprotocol is considerably more e�cient.Organization. In Section 4.2 we provide an overview of the model of [14] and an outline ofour construction of UC two-party and multi-party protocols. Section 4.3 contains a number ofimportant preliminaries: First, in Section 4.3.1, a more detailed description of the [14] frameworkand of the composition theorem itself is presented. Then, in Section 4.3.2, the issue of universalcomposition and joint state is discussed (this is important where a common reference string is used,as is the case in our constructions). Finally, in Section 4.6, the ideal zero-knowledge functionalityis described. Our new UC commitment scheme is presented in Section 4.5.We then begin our presentation of constructions for UC two-party and multi-party computation.That is, in Section 4.4, we show how to obtain UC two-party secure computation in the presenceof semi-honest adversaries. Next we proceed to the case of malicious adversaries. That is, inSection 4.7 we de�ne and realize the two-party commit-and-prove functionality. This is then usedin Section 4.8 to construct a two-party protocol compiler that is used to transform the protocolof Section 4.4 into a protocol that is secure against malicious adversaries. Finally, in Section 4.9,we extend our two-party constructions to the multi-party case. We present the two-party caseseparately because most of the cryptographic ideas already arise in this setting.4.2 OverviewThis section provides a high-level overview of the model and our constructions. Section 4.2.1contains an overview of the general framework of universal composability, the de�nition of securityand the composition theorem. Then, in Section 4.2.2 we provide a brief outline of our constructionsfor two-party and multi-party computation. The aim of this outline is to provide the reader withthe \big picture", before delving into details.

52 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATION4.2.1 The modelWe begin by outlining the framework for universal composability; for more details see Section 4.3.1and [14]. The framework provides a rigorous method for de�ning the security of cryptographictasks, while ensuring that security is maintained under a general composition operation in which asecure protocol for the task in question is run in a system concurrently with an unbounded numberof other arbitrary protocols. This composition operation is called universal composition, and tasksthat ful�ll the de�nitions of security in this framework are called universally composable (UC).As in other general de�nitions (e.g., [53, 69, 5, 73, 13]), the security requirements of a giventask (i.e., the functionality expected from a protocol that carries out the task) are captured via aset of instructions for a \trusted party" that obtains the inputs of the participants and providesthem with the desired outputs (in one or more iterations). We call the algorithm run by the trustedparty an ideal functionality. Informally, a protocol securely carries out a given task if any adversarycan gain nothing more from an attack on a real execution of the protocol, than from an attack onan ideal process where the parties merely hand their inputs to a trusted party with the appropriatefunctionality and obtain their outputs from it, without any other interaction. In other words, werequire that a real execution can be emulated in the above ideal process (where the meaning ofemulation is described below). We stress that in a real execution of the protocol, no trusted partyexists and the parties interact amongst themselves only.In order to prove the universal composition theorem, the notion of emulation in this frameworkis considerably stronger than in previous ones. Traditionally, the model of computation includesthe parties running the protocol, plus an adversary A that controls the communication channelsand potentially corrupts parties. Emulation means that for any adversary A attacking a realprotocol execution, there should exist an \ideal process adversary" or simulator S, that causes theoutputs of the parties in the ideal process to be essentially the same as the outputs of the parties in areal execution. In the universally composable framework, an additional adversarial entity called theenvironment Z is introduced. This environment generates the inputs to all parties, reads all outputs,and in addition interacts with the adversary in an arbitrary way throughout the computation. (Asis hinted by its name, Z represents the external environment that consists of arbitrary protocolexecutions that may be running concurrently with the given protocol.) A protocol is said to securelyrealize a given ideal functionality F if for any \real-life" adversary A that interacts with the protocolthere exists an \ideal-process adversary" S, such that no environment Z can tell whether it isinteracting with A and parties running the protocol, or with S and parties that interact with F inthe ideal process. (In a sense, here Z serves as an \interactive distinguisher" between a run of theprotocol and the ideal process with access to F . See [14] for more motivating discussion on the roleof the environment.) Note that the de�nition requires the \ideal-process adversary" (or simulator)S to interact with Z throughout the computation. Furthermore, Z cannot be \rewound".The following universal composition theorem is proven in [14]: Consider a protocol � thatoperates in a hybrid model of computation where parties can communicate as usual, and in additionhave ideal access to an unbounded number of copies of some ideal functionality F . (This model iscalled the F-hybrid model.) Furthermore, let � be a protocol that securely realizes F as sketchedabove, and let �� be the \composed protocol". That is, �� is identical to � with the exceptionthat each interaction with the ideal functionality F is replaced with a call to (or an activation of)an appropriate instance of the protocol �. Similarly, �-outputs are treated as values provided bythe functionality F . The theorem states that in such a case, � and �� have essentially the sameinput/output behavior. Thus, � behaves just like the ideal functionality F , even when composedwith an arbitrary protocol �. A special case of this theorem states that if � securely realizes some

4.2. OVERVIEW 53ideal functionality G in the F-hybrid model, then �� securely realizes G from scratch.We consider a network where the adversary sees all the messages sent, and delivers or blocksthese messages at will. (The fact that message delivery is not guaranteed frees us from the need toexplicitly deal with the \early stopping" problem of protocols run between two parties or amongstmany parties where only a minority may be honest. This is because even the ideal process allowsthe adversary to abort the execution at any time.) We note that although the adversary mayblock messages, it cannot modify messages sent by honest parties (i.e., the communication linesare ideally authenticated). Our protocols are cast in a completely asynchronous point-to-pointnetwork (and thus the adversary has full control over when messages are delivered, if at all). Also,as usual, the adversary is allowed to corrupt parties. In the case of static adversaries the set ofcorrupted parties is �xed at the onset of the computation. In the adaptive case the adversarycorrupts parties at will throughout the computation. We also distinguish between malicious andsemi-honest adversaries: If the adversary is malicious then corrupted parties follow the arbitraryinstructions of the adversary. In the semi-honest case, even corrupted parties follow the prescribedprotocol and the adversary essentially only gets read access to the states of corrupted parties.4.2.2 An outline of the results and techniquesIn this section we provide a high-level description of our protocols for two-party and multi-partycomputation, and the techniques used in obtaining them. Our construction is conceptually verysimilar to the construction of Goldreich, Micali and Wigderson [52, 44]. This construction (whichwe call the GMW construction) is comprised of two stages. First, they present a protocol forsecurely realizing any functionality in the semi-honest adversarial model. Next, they construct aprotocol compiler that takes any semi-honest protocol and transforms it into a protocol that has thesame functionality in the malicious adversarial model. (However, as discussed above, they considera model where only a single protocol execution takes place in the system. In contrast, we constructprotocols for universally composable secure computation.) We begin by considering the two-partycase.Two-party computation in the case of semi-honest adversariesRecall that in the case of semi-honest adversaries, even the corrupted parties follow the protocolspeci�cation. However, the adversary may attempt to learn more information than intended byexamining the transcript of messages that it received during the protocol execution. Despite theseemingly weak nature of the adversarial model, obtaining protocols secure against semi-honestadversaries is a non-trivial task.We begin by briey recalling the [52, 44] construction for secure two-party computation in thesemi-honest adversarial model. Let f be the two-party functionality that is to be securely computed.Then, the parties are given an arithmetic circuit over GF (2) that computes the function f . Theprotocol starts with the parties sharing their inputs with each other using bitwise-xor secret sharing,and thus following this stage, they both hold shares of the input lines of the circuit. That is, foreach input line l, party A holds a value al and party B holds a value bl, such that both al and blare random under the constraint that al + bl equals the value of the input into this line. Next, theparties evaluate the circuit gate-by-gate, computing random shares of the output line of the gatefrom the random shares of the input lines to the gate. There are two types of gates in the circuit:addition gates and multiplication gates. Addition gates are evaluated by each party locally addingits shares of the input values. Multiplication gates are evaluated using 1-out-of-4 oblivious transfer(the oblivious transfer protocol used is basically that of [35]). In the above way, the parties jointly

54 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONcompute the circuit and obtain shares of the output gates. The protocol concludes with each partyrevealing the prescribed shares to the other party (i.e, if a certain output gate provides a bit of A'sinput, then B will reveal its share of this output line to A).Our general construction is exactly that of GMW, except that the oblivious transfer protocolused is universally composable. That is, we �rst de�ne an ideal oblivious transfer functionality,Fot, and show that in the Fot-hybrid model, the GMW protocol securely realizes any two-partyfunctionality in the presence of semi-honest, adaptive adversaries. This holds unconditionally andeven if the adversary and environment are computationally unbounded. Of course, computationalassumptions are used for securely realizing Fot itself. (Our construction is actually somewhat moregeneral than that of GMW in that it deals with reactive functionalities that have multiple stageswhich are separately activated. This is achieved by having the parties hold shares of the state ofthe ideal functionality between activations.)Next we present protocols that securely realize Fot in the semi-honest case. In the non-adaptivecase, the protocol of [35, 44] su�ces. In the adaptive case, our protocol uses an augmented version ofnon-committing encryption [15]. The augmentation consists of two additional properties. First, theencryption scheme should have an alternative key generation algorithm that generates only publicencryption keys without the corresponding decryption key. Second, the standard and additionalkey generation algorithms should be invertible in the sense that given the output key or keys, itis possible to �nd the random coin tosses used in generating these keys. (Following [24], we callthese properties oblivious key generation and invertible samplability.) All known non-committingencryption schemes have this properties. In particular, such schemes exist under either the RSAassumption or the DDH assumption.) In all, we show:Proposition 4.2.1 (semi-honest computation { informal): Assume that trapdoor permutationsexist. Then, for any two-party ideal functionality F , there exists a protocol � that securely realizesF in the presence of semi-honest, static adversaries. Furthermore, if augmented two-party non-committing encryption protocols exist, then there exists a protocol � that securely realizes F in thepresence of semi-honest, adaptive adversaries.Proposition 4.2.1 as stated above is not precise. This is due to two technicalities regarding themodel of computation as de�ned in [14]. We therefore de�ne a class of functionalities for whichthese technical problems do not arise and then construct secure protocols for any functionality inthis class. See Section 4.3.3 for more discussion and an exact de�nition.Another point where our results formally di�er from Proposition 4.2.1 is due to the fact that,according to the de�nitions used here, protocols which do not generate any output are technicallysecure (for any functionality). Thus, Proposition 4.2.1 as stated, can be easily (but un-interestingly)achieved. In contrast, we prove the existence of protocols which do generate output and securelyrealize any functionality (we call such a protocol non-trivial; for more details, see the discussionafter De�nition 4.3.2 in Section 4.3.1). Proposition 4.2.1 is formally restated in Section 4.4.2.Obtaining two-party computation secure against malicious adversariesHaving constructed a protocol that is universally composable when the adversary is limited tosemi-honest behavior, we construct a protocol compiler that transforms this protocol into one thatis secure even against malicious adversaries. From here on, we refer to the protocol that is secureagainst semi-honest adversaries as the \basic protocol". Recall that the basic protocol is onlysecure in the case that even the corrupted parties follow the protocol speci�cation exactly, usinga uniformly chosen random tape. Thus, in order to obtain a protocol secure against malicious

4.2. OVERVIEW 55adversaries, we need to enforce potentially malicious corrupted parties to behave in a semi-honestmanner. First and foremost, this involves forcing the parties to follow the prescribed protocol.However, this only makes sense relative to a given input and random tape. Furthermore, a maliciousparty must be forced into using a uniformly chosen random tape. This is because the security of thebasic protocol may depend on the fact that the party has no freedom in setting its own randomness.We begin with a description of the GMW compiler.An informal description of the GMW compiler. The GMW compiler begins by having eachparty commit to its input. Next, the parties run a coin-tossing protocol in order to �x their randomtapes. A simple coin-tossing protocol in which both parties receive the same uniformly distributedstring is not su�cient here. This is because the parties' random tapes must remain secret. Instead,an augmented coin-tossing protocol is used, where one party receives a uniformly distributed string(to be used as its random tape) and the other party receives a commitment to that string. Now,following these two steps, each party holds its own input and uniformly distributed random tape,and a commitment to the other party's input and random tape.Next, the commitments to the random tape and to the inputs are used to \enforce" semi-honest behavior. Observe that a protocol speci�cation is a deterministic function of a party's viewconsisting of its input, random tape and messages received so far, and recall that each party holdsa commitment to the input and random tape of the other party. Observe also that the messagessent so far are public. Therefore, the assertion that a new message is computed according to theprotocol is an NP statement (and the party sending the message knows an adequate NP-witnessto it). This means that the parties can use zero-knowledge proofs to show that their steps areindeed according to the protocol speci�cation. Therefore, in the protocol emulation phase, theparties send messages according to the instructions of the basic protocol, while proving at eachstep that the messages sent are correct. The key point is that, due to the soundness of the proofs,even a malicious adversary cannot deviate from the protocol speci�cation without being detected.Therefore, the adversary is limited to semi-honest behavior. Furthermore, since the proofs arezero-knowledge, nothing \more" is revealed in the compiled protocol than in the basic protocol.We conclude that the security of the compiled protocol (against malicious adversaries) is directlyderived from the security of the basic protocol (against semi-honest adversaries).In summary, the GMW compiler has three components: input commitment, coin-tossing andprotocol emulation (where the parties prove that their steps are according to the protocol speci�-cation).Universally composable protocol compilation. A natural way of adapting the GMW com-piler to the setting of universally composable secure computation would be to take the samecompiler, but rather use universally composable commitments, coin-tossing and zero-knowledgeas sub-protocols. However, such a strategy fails because the receiver of a universally composablecommitment receives no information about the value committed to. (Instead, the recipient receivesonly a formal \receipt" assuring it that a value was committed to. See Section 4.5 for more details.)Thus, there is no NP-statement that a party can prove relative to its input commitment. This isin contrast to the GMW protocol where standard (perfectly binding) commitments are used andthus each party holds a string that uniquely determines the other party's input and random tape.A di�erent strategy is therefore required for constructing a universally composable compiler.Before describing our strategy, observe that in GMW the use of the commitment scheme is notstandard. Speci�cally, although both parties commit to their inputs etc., they never decommit.Rather, they prove NP-statements relative to their committed values. Thus, a natural primitive

56 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONto use would be a \commit-and-prove" functionality, which is comprised of two phases. In the�rst phase, a party \commits" (or is bound) to a speci�c value. In the second phase, this partyproves NP-statements (in zero-knowledge) relative to the committed value. We formulate thisnotion in a universally composable commit-and-prove functionality, denoted Fcp, and then usethis functionality to implement all three phases of the compiler. More speci�cally, our protocolcompiler uses the \commit" phase of the Fcp functionality in order to execute the input and coin-tossing phases of the compiler. The \prove" phase of the Fcp functionality is then used to forcethe adversary to send messages according to the protocol speci�cation and consistent with thecommitted input and the random tape resulting from the coin-tossing. The result is a universallycomposable analog to the GMW compiler. We remark that in the Fcp-hybrid model the compileris unconditionally secure against adaptive adversaries, even if the adversary and the environmentare computationally unbounded.We show how to securely realize Fcp in the Fzk-hybrid model, i.e. in a hybrid model withideal access to an ideal zero-knowledge functionality, Fzk. (Functionality Fzk expects to receive astatement x and a witness w from the prover. It then forwards x to the veri�er, together with anassertion whether R(x;w) holds, where R is a predetermined relation.) Essentially, in the commitphase of the commit-and-prove protocol, the committer commits to its input value w using somecommitment scheme C, and in addition it proves to the receiver, using Fzk with an appropriaterelation, that it \knows" the committed value. In the prove phase, where the committer wishes toassert that the committed value w stands in relation R with some public value x, the committerpresents x and w to Fzk again | but this time the relation used by Fzk asserts two properties:�rst that R(x;w) holds, and second that w is the same value that was previously committed to.To guarantee security against static adversaries, the commitment scheme of Naor [70] is su�cientas an instantiation of the scheme C. We thus obtain a protocol for securely realizing Fcp in the Fzk-hybrid model, based on any one-way function. To guarantee security against adaptive adversarieswe need \adaptively secure" commitment schemes, namely commitment schemes where a simulatorcan generate \dummy commitments" which can be later opened in multiple ways. (In fact, aslightly stronger property is needed here, see details within.) Such commitments exist assumingthe existence of trapdoor permutations, as is demonstrated by our construction of universallycomposable commitments in Section 4.5. In all we obtain:Theorem 4.2.2 (two-party computation in the malicious model { informal): Assume that trap-door permutations exist. Then, for any two-party ideal functionality F , there exists a protocol �that securely realizes F in the Fzk-hybrid model in the presence of malicious, static adversaries.Furthermore, if augmented two-party non-committing encryption protocols exist, then there exists aprotocol � that securely realizes F in the Fzk-hybrid model in the presence of malicious, adaptiveadversaries.Let Fcrs denote the common random string functionality (that is, Fcrs provides all parties witha common, public string drawn from a prede�ned distribution). Then, as we show in Section 4.5,universally composable commitments can be securely realized in the Fcrs-hybrid model, assumingthe existence of trapdoor permutations. Furthermore, [16] showed that the Fzk functionality can besecurely realized given universally composable commitments. Combining these results together, wehave that Fzk can be securely realized in the Fcrs-hybrid model, assuming the existence of trapdoorpermutations. Using the composition theorem we obtain a similar result to Theorem 4.2.2, with theexception that F is realized in the Fcrs-hybrid model (rather than in the Fzk-hybrid model). Aswith Proposition 4.2.1, Theorem 4.2.2 is not stated exactly. It is formally restated in Section 4.8.2.

4.2. OVERVIEW 57On the distribution of the reference string. In obtaining the above corollary, the commonreference string is used only in the construction of the universally composable commitment scheme(which is used for obtaining Fzk). As we have mentioned, in the Fcrs-hybrid model, universallycomposable commitments can be obtained assuming the existence of trapdoor permutations only.However, in this case, the common reference string is not uniformly distributed. Nevertheless,a uniformly distributed string can be used, under the additional assumption of the existence ofdense cryptosystems [27]. We therefore conclude that universally composable two-party computa-tion can be obtained with a uniformly distributed reference string, under the assumption that thefollowing primitives exist: trapdoor permutations, dense cryptosystems and augmented two-partynon-committing encryption protocols.Extensions to multi-party computationWe now describe how the two-party construction of Theorem 4.2.2 is extended to the setting ofmulti-party computation, where any number of parties may be corrupt. Recall that in this setting,each set of interacting parties is assumed to have access to an authenticated broadcast channel.The outline of our construction is as follows. Similarly to the two-party case, we �rst constructa multi-party protocol that is secure against semi-honest adversaries (as above, this protocol isessentially that of GMW). Then, we construct a protocol compiler (again, like that of GMW), thattransforms semi-honest protocols into ones that are secure even against malicious adversaries. Thisprotocol compiler is constructed using a one-to-many extension of the commit-and-prove function-ality, denoted F 1:Mcp . The extension of the protocol that realizes two-party Fcp to a protocol thatrealizes one-to-many F 1:Mcp constitutes the main di�erence between the two-party and multi-partyconstructions. Therefore, in this outline, we focus exclusively on how this extension is achieved.The �rst step in realizing F 1:Mcp , is to construct one-to-many extensions of universal commitmentsand zero-knowledge. In a one-to-many commitment scheme, all parties receive the commitment(and the committer is bound to the same value for all parties). Likewise, in one-to-many zero-knowledge, all parties verify the proof (and they either all accept or all reject the proof). Now,any non-interactive commitment scheme can be transformed into a one-to-many equivalent bysimply having the committer broadcast its message to all parties. Thus, this functionality isimmediately obtained from our commitment scheme in Section 4.5 or from the scheme of [16] (bothof these constructions are non-interactive). However, obtaining one-to-many zero-knowledge ismore involved, since we do not know how to construct non-interactive adaptively-secure universallycomposable zero-knowledge.1 Nevertheless, using the methodology of [44], a one-to-many zero-knowledge protocol can be constructed as follows. The construction is based on the universally-composable zero-knowledge protocol of [16]. Speci�cally, they show that parallel executions of the3-round zero-knowledge protocol of Hamiltonicity is universally composable, when a universallycomposable commitment scheme is used for the prover's commitments. Thus, the prover runs acopy of the above zero-knowledge protocol with each receiver over the broadcast channel, usingthe one-to-many commitment scheme for its commitments. Furthermore, each verifying partychecks that the proofs of all the other parties are accepting (this is possible because the proof ofHamiltonicity is publicly veri�able and because all parties view all the communication). Thus,at the end of the protocol, all honest parties agree (without any additional communication) onwhether the proof was successful or not. (Note also that the adversary cannot cause an honestprover's proof to be rejected.)1In the case of static adversaries, the non-interactive zero-knowledge protocol of [26] su�ces. Thus, here too, theprover message can simply be broadcast and one-to-many zero-knowledge is obtained.

58 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONIt remains to describe how to realize F 1:Mcp in the F 1:Mzk -hybrid model. The basic idea is togeneralize the Fcp protocol. As with zero-knowledge, this is not straightforward because in theprotocol for adaptive adversaries, the Fcp commit-phase is interactive. Nevertheless, this problemis solved by having the committer commit to its input value w by separately running the protocol forthe commit-phase of (two-party) Fcp with every party over the broadcast channel. Following this,the committer uses one-to-many zero-knowledge to prove that it committed to the same value in allof these commitments. (Since each party views the communication from all the commitments, everyparty can verify this zero-knowledge proof.) The prove phase is similar to the two-party case, exceptthat the one-to-many extension of zero-knowledge is used (instead of two-party zero-knowledge).Finally, we note that, as in the two-party case, a multi-party protocol compiler can be con-structed in the F 1:Mcp -hybrid model, with no further assumptions. Denoting the ideal broadcastfunctionality used by the parties by Fbc, we have the following theorem:Theorem 4.2.3 (multi-party computation in the malicious model { informal): Assume that trap-door permutations exist. Then, for any multi-party ideal functionality F , there exists a protocol �that securely realizes F in the (Fbc;Fcrs)-hybrid model in the presence of malicious, static adver-saries, and for any number of corruptions. Furthermore, if augmented two-party non-committingencryption protocols exist, then there exists a protocol � that securely realizes F in the (Fbc;Fcrs)-hybrid model in the presence of malicious, adaptive adversaries, and for any number of corruptions.As with Proposition 4.2.1, Theorem 4.2.3 is not stated exactly. It is formally restated in Sec-tion 4.9.4.4.3 PreliminariesSection 4.3.1 reviews the framework of [14] and the universal composition theorem. In Section4.3.2 we discuss issues that arise regarding universal composition when some amount of joint statebetween protocols is desired. Finally, Section 4.3.3 presents the class of functionalities which wewill show how to securely realize. Before proceeding, we recall the de�nition of computational in-distinguishability. A distribution ensemble X = fX(k; a)gk2N;a2f0;1g� is an in�nite set of probabilitydistributions, where a distribution X(k; a) is associated with each k 2 N and a 2 f0; 1g�. Theensembles considered in this work describe outputs where the parameter a represents input, andthe parameter k is taken to be the security parameter. A distribution ensemble is called binary if itconsists only of distributions over f0; 1g. Then,De�nition 4.3.1 Two binary distribution ensembles X and Y are indistinguishable (written X c� Y)if for any c 2 N there exists k0 2 N such that for all k > k0 and for all a we havejPr(X(k; a) = 1)� Pr(Y (k; a) = 1)j < k�c:4.3.1 Universally Composable Security: The general frameworkWe start by reviewing the syntax of message-driven protocols in asynchronous networks. We thenpresent the real-life model of computation, the ideal process, and the general de�nition of securelyrealizing an ideal functionality. Next we present the hybrid model and the composition theorem.The text is somewhat informal for clarity and brevity, and is mostly taken from the Overviewsection of [14]. For full details see there.

4.3. PRELIMINARIES 59Protocol syntax. Following [55, 45], a protocol is represented as a system of probabilistic in-teractive Turing machines (ITMs), where each ITM represents the program to be run within adi�erent party. Speci�cally, the input and output tapes model inputs and outputs that are receivedfrom and given to other programs running on the same machine, and the communication tapesmodel messages sent to and received from the network. Adversarial entities are also modeled asITMs. We concentrate on a model where the adversaries have an arbitrary additional input, or an\advice" string. From a complexity-theoretic point of view, this essentially implies that adversariesare non-uniform ITMs.In order to simplify the exposition, we introduce the following convention. We assume that allprotocols are such that the parties read their input tapes only at the onset of a protocol execution.This can easily be achieved by having the parties copy their input tape onto an internal work tape.This convention prevents problems that may occur when parties' input tapes are modi�ed in themiddle of a protocol execution (as is allowed in the model).The basic frameworkAs sketched in Section 4.2, protocols that securely carry out a given task (or, protocol problem)are de�ned in three steps, as follows. First, the process of executing a protocol in the presence ofan adversary and in a given computational environment is formalized. Next, an \ideal process" forcarrying out the task at hand is formalized. In the ideal process the parties do not communicatewith each other. Instead they have access to an \ideal functionality", which is essentially anincorruptible \trusted party" that is programmed to capture the desired functionality of the giventask. A protocol is said to securely realize an ideal functionality if the process of running theprotocol amounts to \emulating" the ideal process for that ideal functionality. We overview themodel for protocol execution (called the real-life model), the ideal process, and the notion of protocolemulation.We concentrate on the following model of computation, aimed at representing current realis-tic communication networks (such as the Internet). The communication takes place in an asyn-chronous, public network, without guaranteed delivery of messages. We assume that the commu-nication is authenticated and thus the adversary cannot modify messages sent by honest parties.2Furthermore, the adversary may only deliver messages that were previously sent by parties, andmay deliver each message sent only once. The fact that the network is asynchronous means thatthe messages are not necessarily delivered in the order which they are sent. Parties may be bro-ken into (i.e., become corrupted) throughout the computation, and once corrupted their behavioris arbitrary (or, malicious). (Thus, our main consideration is that of malicious, adaptive adver-saries. However, below we present the modi�cations necessary for modeling static and semi-honestadversaries.) We do not trust data erasures; rather, we postulate that past states are availableto the adversary upon corruption. Finally, all the involved entities are restricted to probabilisticpolynomial time (or \feasible") computation.Protocol execution in the real-life model. We sketch the process of executing a given protocol� (run by parties P1; :::; Pn) with some adversary A and an environment machine Z with inputz. All parties have a security parameter k 2 N and are polynomial in k. The execution consists2We remark that the basic model in [14] postulates unauthenticated communication, i.e. the adversary maydelete, modify, and generate messages at wish. Here we concentrate on authenticated networks for sake of simplicity.Authentication can be added in standard ways. Formally, the model here corresponds to the Fauth-hybrid model in[14].

60 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONof a sequence of activations, where in each activation a single participant (either Z, A, or somePi) is activated. The environment is activated �rst. In each activation it may read the contents ofthe output tapes of all the uncorrupted parties3 and the adversary, and may write information onthe input tape of one of the parties or of the adversary. Once the activation of the environmentis complete (i,e, once the environment enters a special waiting state), the entity whose input tapewas written on is activated next.Once the adversary is activated, it may read its own tapes and the outgoing communicationtapes of all parties. It may either deliver a message to some party by writing this message on theparty's incoming communication tape or corrupt a party. Only messages that were sent in the pastby some party can be delivered, and each message can be delivered at most once. Upon corruptinga party, the adversary gains access to all the tapes of that party and controls all the party's futureactions. (We assume that the adversary also learns all the past internal states of the corruptedparty. This means that the model does not assume e�ective cryptographic erasure of data.) Inaddition, whenever a party is corrupted the environment is noti�ed (say, via a message that is addedto the output tape of the adversary). If the adversary delivered a message to some uncorruptedparty in its activation then this party is activated once the activation of the adversary is complete.Otherwise the environment is activated next.Once a party is activated (either due to an input given by the environment or due to a messagedelivered by the adversary), it follows its code and possibly writes local outputs on its outputtape and outgoing messages on its outgoing communication tape. Once the activation of theparty is complete the environment is activated. The protocol execution ends when the environmentcompletes an activation without writing on the input tape of any entity. The output of the protocolexecution is the output of the environment. We assume that this output consists of only a singlebit.Let real�;A;Z(k; z; r) denote the output of environment Z when interacting with adversary Aand parties running protocol � on security parameter k, input z and random tapes r = rZ ; rA; r1; : : : ; rnas described above (z and rZ for Z, rA for A; ri for party Pi). Let real�;A;Z(k; z) denote therandom variable describing real�;A;Z(k; z; r) when r is uniformly chosen. Let real�;A;Z denotethe ensemble freal�;A;Z(k; z)gk2N;z2f0;1g� .The ideal process. Security of protocols is de�ned via comparing the protocol execution in thereal-life model to an ideal process for carrying out (a single instance of) the task at hand. A keyingredient in the ideal process is the ideal functionality that captures the desired functionality, orthe speci�cation, of that task. The ideal functionality is modeled as another ITM that interactswith the environment and the adversary via a process described below. More speci�cally, the idealprocess involves an ideal functionality F , an ideal process adversary S, an environment Z with inputz, and a set of dummy parties ~P1; :::; ~Pn.As in the process of protocol execution in the real-life model, the environment is activated �rst.As there, in each activation it may read the contents of the output tapes of all (dummy) parties andthe adversary, and may write information on the input tape of either one of the (dummy) partiesor of the adversary. Once the activation of the environment is complete the entity whose inputtape was written on is activated next.The dummy parties are �xed and simple ITMs: Whenever a dummy party is activated withinput x, it forwards x to the ideal functionality F , say by writing x on the incoming communication3The adversary is not given read access to the corrupted parties' output tapes because once a party is corrupted,it is no longer activated. Rather, the adversary sends messages in its name. Therefore, the output tapes of corruptedparties are not relevant.

4.3. PRELIMINARIES 61tape of F . In this case F is activated next, and a note that the party sent a message to F is writtenon the incoming communication tape of S. Whenever a dummy party is activated due to deliveryof some message (from F), it copies this message to its output. In this case Z is activated next.Once F is activated, it reads the contents of its incoming communication tape, and potentiallysends messages to the parties and to the adversary by writing these messages on its outgoingcommunication tape. Once the activation of F is complete, the entity that was last activatedbefore F is activated again. In the case this entity was one of the dummy parties, it immediatelyrelinquishes control to Z.Once the adversary S is activated, it may read its own input tape and in addition it can readthe destinations of the messages on the outgoing communication tape of F . That is, S can see theidentity of the recipient of each message sent by F , but it cannot see the contents of this message(unless the recipient of the message is S or a corrupted party4). S may either deliver a message fromF to some party by having this message copied to the party's incoming communication tape, writea message from itself on F 's incoming communication tape5, or corrupt a party. Upon corruptinga party, both Z and F learn the identity of the corrupted party (say, a special message is writtenon their respective incoming communication tapes).6 In addition, the adversary learns all the pastinputs and outputs of the party. Finally, the adversary controls the party's actions from the timethat the corruption takes place.If the adversary delivered a message to some uncorrupted (dummy) party in an activation thenthis party is activated once the activation of the adversary is complete. Otherwise the environmentis activated next.As in the real-life model, the protocol execution ends when the environment completes anactivation without writing on the input tape of any entity. The output of the protocol execution isthe (one bit) output of Z.Let idealF ;S;Z(k; z; r) denote the output of environment Z after interacting in the ideal processwith adversary S and ideal functionality F , on security parameter k, input z, and random inputr = rZ ; rS ; rF as described above (z and rZ for Z, rS for S; rF for F). Let idealF ;S;Z(k; z) denotethe random variable describing idealF ;S;Z(k; z; r) when r is uniformly chosen. Let idealF ;S;Zdenote the ensemble fidealF ;S;Z(k; z)gk2N;z2f0;1g� .Securely realizing an ideal functionality. We say that a protocol � securely realizes an idealfunctionality F if for any real-life adversary A there exists an ideal-process adversary S such that noenvironment Z, on any input, can tell with non-negligible probability whether it is interacting withA and parties running � in the real-life process, or with S and F in the ideal process. This meansthat, from the point of view of the environment, running protocol � is `just as good' as interactingwith an ideal process for F . (In a way, Z serves as an \interactive distinguisher" between the two4Note that the ideal process allows S to obtain the output values sent by F to the corrupted parties as soon asthey are generated. Furthermore, if at the time that S corrupts some party Pi there are messages sent from F to Pi,then S immediately obtains the contents of these messages.5Many natural ideal functionalities indeed send messages to the adversary S (see the zero-knowledge and commit-ments functionalities of Sections 4.6 and 4.5 for examples). On the other hand, having the adversary send messagesto F is less common. Nevertheless, this option can be useful in order to relax the requirements on protocols thatrealize the functionality. For example, it may be easier to obtain coin-tossing if the adversary is allowed to bias someof the bits of the result. If this is acceptable for the application in mind, we can allow the adversary this capabilityby having it send its desired bias to F .6Allowing F to know which parties are corrupted gives it considerable power. This power provides greater freedomin formulating ideal functionalities for capturing the requirements of given tasks. On the other hand, it also inherentlylimits the scope of general realizability theorems. See more discussion in Section 4.3.3.

62 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONprocesses. Here it is important that Z can provide the process in question with adaptively choseninputs throughout the computation.) We have:De�nition 4.3.2 Let n 2 N. Let F be an ideal functionality and let � be an n-party protocol. Wesay that � securely realizes F if for any adversary A there exists an ideal-process adversary S suchthat for any environment Z, idealF ;S;Z c� real�;A;Z : (4.1)Non-trivial protocols and the requirement to generate output. Recall that the idealprocess does not require the ideal-process adversary to deliver messages that are sent by the idealfunctionality to the dummy parties. Consequently, the de�nition provides no guarantee that aprotocol will ever generate output or \return" to the calling protocol. Indeed, in our setting wheremessage delivery is not guaranteed, it is impossible to ensure that a protocol \terminates" orgenerates output. Rather, the de�nition concentrates on the security requirements in the case thatthe protocol generates output.A corollary of the above fact is that a protocol that \hangs", never sends any messages and nevergenerates output, securely realizes any ideal functionality. Thus, in order to obtain a meaningfulfeasibility result, we introduce the notion of a non-trivial protocol. Such a protocol has the propertythat if the real-life adversary delivers all messages and does not corrupt any parties, then the ideal-process adversary also delivers all messages (and does not corrupt any parties). Note that in anon-trivial protocol, a party may not necessarily receive output. However, this only happens ifeither the functionality does not specify output for this party, or if the real-life adversary activelyinterferes in the execution (by either corrupting parties or refusing to deliver some messages).Our main result is to show the existence of non-trivial protocols for securely realizing any idealfunctionality. All our protocols are in fact clearly non-trivial; therefore, we ignore this issue fromhere on.Relaxations of De�nition 4.3.2. We recall two standard relaxations of the de�nition:� Static (non-adaptive) adversaries. De�nition 4.3.2 allows the adversary to corrupt partiesthroughout the computation. A simpler (and somewhat weaker) variant forces the real-lifeadversary to corrupt parties only at the onset of the computation, before any uncorrupted partyis activated. We call such adversaries static.� Passive (semi-honest) adversaries. De�nition 4.3.2 gives the adversary complete control overcorrupted parties (such an adversary is called malicious). Speci�cally, the model states that fromthe time of corruption the corrupted party is no longer activated, and instead the adversary sendsmessages in the name of that party. In contrast, when a semi-honest adversary corrupts a party,the party continues to follow the prescribed protocol. Nevertheless, the adversary is given readaccess to the internal state of the party at all times, and is also able to modify the valuesthat the environment writes on the corrupted parties' input tapes.7 Formally, if in a givenactivation, the environment wishes to write information on the input tape of a corrupted party,then the environment �rst passes the adversary the value x that it wishes to write (along withthe identity of the party whose input tape it wishes to write to). The adversary then passes7Allowing a semi-honest adversary to modify a corrupted party's input is somewhat non-standard. However, thissimpli�es the presentation of this work (and in particular the protocol compiler). All the protocols presented for thesemi-honest model in this paper are secure both when the adversary can modify a corrupted party's input tape andwhen it cannot.

4.3. PRELIMINARIES 63a (possibly di�erent) value x0 back to the environment. Finally, the environment writes x0 onthe input tape of the corrupted party, following which the corrupted party is activated. Westress that when the environment writes on the input tape of an honest party, the adversarylearns nothing of the value and cannot modify it. Everything else remains the same as in theabove-described malicious model. We say that protocol � securely realizes functionality F forsemi-honest adversaries, if for any semi-honest real-life adversary A there exists an ideal-processsemi-honest adversary S such that Eq. (4.1) holds for any environment Z.The composition theoremThe hybrid model. In order to state the composition theorem, and in particular in order toformalize the notion of a real-life protocol with access to multiple copies of an ideal functionality,the hybrid model of computation with access to an ideal functionality F (or, in short, the F-hybridmodel) is formulated. This model is identical to the real-life model, with the following additions.On top of sending messages to each other, the parties may send messages to and receive messagesfrom an unbounded number of copies of F . Each copy of F is identi�ed via a unique sessionidenti�er (SID); all messages addressed to this copy and all message sent by this copy carry thecorresponding SID. (Sometimes a copy of F will interact only with a subset of the parties. Theidentities of these parties is determined by the protocol in the F-hybrid model.)The communication between the parties and each one of the copies of F mimics the idealprocess. That is, once a party sends a message m to a copy of F with a particular SID, that copyis immediately activated to receive this message. (If no such copy of F exists then a new copy ofF is created and immediately activated to receive m.) Furthermore, although the adversary in thehybrid model is responsible for delivering the messages from the copies of F to the parties, it doesnot have access to the contents of these messages.The hybrid model does not specify how the SIDs are generated, nor does it specify how parties\agree" on the SID of a certain protocol copy that is to be run by them. These tasks are leftto the protocol in the hybrid model. This convention simpli�es formulating ideal functionalities,and designing protocols that securely realize them, by freeing the functionality from the need tochoose the SIDs and guarantee their uniqueness. In addition, it seems to reect common practiceof protocol design in existing networks. See more discussion following Theorem 4.3.3 below.Let hybridF�;A;Z(k; z) denote the random variable describing the output of environment ma-chine Z on input z, after interacting in the F-hybrid model with protocol �, adversary A, anal-ogously to the de�nition of real�;A;Z(k; z). (We stress that here � is a hybrid of a real-lifeprotocol with ideal evaluation calls to F .) Let hybridF�;A;Z denote the distribution ensemblefhybridF�;A;Zgk2N;z2f0;1g� .Replacing a call to F with a protocol invocation. Let � be a protocol in the F-hybridmodel, and let � be a protocol that securely realizes F (with respect to some class of adversaries).The composed protocol �� is constructed by modifying the code of each ITM in � so that the�rst message sent to each copy of F is replaced with an invocation of a new copy of � with freshrandom input, with the same SID, and with the contents of that message as input. Each subsequentmessage to that copy of F is replaced with an activation of the corresponding copy of �, with thecontents of that message given to � as new input. Each output value generated by a copy of � istreated as a message received from the corresponding copy of F . (See [14] for more details on theoperation of \composed protocols", where a party, i.e. an ITM, runs multiple protocol-instancesconcurrently.)

64 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONIf protocol � is a protocol in the real-life model then so is ��. If � is a protocol in some G-hybridmodel (i.e., � uses ideal evaluation calls to some functionality G) then so is ��.Theorem statement. In its general form, the composition theorem basically says that if � se-curely realizes F in the G-hybrid model for some functionality G, then an execution of the composedprotocol ��, running in the G-hybrid model, \emulates" an execution of protocol � in the F-hybridmodel. That is, for any adversary A in the G-hybrid model there exists an adversary S in the F-hybrid model such that no environment machine Z can tell with non-negligible probability whetherit is interacting with A and �� in the G-hybrid model or it is interacting with S and � in theF-hybrid model.A corollary of the general theorem states that if � securely realizes some functionality I in theF-hybrid model, and � securely realizes F in the G-hybrid model, then �� securely realizes I inthe G-hybrid model. (Here one has to de�ne what it means to securely realize functionality I inthe F-hybrid model. This is done in the natural way.) That is:Theorem 4.3.3 ([14]) Let F ;G;I be ideal functionalities. Let � be an n-party protocol in theF-hybrid model, and let � be an n-party protocol that securely realizes F in the G-hybrid model.Then for any adversary A in the G-hybrid model there exists an adversary S in the F-hybrid modelsuch that for any environment machine Z we have:hybridG��;A;Z c� hybridF�;S;Z : (4.2)In particular, if � securely realizes functionality I in the F-hybrid model then �� securely realizesI in the G-hybrid model.On the uniqueness of the session IDs. The session IDs play a central role in the hybrid modeland the composition operation, in that they enable the parties to distinguish di�erent instancesof a protocol. Indeed, di�erentiating protocol instances via session IDs is a natural and commonmechanism in protocol design.Yet, the current formulation of the hybrid model provides a somewhat over-idealized treatmentof session IDs. Speci�cally, it is assumed that the session IDs are globally unique and common toall parties. That is, it is assumed that no two copies of an ideal functionality with the same sessionID exist, even if the two copies have di�erent (and even disjoint) sets of participants. Furthermore,all parties are assumed to hold the same SID (and they must somehow have agreed upon it). Thistreatment greatly simpli�es the exposition of the model and the de�nition of ideal functionalitiesand protocols that realize them. Nonetheless, it is somewhat restrictive in that it requires theprotocol in the hybrid model to guarantee global uniqueness of common session IDs. This maybe hard (or even impossible) to achieve in the case that the protocol in the hybrid model is trulydistributed and does not involve global coordination. See [66] for more discussion on this point.More elaborate ways of de�ning session IDs so as not to require global uniqueness exist. We leavethis issue for future work.4.3.2 Universal Composition with Joint StateTraditionally, composition operations among protocols assume that the composed protocol in-stances have disjoint states, and in particular independent local randomness. The universal com-position operation is no exception: if protocol � securely realizes some ideal functionality F , and

4.3. PRELIMINARIES 65protocol � in the F-hybrid model uses m copies of F , then the composed protocol �� uses mindependent copies of �, and no two copies of � share any amount of state.This property of universal composition (and of protocol composition in general) is bothersomein our context, where we wish to construct and analyze protocols in the common reference string(CRS) model. Let us elaborate. Assume that we follow the natural formalization of the CRS modelas the Fcrs-hybrid model, where Fcrs is the functionality that chooses a string from the speci�eddistribution and hands it to all parties. Now, assume that we construct a protocol � that realizessome ideal functionality F in the Fcrs-hybrid model (say, let F be the commitment functionality,Fcom). Assume further that some higher level protocol � (in the F-hybrid model) uses multiplecopies of F , and that we use the universal composition operation to replace each copy of F withan instance of �. We now obtain a protocol �� that runs in the Fcrs-hybrid model and emulates�. However, this protocol is highly wasteful of the reference string. Speci�cally, each instance of� in �� has its own separate copy of Fcrs, or in other words each instance of � requires its ownindependent copy of the reference string. This stands in sharp contrast with our common view ofthe CRS model, where an unbounded number of protocol instances should be able to use the samecopy of the reference string.One way to get around this limitation of universal composition (and composition theorems ingeneral) is to treat the entire, multi-session interaction as a single instance of a more complexprotocol, and then to explicitly require that all sessions use the same copy of the reference string.More speci�cally, proceed as follows. First, given a functionality F as described above, de�ne afunctionality, F̂ , called the \multi-session extension of F". Functionality F̂ will run multiple copiesof F , where each copy will be identi�ed by a special \sub-session identi�er", ssid. Upon receivinga message for the copy associated with ssid, F̂ activates the appropriate copy of F (running withinF̂), and forwards the incoming message to that copy. If no such copy of F exists then a new copy isinvoked and is given that ssid. Outputs generated by the copies of F are copied to F̂ 's output. Thenext step after having de�ned F̂ is to construct protocols that directly realize F̂ in the Fcrs-hybridmodel, while making sure that the constructed protocols use only a single copy of Fcrs.This approach works, in the sense that it allows constructing and analyzing universally com-posable protocols that are e�cient in their use of the reference string. However, it results ina cumbersome and non-modular formalization of ideal functionalities and protocols in the CRSmodel. Speci�cally, if we want to make sure that multiple sessions of some protocol (or set ofprotocols) use the same copy of the reference string, then we must treat all these sessions (thatmay take place among di�erent sets of parties) as a single instance of some more complex proto-col. For example, assume that we want to construct commitments in the CRS model, then usethese commitments to construct UC zero-knowledge protocols, and then use these protocols in yethigher-level protocols. Then, in any level of protocol design, we must design functionalities andprotocols that explicitly deal with multiple sessions. Furthermore, we must prove the security ofthese protocols within this multi-session setting. This complexity obviates much of the advantagesof universal composition (and protocol composition in general).In contrast, we would like to be able to formulate a functionality that captures only a singleinstance of some interaction, realize this functionality by some protocol � in the CRS model,and then securely compose multiple copies of � in spite of the fact that all copies use the samecopy of the reference string. This approach is, in general, dangerous, since it can lead to insecureprotocols. However, there are conditions under which such \composition with joint state" maintainssecurity. This section describes a general tool that enables the composition of protocols even whenthey have some amount of joint state, under some conditions. Using this tool (suggested in [21]and called universal composition with joint state (JUC)), we are able to state and realize most of the

66 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONfunctionalities in this work as functionalities for a single session, while still ending up with protocolswhere an unbounded number of instances use the same copy of the common reference string. Thisgreatly simpli�es the presentation while not detracting from the composability and e�ciency of thepresented protocols.In a nutshell, universal composition with joint state is a new composition operation that canbe sketched as follows. Let F be an ideal functionality, and let � be a protocol in the F-hybridmodel. Let F̂ denote the \multi-session extension of F" sketched above, and let � be a protocolthat securely realizes F̂ . Then construct the composed protocol �[�] by replacing all copies of F in� by a single copy of �. (We stress that � assumes that it has access to multiple independent copiesof F . Still, we replace all copies of F with a single copy of some protocol.) The JUC theoremstates that protocol �[�], running in the real-life model, \emulates" � in the usual sense. A moredetailed presentation follows.The multi-session extension of an ideal functionality. We formalize the notion of a multi-session extension of an ideal functionality, sketched above. Let F be an ideal functionality. Recallthat F expects each incoming message to contain a special �eld consisting of its session ID (SID).All messages received by F are expected to have the same SID. (Messages that have di�erent SIDsthan that of the �rst message are ignored.) Similarly, all outgoing messages generated by F carrythe same SID.The multi-session extension of F , denoted F̂ , is de�ned as follows. F̂ expects each incomingmessage to contain two special �elds. The �rst is the usual SID �eld as in any ideal functionality.The second �eld is called the sub-session ID (SSID) �eld. Upon receiving a message (sid; ssid; v)(where sid is the SID, ssid is the SSID, and v is an arbitrary value or list of values), F̂ �rst veri�esthat sid is the same as that of the �rst message, otherwise the message is ignored. Next, F̂ checksif there is a running copy of F whose session ID is ssid. If so, then F̂ activates that copy of F withincoming message (ssid; v), and follows the instructions of this copy. Otherwise, a new copy of Fis invoked (within F̂) and immediately activated with input (ssid; v). From now on, this copy isassociated with sub-session ID ssid. Whenever a copy of F sends a message (ssid; v0) to some partyPi, F̂ sends (sid; ssid; v0) to Pi, and sends ssid to the adversary. (Sending ssid to the adversaryimplies that F̂ does not hide which copy of F is being activated within F̂ .)The composition operation. Let F be an ideal functionality. The composition operation,called universal composition with joint state (JUC), takes two protocols as arguments: a protocol �in the F-hybrid model and a protocol � that securely realizes F̂ . The result is a composed protocoldenoted �[�] and described as follows.Recall that the F-hybrid model is identical to the real-life model of computation, with theexception that the parties have access to multiple copies of F . The di�erent copies of F areidenti�ed via their SIDs as described above. Let F(sid) denote the copy of functionality F with SIDsid. Protocol �[�] behaves like � with the following exceptions:81. When activated for the �rst time within party Pi, �[�] invokes a copy of protocol � with SIDsid0. That is, a copy of the ith Interactive Turing Machine in � is invoked as a subroutinewithin Pi, and is (locally) given identity sid0. No activation of � occurs yet. (sid0 is some�xed, prede�ned value. For instance, set sid0 = 0.)8For simplicity, we assume that � securely realizes F̂ in the real-life model of computation. The compositionoperation and theorem can be extended in a natural way to account for protocols � that securely realize F̂ in theG-hybrid model for some ideal functionality G.

4.3. PRELIMINARIES 672. Whenever � instructs party Pi to send a message (sid; v) to F(sid), protocol �� instructs Pito activate � with input value (sid0; sid; v).3. Whenever protocol � wishes to send a message m to some party Pi0 , Pi writes the message(�; sid; Pi0 ;m) on the outgoing communication tape.4. Whenever activated due to delivery of a message (�; sid;m) from Pi0 , Pi activates � withincoming message (sid; Pi0 ;m).5. Whenever (the single copy of) � generates an output value (sid; v), proceed just as � proceedswith incoming message v from F(sid).Theorem statement. The JUC theorem asserts that if �̂ securely realizes F̂ , then protocol �[�̂]behaves essentially like � with ideal access to multiple independent copies of F . More precisely,Theorem 4.3.4 (Universal composition with joint state [21]): Let F ;G be ideal functionalities.Let � be a protocol in the F-hybrid model, and let �̂ be a protocol that securely realizes F̂ , the multi-session extension of F , in the G-hybrid model. Then the composed protocol �[�̂] in the G-hybridmodel emulates protocol � in the F-hybrid model. That is, for any adversary A there exists anadversary S such that for any environment Z we havehybridF�;S;Z c� hybridG�[�];A;Z :In particular, if � securely realizes some functionality I in the F-hybrid model then �[�] securelyrealizes I in the G-hybrid model.Discussion. Jumping ahead, we sketch our use of the JUC theorem. Recall the commitmentfunctionality, Fcom, formalized in [16]. This functionality captures the process of commitment anddecommitment to a single value, performed by two parties. In addition, [16] show how to realizeF̂com in the CRS model, using a single copy of the CRS for all commitments. (In [16] functionalityF̂com is called Fmcom.) An alternative protocol that realizes F̂com is also presented here.In this work we construct protocols that use these commitment protocols. However, to preservemodularity of exposition, we present our protocols in the Fcom-hybrid model, while allowing theprotocols to use multiple copies of Fcom and thus enjoy full modularity. We then use universalcomposition with joint state to compose any protocol � in the Fcom-hybrid model with any protocol� that securely realized F̂com using a single copy of the reference string, to obtain a protocol �[�]that emulates � and uses only a single copy of the reference string for all the commitments. (Weremark that the same technique is applied also to protocols that use the ideal zero-knowledgefunctionality, Fzk. See more details in Section 4.6.)4.3.3 Well-Formed FunctionalitiesWe would like to be able to state a theorem saying that any ideal functionality can be securelyrealized. However, for technical reasons, such a claim cannot be made in our model. The �rstproblem that arises is as follows. Since the ideal functionality is informed of the identities of thecorrupted parties, it can do things that cannot be realized by any protocol. For example, considerthe ideal functionality that lets all parties know which parties are corrupted. Then this functionalitycannot be realized in the face of an adversary that corrupts a single random party but instructsthat party to continue following the prescribed protocol.

68 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONIn order to bypass this problem, we de�ne a special class of functionalities that do not utilizetheir direct knowledge of the identities of the corrupted parties. For the lack of a better name,we call these functionalities well-formed. A well-formed functionality consists of a main proce-dure (called the shell) and a subroutine (called the core.) The core is an arbitrary probabilisticpolynomial-time algorithm, while the shell is a simple procedure described as follows. The shellforwards any incoming message to the core, with the exception that noti�cations of corruptionsof parties are not forwarded. Outgoing messages generated by the core are copied by the shell tothe outgoing communication tape. The above de�nition guarantees that the code of a well-formedideal functionality \does not depend" on its direct knowledge regarding who is corrupted.In subsequent sections, we show how to realize any well-formed functionality in the face of staticadversaries. However, another technicality arises when considering adaptive adversaries. Considerfor instance a two-party ideal functionality F that works as follows: Upon activation, it chooses twolarge random primes p and q and sends n = pq to both parties. The value n is the only messageoutput by the functionality; in particular, it never reveals the values p and q. The importantproperty of this functionality that we wish to focus on is the fact that it has private randomnessthat is never revealed. Such a functionality can be securely realized in the static corruption model.However, consider what happens in a real execution if an adaptive adversary corrupts both partiesafter they output n. In this case, all prior randomness is revealed (recall that we assume noerasures). Therefore, if this randomness explicitly de�nes the primes p and q (as is the case in allknown protocols for such a problem), these values will necessarily be revealed to the adversary. Onthe other hand, in the ideal process, even if both parties are corrupted, p and q are never revealed.9(We stress that this is not a weakness of the model because in the case that all participating partiesare corrupted, there are no security requirements on a protocol. In particular, there are no honestparties to \protect"). In light of the above discussion, we de�ne adaptively well-formed functionalitiesthat do not keep private randomness when all parties are corrupted. Formally, such functionalitieshave a shell and a core, as described above. However, in addition to forwarding messages to andfrom the core, the shell keeps track of the parties with whom the functionality interacts. If atsome activation all these parties are corrupted, then the shell sends the random tape of the coreto the adversary. Thus, when all the parties participating in some activation are corrupted, allthe randomness is revealed (even in the ideal process). We show how any adaptively well-formedfunctionality can be securely realized in the face of adaptive adversaries.In order to make sure that the multi-session extension of an adaptively well-formed functionalityremains adaptively well-formed, we slightly modify the de�nition of the multi-session extension ofan ideal functionality (see Section 4.3.2) as follows. If the given ideal functionality F is adaptivelywell-formed, then F̂ , the multi-session extension of F , is an adaptively well-formed functionalityde�ned as follows. The core of F̂ consists of the multi-session extension (in the usual sense) ofthe core of F . The shell of F̂ is as de�ned above except that it separately keeps track of theparticipating parties of each session. Then, if all the participating parties of some session arecorrupted in some activation, the shell sends the random tape of the core for that session to theadversary. (Recall that each session of the multi-session functionality uses an independent randomtape.) We note that the JUC theorem (Theorem 4.3.4) holds even with respect to the modi�edde�nition of multi-session extensions.9We do not claim that it is impossible to realize this speci�c functionality. Indeed, it may be possible to samplethe domain fn j n = pqg (or a domain that is computationally indistinguishable from it) without knowing p or q.Nevertheless, the example clearly demonstrates the problem that arises.

4.4. TWO-PARTY SECURE COMPUTATION FOR SEMI-HONEST ADVERSARIES 694.4 Two-party Secure Computation for Semi-Honest AdversariesThis section presents general constructions for securely realizing any two-party ideal functionalityin the presence of semi-honest adversaries. In the case of static adversaries, the constructionis basically that of Goldreich, Micali and Wigderson [52]. In the case of adaptive adversariesthe construction of oblivious transfer is somewhat di�erent (however, the rest of the constructionremains unchanged). The main di�erence between our presentation and that of [44], is that weconsider the reactive case where parties may receive new inputs during the run of the protocol.Each new input may depend on the current adversarial view of the system. In particular, it maydepend on previous outputs of this execution and on the activity in other executions. We notethat although the basic construction of our protocol is very similar to [52], our proof is signi�cantlydi�erent. This is due to the fact that we show universal composability, and in addition consideralso the adaptive corruption case (and not only the static case like in [52]).We begin by presenting the oblivious-transfer ideal functionality Fot, and demonstrate howto realize this functionality in the presence of semi-honest adversaries (both static and adaptive).Following this we present our protocol for securely realizing any two-party functionality, in theFot-hybrid model.4.4.1 Universally Composable Oblivious TransferOblivious transfer [75, 35] is a two-party functionality, involving a sender with input x1; :::; x`, anda receiver with input i 2 f1; : : : ; `g. The receiver should learn xi (and nothing else) and the sendershould learn nothing. An exact de�nition of the ideal oblivious transfer functionality, denoted Fòt,appears in Figure 4.1. (Using standard terminology, Fòt captures 1-out-of-` OT.)Functionality FòtFòt proceeds as follows, parameterized with an integer ` and running with an oblivious transfersender T , a receiver R and an adversary S.1. Upon receiving a message (sender; sid; x1; :::; x`) from T , where each xj 2 f0; 1gm, record thetuple (x1; :::; x`). (The length of the strings m is �xed and known to all parties.)2. Upon receiving a message (receiver; sid; i) from R, where i 2 f1; : : : ; `g, send (sid; xi) to Rand (sid) to S, and halt. (If no (sender; : : :) message was previously sent, then send nothingto R.) Figure 4.1: The oblivious transfer functionality, FòtSection 4.4.1 presents a protocol that securely realizes Fot for static adversaries. Section 4.4.1presents our protocol for securely realizing Fot for adaptive adversaries.Static UC Oblivious TransferThe oblivious transfer protocol of [52, 44], denoted SOT (for Static Oblivious Transfer) is presentedin Figure 4.2. For simplicity we present the protocol for the case where each of the ` input valuesis a single bit. (In the semi-honest case, oblivious transfer for strings can be constructed from thisone via the composition theorem.)

70 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONProtocol SOTProceed as follows, on security parameter k.1. Given input (sender; sid; x1; :::; x`), party T chooses a trapdoor permutation f over f0; 1gk,together with its inverse f�1, and sends (sid; f) to the receiver R. (The permutation f ischosen uniformly from a given family of trapdoor permutations.)2. Given input (receiver; sid; i), and having received (sid; f) from T , receiver R choosesy1; :::yi�1; r; yi+1; :::; y` 2R f0; 1gk, computes yi = f(r), and sends (sid; y1; : : : ; y`) to T .3. Having received (sid; y1; : : : ; y`) from R, the sender T sends (sid; x1 � B(f�1(y1)); : : : ; x` �B(f�1(y`))) to R, where B(�) is a hard-core predicate for f .4. Output: Having received (sid; b1; : : : ; b`) from T , the receiver R outputs (sid; bi �B(r)).Figure 4.2: The static, semi-honest oblivious transfer protocolClaim 4.4.1 Assuming that f is a trapdoor permutation, Protocol SOT securely realizes Fòt inthe presence of semi-honest, static adversaries.Proof: Let A be a semi-honest, static adversary that interacts with parties running the aboveprotocol. We construct an adversary S for the ideal process for Fòt such that no environment Zcan tell with non-negligible probability whether it is interacting with A and the above protocol orwith S in the ideal process for Fòt. Recall that S interacts with the ideal functionality Fòt andwith the environment Z. Simulator S starts by invoking a copy of A and running a simulatedinteraction of A with Z and parties running the protocol. (We refer to the interaction of S in theideal process as external interaction. The interaction of A with the simulated A is called internalinteraction.) S proceeds as follows:Simulating the communication with Z: Every input value that S receives from Z is writtenon A's input tape (as if coming from A's environment). Likewise, every output value writtenby A on its output tape is copied to S's own output tape (to be read by S's environment Z).Simulating the case where the sender T only is corrupted: S simulates a real execution inwhich T is corrupted. S begins by activating A and receiving the message (sid; f) that A(controlling T) would send R in a real execution. Then, S chooses y1; : : : ; y` 2R f0; 1gk andsimulates R sending T the message (sid; y1; : : : ; y`) in the internal interaction. Finally, whenA sends the message (sid; b1; : : : ; b`) from T to R in the internal interaction, S externally sendsT 's input x1; : : : ; x` to Fòt and delivers the output from Fòt to R. (Recall that in the semi-honest model as de�ned here, A is able to modify the input tape of T . Therefore, the valuex1; : : : ; x` sent by S to Fòt is the (possibly) modi�ed value. Formally this causes no problembecause actually it is the environment who writes the modi�ed value, after \consultation"with A. Since all communication is forwarded unmodi�ed between A and Z, the value thatZ writes on T 's input tape is the already-modi�ed value. We ignore this formality in thesubsequent proofs in this section.)Simulating the case where the receiver R only is corrupted: S begins by activating A andinternally sending it the message that A (controlling R) receives from T in a real execution.That is, S chooses a random trapdoor permutation f and its inverse f�1, and sends it to

4.4. TWO-PARTY SECURE COMPUTATION FOR SEMI-HONEST ADVERSARIES 71A. Next, it internally receives a message of the form (sid; y1; : : : ; y`) from A. Simulator Sthen externally sends R's input i to Fòt and receives back the output xi. S concludes thesimulation by choosing b1; : : : ; bi�1; bi+1; : : : ; b` uniformly, setting bi = xi � B(f�1(yi)), andinternally sending A the message (sid; b1; : : : ; b`). (Recall that xi is the output as obtainedby S from the ideal functionality Fòt.)Simulating the case that neither party is corrupted: In this case, S receives a message (sid)signalling it that T and R concluded an ideal execution with Fot. S then generates a sim-ulated transcript of messages between the real model parties. That is, S generates T 's �rstmessage (sid; f) as the real T would, sets R's reply to be (sid; y1; : : : ; y`) where yj 2R f0; 1gkfor each j, and �nally sets T 's second message to (sid; b1; : : : ; b`) where bj 2R f0; 1g for everyj.Simulating the case that both parties are corrupted: In this case, S knows both parties'inputs and can therefore simulate a protocol execution by generating the actual messagesthat the parties would send in a real execution.We demonstrate that idealFot;S;Z c� realsot;A;Z . This is done by showing that the joint view ofZ and A in the execution of SOT is indistinguishable from the joint view of Z and the simulated Awithin S in the ideal process. First, notice that the simulation for the case where T is corrupted isperfect. This is because in both the ideal simulation and a real execution, the message received by Tconsists of ` uniformly distributed k-bit strings, and the output of R is the same in both executions.(Notice that since f is a permutation, choosing r uniformly and computing yi = f(r), as occurs in areal execution, results in a uniformly distributed yi. Furthermore, the output of R is bi�B(f�1(yi))where bi is the ith value sent by T .) Second, we claim that the simulation for the case where R iscorrupted is indistinguishable from in a real execution. The only di�erence between the two is in themessage b1; : : : ; b` received by R. The bit bi is identically distributed in both cases (in particular,in both the simulation and a real execution it equals xi �B(f�1(yi))). However, all the bits bj forj 6= i are uniformly chosen and are not distributed according to xj � B(f�1(yj)). Nevertheless,due to the hard-core properties of B, the bit B(f�1(yj)) for a random yj is indistinguishable froma random-bit bj 2R f0; 1g. The same is also true for xj � B(f�1(yj)) when xj is �xed before yjis chosen. (More precisely, given an environment that distinguishes with non-negligible probabilitybetween the real-life and the ideal interactions, we can construct an adversary that contradictsthe hard-core property of B.) Thus the views are indistinguishable. By the same argument, wealso have that the simulation for the case that neither party is corrupted results in a view that isindistinguishable from a real execution. This completes the proof.Our proof of security of the above protocol fails in the case of adaptive adversaries. Intuitively thereason is that when a party gets corrupted, S cannot present the simulated A with a valid internalstate of the corrupted party. (This internal state should be consistent with the past messages sent bythe party and with the local input and output of that party.) In particular, the messages (sid; f),(sid; y1; : : : ; y`) and (sid; b1; : : : ; b`) fully de�ne the input bits x1; : : : ; x`. However, in the casethat T is not initially corrupted, S does not know x1; : : : ; x` and therefore with high probability,the messages de�ne a di�erent set of input bits. Thus, if A corrupts T after the execution hasconcluded, S cannot provide A with an internal state of T that is consistent both with x1; : : : ; x`and the simulated transcript that it had previously generated.

72 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONAdaptive UC Oblivious TransferDue to the above-described problem, we use a di�erent protocol for securely realizing Fòt for thecase of adaptive, semi-honest adversaries. A main ingredient in this protocol are non-committingencryptions as de�ned in [15] and constructed in [15, 6, 24]. In addition to standard semanticsecurity, such encryption schemes have the property that ciphertexts that can be opened to both0 and 1 can be generated. That is, a non-committing (bit) encryption scheme consists of a tuple(G;E;D; S), where G is a key generation algorithm, E and D are encryption and decryptionalgorithms, and S is a simulation algorithm (for generating non-committing ciphertexts). The triple(G;E;D) satis�es the usual properties of semantically secure encryption. That is, G(1k) = (e; d)where e and d are the respective encryption and decryption keys, and Dd(Ee(m)) = m exceptwith negligible probability. Furthermore, fEe(1)g is indistinguishable from fEe(0)g. In addition,the simulator algorithm S is able to generate \dummy ciphertexts" that can be later \opened" asencryptions of either 0 or 1. More speci�cally, it is required that S(1k) = (e; c; r0; r1; d0; d1) withthe following properties:� The tuple (e; c; r0; d0) looks like a normal encryption and decryption process for the bit 0. Thatis, (e; c; r0; d0) is indistinguishable from a tuple (e0; c0; r0; d0) where (e0; d0) is a randomly chosenpair of encryption and decryption keys, r0 is randomly chosen, and c0 = Ee(0; r0). (In particular,it should hold that Dd0(c) = 0.)� The tuple (e; c; r1; d1) looks like a normal encryption and decryption process for the bit 1. Thatis, (e; c; r1; d1) is indistinguishable from a tuple (e0; c0; r0; d0) where (e0; d0) is a randomly chosenpair of encryption and decryption keys, r0 is randomly chosen, and c0 = Ee(1; r0). (In particular,it should hold that Dd1(c) = 1.)Thus, given a pair (e; c), it is possible to explain c both as an encryption of 0 (by providing d0and r0) and as an encryption of 1 (by providing d1 and r1). Here, we actually use augmentednon-committing encryption protocols that have the following two additional properties:1. Oblivious key generation: It should be possible to choose a public encryption key e \withoutknowing" the decryption key d. That is, there should exist a di�erent key generation algorithmĜ such that Ĝ(1k) = ê where ê is indistinguishable from the encryption key e chosen by G,and in addition fEê(0)g remains indistinguishable from fEê(1)g even when the entire randominput of Ĝ is known.2. Invertible samplability: this property states that the key generation and oblivious key genera-tion algorithms G and Ĝ should be invertible. That is, we require the existence of an invertingalgorithm who receives any e output by the simulator algorithm S and outputs r such thatĜ(r) = e. (This algorithm may receive the coins used by S in computing e in order to �ndr.) We also require an algorithm that receives any pair (e; di) for i 2 f0; 1g from the outputof S, and outputs r such that G(r) = (e; di). (As before, this algorithm may receive the coinsused by S.) The idea here is that in order to \explain" the simulator-generated keys as beinggenerated in a legal way, it must be possible to �nd legal random coin tosses for them.10Augmented two-party non-committing encryption protocols exist under either one of the RSA orthe DDH assumptions. The requirements are also ful�lled in the case that public keys are uniformly10In its most general form, one can de�ne an invertible sampling algorithm for G that receives any pair (e; d) inthe range of G and outputs r such that G(r) = (e; d). However, we actually only need the inverting algorithm towork for keys output by the simulator S.

4.4. TWO-PARTY SECURE COMPUTATION FOR SEMI-HONEST ADVERSARIES 73distributed over some public domain and secret keys are de�ned by the random coins input to G.See more details in [15, 24].The protocol for securely realizing Fòt, denoted AOT (for Adaptive Oblivious Transfer) ispresented in Figure 4.3. As in the static case, the protocol is de�ned for the case where each of the` input values is a single bit. Protocol AOTProceed as follows, on security parameter k and using an augmented non-committing encryptionscheme (G; Ĝ; E;D; S).1. Given input (receiver; sid; i), receiver R runs G(1k) to obtain (e; d), and runs Ĝ(1k) `�1 timesto obtain ê1; :::; êi�1; êi+1; :::; ê`. Then, R sends (sid; ê1; :::; êi�1; e; êi+1; :::; ê`) to T .2. Given input (sender; sid; x1; :::; x`), and having received (sid; e1; :::; e`) from R, sender T com-putes cj = Eej (xj) for every 1 � j � `, and sends (sid; c1; :::; c`) to R.3. Having received (sid; c1; : : : ; c`) from T , receiverR computes xi = Dd(ci) and outputs (sid; xi).Figure 4.3: The adaptive, semi-honest oblivious transfer protocolClaim 4.4.2 Assume that (G; Ĝ;E;D; S) is an augmented non-committing encryption scheme.Then, Protocol AOT securely realizes Fòt in the presence of semi-honest, adaptive adversaries.Proof: The main di�erence between this proof and the proof of Claim 4.4.1 is due to the fact thatthe real-model adversary A can corrupt parties during (or after) the simulation. When S receivessuch a \corrupt" command, it corrupts the ideal-model party and receives its input (and possiblyits output). Given this information, S must produce random coins for this party such that thesimulated transcript generated so far is consistent with the revealed input (and output).Let A be a semi-honest, adaptive adversary that interacts with parties running the aboveprotocol. We construct an adversary S in the ideal process for Fòt such that no environment Zcan tell with non-negligible probability whether it is interacting with A and the above protocol orwith S in the ideal process for Fòt. In describing the simulation here, it is helpful to explicitlyconsider the ITMs representing the real model parties in the internal interaction. We denote theseparties by ~T and ~R. S works as follows:Simulating the communication with Z: Every input value that S receives from Z is writtenon A's input tape (as if coming from A's environment). Likewise, every output value writtenby A on its output tape is copied to S's own output tape (to be read by S's environment Z).Simulating the receiver: We separately describe the simulation for a corrupted and uncorruptedreceiver.1. Simulation when the receiver is not corrupted: In this case, S needs to simulate thereceiver message. This is done as follows: S runs the encryption simulation algorithmS(1k) independently ` times. For each j, S obtains a tuple (ej ; cj ; rj0; rj1; dj0; dj1); see theexplanation above for the meaning of each element in this tuple. Then, S generates ~R'smessage to be (sid; e1; : : : ; e`) and simulates ~R sending it to ~T .

74 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATION2. Simulation when the receiver is corrupted: In this case, S holds the input (receiver; sid; i)of the ideal receiver R and constructs a virtual real-model receiver ~R as follows. Thecontents of the input tape of ~R is set to (receiver; sid; i). In order to set the contents of~R's random tape, S �rst runs the encryption simulation algorithm S(1k) independently` times, obtaining tuples (ej ; cj ; rj0; rj1; dj0; dj1). Next, for every j, S uses the invertiblesampling algorithm in order to �nd rj so that Ĝ(rj) = ej, where Ĝ is the oblivious keygenerator. Then, S sets the contents of ~R's random tape to equal r1; : : : ; r`.S passes the internal state of ~R (including the contents of its input and random tapes)to A and waits for A to activate ~R in the simulation. When this occurs, S internallyobtains the message (sid; e1; : : : ; e`) that ~R writes on its outgoing message tape, andexternally sends (receiver; sid; i) to Fòt. (We note that for every j 6= i, it holds thatej = Ĝ(rj) is the same ej as generated by S(1k). On the other hand, ei = G(ri), whereG is the standard encryption key generator.)Simulating the sender: Once again, we separately consider the case that the sender is corruptedor not corrupted.1. Simulation when the sender is not corrupted: S simulates ~T sending (sid; c1; : : : ; c`)where the ci's were generated from S(1k) when simulating the receiver message above.This is the same whether or not R was corrupted.2. Simulation when the sender is corrupted: S holds the ideal T 's input (sender; sid; x1; : : : ; x`)and constructs a virtual real-model sender ~T by writing (sender; sid; x1; : : : ; x`) on itsinput tape and a uniformly distributed string on its random tape. Then, as above, SpassesA the internal state of ~T (consisting of the contents of its input and random tapes).When A activates ~T , simulator S externally sends the message (sender; sid; x1; : : : ; x`)to Fòt.Dealing with \corrupt" commands: We assume that any corruption of a party occurs after theparty has sent its protocol message in the simulation. (Otherwise, the corruption essentiallyoccurs before the protocol begins and the instructions above su�ce.) Now, if S receives acommand from A to corrupt the real-model ~R, then it corrupts the ideal model R and obtainsits input i and its output xi. Given i and xi, simulator S passes A the decryption-key dixi(and thus the ciphertext ci given to R in the simulated sender-message is \decrypted" to xi).Furthermore, for every j 6= i, S runs the invertible sampling algorithm on ej in order to �ndrj such that Ĝ(rj) = ej . Finally, S runs the invertible sampling algorithm on ei in order to�nd ri such that G(ri) = (ei; dixi). Notice that these two invertible sampling algorithms aredi�erent. S supplies A with the random tape r1; : : : ; r` for ~R.If S receives a command from A to corrupt real-model ~T , then it �rst corrupts the ideal-model T and obtains x1; : : : ; x`. Next, it prepares appropriate randomness to make it appearthat for every j, it holds that cj = Eej (xj) (where the (cj ; ej) pairs are taken from thesimulated receiver and sender messages). Since the encryption keys are non-committing andwere generated by running S(1k), we have that for every 1 � j � ` simulator S has a stringrxj such that cj = Eej (xj; rxj). Therefore, S writes rx1 ; : : : ; rx` as ~T 's random tape.Output and output delivery: S delivers the output from Fòt to (an uncorrupted) R when Adelivers the message from ~T to ~R in the simulation.As argued in the proof of Claim 4.4.1, it su�ces to show that A's view in the simulation is indis-tinguishable from its view in a real execution. (Note that in the adaptive case there is a positive

4.4. TWO-PARTY SECURE COMPUTATION FOR SEMI-HONEST ADVERSARIES 75correctness error. That is, there is non-zero probability that the outputs of the uncorrupted partiesin the real-life interaction will di�er from their outputs in the ideal process. This error probability isdue to the fact that encryption schemes can \fail" with negligible probability. Since the probabilityof such an event is negligible, we ignore it here.) The indistinguishability of the views is demon-strated using the properties of the augmented non-committing encryption scheme. In particular, thenon-committing encryption keys, ciphertexts and decommitment strings are all indistinguishablefrom those appearing in a real execution. Furthermore, by the oblivious key-generation algorithm,S supplies only a single decryption key (for the ith encryption key) and this is what a real receiverwould also have. (More precisely, given an environment that distinguishes between the real-life andideal interactions we construct an adversary that breaks either the security of the non-committingencryption or the oblivious key generation property. We omit further details.)4.4.2 The General ConstructionWe are now ready to show how to securely realize any (adaptively) well-formed two-party function-ality in the Fot-hybrid model, in the semi-honest case. (Adaptively well-formed functionalities arede�ned in Section 4.3.3. Two-party functionalities are functionalities that interact with the adver-sary, plus at most two parties.) The construction is essentially that of [52, 44], although as we havementioned, our protocol is actually more general in that it also deals with reactive functionalities.We begin by formally restating Proposition 4.2.1:Proposition 4.4.3 (Proposition 4.2.1 { formally restated): Assume that trapdoor permutationsexist. Then, for any two-party well-formed ideal functionality F , there exists a non-trivial protocolthat securely realizes F in the presence of semi-honest, static adversaries. Furthermore, if two-partyaugmented non-committing encryption protocols exist, then for any two-party adaptively well-formedideal functionality F , there exists a non-trivial protocol that securely realizes F in the presence ofsemi-honest, adaptive adversaries.Recall that a protocol is non-trivial if the ideal-process adversary delivers all messages from thefunctionality to the parties whenever the real-life adversary delivers all messages and doesn't corruptany parties. This restriction is included to rule out meaningless protocols such as the protocol thatnever generates output. (See Section 4.3.1 for more discussion.)The construction. Let F be an ideal two-party functionality and let P1 and P2 be the partic-ipating parties. The �rst step in constructing a protocol that securely realizes F is to represent(the shell of) F via a family CF of boolean circuits. That is, the mth circuit in the family describesan activation of F when the security parameter is set to m. Following [52, 44], we use arithmeticcircuits over GF(2) where the operations are addition and multiplication modulo 2.For simplicity we assume that the input and output of each party in each activation has at mostm bits, the number of random bits used by F in all activations is at most m, and at the end ofeach activation the local state of F can be described in at most m bits. Consequently the circuithas 3m input lines and 3m output lines, with the following interpretation. In each activation, onlyone party has input. Therefore, m of the input lines are allocated for this input. The other 2minput lines describe F 's m random coins and the length-m internal state of F at the onset of anactivation. The 3m output lines are allocated as follows: m output lines for the output of each ofthe two parties and m output lines to describe the state of F following an activation. The circuitis constructed so that each input from the adversary is set to 0, and outputs to the adversary are

76 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONignored.11 We note that if the input or output of a party in some activation is less than m bitsthen this is encoded in a standard way. Also, each party initially sets its shares of the state of Fto 0 (this denotes the empty state).Protocol �F (for securely realizing F): We state the protocol for an activation in whichP1 sends a message to F ; the case where P2 sends the message is easily derived (essentially byexchanging the roles of P1 and P2 throughout the protocol). It is assumed that both parties holdthe same session identi�er sid as auxiliary input. When activated with input (sid; v) within P1,the protocol �rst sends a message to the partner P2, asking it to participate in a joint evaluation ofthe mth circuit in CF . Next, P1 and P2 engage in a gate-by-gate evaluation of CF , on inputs thatrepresent the incoming message v from P1, the current internal state of F , and a random string.This is done as follows.1. Input Preparation Stage:� Input value: Recall that v is P1's input for this activation. P1 �rst pads v to be of lengthexactlym (using some standard encoding). Next P1 \shares" its input. That is, P1 choosesa random string v1 2R f0; 1gm and de�nes v2 = v1� v. Then, P1 sends (sid; v2) to P2 andstores v1.� Internal state: At the onset of each activation, the parties hold shares of the currentinternal state of F . That is, let c denote the current internal state of F , where jcj = m.Then, P1 and P2 hold c1; c2 2 f0; 1gm, respectively, such that c1 and c2 are random underthe restriction that c = c1 � c2. (In the �rst activation of F , the internal state is emptyand so the parties' shares both equal 0.)� Random coins: Upon the �rst activation of F only, parties P1 and P2 choose randomstrings r1 2R f0; 1gm and r2 2R f0; 1gm, respectively. These constitute shares of therandom coins r = r1 � r2 to be used by CF . We stress that r1 and r2 are chosen uponthe �rst activation only. The same r1 and r2 are then used for each subsequent activationof F (r1 are r2 are kept the same because the random tape of F does not change fromactivation to activation).At this point, P1 and P2 hold (random) shares of the input message to F , the internal stateof F and the random tape of F . That is, they hold shares of every input line into CF . Notethat the only message sent in the above stage is the input share v2 sent from P1 to P2.2. Circuit Evaluation: P1 and P2 proceed to evaluate the circuit CF in a gate-by-gate manner.Let � and � denote the values of the two input lines to a given gate. Then P1 holds bits �1; �1and P2 holds bits �2; �2 such that � = �1 + �2 and � = �1 + �2. The gates are computed asfollows:� Addition gates: If the gate is an addition gate, then P1 locally sets its share of the outputline of the gate to be 1 = �1 + �1. Similarly, P2 locally sets its share of the output lineof the gate to be 2 = �2 + �2. (Thus 1 + 2 = �+ �.)� Multiplication gates: If the gate is a multiplication gate, then the parties use F4ot in orderto compute their shares of the output line of the gate. That is, the parties wish to computerandom shares 1 and 2 such that 1+ 2 = � � � = (�1+�2)(�1+�2). For this purpose,11Thus, we e�ectively prevent the ideal-model adversary from utilizing its capability of sending and receivingmessages. This simpli�es the construction, and only strengthens the result.

4.4. TWO-PARTY SECURE COMPUTATION FOR SEMI-HONEST ADVERSARIES 77P1 chooses a random bit 1 2R f0; 1g, sets its share of the output line of the gate to 1,and de�nes the following table:Value of (�2; �2) Receiver input i Receiver output 2(0,0) 1 o1 = 1 + �1 � �1(0,1) 2 o2 = 1 + �1 � (�1 + 1)(1,0) 3 o3 = 1 + (�1 + 1) � �1(1,1) 4 o4 = 1 + (�1 + 1) � (�1 + 1)Having prepared this table, P1 sends the oblivious transfer functionality F4ot the message(sender; sid � j; o1; o2; o3; o4), where this is the jth multiplication gate in the circuit and �denotes concatenation (the index j is included in order to ensure that the inputs of theparties match to the same gate). P2 sets its input value i for F4ot according to the abovetable (e.g., for �2 = 1 and �2 = 0, P2 sets i = 3). Then, P2 sends (receiver; sid � j; i) toF4ot and waits to receive (sid � j; 2) from F4ot. Upon receiving this output, P2 sets 2 tobe its share of the output line of the gate. Thus, we have that 1+2 = (�1+�1)(�2+�2)and the parties hold random shares of the output line of the gate.3. Output Stage: Following the above stage, the parties P1 and P2 hold shares of all the outputlines of the circuit CF . Each output line of CF is either an output addressed to one of theparties P1 and P2, or belongs to the internal state of CF after the activation. The activationconcludes as follows:� P1's output: P2 sends P1 all of its shares in P1's output lines. P1 reconstructs every bit ofits output value by adding the appropriate shares. (If the actual output generated by Fhas less than the full m bits then this will be encoded in the output in a standard way.)� P2's output: Likewise, P1 sends P2 all of its shares in P2's output lines; P2 reconstructsthe value and writes it on its output tape.� S's output: Recall that the outputs of F to S are ignored by CF . Indeed, the protocoldoes not provide the real-life adversary with any information on these values. (This onlystrengthens the security provided by the protocol.)� Internal state: Finally, P1 and P2 both store the shares that they hold for the internalstate lines of CF . (These shares are to be used in the next activation.)Recall that there is no guarantee on the order of message delivery, so messages may be delivered\out of order". However, to maintain correctness, the protocol must not start some evaluationof CF before the previous evaluation of CF has completed. Furthermore, evaluating some gatecan take place only after the shares of the input lines of this gate are known. Thus, in order toguarantee that messages are processed in the correct order, a tagging method is used. Essentially,the aim of the method is to assign a unique tag to every message sent during all activations of F .Thus, the adversary can gain nothing by sending messages in di�erent orders. This is achieved inthe following way. Recall that both parties hold the same session-identi�er sid. Then, in activationi, the parties use the session-identi�er sid � i. They also attach a tag identifying the stage whichthe message sent belongs to. Thus, for example, the message v2 sent by P1 in the input stage ofthe `th activation is tagged with hsid � ` � inputi. Likewise, the jth call to Fot in the ith activationis referenced with the session identi�er sid � ` � j (and not just sid � j as described above). Now,given the above tagging method, the ordering guarantees can be dealt with in standard ways bykeeping messages that arrive too early in appropriate bu�ers until they become relevant (where the

78 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONtime that a message becomes relevant is self-evident from the labelling). By the above, it makesno di�erence whether or not the adversary delivers the messages according to the prescribed order.From here on we therefore assume that all messages are delivered in order. We also drop explicitreference to the additional tagging described here. This completes the description of �F .We now prove that the above construction securely realizes any adaptively well-formed functionality.(We stress that for the case of static adversaries, �F securely realizes any well-formed functionality,and not just those that are adaptively well-formed. Nevertheless, here we prove the claim only foradaptively well-formed functionalities and adaptive adversaries. The static case with security forany well-formed functionality is easily derived.)Notice that each activation of �F is due to an input sent by one of the participating parties.This implicitly assumes that the only messages that the functionality receives are from the partiesthemselves. This is indeed the case for well-formed functionalities (or, more accurately, the shellsof such functionalities). However, recall that in general, functionalities receive noti�cation of theparties that are corrupted. The protocol does not (and cannot) deal with such messages andtherefore does not securely realize functionalities that are not well-formed.Claim 4.4.4 Let F be a two-party adaptively well-formed functionality. Then, protocol �F securelyrealizes F in the Fot-hybrid model, in the presence of semi-honest, adaptive adversaries.Note that the claim holds unconditionally. In fact, it holds even if the environment and theadversary are computationally unbounded. (Of course, computational assumptions are requiredfor securely realizing the oblivious transfer functionality.) The proof below deals with the securityof reactive functionalities, in the presence of adaptive adversaries. This proof is signi�cantly moreinvolved than an analogous claim regarding non-reactive functionalities and static adversaries. Fora warm-up, we refer the reader unfamiliar with this more simple case to [44, Sec. 2.2.4].Proof: First note that protocol �F \correctly" computes F . That is, in each activation, if theinputs of both parties in the real-life model are identical to their inputs in the ideal process, then theoutputs of the uncorrupted parties are distributed identically as their outputs in the ideal process.This fact is easily veri�ed and follows inductively from the property that the parties always holdcorrect shares of the lines above the gates computed so far. (The base case of the induction relatesto the fact that the parties hold correct shares of the input and internal state lines. In addition,the lines corresponding to F 's random tape contain uniformly distributed values.)We now proceed to show that �F securely realizes F . Intuitively, the security of protocol �F isbased on the fact that all the intermediate values seen by the parties are uniformly distributed. Inparticular, the shares that each party receives of the other party's input are random. Furthermore,every output that a party receives from an oblivious transfer is masked by a random bit chosen bythe sender. Throughout the proof, we denote by x and y the outputs of P1 and P2, respectively.Let A be a semi-honest, adaptive adversary that interacts with parties running Protocol �Fin the Fot-hybrid model. We construct an adversary S for the ideal process for F such that noenvironment Z can tell whether it interacts with A and �F in the Fot-hybrid model, or with S inthe ideal process for F . S internally runs a simulated copy of A, and proceeds as follows:Simulating the communication with Z: Every input value that S receives from Z is writtenon A's input tape (as if coming from A's environment). Likewise, every output value writtenby A on its output tape is copied to S's own output tape (to be read by S's environment Z).Simulation of the input stage: We �rst describe the simulation in the case that P1 is corrupted(before the protocol begins). In this case, S holds the contents of P1's input tape (sid; v) and

4.4. TWO-PARTY SECURE COMPUTATION FOR SEMI-HONEST ADVERSARIES 79therefore externally sends the value to the ideal functionality F . Now, the input stage of �Fconsists only of P1 sending a random string v2 to P2. In the case that P1 is corrupted, thisstring is already determined and thus no further simulation is required. In the case that P1is not corrupted, S chooses a uniformly distributed string v2 and simulates P1 sending thisstring to P2.Simulation of the circuit evaluation stage: The computation of addition gates consists onlyof local computation and therefore requires no simulation. In contrast, each multiplicationgate is computed using an ideal call to Fot, where P1 plays the sender and P2 plays thereceiver. We describe the simulation of these calls to Fot separately for each corruption case:1. Simulation when both P1 and P2 are not corrupted: In this case, the only message seenby A in the evaluation of the jth gate is the (sid � j) message from the correspondingcopy of Fot. Thus, S simulates this stage by merely simulating for A an (sid�j) messagesent from Fot to the recipient P2.2. Simulation when P1 is corrupted and P2 is not corrupted: The simulation in this caseis the same as in the previous (P1 obtains no output from Fot and therefore A receives(sid � j) only).3. Simulation when P1 is not corrupted and P2 is corrupted: The receiver P2 obtains auniformly distributed bit 2 as output from each call to Fot. Therefore, S merelychooses 2 2R f0; 1g and simulates P2 receiving 2 from Fot.4. Simulation when both P1 and P2 are corrupted: Since all input and random tapes arealready de�ned when both parties are corrupted, simulation is straightforward.Simulation of the output stage: S simulates P1 and P2 sending each other their shares of theoutput lines. As above, we separately describe the simulation for each corruption case:1. Simulation when both P1 and P2 are not corrupted: In this case, all A sees is P1 and P2sending each other random m-bit strings. Therefore, S chooses y1; x2 2R f0; 1gm andsimulates P1 sending y1 to P2 and P2 sending x2 to P1 (y1 is P1's share in P2's outputy and vice versa for x2).2. Simulation when P1 is corrupted and P2 is not corrupted: First, notice that the outputshares of a corrupted party are already de�ned (because A holds the view of any cor-rupted party and this view de�nes the shares in all output lines). Thus, in this case,the string sent by P1 in the output stage is predetermined. In contrast, P2's string isdetermined as follows: P1 is corrupted and therefore S has P1's output x. Furthermore,P1's shares x1 in its own output lines are �xed (because P1 is corrupted). S thereforesimulates P2 sends x2 = x�x1 to P1 (and so P1 reconstructs its output to x, as required).3. Simulation when P1 is not corrupted and P2 is corrupted: The simulation here is thesame as in the previous case (while reversing the roles of P1 and P2).4. Simulation when both P1 and P2 are corrupted: The shares of all output lines of bothparties are already determined and so simulation is straightforward.Simulation of the �rst corruption: We now show how S simulates the �rst corruption of aparty. Notice that this can occur at any stage after the simulation described above begins.(If the party is corrupted before the execution begins, then the simulation is according toabove.) We describe the corruption as if it occurs at the end of the simulation; if it occurs

80 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONearlier, then the simulator follows the instructions only until the appropriate point. Wedi�erentiate between the corruptions of P1 and P2:1. P1 is the �rst party corrupted: Upon corrupting P1, simulator S receives P1's input valuev. S proceeds by generating the view of P1 in the input preparation stage. Let v2 bethe message that P1 sent P2 in the simulation of the input stage by S. Then, S sets P1'sshares of its input to v1, where v1 � v2 = v. Furthermore, S sets P1's m-bit input r1 tothe lines corresponding to CF 's random tape to be a uniformly distributed string, andP1's shares of the internal state of F to be a random string c1 2R f0; 1gm. (Actually,if this is the �rst activation of CF , then c1 is set to 0 to denote the empty state.) Inaddition, S sets P1's random tape to be a uniformly distributed string of the appropriatelength for running �F . (Notice that this random tape de�nes the bits 1 that P1 chooseswhen de�ning the oblivious transfer tables for the multiplication gates; recall that thesebits then constitute P1's shares of the output lines from these gates.) In the case thatP1 is corrupted before the output stage, this actually completes the simulation of P1'sview of the evaluation until the corruption took place. This is due to the fact that P1receives no messages during the protocol execution until the output stage (P1 is alwaysthe oblivious transfer sender).We now consider the case that P1 is corrupted after the output stage is completed. Inthis case the output messages x2 and y1 of both parties have already been sent. Thus,we must show that S can e�ciently compute a random tape for P1 that is consistentwith these messages. For simplicity of exposition, we assume that only multiplicationgates, and no addition gates, lead to output lines; any circuit can be easily modi�ed toful�ll this requirement. Now, notice that the random coin 1 chosen by P1 in any givenmultiplication gate is independent of all other coins. Therefore, the simulated outputmessages x2; y1 that S already sent only inuence the coins of multiplication gates thatlead to output lines; the coins of all other multiplication gates can be chosen uniformlyand independently of x2; y1. The coins for multiplication gates leading to output linesare chosen as follows: For the ith output line belonging to P2's output, S sets P1's coin1 to equal the ith bit of y1. (Recall that P1's random coin 1 equals its output from thegate; therefore, P1's output from the gate equals its appropriate share in P2's output,as required.) Furthermore, for the ith output line belonging to P1's output, S sets P1'srandom coin 1 to equal the ith bit of x � x2. (Therefore, P1's reconstructed outputequals x, as required; furthermore, this reconstructed value is independent from theintermediary information learned by the adversary.)2. P2 is the �rst party corrupted: Upon the corruption of P2, simulator S receives P2'soutput y (P2 has no input). Then, S must generate P2's view of the execution. S beginsby choosing r2 2R f0; 1gm and setting P2's input to the lines corresponding to CF 'srandom tape to r2. In addition, it chooses the shares of the internal state of F to bea random string c2. (As above, in the �rst activation of CF , the string c2 is set to 0.)Next, notice that from this point on, P2 is deterministic (and thus it needs no randomtape). Also, notice that the value that P2 receives in each oblivious transfer is uniformlydistributed. Therefore, S simulates P2 receiving a random bit for every oblivious transfer(S works in this way irrespective of when P2 was corrupted). If this corruption occursbefore the output stage has been simulated, then the above description is complete (andaccurate). However, if the corruption occurs after the simulation of the output stage,then the following changes must be made. First, as above, the random bits chosen for

4.4. TWO-PARTY SECURE COMPUTATION FOR SEMI-HONEST ADVERSARIES 81P2's outputs from the oblivious transfers de�ne P2's shares in all the output lines. Now,if the output stage has already been simulated then the string x2 sent by P2 to P1 andthe string y1 sent by P1 to P2 have already been �xed. Thus, as in the previous case, Schooses the output bits of the oblivious transfers so that they are consistent with thesestrings. In particular, let y be P2's output (this is known to S since P2 is corrupted)and de�ne y2 = y � y1. Then, S de�nes P2's output-bit of the oblivious transfer that isassociated with the ith bit of its shares of its own output to be the ith bit of y2. Likewise,the output from the oblivious transfer associated with the ith bit of P2's share of P1'soutput is set to equal the ith bit of x2.We note that in the above description, S generates the corrupted party's view of the currentactivation. In addition, it must also generate the party's view for all the activations inthe past. Observe that the only dependence between activations is that the shares of thestate string input into a given activation equal the shares of the state string output from thepreceding activation. Thus, the simulation of prior activations is exactly the case of simulationwhere the corruption occurs after the output stage has been completed. The only di�erenceis that S de�nes the shares of the state string so that they are consistent between consecutiveactivations.Simulation of the second corruption: As before, we di�erentiate between the corruptions ofP1 and P2:1. P2 is the second party corrupted: Upon corrupting P2, simulator S obtains P2's outputin this activation and all its inputs and outputs from previous activations. Furthermore,since the functionality is adaptively well-formed, S obtains the random tape used by theideal functionality F in its computation. Next, S computes the internal state of F inthis activation, based on all the past inputs, outputs and the internal random tape of F(this can be computed e�ciently). Let c be this state string and let r equal F 's m-bitrandom tape. Then, P2 sets c2 such that c = c1 � c2, where c1 was randomly chosenupon P1's corruption. (S also makes sure that the output state information from theprevious execution equals the input state information from this execution. This is easilyaccomplished because output gates are always immediately preceded by multiplicationgates, and so independent random coins are used.) Similarly, S sets r2 = r1 � r, wherer equals F 's random tape and r1 equals the random string chosen upon P1's corruption(for simulating P1's share of the random tape of CF).We now proceed to the rest of the simulation. In the case we are considering here,P1 has already been corrupted. Therefore, all the tables for the oblivious transfers havealready been de�ned. It thus remains to show which values P2 receives from each of thesegate evaluations. However, this is immediately de�ned by P2's input and the oblivioustransfer tables. Thus, all the values received by P2 from this point on, including theoutput values, are fully de�ned, and S can directly compute them.2. P1 is the second party corrupted: The simulation by S here begins in the same way aswhen P2 is the second party corrupted. That is, S corrupts P1 and obtains the randomtape of F . Then, S de�nes the appropriate state share string c1, and random tapeshare string r1 (in the same way as above). In addition, S obtains P1's input value vand de�nes the appropriate share v1 (choosing it so that v1 � v2 = v). This de�nesall the inputs into the circuit CF . Given this information, S constructs the tables forall the oblivious transfers. Recall that P2 is already corrupted. Therefore, the bits

82 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONthat it receives from each oblivious transfer are already de�ned. Now, for each gate(working from the inputs to the outputs), S works as follows. Let 2 be the output thatP2 received from some oblivious transfer. Furthermore, assume that S holds the inputshares of both parties for the gate in question (this can be assumed because S worksbottom-up, from the input lines to the output lines). Then, S checks what the real(unmasked) output bit of the gate should be, let this value be . Given that P2 received2 and the output value should be , simulator S sets P1's random-bit in de�ning thistable to be 1 = 2 � . S continues in this way for all the gates evaluated in thesimulation before P1 was corrupted. We note that if the corruption occurred after theoutput stage, then the output strings sent are de�ned by the outputs of the gates, ascomputed above.Output and output delivery: S delivers the output from F to (an uncorrupted) party after Adelivers the corresponding output message to the party in the simulation. This takes care ofthe outputs of corrupted parties. For a corrupted party Pi (i 2 f1; 2g), simulator S copiesthe contents of the simulated Pi's output tape (as written by A) onto the output tape of theideal process party Pi.Analysis of S. We show that no environment Z can distinguish the case where it interacts withS and F in the ideal process from the case where it interacts with A and �F in the Fot-hybridmodel. In fact, we demonstrate that Z's view is distributed identically in the two interactions.The proof proceeds by induction on the number of activations in a run of Z. Recall that in eachactivation, Z reads the output tapes of P1, P2, and the adversary, and then activates either P1, P2or the adversary with some input value. (One should not confuse activations of a party, as is theintention here, with activations of the functionality and protocol.) We actually prove a somewhatstronger claim: Let �ri denote the random variable describing the state of Z at the onset of theith activation in an interaction with adversary A and parties running �F in the Fot-hybrid model,and let �ri denote the random variable describing the state of A at this point in the interaction.Let � ii denote the random variable describing the state of Z at the onset of its ith activation in aninteraction with adversary S in the ideal process for functionality F , and let �ii denote the randomvariable describing the state of the simulated A within S at this point in the interaction. We showthat for all i, the pairs (�ri ; �ri) and (� ii; �ii) are identically distributed. More precisely, Let i > 0.Then, for any values a1; a2; b1; b2 we show:Pr h(�ri+1; �ri+1) = (b1; b2) ��� (�ri ; �ri) = (a1; a2)i = Pr h(� ii+1; �ii+1) = (b1; b2) ��� (� ii ; �ii) = (a1; a2)i(4.3)That is, assume that the states of Z and A at the onset of some activation of Z have some arbitrary(�xed) values a1 and a2, respectively. Then the joint distribution of the states of Z and A at theonset of the next activation of Z is the same regardless of whether we are in the \real interaction"with �F , or in the ideal process. (In the interaction with �F the probability is taken over therandom choices of the uncorrupted parties. In the ideal process the probability is taken over therandom choices of S and F .)Asserting Eq. (4.3), recall that in the ith activation Z �rst reads the output tapes of P1, P2,and the adversary. (We envision that these values are written on a special part of the incomingcommunication tape of Z, and are thus part of its state �ri = � ii.) Next, Z either activates someuncorrupted party with some input x, or activates the adversary with input x. We treat these casesseparately:

4.4. TWO-PARTY SECURE COMPUTATION FOR SEMI-HONEST ADVERSARIES 83Z activates an uncorrupted party with some input value x. In this case, in the interactionwith �F , the activated party sends out a request to the other party to evaluate an activationof CF , plus a random share of x. This message becomes part of the state of A (who seesall messages sent). In the ideal process, S (who sees that the party sent a message to F)generates a simulated message for A with the same distribution. (Recall that this message isjust a uniformly distributed string.)Z activates the adversary with some input value x. Recall that in the interaction with �Fadversary A is now activated, reads x, and in addition has access to the messages sent bythe parties and by the various copies of Fot since its last activation. (We envision that thisinformation is written on A's incoming communication tape.) Next, A can either delivera message to some party, modify the input/output tapes of some already corrupted partyor corrupt a currently honest party. Finally, A writes some value on its output tape andcompletes its activation. In the ideal process, S forwards x to A and activates A. Next,S provides A with additional information representing the messages sent by the parties andalso, in case of party corruption, the internal state of the corrupted party.We proceed in four steps. First, we show that the contents of A's incoming communicationtape has the same distribution in both interactions. Second, we show that the e�ect of messagedelivery on the states of A and Z is the same in both interactions. Third, we demonstratethat the information learned by A upon corrupting a party has the same distribution inboth interactions. Finally, we demonstrate that A's view regarding the states of the alreadycorrupted parties has the same distribution in both interactions.New messages seen by A. Each message seen by A is of one of the following possibletypes:� An input-sharing message as described above: As mentioned above, in this case in bothinteractions A sees an m-bit long random string, representing a share of the sender'snew input value.� A message from a party to some copy of Fot: In this case, in both interactions, A onlygets noti�ed that some message was sent from the party to the copy of Fot.� A message from some copy of Fot to P2: In both interactions, if P2 is uncorrupted thenA does not see the contents of this message. If P2 is corrupted then this message consistsof a single random bit that is independent from the states of A and Z so far. (This bitis P2's share of the corresponding line of the circuit.)� An output message from one party to another: Here one party sends its share of someoutput line to the other party (who is designated to get the value of this line.) In bothinteractions, if the recipient party is uncorrupted then this message consists of a singlerandom bit � that is independent from the states of A and Z so far. If the recipientis corrupted then A already has �, the recipient's share of that line. In the interactionwith �F , the value = ��� is the value of this output line in CF . In the ideal process, = � � � is the corresponding value generated by F . The distribution of c (given thestates of A and Z so far) is identical in both cases; this is the case because CF correctlyrepresents an activation of F .Messages delivered by A. If A delivers an output message to some party in an executionof �F , then this party outputs the (correct) value derived from the corresponding output linesof CF . This output value, r, becomes part of the state of Z (to be read by Z at the onset of

84 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONits next activation.) If A delivers an output message to some party in the ideal process, thenS (who runs A) delivers the corresponding message from F to this party. Consequently, thisparty outputs the value, i, sent by F . Since CF correctly represents the computation of F ,we have that r and i are identically distributed.If A delivers to some party Pi a message that is not an output message then Pi outputsnothing. (Pi may send other messages, but these messages will only become part of the stateof A in its next activation. This next activation of A occurs after the next activation of Z.)Corruption of the �rst party. In the interaction with �F , upon corrupting the �rstparty A sees all the past inputs and outputs of this party. In addition, it sees all the sharesof this party from the input lines, the random input lines, the internal state input lines,and all the internal lines of the circuit CF ; these shares are all random values distributedindependently from the states of A and Z so far. In the ideal process, S provides A withidentically distributed information.Corruption of the second party. In the interaction with �F , upon corrupting the secondparty A sees the same information as in the �rst corruption, namely all the past inputs andoutputs of this party, as well as the shares of this party from the input lines, the random inputlines, the internal state input lines, and all the internal lines of the circuit CF . Here, however,this information determines the actual values of all types of input lines to the circuit, plusthe values of all the internal lines of the circuit. (The values of the random input lines tothe circuit are uniformly distributed. All other lines are uniquely determined by the statesof Z and A at this point.) In the ideal process, S provides A with identically distributedinformation. (This can be seen from the code of S.)This completes the analysis of S and the proof of the claim.Using the composition theorem, Proposition 4.4.3 follows from Claims 4.4.1, 4.4.2, and 4.4.4.4.5 Universally Composable CommitmentsWe describe our new universally-composable non-interactive commitment scheme. Our constructionis in the common reference string model, and assumes only the existence of trapdoor permutations.(If the common reference string must come from the uniform distribution, then we actually re-quire trapdoor permutations with dense public descriptions [27].) UC commitment schemes areprotocols that securely realize the multi-session ideal commitment functionality Fmcom presentedin Figure 4.4. Note that Fmcom is in fact a re-formulation of F̂com, the multi-session extension ofthe single-session ideal commitment functionality, Fcom, presented in [16].Informally speaking, in order to achieve universal composability against adaptive adversaries, acommitment scheme must have the following two properties:� Polynomial equivocability: the simulator (i.e., the adversary in the ideal process) should be ableto produce many commitments for which it can decommit to both 0 and 1, using the samereference string. (An additional property is actually needed for adaptive security; see below.)Of course, the real committer must be able to decommit to only a single value (as required bythe binding property of commitment schemes).� Simulation extractability: the simulator should be able to extract the contents of any valid com-mitment generated by the adversary, even after having supplied an adversary with an arbitrarynumber of equivocable commitments.

4.5. UNIVERSALLY COMPOSABLE COMMITMENTS 85Functionality FmcomFmcom proceeds as follows, running with parties P1; : : : ; Pn and an adversary S:� Commit Phase: Upon receiving a message (commit; sid; ssid; Pi; Pj ; b) from Pi, where b 2 f0; 1g,record the tuple (ssid; Pi; Pj ; b) and send the message (receipt; sid; ssid; Pi; Pj) to Pj and S. Ignoreany future commit messages with the same ssid from Pi to Pj .� Reveal Phase: Upon receiving a message (reveal; sid; ssid) from Pi: If a tuple (ssid; Pi; Pj ; b)was previously recorded, then send the message (reveal; sid; ssid; Pi; Pj ; b) to Pj and S. Otherwise,ignore. Figure 4.4: The ideal commitment functionalityWe remark that in the equivocable commitment protocols of [28, 29] each copy of the reference stringcan be used for only a single commitment. Furthermore, they are not extractable. In contrast, [16]show how to use a single copy of the reference string for multiple commitments (although they relyon speci�c cryptographic assumptions).We describe our construction in phases. First we describe a new non-interactive variant of theFeige-Shamir trapdoor commitment scheme [36], which is at the heart of our construction. Thenwe show how to transform this scheme into one that is universally composable.Underlying standard commitment. In our construction we use a non-interactive, perfectlybinding commitment scheme with pseudorandom commitments; denote this scheme by Com. Anexample of such a scheme is the standard non-interactive commitment scheme based on a one-waypermutation f and a hard-core predicate b of f . In order to commit to a bit � in this scheme,one computes Com(�) = hf(Uk); b(Uk) � �i, where Uk is the uniform distribution over f0; 1gk .The Com scheme is computationally secret and produces pseudorandom commitments: that is, thedistribution ensembles fCom(0)g, fCom(1)g, and fUk+1g are all computationally indistinguishable.Non-interactive Feige-Shamir trapdoor commitments. We briey describe a non-interactiveversion of the Feige-Shamir trapdoor commitment scheme [36], which is based on the zero-knowledgeproof for Hamiltonicity of Blum [11]. (We are able to obtain a non-interactive version of this schemeby utilizing the common reference string.) First, we obtain a graph G (with q nodes), so that it ishard to �nd a Hamiltonian cycle in G within polynomial-time. This is achieved as follows: choosex 2R f0; 1gk and compute y = f(x), where f is a one-way function. Then, use the reduction ofthe language fy j 9x s:t: y = f(x)g to that of Hamiltonicity, to obtain a graph G so that �nding aHamiltonian cycle in G is equivalent to �nding the preimage x of y. The one-wayness of f impliesthe di�culty of �nding a Hamiltonian cycle in G. This graph G, or equivalently the string y, isplaced in the common reference string accessible by both parties. Now, in order to commit to 0,the committer commits to a random permutation of G using the underlying commitment schemeCom (and decommits by revealing the entire graph and the permutation). In order to commit to 1,the committer commits to a graph containing a randomly labeled q-cycle only (and decommitsby opening this cycle only). Note that this commitment scheme is binding because the ability todecommit to both 0 and 1 implies that the committer knows a Hamiltonian cycle in G. The impor-tant property of the [36] scheme that we use here is equivocability (or what they call the trapdoorproperty). That is, given a Hamiltonian cycle in G, it is possible to generate commitments thatare indistinguishable from legal ones, and yet have the property that one can decommit to both a 0

86 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONand a 1. In particular, after committing to a random permutation of G, it is possible to decommitto 0 in the same way as above. However, it is also possible to decommit to 1 by only revealing the(known) Hamiltonian cycle in G.Adaptively secure commitments. We proceed to describe our �rst step for obtaining adaptivesecurity. In general, the following additional property is required of the simulator: Let c be acommitment produced by the simulator who knows a Hamiltonian cycle in G. Then, for anyb 2 f0; 1g, the simulator should be able to produce a random string rb, so that the honest committer,given input b and random tape rb, outputs the commitment c. Thus, the simulator can provide an\explanation" of its actions, as if it were an honest committer. We note that the [36] scheme doesnot have this property.The adaptively secure scheme, denoted aHC (for adaptive Hamiltonian Commitment), di�ersfrom [36] in the way commitments are generated. That is:� To commit to a 0, the sender picks a random permutation � of the nodes of G, and commits tothe entries of the adjacency matrix of the permuted graph one by one, using Com. To decommit,the sender sends � and decommits to every entry of the adjacency matrix. The receiver veri�esthat the graph it received is �(G). (This is the same as in the [36] scheme.)� To commit to a 1, the sender chooses a randomly labeled q-cycle, and for all the entries in theadjacency matrix corresponding to edges on the q-cycle, it uses Com to commit to 1 values.For all the other entries, it simply produces random values from Uk+1 (for which it does notknow the decommitment). To decommit, the sender opens only the entries corresponding to therandomly chosen q-cycle in the adjacency matrix. (This is the point where our scheme di�ersto that of [36]. That is, in [36] the edges that are not on the q-cycle are sent as commitmentsto 0. Here, random strings are sent instead.)By the above description, the length of the random string used in order to commit to 0 is di�erentfrom the length of the random string used in order to commit to 1. Nevertheless, we pad thelengths so that they are equal (the reason why this is needed will be explained below). We denote byaHC(b; r) a commitment of the bit b using randomness r, and by aHC(b) the distribution aHC(b;Ujrj).This commitment scheme has the property of being computationally secret; i.e., the distributionensembles faHC(0)g and faHC(1)g are computationally indistinguishable for any graph G. Also,given the opening of any commitment to both a 0 and 1, one can extract a Hamiltonian cycle in G.Therefore, the committer cannot decommit to both 0 and 1, and the binding property holds. Finally,as with the scheme of [36], given a Hamiltonian cycle in G, a simulator can generate a commitmentto 0 and later open it to both 0 and 1. (This is because the simulator knows a simple q-cycle in Gitself.) Furthermore, in contrast to [36], here the simulator can also produce a random tape for thesender, explaining the commitment as a commitment to either 0 or 1. Speci�cally, the simulatorgenerates each commitment string c as a commitment to 0. If, upon corruption of the sender, thesimulator has to demonstrate that c is a commitment to 0 then all randomness is revealed. Todemonstrate that c was generated as a commitment to 1, the simulator opens the commitmentsto the edges in the q-cycle and claims that all the unopened commitments are merely uniformlychosen strings (rather than commitments to the rest of G). This can be done since commitmentsproduced by the underlying commitment scheme Com are pseudorandom. This therefore gives uspolynomial equivocability, where the same reference string can be reused polynomially-many times.Achieving simulation extractability. As discussed above, the commitment scheme aHC hasthe equivocability property, as required. However, a UC commitment scheme must also have the

4.5. UNIVERSALLY COMPOSABLE COMMITMENTS 87simulation extractability property. We must therefore modify our scheme in such a way that we addextractability without sacri�cing equivocability. Simulation-extractability alone could be achievedby including a public-key for an encryption scheme secure against adaptive chosen-ciphertext at-tacks (CCA2) [32] into the common reference string, and having the committer send an encryptionof the decommitment information along with the commitment itself. A simulator knowing the as-sociated decryption key can decrypt and obtain the decommitment information, thereby extractingthe committed value from any adversarially prepared commitment. (The reason that we use aCCA2-secure encryption scheme will become evident in the proof. Intuitively, the reason is that inthe simulated interaction extracting the committed value involves ciphertext decryptions. Thus byinteracting with the simulator the adversary essentially has access to a decryption oracle for theencryption scheme.) However, just encrypting the decommitment information destroys the equiv-ocability of the overall scheme, since such an encryption is binding even to a simulator. In orderto regain equivocability, we use encryption schemes with pseudorandom ciphertexts. This is usedin the following way. Given any equivocable commitment, there are two possible decommitmentstrings (by the binding property, only one can be e�ciently found but they both exist). The com-mitment is sent along with two ciphertexts: one ciphertext is an encryption of the decommitmentinformation known to the committer and the other ciphertext is just a uniformly distributed string.In this way, equivocability is preserved because a simulator knowing both decommitment stringscan encrypt them both and later claim that it only knows the decryption to one and that theother was uniformly chosen. A problem with this solutions is that there is no known CCA2-securescheme with pseudorandom ciphertexts (and assuming only trapdoor permutations). We thereforeuse double encryption. That is, �rst the value is encrypted using a CCA2-secure scheme, whichmay result in a ciphertext which is not pseudorandom, and then this ciphertext is re-encryptedusing an encryption scheme with pseudorandom ciphertexts. (The second scheme need only besecure against chosen plaintext attacks.)For the CCA2-secure scheme, denoted Ecca, we can use any known scheme based on trapdoorpermutations with the (natural) property that any ciphertext has at most one valid decryption.This property holds for all known such encryption schemes, and in particular for the scheme of [32].For the second encryption scheme, denoted E, we use the standard encryption scheme based ontrapdoor-permutations and hard-core predicates [49], where the public key is a trapdoor permuta-tion f , and the private key is f�1. Here encryption of a bit b is f(x) where x is a randomly chosenelement such that the hard-core predicate of x is b. Note that encryptions of both 0 and 1 arepseudorandom. The commitment scheme, called UC Adaptive Hamiltonicity Commitment UAHC, ispresented in Figure 4.5.Let Fcrs denote the common reference string functionality (that is, Fcrs provides all partieswith a common, public string drawn from the distribution described in Figure 4.5). Then, we have:Proposition 4.5.1 Assuming the existence of trapdoor permutations, Protocol UAHC of Figure 4:5securely realizes Fmcom in the Fcrs-hybrid model.Proof: Let A be a malicious, adaptive adversary that interacts with parties running the aboveprotocol in the Fcrs-hybrid model. We construct an ideal process adversary S with access toFmcom, which simulates a real execution of Protocol UAHC with A such that no environment Zcan distinguish the ideal process with S and Fmcom from a real execution of UAHC with A.12As we have mentioned, the length of the random string r is the same for the case of b = 0 and b = 1. This isnecessary because otherwise it would be possible to distinguish commitments merely by looking at the lengths of C0and C1.

88 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONProtocol UAHC� Common Reference String: The string consists of a random image y of a one-way function f(this y determines the graph G), and public-keys for the encryption schemes E and Ecca. (Thesecurity parameter k is implicit.)� Commit Phase:1. On input (commit; sid; ssid; Pi; Pj ; b) where b 2 f0; 1g, party Pi computes z = aHC(b; r)for a uniformly distributed string of the appropriate length. Next, Pi computes Cb =E(Ecca(Pi; Pj ; sid; ssid; r)) using random coins s, and sets C1�b to a random string of lengthjCbj.12 Finally, Pi records (sid; ssid; Pj ; r; s; b), and sends c = (sid; ssid; Pi; z; C0; C1) to Pj .2. Pj receives and records c, and outputs (receipt; sid; ssid; Pi; Pj). Pj ignores any later commitmessages from Pi with the same (sid; ssid).� Reveal Phase:1. On input (reveal; sid; ssid), party Pi retrieves (sid; ssid; Pj ; r; s; b) and sends (sid; ssid; r; s; b)to Pj .2. Upon receiving (sid; ssid; r; s; b) from Pi, Pj checks that it has a tuple (sid; ssid; Pi; z; C0; C1).If yes, then it checks that z = aHC(b; r) and that Cb = E(Ecca(Pi; Pj ; sid; ssid; r)), where theciphertext was obtained using random coins s. If both these checks succeed, then Pj outputs(reveal; sid; ssid; Pi; Pj ; b). Otherwise, it ignores the message.Figure 4.5: The commitment protocol UAHCRecall that S interacts with the ideal functionality Fmcom and with the environment Z. Theideal adversary S starts by invoking a copy of A and running a simulated interaction of A withthe environment Z and parties running the protocol. (We refer to the interaction of S in the idealprocess as external interaction. The interaction of S with the simulated A is called internal inter-action.) We �x the following notation. First, the session and sub-session identi�ers are respectivelydenoted by sid and ssid. Next, the committing party is denoted Pi and the receiving party Pj .Finally, C denotes a ciphertext generated from E(�), and c denotes a ciphertext generated fromEcca(�). Simulator S proceeds as follows:Initialization step: The common reference string (CRS) is chosen by S in the following way(recall that S chooses the CRS for the simulated A by itself):1. S chooses a string x 2R f0; 1gk and computes y = f(x), where f is the speci�ed one-wayfunction.2. S runs the key-generation algorithm for the CCA2-secure encryption scheme, obtaininga public-key Ecca and a secret-key Dcca.3. S runs the key-generation algorithm for the CPA-secure encryption scheme with pseu-dorandom ciphertexts, obtaining a public-key E and a secret-key D.Then, S sets the common reference string to equal (y;Ecca; E) and locally stores the triple(x;Dcca;D). (Recall that y de�nes a Hamiltonian graph G and knowing x is equivalent toknowing a Hamiltonian cycle in G.)Simulating the communication with Z: Every input value that S receives from Z is writtenon A's input-tape (as if coming from A's environment). Likewise, every output value written

4.5. UNIVERSALLY COMPOSABLE COMMITMENTS 89by A on its own output tape is copied to S's own output tape (to be read by S's environmentZ).Simulating \commit" activations where the committer is uncorrupted: Upon receiving a(receipt; sid; ssid; Pi; Pj) message from Fmcom when Pi is not corrupted, S simulates a realcommit message from Pi as follows. S computes z aHC(0) along with two strings r0 andr1 such that rb constitutes a decommitment of z to b. (As we have described, since S knows aHamiltonian cycle inG, it is able to do this.) Next, S computesC0 E(Ecca(Pi; Pj ; sid; ssid; r0))using random coins s0, and C1 E(Ecca(Pi; Pj ; sid; ssid; r1)) using random coins s1. Then,in the internal interaction, S simulates Pi sending c = (sid; ssid; Pi; z; C0; C1) to Pj and stores(c; r0; s0; r1; s1).Simulating \reveal" activations where the committer is uncorrupted: Upon receiving a(reveal; sid; ssid; Pi; Pj ; b) message from Fmcom when Pi is not corrupted, S generates a sim-ulated decommitment message from the real-model Pi: this message is (sid; ssid; rb; sb; b),where rb and sb are as generated in the previous item. S then simulates for A the eventwhere Pi sends this message to Pj in the internal interaction.Simulating corruption of parties: When A issues a \corrupt Pi" command in the internal (sim-ulated) interaction, S �rst corrupts the ideal model party Pi and obtains the values of allits unopened commitments. Then, S prepares the internal state of Pi to be consistent withthese commitment values in the same way as shown above. That is, in a real execution partyPi stores the tuple (sid; ssid; Pj ; r; s; b) for every commitment c. In the simulation, S de�nesthe stored tuple to be (sid; ssid; Pj ; rb; sb; b) where rb and sb are as generated above.Simulating \commit" activations where the committer is corrupted: When A, control-ling corrupted party Pi, sends a commitment message (sid; ssid; Pi; z; C0; C1) to an uncor-rupted party Pj in the internal (simulated) interaction, S works as follows. If a commitmentfrom Pi to Pj using identi�ers (sid; ssid) was sent in the past, then S ignores the message.Otherwise, informally speaking, S must extract the commitment bit committed to by A.Simulator S begins by decrypting both C0 and C1 obtaining ciphertexts c0 and c1 and thendecrypting each of c0 and c1. There are three cases here:1. Case 1: For some b 2 f0; 1g, cb decrypts to (Pi; Pj ; sid; ssid; r) where r is the correctdecommitment information for z as a commitment to b, and c1�b does not decrypt to adecommitment to 1� b. Then, S sends (commit; sid; ssid; Pi; Pj ; b) to Fmcom and storesthe commitment string.2. Case 2: Neither c0 or c1 decrypt to (Pi; Pj ; sid; ssid; r) where r is the appropriate de-commitment information for z (and sid and ssid are the correct identi�ers from thecommitment message). In this case, S sends (commit; sid; ssid; Pi; Pj ; 0) to Fmcom. (Thecommitment string is not stored, since it will never be opened correctly.)3. Case 3: c0 decrypts to (Pi; Pj ; sid; ssid; r0) and c1 decrypts to (Pi; Pj ; sid; ssid; r1), wherer0 is the correct decommitment information for z as a commitment to 0 and r1 is thecorrect decommitment information for z as a commitment to 1. Furthermore, the iden-ti�ers in the decryption information are the same as in the commitment message. Inthis case, S outputs a special failure symbol and halts.Simulating \reveal" activations where the committer is corrupted: When A, controllingcorrupted party Pi, sends a reveal message (sid; ssid; r; s; b) to an uncorrupted party Pj

90 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONin the internal (simulated) interaction, S works as follows. S �rst checks that a tuple(sid; ssid; Pi; z; C0; C1) is stored and that r and s constitute a proper decommitment to b. Ifthe above holds, then S sends (reveal; sid; ssid; Pi; Pj) to Fmcom. Otherwise, S ignores themessage.Delivery of messages: S delivers a message from Fmcom in the external interaction whenA deliv-ers the corresponding message in the simulated interaction. For example, S delivers a receiptmessage in the external interaction when A delivers the appropriate (sid; ssid; Pi; z; C0; C1)message in the simulated internal interaction.We now prove that Z cannot distinguish an interaction of Protocol UAHC with A from an inter-action in the ideal process with Fmcom and S. In order to show this, we examine several hybridexperiments:(I) Real interaction: This is the interaction of Z with A and Protocol UAHC.(II) Real interaction with partially fake commitments: This is the interaction of Z with A andProtocol UAHC, except that: (i) The Hamiltonian Cycle to G is provided to all honest parties,but this information is not revealed upon corruption. (ii) In honest party commitments, acommitment to b is generated by computing z aHC(0) and strings r0; r1 such that r0 and r1are correct decommitments to 0 and 1, respectively. (This is just like the simulator.) Then, Cbis computed as an encryption to E(Ecca(Pi; Pj ; sid; ssid; rb)). However, unlike the simulator,C1�b is still chosen as a uniformly distributed string. Again, this modi�cation is not revealedupon corruption (i.e., the honest party decommits to b as in a real interaction).(III) Real interaction with completely fake commitments: This is the same as (II), except that incommitments generated by honest parties, the ciphertext C1�b equalsE(Ecca(Pi; Pj ; sid; ssid; r1�b))as generated by S, rather than being chosen uniformly. Commitments are opened in the sameway as the simulator.(IV) Simulated interaction: This is the interaction of Z with S, as described above.Our aim is to show that interactions (I) and (IV) are indistinguishable to Z, or in other wordsthat Z's output at the end of interaction (I) is deviates only negligibly from Z's output at the endof interaction (IV). We prove this by showing that each consecutive pair of interactions are indis-tinguishable to Z. (Abusing notation, we use the term \distribution i" to denote both \interactioni", and \Z's output from interaction i".)The fact that distributions (I) and (II) are computationally indistinguishable is derived fromthe pseudorandomness of the underlying commitment scheme aHC. This can be seen as follows.The only di�erence between the two distributions is that even commitments to 1 are computed byz aHC(0). However, the distribution ensembles faHC(0)g and faHC(1)g are indistinguishable.Furthermore, these ensembles remain indistinguishable when the decommitment information to 1is supplied. That is, faHC(0); r1g and faHC(1); rg are also indistinguishable, where r1 is the(simulator) decommitment of aHC(0) to 1, and r is the (prescribed) decommitment of aHC(1) to 1.(A standard hybrid argument is employed to take into account the fact that many commitmentsand decommitments occur in any given execution.)Next, distributions (II) and (III) are indistinguishable due to the pseudorandomness of encryp-tions under E. In particular, the only di�erence between the distributions is that in (II) the cipher-text C1�b is uniformly chosen, whereas in (III) ciphertext C1�b equalsE(Ecca(Pi; Pj ; sid; ssid; r1�b)).

4.5. UNIVERSALLY COMPOSABLE COMMITMENTS 91Intuitively, CPA security su�ces because in order to emulate experiments (II) and (III), no decryp-tion oracle is needed. In order to formally prove this claim, we use the \left-right" oracle formulationof security for encryption schemes [7]. In this formulation of security, there is a \left-right" oracle(LR-oracle) which has a randomly chosen and hidden value b 2 f0; 1g built into it. When queriedwith a pair of plaintexts (a0; a1), the oracle returns E(ab). Equivalently, the oracle can be queriedwith a single message a such that it returns E(a) if b = 0 and a uniformly distributed string if b = 1.This reects the fact that here the security lies in the pseudorandomness of the ciphertext, ratherthan due to the indistinguishability of encryptions. (We stress that the LR-oracle always uses thesame bit b.) A polynomial-time attacker is successful in this model if it succeeds in guessing the bitb with a non-negligible advantage. For chosen-plaintext security, this attacker is given access to theLR-oracle for the encryption scheme E. We now construct an adversary who carries out a chosen-plaintext attack on E and distinguishes encryptions to strings of the formEcca(Pi; Pj ; sid; ssid; r1�b)from uniformly chosen strings. This adversary emulates experiments (II) and (III) by running Zand all the parties. However, when an honest party is supposed to generate C1�b, the attackerhands the LR-oracle the query Ecca(Pi; Pj ; sid; ssid; r1�b) and receives back C 0 which either equalsE(Ecca(Pi; Pj ; sid; ssid; r1�b)) or is uniformly distributed. The attacker then sets C1�b = C 0. Thisemulation can be carried out given the encryption-key E only (i.e., no decryption key is required).Now, if b = 1 for the LR-oracle, then the attacker perfectly emulates experiment (II). Furthermore,if b = 0 then the attacker perfectly emulates experiment (III). Finally, as we have mentioned, theabove emulation is carried out using a chosen-plaintext attack on E only. Therefore, if Z candistinguish experiments (II) and (III), then the attacker can guess the bit b of the LR-oracle withnon-negligible advantage. This is in contradiction to the CPA-security of E.Finally, we consider the hybrid experiments (III) and (IV). The only di�erence between theseexperiments is that in experiment (III) the checks causing S to output failure are not carried out. Wetherefore conclude that it su�ces to show that S outputs failure with at most negligible probability.In order to prove this, we again consider a sequence of hybrid experiments:(V) Simulation with partially real encryptions: This is the same as (IV), except that S is given (say,by F) the true values of the inputs for all uncorrupted parties. Then, when generating simu-lated commitments for uncorrupted parties, S replaces C1�b withE(Ecca(Pi; Pj ; sid; ssid; 0jr1�b j)),where b is the true input value.(VI) Simulation with nearly real commitments: This is the same as (V), except that in the simulatedcommitments generated for uncorrupted parties, S computes z aHC(b) where b is the truevalue of the commitment (instead of always computing z aHC(0)).We now claim that the probability that S outputs failure in experiment (IV) is negligibly close to theprobability that it outputs failure in experiment (V). The only di�erence between these experimentsrelates to the encryption value of C1�b. The proof relies on the chosen-ciphertext security of thescheme Ecca. (Chosen ciphertext security is required because the emulation of experiments (IV)and (V) requires access to a decryption oracle: Recall that S must decrypt ciphertexts in thesimulation of commit-activations where the committer is corrupted.) Formally, we prove this claimusing the \left-right" oracle formulation of security for encryption schemes. Recall that accordingto this de�nition, an attacker is given access to an LR-oracle that has a randomly chosen bit binternally hardwired. The attacker can then query the oracle with pairs (a0; a1) and receives backEcca(ab). When considering CCA2-security, the attacker is given access to the LR-oracle as well as adecryption oracle for Ecca which works on all ciphertexts except for those output by the LR-oracle.We argue that if S outputs failure with probabilities that are non-negligibly far apart in exper-iments (IV) and (V), then Z together with A can be used to construct a successful CCA2 attacker

92 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONagainst Ecca in the LR-model. We now describe the attacker. The attacker receives the publickey for Ecca. It then simulates experiment (IV) by playing Z, A and S as above, except for thefollowing di�erences:1. The public key for Ecca is given to S externally and S does not have the decryption key.2. When generating a simulated commitment for an honest party Pi, the attacker computesz aHC(0) and decommitment strings r0 and r1 to 0 and 1, respectively. Furthermore,the attacker computes Cb E(Ecca(Pi; Pj ; sid; ssid; rb)) as S does. However, for C1�b, theattacker queries the LR-oracle with the pair ((Pi; Pj ; sid; ssid; r1�b); (Pi; Pj ; sid; ssid; 0jr1�b j)).When the LR-oracle responds with a ciphertext c0, the attacker sets C1�b E(c0).3. When S obtains a commitment (sid; ssid; Pj ; z; C0; C1) from A controlling a corrupted partyPi, then the attacker decrypts C0 and C1 using the decryption key for E and obtains c0 andc1. There are two cases:� Case 1: A ciphertext cb came from a commitment previously generated for an honestparty by S. Now, if this generated commitment was not from Pi to Pj , then cb can-not constitute a valid decommitment because the encryption does not contain the pair(Pi; Pj) in this order. On the other hand, if the previous commitment was from Pi to Pj ,then the sub-session identi�ers must be di�erent and therefore it still cannot be a validdecommitment. (Recall that Pj will ignore a second commitment from Pi with the sameidenti�ers.) In this case, the attacker acts just as S would for ciphertexts that do notdecrypt to valid decommitment information. (Notice that the attacker does not need touse the decryption oracle in this case.)� Case 2: A ciphertext cb was not previously generated by S. Then, except with negligibleprobability, this ciphertext could not have been output by the LR-oracle. Therefore, theattacker can query its decryption oracle and obtain the corresponding plaintext. Giventhis plaintext, the attacker proceeds as S does.Analyzing the success probability of the attacker, we make the following observations. If theLR-oracle uses Left encryptions (i.e., it always outputs a ciphertext c0 that is an encryption of(Pi; Pj ; sid; ssid; r1�b)), then the resulting simulation is negligibly close to experiment (IV). (Theonly di�erence is in the case that a ciphertext cb generated by A coincides with a ciphertextoutput by the LR-oracle. However, this occurs with only negligible probability, otherwise Eccadoes not provide correctness.) On the other hand, if the LR-oracle uses Right encryptions (i.e, italways outputs a ciphertext c0 that is an encryption of (Pi; Pj ; sid; ssid; 0jr1�b j)), then the resultingsimulation is negligibly close to experiment (V). Therefore, by the CCA2-security of Ecca, theprobability that Z outputs 1 from experiment (IV) must be negligibly close to the probability thatit outputs 1 in experiment (V). By having Z output 1 if and only if S outputs a failure symbol, wehave that the probability that S outputs failure in the two experiments is negligibly close.We now proceed to show that the probability that S outputs failure in experiments (V) and(VI) is negligibly close. This follows from the indistinguishability of commitments faHC(0)g andfaHC(1)g. (A standard hybrid argument is used to take into account the fact that many commit-ments are generated by S during the simulation.) Here we use the fact that in both experiments(V) and (VI) the ciphertext C1�b is independent from the rest of the commitment.Finally, to complete the proof, we show that in experiment (VI) the probability that S outputsfailure is negligible. The main observation here is that in experiment (VI), S does not use knowledgeof a Hamiltonian cycle in G. Now, if S outputs failure when simulating commit activations for a

4.6. UNIVERSALLY COMPOSABLE ZERO-KNOWLEDGE 93corrupted party, then this means that it obtains a decommitment to 0 and to 1 for some commitmentstring z. However, by the construction of the commitment scheme, this means that S obtains aHamiltonian cycle (and equivalently a pre-image of y = f(x)). Since S can do this with onlynegligible probability we have that this event can also only occur with negligible probability. Weconclude that S outputs failure in experiment (VI), and therefore in experiment (IV), with onlynegligible probability. (Formally speaking, given S we construct an inverter for f that proceedsas described above.) This completes the hybrid argument, demonstrating that Z can distinguishexperiments (I) and (IV) with only negligible probability.4.6 Universally Composable Zero-KnowledgeWe present and discuss the ideal zero-knowledge functionality Fzk. This functionality plays a centralrole in our general construction of protocols for realizing any two-party functionality. Speci�cally,our protocol for realizing the commit-and-prove functionality is constructed and analyzed in ahybrid model with access to Fzk (i.e., in the Fzk-hybrid model). Using the universal compositiontheorem, the construction can be composed with known protocols that securely realize Fzk, eitherin the Fmcom-hybrid model or directly in the common reference string (CRS) model, to obtainprotocols for realizing any two-party functionality in the CRS model. (Actually, here we useuniversal composition with joint state. See more details below.)In the zero-knowledge functionality, parameterized by a relation R, the prover sends the func-tionality a statement x to be proven along with a witness w. In response, the functionality forwardsthe statement x to the veri�er if and only if R(x;w) = 1 (i.e., if and only if it is a correct statement).Thus, in actuality, this is a proof of knowledge in that the veri�er is assured that the prover actuallyknows w (and has explicitly sent w to the functionality), rather than just being assured that sucha w exists. The zero-knowledge functionality, Fzk, is presented in Figure 4.6.Functionality FzkFzk proceeds as follows, running with a prover P , a veri�er V and an adversary S, and parameterizedwith a relation R:� Upon receiving (ZK-prover; sid; x; w) from P , do: if R(x;w) = 1, then send (ZK-proof; sid; x) to Vand S and halt. Otherwise, halt.Figure 4.6: The single-session Fzk functionalityLet us highlight several technical issues that motivate the present formalization. First, noticethat the functionality is parameterized by a single relation (and thus a di�erent copy of Fzk isused for every di�erent relation required). Nonetheless, the relation R may actually index anypolynomial number of predetermined relations for which the prover may wish to prove statements.This can be implemented by separating the statement x into two parts: x1 that indexes the relationto be used and x2 that is the actual statement. Then, de�ne R((x1; x2); w) def= Rx1(x2; w). (Notethat in this case the set of relations to be indexed is �xed and publicly known.)1313Another possibility is to parameterize Fzk by a polynomial q(�). Then, Pi sends the functionality a triple(x;w;CR), where CR is a two-input binary circuit of size at most q(jxj). (This circuit de�nes the relation being used.)The ideal functionality then sends Pj the circuit CR and the bit CR(x;w). This approach has the advantage that therelations to be used need not be predetermined and �xed.

94 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONSecond, the functionality is de�ned so that only correct statements (i.e., values x such thatR(x;w) = 1) are received by P2 in the prove phase. Incorrect statements are ignored by thefunctionality, and the receiver P2 receives no noti�cation that an attempt at cheating in a prooftook place. This convention simpli�es the description and analysis of our protocols. We note,however, that this is not essential. Error messages can be added to the functionality (and realized)in a straightforward way. Third, we would like to maintain the (intuitively natural) property thata prover can always cause the veri�er to reject, even if for every w it holds that R(x;w) = 1 (e.g.,take R = f0; 1g� � f0; 1g�). This technicality is solved by de�ning a special witness input symbol\?" such that for every relation R and every x, R(x;?) = 0.Note that each copy of the functionality handles only a single proof (with a given prover and agiven veri�er). This is indeed convenient for protocols in the Fzk-hybrid model, since a new copyof Fzk can be invoked for each new proof (or, each \session"). However, directly realizing Fzk inthe Fcrs-hybrid model and using the universal composition theorem would result in an extremelyine�cient composed protocol, where a new instance of the reference string is needed for each proof.Instead, we make use of universal composition with joint state, as follows. We start by de�ningfunctionality F̂zk, the multi-session extension of Fzk, and recall known protocols that securelyrealize F̂zk using a single short instance of the common string. We then use the JUC theorem tocompose protocols in the Fzk-hybrid model with protocols that securely realize F̂zk.The de�nition of F̂zk, the multi-session extension of Fzk, follows from the de�nition of Fzkand the general de�nition of multi-session extensions (see Section 4.3.2). Nonetheless, for sakeof clarity we explicitly present functionality F̂zk in Figure 4.7. An input to F̂zk is expected tocontain two types of indices: the �rst one, sid, is the SID that di�erentiates messages to F̂zk frommessages sent to other functionalities. The second index, ssid, is the sub-session ID and is uniqueper \sub-session" (i.e., per input message).Functionality F̂zkF̂zk proceeds as follows, running with parties P1; : : : ; Pn and an adversary S, and parameterized witha relation R:� Upon receiving (ZK-prover; sid; ssid; Pi; Pj ; x; w) from Pi: If R(x;w) = 1, then send the message(ZK-proof; sid; ssid; Pi; Pj ; x) to Pj and S. Otherwise, ignore.Figure 4.7: The multi-session zero-knowledge functionalityIn the case of static adversaries, De Santis et al. present a protocol that securely realizes F̂zk, forany NP relation, in the common reference string (CRS) model [26]. This is done assuming existenceof trapdoor one-way permutations. Furthermore, the protocol is \non-interactive", in the sense thatit consists of a single message from the prover to the veri�er. In the case of adaptive adversaries,Canetti and Fischlin show a three-round protocol that securely realizes F̂zk in the Fmcom-hybridmodel, where Fmcom is the multi-session universally composable commitment functionality (seeSection 4.5 below). The protocol uses a single copy of Fmcom.1414Actually, the zero-knowledge functionality in [16] is only \single session" (and has some other technical di�erencesfrom F̂zk). Nonetheless, it is easy to see that by using Fmcom and having the prover �rst check that it's input x andw is such that (x;w) 2 R, their protocol securely realizes F̂zk.

4.7. THE COMMIT-AND-PROVE FUNCTIONALITY FCP 954.7 The Commit-and-Prove Functionality FcpIn this section we de�ne the \commit-and-prove" functionality, Fcp, and present protocols forsecurely realizing it. As discussed in Section 4.2, this functionality, which is a generalization of thecommitment functionality, is central for constructing the protocol compiler. As in the case of Fzk,the Fcp functionality is parameterized by a relation R. The �rst stage is a commit phase in whichthe receiver obtains a commitment to some value w. The second phase is more general than plaindecommitment. Rather than revealing the committed value, the functionality receives some valuex from the committer, sends x to the receiver, and asserts whether R(x;w) = 1. To see that thisis indeed a generalization of a commitment scheme, take R to be the identity relation and x = w.Then, following the prove phase, the receiver obtains w and is assured that this is the value thatwas indeed committed to in the commit phase.In fact, Fcp is even more general, in the following ways. First it allows the committer to committo multiple secret values wi, and then have the relation R depend on all these values in a singleproof. (This extension is later needed for dealing with reactive protocols, where inputs may bereceived over time.) Second, the committer may ask to prove multiple statements with respect tothe same set of secret values. These generalizations are dealt with as follows. When receiving anew (commit; sid; w) request from the committer, Fcp adds the current w to the already existinglist w of committed values. When receiving a (CP-prover; sid; x) request, Fcp evaluates R on x andthe current list w. Functionality Fcp is presented in Figure 4.8.Functionality FcpFcp proceeds as follows, running with a committer C, a receiver V and an adversary S, and is param-eterized by a value k and a relation R:Commit Phase: Upon receiving a message (commit; sid; w) from C where w 2 f0; 1gk, append thevalue w to the list w, and send the message (receipt; sid) to V and S. (Initially, the list w isempty.)Prove Phase: Upon receiving a message (CP-prover; sid; x) from C, where x 2 f0; 1gpoly(k), computeR(x;w): If R(x;w) = 1, then send V and S the message (CP-proof; sid; x). Otherwise, ignorethe message. Figure 4.8: The commit-and-prove functionalityAs in the case of Fzk, the Fcp functionality is de�ned so that only correct statements (i.e.,values x such that R(x;w) = 1) are received by V in the prove phase. Incorrect statements areignored by the functionality, and the receiver V receives no noti�cation that an attempt at cheatingin a proof took place.4.7.1 Securely Realizing Fcp for static adversariesWe present protocols for securely realizing the Fcp functionality in the Fzk-hybrid model, for bothstatic and adaptive adversaries. We �rst concentrate on the case of static adversaries, since it issigni�cantly simpler than the adaptive case, and therefore serves as a good warm-up.The commit phase and the prove phase of the protocol each involve a single invocation of Fzk.(The relation used in each phase is di�erent.) In the commit phase the committer commits toa value using a standard commitment scheme, and proves knowledge of the decommitment value

96 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONthrough Fzk. Thus we obtain a \commit-with-knowledge" protocol, in which the simulator canextract the committed value.Speci�cally, let C be a perfectly binding commitment scheme, and denote by C(w; r) a commit-ment to a string w using a random string r. For simplicity, we use a non-interactive commitmentscheme. Such schemes exist assuming the existence of 1{1 one-way functions, see [45]. (Alterna-tively, we could use the Naor scheme [70] that can be based on any one-way function, rather thanrequiring 1{1 one-way functions. In this scheme, the receiver sends an initial message and then thecommitter commits. This changes the protocol and analysis only slightly. We note that in fact,the use of perfect binding is not essential and computational binding actually su�ces, as will bethe case in Section 4.7.2.) Loosely speaking, the protocol begins by C sending c = C(w; r) to V ,and then proving knowledge of the pair (w; r). In our terminology, this consists of the committerC sending (ZK-prover; sidC ; c = C(w; r); (w; r)) to Fzk, which is parameterized by the followingrelation RC : RC = f(c; (w; r)) j c = C(w; r)g (4.4)That is, RC is the relation of pairs of commitments with their decommitment information. Inaddition, the committer C keeps the list w of all the values w committed to. It also keeps the listsr and c of the corresponding random values and commitment values.When the receiver V receives (ZK-proof; sidC ; c) from Fzk, it accepts c as the commitment stringand adds c to its list c of accepted commitments. (Note that in the Fzk-hybrid model, V is guar-anteed that C \knows" the decommitment, in the sense that C explicitly sent the decommitmentvalue to Fzk.)The prove phase of the protocol also involves invoking Fzk where the relation RP parameterizingthe Fzk functionality is de�ned as follows. Let R be the relation parameterizing Fcp. Then, RP isde�ned by: RP def= f((x; c); (w; r)) j 8i; ci = C(wi; ri) & R(x;w) = 1g (4.5)That is, RP con�rms that c is the vector of commitments to w, and that R(x;w) = 1. Thus, theprove phase consists of the committer proving some NP-statement regarding the values committedto previously. (The value x is the NP-statement and the values committed to, plus the randomnessused, comprise the \witness" for x). Upon receiving the message (ZK-proof; sidP ; (x; c)) from Fzk,the receiver accepts if c equals the list of commitments that it had previously received. (The receivermust check c because this is what ensures that the witness being used is indeed the list of valuespreviously committed to, and nothing else.) Finally, note that if R 2 NP , then so too is RP .We denote by Fczk and Fpzk the copies of Fzk from the commit phase and prove phase respectively(i.e., Fczk is parameterized by RC and Fpzk is parameterized by RP). Formally, the two copiesof Fzk are di�erentiated by using session identi�ers sidC and sidP , respectively. (E.g., one cande�ne sidC = sid�`C' and sidP = sid�`P', where sid is the session identi�er of the protocolfor realizing Fcp and \�" denotes concatenation.) The protocol, using a perfectly binding non-interactive commitment scheme C, is presented in Figure 4.9.Proposition 4.7.1 Assuming that C is a secure (perfectly binding) commitment scheme, ProtocolSCP of Figure 4:9 securely realizes Fcp in the Fzk-hybrid model, for static adversaries.Proof: Let A be a static adversary who operates against Protocol SCP in the Fzk-hybrid model.We construct an ideal-process adversary (or simulator) S such that no environment Z can tell withnon-negligible probability whether it is interacting with A and parties running Protocol SCP inthe Fzk-hybrid model or with S in the ideal process for Fcp. As usual, S will run a simulated copyof A and will use A in order to interact with Z and Fcp. For this purpose, S will \simulate for

4.7. THE COMMIT-AND-PROVE FUNCTIONALITY FCP 97Protocol SCP� Auxiliary Input: A security parameter k.� Commit phase:1. On input (commit; sid; w), where w 2 f0; 1gk, C chooses a random string r of lengthsu�cient for committing to w in scheme C, and sends (ZK-prover; sidC ; C(w; r); (w; r)) toFczk, where Fczk is parameterized by the relation RC de�ned in Eq. (4.4). In addition, Cstores in a vector w the list of all the values w that it has sent to Fzk, and in vectors r andc the corresponding lists of random strings and commitment values.2. When receiving (ZK-proof; sidC ; c) from Fczk, V outputs (receipt; sid), and adds c to its listof commitments c. (Initially, c is empty.)� Prove phase:1. On input (CP-prover; sid; x), C sends (ZK-prover; sidP ; (x; c); (w; r)) to Fpzk, where w; r; c arethe above-de�ne vectors and Fpzk is parameterized by the relation RP de�ned in Eq. (4.5).2. When receiving (ZK-proof; sidP ; (x; c)) from Fpzk, V proceeds as follows. If its list of com-mitments equals c, then it outputs (CP-proof; sid; x). Otherwise, it ignores the message.Figure 4.9: A protocol for realizing Fcp for static adversariesA" an interaction with parties running Protocol SCP, where the interaction will match the inputsand outputs seen by Z in its interaction with S in the ideal process for Fcp. We use the termexternal communication to refer to S's communication with Z and Fcp. We use the term internalcommunication to refer to S's communication with the simulated A.Recall that A is a static adversary and therefore the choice of which parties are under its control(i.e., corrupted) is predetermined. When describing S, it su�ces to describe its reaction to anyone of the possible external activations (inputs from Z and messages from Fcp) and any one ofthe possible outputs or outgoing messages generated internally by A. This is done below. Forclarity, we group these activities according to whether or not the committing party C is corrupted.Simulator S proceeds as follows:Simulating the communication with the environment: Every input value coming from Z(in the external communication) is forwarded to the simulated A (in the internal communi-cation) as if coming from A's environment. Similarly, every output value written by A on itsoutput tape is copied to S's own output tape (to be read by the external Z).Simulating the case where the committer is uncorrupted: In this case, A expects to seethe messages sent by Fczk and Fpzk to V . (Notice that the only messages sent in the protocolare to and from Fczk and Fpzk; therefore, the only messages seen by A are those sent by thesefunctionalities. This holds regardless of whether the receiver V is corrupted or not.) In theideal process, S receives the (receipt; : : :) and (CP-proof; : : :) messages that V receives fromFcp. It constructs the appropriate Fczk messages given the receipt messages from Fcp, andthe appropriate Fpzk messages given the CP-proof messages from Fcp. This is done as follows:� Whenever S receives a message (receipt; sid) from Fcp where C is uncorrupted, S computesc = C(0k; r) for a random r and (internally) passes A the message (ZK-proof; sidC ; c), asA would receive from Fczk in a real protocol execution. Furthermore, S adds the value c

98 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONto its list of simulated-commitment values c. (It is stressed that the commitment here isto an unrelated value, however by the hiding property of commitments and the fact thatall commitments are of length k, this is indistinguishable from a real execution.)� Whenever S receives a message (CP-proof; sid; x) from Fcp where C is uncorrupted, Sinternally passes A the message (ZK-proof; sidP ; (x; c)), as A would receive from Fpzk ina protocol execution, where c is the current list of commitment values generated in thesimulation of the commit phase.Simulating the case where the committer is corrupted: Here, A controls C and generatesthe messages that C sends during an execution of Protocol SCP.15 Intuitively, in this case Smust be able to extract the decommitment value w from A during the commit phase of theprotocol simulation. This is because, in the ideal process, S must explicitly send the value wto Fcp (and must therefore know the value being committed to). Fortunately, this extractionis easy for S to do because A works in the Fzk-hybrid model, and any message sent by A toFzk is seen by S during the simulation. In particular, S obtains the ZK-proof message sentby A to Fczk, and this message is valid only if it explicitly contains the decommitment. Thesimulation is carried out as follows:� Whenever the simulatedA internally delivers a message of the form (ZK-prover; sidC ; c; (w; r))from a corrupted C to Fczk, simulator S checks that c = C(w; r). If yes, then S externallysends (commit; sid; w) to Fcp and internally passes (ZK-proof; sidC ; c) to A (as if comingfrom Fczk). Furthermore, S adds c to its list of received commitments c. Otherwise, Signores the message.� Whenever A internally generates a message of the form (ZK-prover; sidP ; (x; c); (w; r))going from C to Fpzk, simulator S acts as follows. First, S checks that c equals itslist of commitments and that ((x; c); (w; r)) 2 RP . If yes, then S internally passes(ZK-proof; sidP ; (x; c)) to A (as if received from Fpzk) and externally sends the provermessage (CP-prover; sid; x) to Fcp. If no, then S does nothing.Output delivery: It remains to describe when (if at all) S delivers the receipt and CP-proofmessages sent to V from Fcp in the ideal process. This is decided by simply having S delivera receipt message to V when A delivers the corresponding ZK-proof message of the commitphase in the simulation. Likewise, S delivers a CP-proof message to V when A delivers thecorresponding ZK-proof message of the prove phase in the simulation.We show that for every environment Z it holds that:idealFcp;S;Z c� hybridFzkscp;A;Z (4.6)We �rst assert the following claim regarding the case where the committer is corrupted: thereceiver V accepts a proof in the protocol execution if and only if in the ideal model simulation, Vreceives (CP-proof; sid; x) from Fcp. This can be seen as follows. First, note that if A (controllingC) sends a ZK-prover message containing a di�erent vector of commitments to that sent in previouscommit activations, then S does not send any CP-prover message to Fcp. Likewise, in such a case,V ignores the ZK-proof message. Simulator S also checks that ((x; c); (w; r)) 2 RP before sendingany CP-prover message to Fcp. Thus, if this does not hold, no CP-proof message is received by15We assume without loss of generality that the receiver V is uncorrupted, since carrying out an interaction whereboth participants are corrupted bears no e�ect on the view of Z.

4.7. THE COMMIT-AND-PROVE FUNCTIONALITY FCP 99V . Likewise, in a protocol execution, if ((x; c); (w; r)) 62 RP , then V receives no CP-proof message.Finally, we note that by the (perfect) binding property of the commitment scheme, if A tries to usea di�erent vector of witnesses than that committed to in the commit phase, then this is detected byV and S, and the message is ignored. (By the perfect binding of the commitment scheme, the vectorc de�nes a unique witness vector w that can be used.) We conclude that when S sends a CP-provermessage to Fcp the following holds: R(x;w) = 1 if and only if RP ((x; c); (w; r)) = 1, where c is thevector of commitments sent by the corrupted committer. Thus, V outputs (CP-proof; sid; x) in aprotocol execution if and only if Fcp sends (CP-proof; sid; x) to V in the ideal model simulation.We proceed to demonstrate Eq. (4.6). Since S obtains the messages sent by A to both the Fczkand Fpzk functionalities, most of the simulation is perfect and the messages seen by A are exactlythe same as it would see in a hybrid execution of Protocol SCP. There is, however, one case wherethe simulation is di�erent from a real execution. When the committer is uncorrupted, S receivesa (receipt; sid) message from Fcp and must generate the message that A would see from Fczk inthe protocol. Speci�cally, S sends (ZK-proof; sid; c) to A, where c = C(0k; r). That is, S passesA a commitment to a value that is unrelated to C's input. In contrast, in a real execution ofProtocol SCP, the value c seen by A is c = C(w; r), where w is C's actual input. Intuitively, bythe hiding property of the commitment scheme C, these two cases are indistinguishable. Formally,assume that there exists an adversary A, an environment Z and an input z to Z, such that theideal and hybrid distributions can be distinguished. Then, we construct a distinguisher D forthe commitment scheme C. That is, the distinguisher D chooses some challenge w, receives acommitment c that is either to 0k or to w, and can tell with non-negligible probability which is thecase.Distinguisher D invokes the environment Z, the party C and the simulator S (which runs Ainternally) on the following simulated interaction. First, a number i is chosen at random in [t],where t is a bound on the running time of Z. Then, for the �rst i � 1 commitments c generatedby S, distinguisher D sets c = C(0k; r). When S is about to generate the ith commitment, Ddeclares the corresponding value w to be the challenge value, and obtains a test value c�. (This wis the value that the simulated Z hands the uncorrupted committer C.) Then, S uses c� as thecommitment value for the ith commitment. The rest of the commitments in the simulation aregenerated as normal commitments to the corresponding input values provided by Z. When Z haltswith an output value, D outputs whatever Z outputs and halts.Analysis of the success probability of D is done via a standard hybrid argument and is omit-ted. We obtain that D succeeds in breaking the commitment with advantage p=t, where p is theadvantage in which Z distinguishes between an interaction in the hybrid model and an interactionin the ideal process (and t is the bound on Z's running time).
On su�cient assumptions for realizing Fcp: For simplicity, Protocol SCP uses a non-interactivecommitment scheme, which can be based on 1{1 one-way functions. However, as we have men-tioned, the commit-phase of Protocol SCP can be modi�ed to use Naor's commitment scheme [70](which in turn can use any one-way function). In this case, V begins by sending the receivermessage of the [70] scheme, and then C sends the commit message, using Fczk as in Protocol SCP.Thus, we have that Fcp can be securely realized in the Fzk-hybrid model, assuming the existenceof any one-way function.

100 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATION4.7.2 Securely Realizing Fcp for adaptive adversariesWe now present a protocol for securely realizing functionality Fcp in the Fzk-hybrid model, in thepresence of adaptive adversaries. The di�erence between this protocol and Protocol SCP for staticadversaries is in the properties of the underlying commitment scheme C in use. Essentially, here weuse a commitment scheme that is \adaptively secure". That is, a simulator (having access to sometrapdoor information) can generate \dummy commitments" that can later be opened in severalways.16 In order to achieve this, the commit phase of the protocol will now involve two invocationsof Fzk. As in the case of Protocol SCP, the relations used by the invocations of Fzk in the commitphase are di�erent from the relation used in the prove phase. Thus, for sake of clarity we use threedi�erent copies of Fzk, two for the commit messages and one for the prove messages.The speci�c commitment scheme C used in the commit phase here is the aHC commitmentthat lies at the core of the universally composable commitment scheme of Section 4.5. Recallthat this scheme uses a common reference string containing an image y of a one-way function f .However, here we work in the Fzk-hybrid model and do not have access to a common referencestring. Thus, the common reference string is \replaced" by interaction via the Fzk functionality.That is, the basic commitment scheme is as follows. The receiver V chooses a random value tand sends the committer C the value s = f(t). Next, C uses s to commit to its input value, asde�ned in the aHC commitment scheme. That is, C �rst obtains a Hamiltonian graph G suchthat �nding a Hamiltonian cycle in G is equivalent to computing the preimage t of s. (This isobtained by reducing the NP-language fs j 9t s.t. s = f(t)g to Hamiltonicity.) Then, in order tocommit to 0, C chooses a random permutation � of the nodes of G and commits to the edges of thepermuted graph one-by-one, using a non-interactive commitment scheme Com with pseudorandomcommitments. (Such a scheme can be obtained using one-way permutations, see Section 4.5.) Onthe other hand, in order to commit to 1, C chooses a randomly labeled cycle over the same numberof nodes as in G. Then, C uses Com to commit to these entries and produces random values forthe rest of the adjacency matrix. As was shown in Section 4.5, this commitment scheme is bothhiding and binding, and also has the property that given a preimage t of s, it is possible to generatea \dummy commitment" that can be later explained as a commitment to both 0 and 1. (Thus, t isessentially a trapdoor.) We denote a commitment of this type by aHCs(w; r), where s is the imageof the one-way function being used, w is the value being committed to, and r is the randomnessused in generating the commitment.The commitment scheme aHC as described above requires that the underlying one-way functionbe a permutation. However, by using interaction, we can implement Com using the commitmentscheme of Naor [70] (this scheme also has pseudorandom commitments). We thus obtain that aHCcan be implemented using any one-way function. For simplicity, the protocol is written for Comthat is non-interactive (and therefore assumes one-way permutations). However, it is not di�cultto modify it so that the [70] scheme can be used instead.As in the case of Protocol SCP, the �rst stage of the adaptive protocol (denoted ACP for adap-tive commit-and-prove) involves carrying out the commit phase of the above-described commitmentscheme via invocations of Fzk. This use of Fzk enables the simulator to extract the committedvalue from the committing party. In addition, here Fzk is also used to enable the simulator to ob-tain the trapdoor information needed for carrying out the adaptive simulation. Thus the protocolbegins by the receiver �rst choosing a random string t and computing s = f(t). Next, it sends16The property actually required is that the simulator can generate a \commitment" c such that given any w ata later stage, it can �nd randomness r such that c = C(w; r). This is needed for the adaptive corruption of thecommitting party. See Section 4.5 for more discussion.

4.7. THE COMMIT-AND-PROVE FUNCTIONALITY FCP 101s to the committer and, in addition, proves that it knows the preimage t. Loosely speaking, inthe Fzk-hybrid model, this involves sending a (ZK-prover; sid; s; t) message to Fzk and having thefunctionality send C the message (ZK-proof; sid; s) if s = f(t). We note that this step is carriedout only once, even if many values are later committed to. Thus, the same s is used for manycommitments.Let Ftzk denote the copy of Fzk used for proving knowledge of the trapdoor/preimage. Then,Ftzk is parameterized by the relation RT de�ned as follows:RT def= f(s; t) j s = f(t)g (4.7)Fzk is used twice more; once more in the commit phase and once in the prove phase. These copiesof Fzk are denoted Fczk and Fpzk, respectively. The uses of Fzk here are very similar to the staticcase (Protocol SCP). We therefore proceed directly to de�ning the relations RC and RP thatparameterize Fczk and Fpzk, respectively:RC def= f((s; c); (w; r)) j c = aHCs(w; r)g (4.8)RP def= f((x; s; c); (w; r)) j 8i; ci = aHCs(wi; ri) & R(x;w) = 1g (4.9)The only di�erence between the de�nition of RC and RP here and in the static case is that herethe value s is included as well. This is because a pair (s; c) binds the sender to a single value w,whereas c by itself does not. The protocol for the adaptive case is presented in Figure 4.10. (Asin the static case, we formally di�erentiate the copies of Fzk by session identi�ers sidT , sidC andsidP .)Proposition 4.7.2 Assuming the existence of one-way functions, Protocol ACP of Figure 4:10securely realizes Fcp in the Fzk-hybrid model, in the presence of adaptive adversaries.Proof (sketch): The proof of the above proposition follows similar lines to the proof of Proposi-tion 4.7.1. However, here the adversary A can adaptively corrupt parties. Therefore, the simulatorS must deal with instructions from A to corrupt parties during the simulation. When given sucha \corrupt" command, S corrupts the ideal model party and receives its input (and possibly itsoutput). Then, given these values, S must provide A with random coins such that the simulatedtranscript generated so far is consistent with this revealed input and output. (An additional \com-plication" here is that the binding property of C is only computational. Thus, the validity of thesimulation will be demonstrated by a reduction to the binding property of C.)More precisely, Let A be an adaptive adversary who operates against Protocol ACP in the Fzk-hybrid model. We construct a simulator S such that no environment Z can tell with non-negligibleprobability whether it is interacting with A and parties running Protocol ACP in the Fzk-hybridmodel or with S in the ideal process for Fcp. Simulator S will operate by running a simulated copyof A and will use A in order to interact with Z and Fcp. S works in a similar way to the simulatorin the static case (see the proof of Proposition 4.7.1), with the following changes:1. S records the pair (s; t) from the initialization phase of an execution. In the case wherethe receiver is uncorrupted, this pair is chosen by S itself. In the case where the receiveris corrupted this pair is chosen by the simulated A, and S obtains both s and t from themessage that the corrupted receiver sends to Ftzk.2. Whenever an uncorrupted party C commits to an unknown value w, simulator S hands A acommitment to 0k as the commitment value. More precisely, whenever S receives from Fcp

102 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONProtocol ACP� Auxiliary Input: A security parameter k, and a session identi�er sid.� Initialization phase:The �rst time that the committer C wishes to commit to a value using the identi�er sid, partiesC and V execute the following before proceeding to the commit phase:1. C sends sid to V to indicate that it wishes to initiate a commit activation.2. Upon receiving sid from C, the receiver V chooses t 2R f0; 1gk, computes s = f(t) (where fis a one-way function), and sends (ZK-prover; sidT ; s; t) to Ftzk, where Ftzk is parameterized bythe relation RT de�ned in Eq. (4.7). V records the value s.3. Upon receiving (ZK-proof; sidT ; s) from Ftzk, C records the value s.� Commit phase:1. On input (commit; sid; w) (where w 2 f0; 1gk), C computes c = aHCs(w; r) for a random r andusing the s it received in the initialization phase. C then sends (ZK-prover; sidC ; (s; c); (w; r))to Fczk, where Fczk is parameterized by the relation RC de�ned in Eq. (4.8). In addition, Cstores in a vector w the list of all the values w that were sent, and in vectors r and c thecorresponding lists of random strings and commitment values.2. Upon receiving (ZK-proof; sidC ; (s0; c)) from Fczk, V veri�es that s0 equals the string s that itsent in the initialization phase, outputs (receipt; sid) and adds the value c to its list c. (Initially,c is empty.) If s0 6= s, then V ignores the message.� Prove phase:1. On input (CP-prover; sid; x), C sends (ZK-prover; sidP ; (x; s; c); (w; r)) to Fpzk, where c, w andr are the vectors described above, and Fpzk is parameterized by the relation RP de�ned inEq. (4.9).2. Upon receiving (ZK-proof; sid; (x; s0; c)) from Fpzk, V veri�es that s0 is the string that it sentin the initialization phase, and that its list of commitments equals c. If so, then it outputs(CP-proof; sid; x). Otherwise, it ignores the message.Figure 4.10: A protocol for realizing Fcp for adaptive adversariesa message (receipt; sid) where C is uncorrupted, S computes c = aHCs(0k; r) for a randomr, and hands A the message (ZK-proof; sidC ; (s; c)), as if coming from Fczk. (Recall that bythe aHC scheme, a commitment to 0 can be opened as either 0 or 1, given the trapdoorinformation t; see Section 4.5.)3. When the simulated A internally corrupts C, simulator S �rst externally corrupts C in theideal process for Fcp and obtains the vector of values w that C committed to so far. Next,S prepares for A a simulated internal state of C in Protocol ACP as follows. Apart fromthe vector of committed values w, the only hidden internal state that C keeps in ProtocolACP is a vector of random strings r that were used to commit to each wi in w. That is, foreach input value wi in w, adversary A expects to see a value ri such that ci = aHCs(wi; ri),where ci is the corresponding commitment value that S generated and handed to A in thesimulation of commitments by an uncorrupted C (see step 2 above). Thus, for every i, Sgenerates the appropriate value ri using the trapdoor t, and then hands the list r to A. (SeeSection 4.5 for a description of exactly how this randomness is generated.)

4.7. THE COMMIT-AND-PROVE FUNCTIONALITY FCP 1034. When the simulated A internally corrupts V , S provides A with a simulated internal stateof V . This state consists of the preimage t, plus the messages that V receives from Fzk. Allthis information is available to S.The analysis of the above simulator is very similar to the static case (Proposition 4.7.1). The maindi�erence is that here the commitment is only computationally binding. Thus the following badevent is potentially possible: When the committer C is corrupted, the simulated A commits toa series of values w with corresponding commitment values c. Later, in the prove phase, A thengenerates a message (ZK-prover; sidP ; (x; c); (w0; r0)) to send to Fpzk, where w0 6= w and yet for everyi, it holds that ci = aHCs(w0i; r0i). Furthermore, R(x;w0) = 1 and R(x;w) = 0. In other words, thebad event corresponds to a case where in the ideal process Fcp does not send a (CP-proof; sid; x)message (because R(x;w) = 0), whereas V does output such a message in a real execution ofProtocol ACP (because RP ((x; s; c)(w0; r0)) = 1 and the vector of commitments c is as observed byV). (We note that given that this event does not occur, the correctness of the simulation carriedout by S follows the same argument as in the proof of Proposition 4.7.1.)We conclude the proof by showing that this bad event occurs with negligible probability, or elseZ andA can be used to construct an algorithm that breaks the binding property of the aHC commit-ment scheme. It su�ces to show that A cannot generate a message (ZK-prover; sidP ; (x; c); (w0; r0))where w0 6= w and yet for every i, it holds that ci = aHCs(w0i; r0i). Intuitively, this follows from thebinding property of aHC (see Section 4.5). In particular, let Z and A be such that the bad eventoccurs with non-negligible probability during the above ideal-process simulation by S. Then, weconstruct a machine M who receives s and with non-negligible probability outputs a commitmentc along with (w1; r1) and (w2; r2), where c = aHCs(w1; r1) = aHCs(w2; r2) and w1 6= w2.M invokes S on Z and A, and emulates the ideal process, while playing the roles of the idealfunctionality and the uncorrupted parties C and V . Simulator S is the same as described above,with the following two important di�erences:� Instead of S choosing the pair (s; t) itself in step 1 of its instructions above, it uses the value sthat M receives as input. (Recall that M receives s and is attempting to contradict the bindingproperty of the commitment relative to this s.)� If C commits to any values before it is corrupted, the simulation is modi�ed as follows. Insteadof S providing A with a commitment c = aHCs(0k; r), machine M provides S with the inputw being committed to and then S provides A with c = aHCs(w; r). Upon corruption of C,simulator S then provides A directly with the list of random values r used in generating thecommitments. M can give S these values because it plays the uncorrupted C in the emulationand therefore knows the w values.17If during the emulation by M , the above-described bad event occurs, then M outputs c and thetwo pairs (w1; r1) and (w2; r2). In order to analyze the success probability of M , �rst notice thatthe views of Z and A in this simulation by M are indistinguishable from their views in an idealprocess execution. The only di�erence between the executions is that A does not receive \dummycommitments" to 0k, but real commitments to w. By the hiding property of the commitments,these are indistinguishable. Therefore, the probability that A generates the messages constitutinga bad event in M 's emulation is negligibly close to the probability that the bad event occurs in theideal process simulation by S. The key point here is that S does not need to know the trapdoor t17A more \natural" de�nition of M would be to have it run S in the same way as in the simulation, even before Cis corrupted. In such a case, M would need to know the trapdoor in order to proceed when C is corrupted. However,it is crucial here that M not know the trapdoor (because the binding property only holds when the trapdoor is notknown).

104 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONin order to carry out the emulation. In particular, M carries out its emulation with s only, andwithout knowing t. Therefore the binding property of the commitment scheme aHCs must hold withrespect to M . However, by the contradicting hypothesis, the bad event occurs in M 's emulationwith non-negligible probability. This contradicts the binding property of the commitment scheme.4.8 Two-Party Secure Computation for Malicious AdversariesIn this section, we show how to obtain universally composable general secure computation in thepresence of malicious adversaries. Loosely speaking, we present a protocol compiler that transformsany protocol that is designed for the semi-honest adversarial model into a protocol that guaranteesessentially the same behavior in the presence of malicious adversaries. The compiler is describedin Section 4.8.1. Then, Section 4.8.2 ties together all the components of the construction, fromSections 4.4, 4.6, 4.7 and 4.8.1.4.8.1 The Protocol CompilerAs discussed in Section 4.2.2, the Fcp functionality is used to construct a protocol compiler thattransforms any non-trivial protocol that securely realizes some two-party functionality F in thepresence of semi-honest adversaries (e.g., the protocol of Section 4.4), into a non-trivial protocolthat securely realizes F in the presence of malicious adversaries. In this section we present thecompiler (the same compiler is valid for both static and adaptive adversaries). Now, let � be atwo-party, reactive protocol. Without loss of generality, we assume that � works by a series ofactivations, where in each activation, only one of the parties has an input. This is consistent withour description of general two-party functionalities, see Section 4.3.3. For the sake of simplicity, wealso assume that the lengths of the random tapes speci�ed by � for all activations is k.The compiled protocol Comp(�) is described in Figure 4.11 below. It uses two copies of Fcp:one for when P1 is the committer and one for when P2 is the committer. These copies of Fcp aredenoted F1cp and F2cp, respectively, and are formally identi�ed by session identi�ers sid1 and sid2(where sidi can be taken as sid � i). The description of the compiler is from the point of view ofparty P1; P2's instructions are analogous.Loosely speaking, the e�ect of the compiler on the adversary's capabilities, is that the (mali-cious) adversary must exhibit semi-honest behavior, or else its cheating will be detected. Recallthat a semi-honest adversary follows the protocol instructions exactly, according to a �xed inputand a uniformly distributed random input. The following proposition asserts that for every mali-cious adversary A participating in an execution of the compiled protocol (in the Fcp-hybrid model),there exists a semi-honest adversary A0 that interacts with the original protocol in the plain real-life model such that for every environment Z, the output distributions in these two interactionsare identical. Thus, essentially, a malicious adversary is reduced to semi-honest behavior. Wenote that the compiler does not use any additional cryptographic construct other than access toFcp. Consequently, the following proposition holds unconditionally, and even if the adversary andenvironment are computationally unbounded.Proposition 4.8.1 Let � be a two-party protocol and let Comp(�) be the protocol obtained byapplying the compiler of Figure 4:11 to �. Then, for every malicious adversary A that interactswith Comp(�) in the Fcp-hybrid model there exists a semi-honest adversary A0 that interacts with

4.8. TWO-PARTY SECURE COMPUTATION FOR MALICIOUS ADVERSARIES 105Comp(�)Party P1 proceeds as follows (the code for party P2 is analogous):1. Random tape generation: When activating Comp(�) for the �rst time with session identi�ersid, party P1 proceeds as follows:(a) Choosing a random tape for P1:i. P1 chooses r11 2R f0; 1gk and sends (commit; sid1; r11) to F1cp. (P2 receives a(receipt; sid1) message, chooses r21 2R f0; 1gk and sends (sid; r21) to P1.)ii. When P1 receives a message (sid; r21) from P2, it sets r1 def= r11 � r21 (r1 will serve asP1's random tape for the execution of �).(b) Choosing a random tape for P2:i. P1 waits to receive a message (receipt; sid2) from F2cp (this occurs after P2 sends acommit message (commit; sid2; r22) to F2cp). It then chooses r12 2R f0; 1gk and sends(sid; r12) to P2. (P2 sets r2 = r12 � r22 to be its random tape for the execution of �.)2. Activation due to new input: When activated with input (sid; x), party P1 proceeds as follows.(a) Input commitment: P1 sends (commit; sid1; x) to F1cp and adds x to the list of inputs x(this list is initially empty and contains P1's inputs from all the previous activations of�). Note that at this point P2 receives the message (receipt; sid1) from F1cp.(b) Protocol computation: Let m1 be the series of �-messages that P1 received from P2 inall the activations of � until now (m1 is initially empty). P1 runs the code of � on itsinput list x, messages m1, and random tape r1 (as generated above).(c) Outgoing message transmission: For any outgoing message m that � instructs P1 tosend to P2, P1 sends (CP-prover; sid1; (m; r21 ;m1)) to F1cp where the relation R� for F1cpis de�ned as follows:R� = �((m; r21 ;m1); (x; r11)) j m = �(x; r11 � r21 ;m1)	In other words, P1 proves that m is the correct next message generated by � whenthe input sequence is x, the random tape is r1 = r11 � r21 and the series of incoming�-messages equals m1. (Recall that r11 and all the elements of x were committed to byP1 in the past using commit invocations of F1cp, and that r21 is the random string sentby P2 to P1 in Step 1(a)ii above.)3. Activation due to incoming message: When activated with incoming message(CP-proof; sid2; (m; r12 ;m2)) from F2cp, P1 �rst veri�es that the following conditions hold. (Wenote that F2cp is parameterized by the same relation R� as F1cp.)(a) r12 is the string that P1 sent to P2 in Step 1(b)i above.(b) m2 equals the series of �-messages received by P2 from P1 (i.e., P1's outgoing messages)in all the activations until now.If any of these conditions fail, then P1 ignores the message. Otherwise, P1 appends m to itslist of incoming �-messages m1 and proceeds as in Steps 2b and 2c.4. Output: Whenever � generates an output value, Comp(�) generates the same output value.Implicit in the above protocol speci�cation is the fact that P1 and P2 only consider messages thatare associated with the speci�ed identi�er sid.Figure 4.11: The compiled protocol Comp(�)

106 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATION� in the plain real-life model, such that for every environment Z,real�;A0;Z � hybridFcpComp(�);A;ZAn immediate corollary of this proposition is that any protocol that securely realizes some two-partyfunctionality F in the semi-honest model can be compiled into a protocol that securely realizes Fin the malicious model. This holds both for static and adaptive adversaries.Corollary 4.8.2 Let F be a two-party functionality and let � be a non-trivial protocol that securelyrealizes F in the real-life model and in the presence of semi-honest adversaries. Then Comp(�)is a non-trivial protocol that securely realizes F in the Fcp-hybrid model and in the presence ofmalicious adversaries.We note that the proposition and corollary hold both for the case of adaptive adversaries and forthe case of static adversaries. Here we prove the stronger claim, relating to adaptive adversaries.We now prove the proposition.Proof of Proposition 4.8.1: Intuitively, a malicious adversary cannot cheat because the validityof each message that it sends is veri�ed using the Fcp functionality. Therefore, it has no choice butto play in a semi-honest manner (or be detected cheating).More precisely, let A be a malicious adversary interacting with Comp(�) in the Fcp-hybridmodel. We construct a semi-honest adversary A0 that interacts with � in the plain real-life model,such that no environment Z can tell whether it is interacting with Comp(�) and A in the Fcp-hybrid model, or with � and A0 in the plain real-life model. As usual, A0 works by running asimulated copy of A and using the messages sent by A as a guide for its interaction with � and Z.We use the term external communication to refer to the communication of A0 with Z and �. Theterm internal communication is used to refer to the communication of A0 with the simulated A.Before describing A0, we note the di�erence between this proof and all previous ones in this paper.Until now, we constructed an ideal process adversary S from a hybrid or real model adversaryA. In contrast, here we construct a real model adversary A0 from a hybrid model adversary A.Furthermore, previously both S and A were malicious adversaries, whereas here A is malicious andA0 is semi-honest. We now describe A0:First, A0 runs a simulated copy of A and simulates for A the Comp(�) messages relating tothe generation of the random string of both parties. Next, A0 translates each message externallysent in � to the corresponding message (or sequence of messages) in Comp(�). Each message sentby the simulated A (supposedly by a corrupted party running Comp(�)) is translated back to a�-message and sent externally. The rationale of this behavior is that if the simulated A (controllingthe corrupted party) deviates from the protocol, then this would have been detected by the partnerin Comp(�), and thus A0 can ignore that message. If A does not deviate from the protocol, then A0can forward the messages sent by A to the other party as this is allowed behavior for a semi-honestparty. More precisely, A0 proceeds as follows.Simulating the communication with the environment: Every input value coming from Z(in the external communication) is forwarded to the simulated A (in the internal communi-cation) as if coming from A's environment. Similarly, every output value written by A on itsoutput tape is copied to A0's own output tape (to be read by the external Z).

4.8. TWO-PARTY SECURE COMPUTATION FOR MALICIOUS ADVERSARIES 107Simulating the \random tape generation" phase: When the �rst activation of � takes place,A0 internally simulates the \random tape generation" phase of Comp(�). Here we separatelydeal with each corruption case:1. Both parties are not corrupted: A0 simulates both parties' messages from this stage.That is, in order to simulate the generation of P1's random tape, A0 internally passes Athe message (receipt; sid1), as if coming from F1cp. Furthermore, A0 chooses a randomr21, records the value, and simulates P2 sending P1 the message (sid; r21) of Step 1(a)ii inFigure 4.11. The simulation of P2's random tape is analogous.2. P1 is not corrupted and P2 is corrupted: We begin with the generation of P1's randomtape. As above, A0 begins by internally passingA the message (receipt; sid1), as if comingfrom F1cp. Then, A0 obtains and records the message (sid; r21) from the corrupted P2(controlled by A in Comp(�)).We now proceed to the generation of P2's random tape. A0 obtains from A the message(commit; sid2; r22), as sent by P2 to F2cp in an execution of Comp(�). Now, let r2 equalthe random tape of the corrupted P2 in the external execution of � (A0 knows thisvalue because it can read all of the corrupted P2's tapes). Then, A0 sets r12 = r2 � r22and internally passes A the message (sid; r12), as if sent by P1 to P2. (Recall that A0 issemi-honest and thus it cannot modify P2's random tape r2 for �. A0 therefore \forces"A to use this exact same random tape in the simulated execution of Comp(�).)3. P1 is corrupted and P2 is not corrupted: The simulation of this case is analogous to theprevious one. In particular, for the generation of the corrupted P1's random tape, A0�rst receives a message (commit; sid1; r11) from A and simulates P2 sending (sid; r21) toP1, where r21 = r1 � r11 and r1 equals the random tape of the real party P1 executing �.4. Both parties are corrupted: When both parties are corrupted, the entire simulation isstraightforward. (A0 simply runs both malicious parties and at the end, copies thecontents of their output tapes to the output tapes of the semi-honest parties running�.) We therefore ignore this case from now on.Simulating an activation due to new input: We deal with the case that P1 is not corruptedseparately from the case that P1 is corrupted. Recall that the input commitment phaseconsists only of P1 sending a commit message to F1cp. First, if party P1 is not corrupted, thenA0 learns that the external P1 received new input from the fact that it sends its �rst messageof the execution of �. In response, A0 simulates the input commitment step by internallypassing (receipt; sid1) to A (as A expects to receive from F1cp in a real execution of Comp(�)).If P1 is corrupted, then A0 receives a message (commit; sid1; x) from A (who controls P1in Comp(�)). Then, A0 adds x to the list x of inputs committed to by P1 and passes Athe string (receipt; sid1), as if coming from F1cp. Furthermore, A0 sets P1's input tape toequal x. (Recall that a semi-honest adversary is allowed to modify the input values that theenvironment writes on the input tape of a corrupted party. Formally, when the environmentZ noti�es the semi-honest A0 of the value that it wishes to write on P1's input tape, A0simulates for A the malicious model where Z writes directly to P1's input tape. Then, whenA sends the message (commit; sid1; x) in the simulation, A0 externally instructs Z to write thevalue x (as committed to by A) on P1's input tape. See Section 4.3.1 for an exact descriptionof how values are written to the parties' input tapes in the semi-honest model.)Dealing with protocol messages sent externally by uncorrupted parties: If an uncorruptedparty P1 externally sends P2 a message m in the execution of �, then A0 internally passes A

108 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONthe message (CP-proof; sid1; (m; r21 ;m1)), where r21 is the value recorded by A0 in the simu-lated generation of P1's random tape above, and m1 is the series of all �-messages receivedby P1 so far. Similarly, if an uncorrupted party P2 sends P1 a message m in the executionof �, then A0 internally passes A the message (CP-proof; sid2; (m; r12 ;m2)), where r12 and m2are the analogous values to the previous case.Next, A0 externally delivers messages sent from P1 to P2 (resp., from P2 to P1) in the executionof � when A delivers the corresponding (CP-proof; : : :) message from F1cp to P2 (resp., fromF2cp to P1) in the simulated execution of Comp(�).Dealing with protocol messages sent internally by corrupted parties: Assume that P1 iscorrupted. If A, controlling P1, sends a message (CP-prover; sid1; (m; r021;m01)), then A0 worksas follows. First, A0 has seen all the messagesm1 received by P1 and can check that m01 =m1.Likewise, A0 checks that r021 = r21 (recall that r21 is the value recorded by A0 in the simulatedgeneration of P1's random tape above). Finally, A0 checks that m = �(x; r11�r21;m1). (Noticethat since P1 is corrupted, A0 has all the necessary information to carry out these checks.) Ifall of the above is true, then A0 internally passes A the message (CP-proof; sid1; (m; r021;m01)),as A expects to receive from F1cp. Then, whenA delivers this (CP-proof; : : :) message from F1cpto P2 in the simulation, A externally delivers the message that P1, running �, has written onits outgoing communication tape for P2.18 If any of these checks fail, then A0 does nothing.(That is, no message is externally delivered from P1 to P2 at this point.) The case of Asending a CP-proof message in the name of a corrupt P2 is analogous.Dealing with corruption of parties:19 When the simulated A internally corrupts a party P1,A0 �rst externally corrupts P1 and obtains all of P1's past inputs and outputs, and its randomtape. Next, A0 prepares for A a simulated internal state of P1 in protocol Comp(�). This isdone as follows. The only additional internal state that P1 keeps in Comp(�) is the randomstring r11 (this is the string that P1 commits to in the random tape generation phase ofComp(�)). Then, A0 sets r11 = r1 � r21, where r1 is P1's random string for � and r21 is thestring that P2 sent to P1 in the internal simulated interaction with A of Comp(�). Thus, inthe above way, A0 prepares a simulated internal state of P1 in Comp(�) and internally passesit to A. A0 works in an analogous way upon the corruption of P2.We argue that Z's view of the interaction with A0 and parties running � in the real-life semi-honest model is identical to its view of the interaction with A and parties running Comp(�) in theFcp-hybrid model. (In particular, the view of the simulated A within A0 is identical to its viewin a real interaction with the same Z and Comp(�) in the Fcp-hybrid model.) This can be seenby observing the computational steps in an interaction of Z with A0 and �. The cases where anuncorrupted party sends a message are immediate. To see that this holds also in the case where A0delivers messages sent by corrupted parties, recall that A0 forces the random input of a corruptedP1 in the internal execution of Comp(�) with A to be the random tape of the semi-honest partyP1 externally executing �. Furthermore, A0 modi�es the input tape of the external party P1 sothat it is the same input as committed to by A. We therefore have that the input and randomtapes that malicious A committed to for the internal P1 are exactly the same as the input andrandom tapes used by the external P1. Now, A0 obtains all the inputs committed to by a corrupted18This point requires some elaboration. Notice that if all checks were successful, then the message that P1 wouldsend in an execution of � equals m. This is because external P1 in � and internal P1 in Comp(�) both have thesame inputs, random tapes and series of incoming messages. Therefore, their outgoing messages are also the same.19In the case of static adversaries the simulation remains the same with the exception that this case is ignored.

4.9. MULTI-PARTY SECURE COMPUTATION 109P1 in the simulated interaction with A. Consequently, A0 is able to verify at every step if themessage m sent by A, in the name of a corrupted P1 in the simulated interaction, is according tothe protocol speci�cation. If yes, then we are guaranteed that P1 generates the exact same messagem in the external execution of �. Thus, P2 receives the same �-message in the execution of �(where the adversary A0 is semi-honest) and in the execution of Comp(�) (where the adversaryA is malicious). Furthermore, we are guaranteed that whenever A0 delivers a message m in theexternal execution of �, the simulated A generated and delivered a valid corresponding messageto Fcp. Finally, the internal state that A receives from A0 upon corrupting a party is exactly thesame as it receives in a real execution of Comp(�). In particular, observe that in the simulationof the random tape generation phase when P1 is not corrupted, A receives no information aboutr11 (it only sees a (receipt; sid1) message). Therefore, A0 can choose r11 as any value that it wishesupon the corruption of P1, and in particular it can set it to equal r1�r21 (recall that P1 indeed usesthe random tape r1; therefore this is consistent with its true internal state). We conclude that theensembles real and hybrid are identical.4.8.2 ConclusionsCombining Proposition 4.4.3 and Corollary 4.8.2, we have that for any two-party ideal functionalityF , there exists a protocol that securely realizes F in the Fcp-hybrid model (in the presence ofmalicious adversaries). Combining this with Proposition 4.7.1, and using the universal compositiontheorem (Theorem 4.3.3), we obtain universally composable general two-party computation in theFzk-hybrid model. That is,Theorem 4.8.3 (Theorem 4.2.2 { formally restated): Assume that trapdoor permutations exist.Then, for any well-formed two-party ideal functionality F , there exists a non-trivial protocol thatsecurely realizes F in the Fzk-hybrid model in the presence of malicious, static adversaries. Further-more, if two-party augmented non-committing encryption protocols exist, then for any adaptivelywell-formed two-party ideal functionality F , there exists a non-trivial protocol that securely realizesF in the Fzk-hybrid model in the presence of malicious, adaptive adversaries.Recall that, under the assumption that trapdoor permutations exist, functionality F̂zk (the multi-session extension of Fzk) can be securely realized in the Fcrs-hybrid model by protocols that usesa single copy of the reference string. We can thus use the universal composition with joint statetheorem (Theorem 4.3.4) to obtain the following corollary:Corollary 4.8.4 Assume that trapdoor permutations exist. Then, for any well-formed two-partyideal functionality F , there exists a non-trivial protocol that securely realizes F in the Fcrs-hybridmodel in the presence of malicious, static adversaries. Furthermore, if two-party augmented non-committing encryption protocols exist, then for any adaptively well-formed two-party functionalityF , there exists a non-trivial protocol that securely realizes F in the Fcrs-hybrid model in the presenceof malicious, adaptive adversaries. In both cases, the protocol uses a single copy of Fcrs.4.9 Multi-party Secure ComputationThis section extends the two-party constructions of Sections 4.5{4.8 to the multi-party setting,thereby proving Theorem 4.2.3. The results here relate to a multi-party network where subsets of theparties wish to realize arbitrary (possibly reactive) functionalities of their local inputs. Furthermore,

110 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONthere is an adaptive adversary that can corrupt any number of the parties (in particular, no honestmajority is assumed). Throughout, we continue to assume a completely asynchronous networkwithout guaranteed message delivery.This section is organized as follows. We start by showing how to obtain UC multi-party com-putation in the presence of semi-honest adversaries. Next we de�ne a basic broadcast primitivewhich will be essential for our protocols in the case of malicious adversaries. We then generalizethe UC commitment, zero-knowledge and Fcp functionalities to the multi-party case. Finally, weconstruct a multi-party protocol compiler using the generalized Fcp, and obtain UC multi-partycomputation in the malicious adversarial model. In our presentation below, we assume familiaritywith the two-party constructions.4.9.1 Multi-party Secure Computation for Semi-Honest AdversariesIn this section, we sketch the construction of non-trivial protocols that securely realize any adap-tively well-formed functionality F for semi-honest adversaries. (Recall the de�nition of adaptivelywell-formed functionalities in Section 4.3.3.) The construction is a natural extension of the con-struction for the two-party case. We assume that the set P of participating parties in any executionis �xed and known; let this set be P1; : : : ; P`. Then, the input lines to the circuit (comprising of theinput value, random coins and internal state of the functionality) are shared amongst all ` parties.That is, for every input bit a to the circuit, the parties hold random bits �1; : : : ; �`, respectively,under the constraint that � = �ì=1�i. Next, the parties compute the circuit inductively from theinputs to outputs so that at every step, they hold shares of the lines already computed. Once thecircuit is fully computed, the parties reconstruct the outputs, as required. We now proceed to provethe following proposition:Proposition 4.9.1 Assume that trapdoor permutations exist. Then, for any well-formed (multi-party) ideal functionality F , there exists a non-trivial protocol that securely realizes F in the presenceof semi-honest, static adversaries. Furthermore, if two-party augmented non-committing encryp-tion protocols exist, then for any adaptively well-formed (multi-party) functionality F , there existsa non-trivial protocol that securely realizes F in the presence of semi-honest, adaptive adversaries.As in the two-party case, for adaptive adversaries we assume the existence of two-party augmentednon-committing encryption protocols. Indeed, as in the two-party case this assumption is neededonly to securely realize the two-party functionality F4ot, which plays a central role even in themulti-party case.We begin our proof of Proposition 4.9.1 by presenting a non-trivial multi-party protocol �F thatsecurely realizes any adaptively well-formed functionality F in the Fot-hybrid model. (We provethe proposition for the adaptive case only, the static case is easily derived.) We start by de�ninga boolean circuit CF that represents an activation of F . The circuit CF has 3m input lines: mlines represent the input value sent to F in this activation (i.e., this is the input held by one of theparties). The additional 2m input lines are used for F 's random coins and for holding F 's state atthe onset of the activation. The circuit also has m output lines for each party and m output linesfor �nal state of F after the activation (a total of m`+m lines). For more details on how F andCF are de�ned, see the description for the two-party case in Section 4.4.2 (the extensions to themulti-party case are straightforward).

4.9. MULTI-PARTY SECURE COMPUTATION 111Protocol �F (for securely realizing F): Let the set of participating parties equal P =fP1; : : : ; P`g. We state the protocol for an activation in which P1 sends a message to F . Whenactivated with input (sid; v) for P1 where jvj � m, the protocol �rst pads v to length m (accordingto some standard encoding), and sends a message to all the parties in P, asking them to participatein a joint evaluation of CF . Next, the parties do the following:1. Input Preparation Stage:� Input value: P1 starts by sharing its input v with all parties. That is, P1 chooses ` randomstrings v1; : : : ; v` 2R f0; 1gm with the constraint that �ì=1vi = v. Then, P1 sends (sid; vi)to Pi for every 2 � i � `, and stores v1.� Internal state: At the onset of each activation, the parties hold shares of the currentinternal state of F . That is, let c denote the current internal state of F , where jcj = mand m is an upper bound on the size of the state string stored by F . Then, party Pi holdsci 2 f0; 1gm and all the ci's are random under the restriction that �ì=1ci = c. (In the�rst activation of F , the internal state is empty and so the parties hold �xed shares 0 thatdenote the empty state.)� Random coins: Upon the �rst activation of F only, each party Pi locally chooses a randomstring ri 2R f0; 1gm. The strings r1; : : : ; r` then constitute shares of the random coinsr = �ì=1ri to be used by CF in all activations.At this point, the parties hold (random) shares of every input line of CF .2. Circuit Evaluation: The parties proceed to evaluate the circuit CF in a gate-by-gate man-ner. Let � and � denote the bit-values of the input lines to a given gate. Then every Pi holdsbits �i; �i such that � =Pì=1 �i and � =Pì=1 �i. The gates are computed as follows:� Addition gates: If the gate is an addition gate, then each Pi locally sets its share of theoutput line of the gate to be i = �i + �i. (Thus Pì=1 i =Pì=1(�i + �i) = �+ � = .)� Multiplication gates: If the gate is a multiplication gate, then the parties need to computetheir shares of = �Pì=1 �i��Pì=1 �i�. The key to carrying out this computation is thefollowing equality: X̀i=1 �i! X̀i=1 �i! = ` � X̀i=1 �i�i + X1�i<j�`(�i + �j) � (�i + �j)(See [44, Section 3.2.2] for a justi�cation of this equality.) Notice that each party cancompute a share of the �rst sum locally (by simply computing �i � �i and multiplyingthe product by `). Shares of the second sum can be computed using activations of thetwo-party oblivious transfer functionality F4ot. (That is, for each pair i and j, parties Piand Pj compute shares of (�i+�j) � (�i+�j). This is exactly the same computation as inthe two-party case and can be carried out using F4ot.) After computing all of the shares,each party Pi locally sums its shares into a value i, and we have that Pì=1 i = , asrequired.3. Output stage: Following the above stage, the parties hold shares of all the output lines ofthe circuit CF . Each output line of CF is either an output addressed to one of the partiesP1; : : : ; P`, or belongs to the internal state of CF after the activation. The activation concludesas follows:

112 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATION� Pi's output (for every i): For every j 6= i, party Pj sends Pi all of its shares in Pi's outputlines. Pi then reconstructs every bit of its output value by adding the appropriate shares,and writes the result on its output tape.� Internal state: P1; : : : ; P` all locally store the shares that they hold for the internal statelines of CF . (These shares are to be used in the next activation.)Recall that since we are working in an asynchronous network, there is no guarantee on the order ofmessage delivery and messages may be delivered \out of order". In contrast, to maintain correctnessthe protocol must be executed according to its prescribed order (e.g., new activations must beginonly after previous ones have completed and gates may be evaluated only after the shares of theinput lines are known). As in the two-party case, this is dealt with by assigning unique identi�ersto every message sent during all activations. A full description of how this can be achieved appearsin Section 4.4.2. By having the parties store messages that arrive before they are relevant inappropriate bu�ers (where the time that a message becomes relevant is self-evident from the uniquetags), we have that all honest parties process the messages in correct order. Thus, it makes nodi�erence whether or not the adversary delivers the messages according to the prescribed order andwe can assume that all messages are delivered in order.This completes the description of �F . We now sketch the proof that �F securely realizes anyadaptively well-formed multi-party functionality F :Claim 4.9.2 Let F be an adaptively well-formed multi-party functionality. Then, protocol �Fsecurely realizes F in the Fot-hybrid model, in the presence of semi-honest, adaptive adversaries.Proof (sketch): The proof of this claim is very similar to the two-party case (i.e., Claim 4.4.4).First, it is clear that �F correctly computes F (i.e., all parties receive outputs that are distributedaccording to F). Next, we show the existence of a simulator for �F . The basis for the simulator'sactions is the fact that, as long as there is at least one uncorrupted party, all the intermediaryvalues seen by the parties are uniformly distributed.Let A be a semi-honest, adaptive adversary; we construct a simulator S for the ideal processF . Simulator S internally invokes A and works as follows:Simulating the communication with Z: The input values received by S from Z are writtenon A's input tape, and the output values of A are copied to S's own output tape.Simulation of the input stage: Recall that in this stage, the only messages sent are randomstrings v2; : : : ; v` that P1 sends to P2; : : : ; P`. Thus, the simulation of this stage involvessimulating P1 sending `� 1 random strings v2; : : : ; v` to P2; : : : ; P`. (If P1 is corrupted, thenv2; : : : ; v` are chosen according to P1's random tape. Otherwise, S chooses each vi uniformly.)Simulation of the circuit evaluation stage: The addition gates require no simulation sincethey constitute local computation only. The multiplication gates involve simulation of pair-wise oblivious transfer calls to Fot. We describe the simulation of these oblivious transfersseparately for each corruption case.1. Oblivious transfers run with an uncorrupted receiver: In the case that the receiver is notcorrupted, the only message seen by A in a call to Fot is the session-identi�er used.This is therefore easily simulated by S. (If the sender is corrupted, then its input tableto Fot is seen by A. However, this is already de�ned because it is a function of thesender's view which is known to A.)

4.9. MULTI-PARTY SECURE COMPUTATION 1132. Oblivious transfers run with an uncorrupted sender and a corrupted receiver: In thiscase, the receiver obtains a uniformly distributed bit 2 as output from the oblivioustransfer. Therefore, S merely chooses 2 uniformly.3. Oblivious transfers run with a corrupted sender and receiver: Simulation is straightfor-ward when both participating parties are corrupted (all input values and random tapesare already de�ned).Simulation of the output stage: S simulates the parties sending strings in the output stage inorder to reconstruct their outputs. First, we note that the shares of the input lines, for anyparty Pj that is already corrupted, are already de�ned. (This is because A holds the view ofPj and this view de�nes the shares that Pj holds of all the output lines.) This means thatthe strings that Pj sends in the output stage are also de�ned. Now, S de�nes the stringsreceived by a party Pi in the output stage as follows. If Pi is not corrupted, then S simulatesall the other uncorrupted parties sending Pi uniformly distributed strings. If Pi is corrupted,then S has Pi's output yi. S uses this to choose random strings for the honest parties so thatthe exclusive-or of these strings along with the de�ned output strings sent by the corruptedparties equals yi. (Thus, Pi's output is reconstructed to yi, as required.) Simulator S carriesout this simulation for all parties P1; : : : ; P`.Simulation of corruptions before the last honest party is corrupted: When some party Piis corrupted, S should provide A with the internal state of Pi for all the activations of F (i.e.,for all the evaluations of CF) so far. All the evaluations are dealt with independently fromeach other (except that Pi's output shares of F 's internal state from one evaluation equalsits input shares of F 's internal state in the following evaluation). Also all evaluations, ex-cept perhaps for the current one, are complete. Here we describe how S deals with a single,complete activation. (If the current activation is not complete then S follows its instructionsuntil the point where Pi is corrupted.)Upon the corruption of party Pi, simulator S receives Pi's input xi and output yi, and shouldgenerate Pi's view of the simulated protocol execution. This view should be consistent withthe messages sent in the simulation so far. We begin with the simulation of Pi's view of theinput stage. If i = 1 (i.e., P1 is the party that is corrupted), then S obtains the input valuev. Let v2; : : : ; v` be the random strings that P1 sent P2; : : : ; P` in the simulated interaction.Then, S de�nes P1's share of the input to equal v1 so that �ì=1vi = v. S continues for any Pi(i.e., not just for i = 1) as follows. S chooses random strings ri 2R f0; 1gm and ci 2R f0; 1gsand sets Pi's inputs to CF 's random-coins and internal state to be ri and ci, respectively.Having completed the simulation of Pi's view of the input stage, S proceeds to simulate Pi'sview in the oblivious transfers of the protocol execution. Below we describe the simulationfor all the multiplication gates except for those immediately preceding output lines (these willbe dealt with separately below). We distinguish four cases:1. Oblivious transfers run with Pi as sender and an uncorrupted Pj as receiver: Recall thatin every oblivious transfer, the sender inputs a random-bit 1 to mask the outcome. Inthis case, S simply chooses 1 uniformly. (This is the random bit that Pi supposedlychose upon computing this gate.)2. Oblivious transfers run with an uncorrupted Pj as sender and Pi as receiver: In thiscase, in the execution of �F , party Pi receives a uniformly distributed bit 2 as outputfrom the oblivious transfer. Therefore, S chooses 2 uniformly.

114 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATION3. Oblivious transfers run with Pi as sender and an already corrupted Pj as receiver: Pj isalready corrupted and therefore the value 2 that it received from this oblivious transferhas already been �xed in the simulation. Furthermore, both Pi and Pj 's circuit inputsvi; vj , ri; rj and ci; cj have been �xed, as too have their views for all the multiplicationgates leading to this one. (S computes the view inductively from the inputs to the out-puts.) Thus, the input lines to this oblivious transfer are �xed, as too is Pj 's output fromthe oblivious transfer. This fully de�nes the oblivious transfer table that P1 constructsin the protocol execution (as well as its \random" bit 1). Therefore, S constructs thetable according to the protocol instructions.4. Oblivious transfers run with an already corrupted Pj as sender and Pi as receiver: As inthe previous case, the input lines and the random-bit 1 that Pj inputs into the oblivioustransfer are �xed. Since Pi's input into this oblivious transfer is also already �xed, thisfully de�nes the bit 2 that Pi receives as output.As we have mentioned, there is a di�erence regarding the simulation of multiplication gatesthat precede output lines. (As in the two-party case, we assume for simplicity that everyoutput line is preceded by a multiplication gate.) We describe the simulation of these gatestogether with the output stage. During the simulation of the output stage, Pi receiveduniformly distributed strings yji from every party Pj (the strategy for choosing these values isdescribed in the item on \simulation of the output stage"). Note that all the yji 's (for j 6= i)are de�ned and �xed.20 Upon the corruption of Pi, simulator S receives Pi's output string yi.The aim of S is to have Pi's output lines de�ne shares yii such that �j̀=1 yji = yi (and thus Pi'soutput reconstruction will be as required). This is done as follows. Recall that the evaluationof each multiplication gate is comprised of a series of oblivious transfers between all pairsof parties. Since Pi is not the last honest party to be corrupted, there exists at least onehonest party Pl with which Pi runs a pairwise oblivious transfer in the computation of thisgate. All the oblivious transfers of this gate apart from this one are simulated as describedabove. These simulations all provide bit-shares to Pi: let b denote the sum of these shares. Itremains to simulate this last oblivious transfer between Pi and Pl. Let i be the bit of yii thatPi is supposed to receive as its share of the output line that follows from this multiplicationgate. Now, the speci�c oblivious transfer between Pi and Pl de�nes one share of the outputbit i, and all the other shares have already been �xed and sum to b. Thus, the aim of S is tohave Pi's output from the oblivious transfer with Pl equal i+ b (and thus Pi's overall outputfrom the gate will be i as required). However, Pl is not corrupted. Therefore, whether Piis the sender or Pl is the sender, Pi's output can be chosen arbitrarily by S. (See the �rst 2of the 4 simulation cases above; in those cases, S merely chooses the output bit randomly.)Thus, S sets the output bit to be i + b and Pi receives the correct bit. This completes thesimulation for the corruption of Pi.Simulation of the corruption of the last honest party: Let Pi be the party that is corruptedlast. If i = 1, then S obtains the input-value v into this activation. (As above, in this case,S de�nes P1's share of the input v1 to be so that �j̀=1 vj = v.) In all cases, S obtains theoutput-value yi that Pi receives. Furthermore, since F is adaptively well-formed, S obtainsthe random tape of F . Given this information, S computes the internal state of F in thebeginning of this activation. Let c be this state string and let r equal F 's length-m random20Actually, corruption can happen in the middle of the output stage and in such a case only some of the outputstrings may be �xed. In such a case, �rst (internally) �x all the output strings and then continue as here.

4.9. MULTI-PARTY SECURE COMPUTATION 115tape. Now, all other parties are corrupted and thus the shares of the random tape rj are�xed for every j 6= i. S takes Pi's share of the random tape to be ri so that �j̀=1 rj = r.Likewise, except for ci, all the shares of the state input cj are �xed. S thus de�nes ci so that�j̀=1 cj = c. This completes the simulation of the input stage.Next S simulates the circuit evaluation stage, working from the input gates to the outputgates, in the same way as described above (i.e., for the case that Pi is not the last honest partycorrupted). Notice above that when Pi runs an oblivious transfer with an already corruptedparty, then all the inputs and outputs are essentially �xed. Thus, S merely computes the bitthat Pi should see in each oblivious transfer as in the above cases. We therefore have thatthe simulation of this stage is a deterministic process. This simulation also de�nes the outputshares that Pi receives, thus concluding the simulation.Output delivery: S delivers the output from F to an uncorrupted party Pi when A delivers allthe output shares yji that parties Pj send Pi in the simulation.It remains to show that no environment Z can distinguish the case that it interacts with S and Fin the ideal process or with A and �F in the Fot-hybrid model. The analysis is similar to the onefor the two-party case and is omitted.4.9.2 Authenticated BroadcastIn order to obtain our result, we assume that each set of parties that engage in a protocol executionhave access to an authenticated broadcast channel. The broadcast channel is modeled by the idealbroadcast functionality, Fbc, as de�ned in Figure 4.12. In our protocols for malicious adversaries,all communication among the parties is carried out via Fbc.Functionality FbcFbc proceeds as follows, running with parties P1; : : : ; Pn and an adversary S:� Upon receiving a message (broadcast; sid;P ; x) from Pi, where P is a set of parties, send(broadcast; sid; Pi;P ; x) to all parties in P and to S, and halt.Figure 4.12: The ideal broadcast functionalityNote that the Fbc-hybrid model does not guarantee delivery of messages, nor does it provideany synchrony guarantees for the messages that are delivered. It only guarantees that no twouncorrupted parties in P will receive two di�erent message with the same sid. We now showthat Fbc can be securely realized, for any number of corrupted parties and without any setupassumptions.Protocol 2 (universally composable broadcast):� Input: Pi has input (broadcast; sid;P; x).� The Protocol:1. Pi sends (sid;P; x) to all parties.2. Denote by (Pj ; xj) the message received by Pj in the previous round. Then, every party Pj(for j 6= i) sends its message (sid;Pj ; xj) to all other parties.

116 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATION3. Denote the message received by Pj from Pk in the previous round by (Pjk ; xjk) (recallthat xj denotes the value Pj received from Pi in the �rst round). Then, Pj outputs(broadcast; sid; Pi;P; xj) if it belongs to the set P, if it received all the messages (Pjk ; xjk)and this is the only message that it saw (i.e., if it received (Pjk ; xjk) from every Pk and itholds that all these messages are the same). Otherwise, it outputs nothing.We note that if Pj did not receive any value in the �rst round, then it does not outputanything.Proposition 4.9.3 Protocol 2 securely realizes Fbc (in the universally composable framework).Proof: Let A be a real-model adversary attacking Protocol 2. We construct an ideal modeladversary S for A that interacts with Fbc. We di�erentiate between two cases: in the �rst thedealer is corrupted (and thus is controlled by A), and in the second it is honest. Let Pi be thedealer in this execution.� Case 1 { Pi is corrupt: In the �rst round, A (controlling Pi) sends messages to ` of the honestparties for some `; denote these messages by (Pi1 ; xi1); : : : ; (Pi` ; xi`). Simulator S receives allthese messages and then simulates the messages sent by the honest parties in the second round.Furthermore, S obtains all the messages sent by A in the second round.Now, if there exist j and k (1 � j; k � `) such that (Pij ; xij) 6= (Pik ; xik), then S sendsnothing to Fbc. Otherwise, let x be the message sent by A. Then, S sends x to the idealfunctionality Fbc. Next, S de�nes the set of honest parties to whom to deliver the output(broadcast; sid; Pi;P; x) from Fbc. This set of parties is de�ned to be those parties in P towhom A delivers all the second round messages and whose messages all contain the same x. Sconcludes by delivering the messages from the Fbc functionality to these parties, and only tothese parties.� Case 2 { Pi is honest: S receives (broadcast; sid; Pi;P; x) from Fbc and simulates Pi's sendingx to all the parties controlled by A. Then, S receives back messages sent by A to the honestparties. S de�nes the set of parties to whom to deliver output as those in P who receive allthe second round messages and who only see x. Then, S delivers the messages from the Fbcfunctionality to these and only to these parties.We claim that the global output of an ideal execution with S is identically distributed to the globaloutput of a real execution with A. We �rst deal with the case that Pi is corrupt. If A sends twodi�erent messages in round 1 (i.e., if there exist j and k such that (Pij ; xj) 6= (Pij ; xk)), then bythe protocol de�nition, all honest parties will see both (Pij ; xj) and (Pik ; xk). (Here it is importantthat parties do not output (P; x) unless seeing the round 2 messages of all parties.) Therefore, ina real execution all honest parties will output nothing. This is identical to the case that S doesnot send anything to Fbc in an ideal execution. In contrast, if A sends the same message x to allhonest parties in the �rst round, then the outputs depend on what A sends in the second round.Since S receives all these messages from A, it can see which parties would output (P; x) and whichparties would output nothing. S thus delivers the (broadcast; :::) messages from Fbc only to theparties which would output x in the real model. We conclude that the output is identical.In the case that Pi is honest, A can cause honest parties to output nothing (rather than x) bysending them messages (P 0; x0) 6= (P; x) in the second round or by not delivering messages. Asabove, S receives all these messages and therefore its delivery of (broadcast; :::) messages from Fbcaccurately represents exactly what happens in a real execution.

4.9. MULTI-PARTY SECURE COMPUTATION 1174.9.3 One-to-Many Commitment, Zero-Knowledge and Commit-and-ProveOne-to-Many UC commitment. We begin by de�ning a one-to-many extension of the UCcommitment functionality, denoted F 1:Mmcom. In this functionality, one party commits to a value tomany receivers. The formal de�nition appears in Figure 4.13. Similarly to the two-party case, thecommitment functionality is presented as a multi-session functionality. From here on, the JUCtheorem of [21] is applied and we consider only single-session functionalities (see Section 4.3.2 formore explanation). We denote the single session analog to F 1:Mmcom by F 1:Mcom.Functionality F1:MmcomF1:Mmcom proceeds as follows, running with parties P1; : : : ; Pn and an adversary S:� Commit Phase: Upon receiving a message (commit; sid; ssid;P ; b) from Pi where P is a set ofparties and b 2 f0; 1g, record the tuple (ssid; Pi;P ; b) and send the message (receipt; sid; ssid; Pi;P)to all the parties in P and to S. Ignore any future commit messages with the same ssid.� Prove Phase: Upon receiving a message (reveal; sid; ssid) from Pi: If a tuple (ssid; Pi;P ; b) waspreviously recorded, then send the message (reveal; sid; ssid; b) to all parties in P and to S. Other-wise, ignore. Figure 4.13: One-to-Many multi-session commitmentThe key observation in realizing the F 1:Mmcom functionality is that Protocol UAHC (of Section 4.5)that securely realizes the two-party commitment functionality Fmcom is non-interactive. Therefore,the one-to-many extension is obtained by simply having the committer broadcast the commitmentstring of Protocol UAHC to all the participating parties on the broadcast channel. The proofthat this protocol realizes F 1:Mmcom is almost identical to the proof that Protocol UAHC realizesFmcom, and is omitted. We do, however, mention one important point. The commitment stringis broadcast using the Fbc functionality which ensures that only one message is broadcast usinga given session identi�er. This is important because otherwise the adversary could broadcast twodi�erent commitment strings c1 and c2, where it delivers c1 to some of the honest parties andc2 to the others. This is, of course, not allowed by the F 1:Mmcom functionality that ensures that allparties receive the same commitment for the same identi�er pair (sid; ssid). We therefore have thefollowing:Proposition 4.9.4 Assuming the existence of trapdoor permutations, there exists a (non-interactive)protocol that securely realizes F 1:Mmcom in the (Fcrs;Fbc)-hybrid model21, in the presence of malicious,adaptive adversaries. Furthermore, this protocol uses only a single copy of Fcrs.One-to-Many UC zero-knowledge. Similarly to the one-to-many extension of commitments,we de�ne a one-to-many functionality where one party proves a statement to some set of par-ties. The de�nition of the (single-session) one-to-many zero-knowledge functionality, denoted F 1:Mzk ,appears in Figure 4.14. (For simplicity, in the multi-party case we concentrate on single-sessionzero-knowledge, constructed using a single-session version of F 1:Mmcom. These protocols will later becomposed, using universal composition with joint state, to obtain protocols that use only a singlecopy of the reference string when realizing all the copies of of F 1:Mzk .)21In the (Fcrs;Fbc)-hybrid model, all parties have ideal access to both the common reference string functionalityFcrs and the ideal broadcast functionality Fbc.

118 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONFunctionality F1:MzkF1:Mzk proceeds as follows, running with parties P1; : : : ; Pn and an adversary S, and parameterized witha relation R:� Upon receiving a message (ZK-prover; sid;P ; x; w) from a party Pi where P is a set of parties: IfR(x;w) = 1, then send (ZK-proof; sid; Pi;P ; x) to all parties in P and to S and halt. Otherwise,halt. Figure 4.14: Single-session, One-to-Many zero-knowledgeAs with the case of commitments, a non-interactive protocol that realizes the two-party zero-knowledge functionality Fzk could be directly used to realize F 1:Mzk . For the case of static adversaries,the protocol of [26] can be used. However, for the case of adaptive adversaries, no non-interactiveprotocol is known. Rather, we base the one-to-many extension on the interactive UC zero-knowledgeprotocol of [16]. Their protocol is basically that of parallel Hamiltonicity (cf. [11]), except that thecommitments used are universally composable. Our extension of this protocol to the one-to-manycase follows the methodology of [44] and is presented in the proof of the following proposition:Proposition 4.9.5 There exists a protocol that realizes F 1:Mzk in the (F 1:Mcom;Fbc)-hybrid model, inthe presence of malicious, adaptive adversaries.Proof (sketch): The protocol for realizing F 1:Mzk works by having the prover separately prove thestatement in question to all parties. The protocol used in each of these pairwise proofs is exactlythe two-party protocol of [16], with the exception that the messages of each proof are broadcast toall parties. (This also means that all commitments and decommitments are run using F 1:Mcom, ratherthan the two-party Fcom. (F 1:Mcom is the single-session parallel to F 1:Mmcom.) Also, the protocol mustmake sure that each invocation of broadcast will have a unique session ID. This can be done instandard ways, given the unique session ID of the zero-knowledge protocol.) Then, a party acceptsthe proof, outputting (ZK-proof; sid; Pi;P; x), if and only if all the pairwise proofs are accepting.Note that, other than the use of F 1:Mcom, no cryptographic primitives are used. Indeed, security ofthis protocol in the F 1:Mcom-hybrid model is unconditional.Next, note that it is indeed possible for the parties to know whether all the pairwise proofs areaccepting. This is because all the commitments and messages are seen by all the parties and thezero-knowledge proof of Hamiltonicity used by [16] is publicly veri�able (i.e., it is enough to seethe transcript of prover/veri�er messages to know whether or not the proof was accepted by theveri�er).Now, recall that in order to prove the universal composability of F 1:Mzk , we must present anideal-process adversary (i.e., a simulator) that simulates proofs for the case that the prover is notcorrupted and veri�ers are corrupted, and is also able to extract the witness from an adversariallygenerated proof (for the case that the prover is corrupted). When simulating a proof for a corruptedveri�er, the simulator for F 1:Mzk works simply by running the simulator of the two-party protocolof [16] for every pairwise proof. On the other hand, in order to extract the witness from a corruptedprover, �rst note that it is possible to run the two-party extractor for any pairwise proof in whichthe veri�er is not corrupted. Now, the scenario in which we need to run the extractor here is wherethe prover is corrupted and at least one veri�er is not (otherwise, all parties are corrupted andsimulation is straightforward). Therefore, there exists one pairwise proof in which the veri�er isnot corrupted. The simulator for F 1:Mzk thus runs the simulator for the protocol of [16] for this proof.

4.9. MULTI-PARTY SECURE COMPUTATION 119Finally, we note that the simulator delivers the output of F 1:Mzk to the veri�ers if and only if allveri�ers accept in the simulation. (Thus, the parties' outputs in the ideal process are the same asin a real execution.) This concludes the proof sketch.One-to-Many UC commit-and-prove. The one-to-many extension of the commit-and-provefunctionality, denoted F 1:Mcp , is presented in Figure 4.15. The functionality handles a single sessiononly, and requires that all commitments and proofs are to the same set P. (This set is �xed the�rst time a commit is sent with a given sid.)Functionality F1:McpF1:Mcp proceeds as follows, running with parties P1; : : : ; Pn and an adversary S, and parameterized by avalue k and a relation R:� Commit Phase: Upon receiving a message (commit; sid;P ; w) from Pi where P is a set of partiesand w 2 f0; 1gk, append the value w to the list w, record P , and send the message (receipt; sid; Pi;P)to the parties in P and S. (Initially, the list w is empty. Also, if a commit message has alreadybeen received, then check that the recorded set of parties is P . If it is a di�erent set, then ignorethis message.)� Prove Phase: Upon receiving a message (CP-prover; sid; x) from Pi, where x 2 f0; 1gpoly(k),compute R(x;w): If R(x;w) = 1, then send the message (CP-proof; sid; x) to the parties in P andto S. Otherwise, ignore.Figure 4.15: One-to-Many commit-and-proveOur protocol for securely realizing the one-to-many commit-and-prove functionality F 1:Mcp isconstructed in the F 1:Mzk -hybrid model. The protocol, denoted ACP1:M, is very similar to ProtocolACP for the two-party case. Recall that Protocol ACP begins with the receiver choosing a pair(s; t), where s = f(t) and f is a one-way function. The value s is then used by the committer whocommits to w by sending c = aHCs(w; r). This is generalized in the natural way by having everyreceiving party Pj choose a pair (sj; tj), and the committer then sending cj = aHCsj (w; rj) for allvalues of sj. In addition, the committer proves that all these commitments are to the same w (thisis done to prevent the committer from committing to di�erent w's for di�erent sj's). We de�ne acompound commitment scheme as follows. Let ~s = (s1; : : : ; s`) and ~r = (r1; : : : ; r`). Then, de�neaHC~s(w;~r) = (aHCs1(w; r1); : : : ; aHCs`(w; r`)). Restating the above, the commit phase consists ofthe committer committing to w using the compound scheme aHC~s and proving that the commitmentwas generated correctly.The multi-party protocol ACP1:M uses three di�erent copies of F 1:Mzk , where each copy is param-eterized by a di�erent relation. The copies are denoted F 1:Mzk;t (for the initialization phase), F 1:Mzk;c(for the commit stage) and F 1:Mzk;p (for the prove stage). These functionalities are di�erentiated bysession identi�ers sidT , sidC and sidP , respectively. These identi�ers should be unique, as long asthe session ID of the current instance of ACP1:M is unique. One way to guarantee this is settingsidT = sid � T , sidC = sid � C and sidP = sid � P , where sid is the session ID of the currentinstance of ACP1:M. The protocol is presented in Figure 4.16.Proposition 4.9.6 Assuming the existence of one-way functions, Protocol ACP1:M of Figure 4:16securely realizes F 1:Mcp in the F 1:Mzk -hybrid model, in the presence of adaptive adversaries.

120 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONProtocol ACP1:M� Auxiliary Input: A security parameter k, and a session identi�er sid.� Initialization phase:The �rst time that the committer Pi wishes to commit to a value to the set of parties P usingthe identi�er sid, the parties in P execute the following initialization phase. (To simplify notation,assume that P = fP1; : : : ; P`g for some `, and that the sender belongs to P . Also, the parties ignoreincoming messages that are addressed to a set P 0 that is di�erent than the set P speci�ed in the�rst message.)1. Pi sends a (broadcast; sid;P ; begin-commit) message to Fbc to indicate that it wishes to initiatea commit activation.2. Upon receiving (broadcast; sid; Pi;P ; begin-commit), each party Pj 2 P records the triple(sid; Pi;P). From here on, the parties only relate to messages with identi�er sid if they areassociated with the committer/prover Pi and set of parties P .Then, every Pj chooses tj 2R f0; 1gk, computes sj = f(tj) (where f is a one-way function),and sends (ZK-prover; sidT ;P ; sj ; tj) to F1:Mzk;t, where F1:Mzk;t is parameterized by the relation RTde�ned by: RT def= f(s; t) j s = f(t)g3. Upon receiving (ZK-proof; sidT ; Pj ;P ; sj) from F1:Mzk;t, all the parties in P (including the com-mitter Pi) record the value sj . This phase concludes when all parties in P have sent theappropriate ZK-proof message, and thus when all the parties hold the vector ~s = (s1; : : : ; s`).The parties now proceed to the commit phase.� Commit phase: (Pi's input is (commit; sid;P ; w), where w 2 f0; 1gk.)1. Pi computes the compound commitment c = aHC~s(w;~r) where the vector ~s is the one obtainedin the initialization phase, and the rj 's in ~r are uniformly chosen.Pi then sends (ZK-prover; sidC ;P ; (~s; c); (w;~r)) to F1:Mzk;c, where F1:Mzk;c is parameterized by therelation RC de�ned by: RC def= f(~s; c); (w;~r) j c = aHC~s(w;~r)g(That is, RC veri�es that c is a valid compound commitment to the value w, using ~s.)In addition, Pi stores in a list w all the values w that were sent, and in lists c and r thecorresponding commitment values c and random strings ~r = (r1; : : : ; r`).2. Upon receiving (ZK-proof; sidC ; Pi;P ; (~s0; c)) from F1:Mzk;c, every party Pj 2 P veri�es that~s0 = ~s (where ~s equals the list of strings that it recorded in the initialization phase). If yes,then Pj outputs (receipt; sid) and adds the commitment c to its list c. (Initially, c is empty.)Otherwise, the parties in P ignore the message.� Prove phase: (Pi's input is (CP-prover; sid; x).)1. Pi sends (ZK-prover; sidP ; Pi;P ; (x;~s; c); (w; r)) to F1:Mzk;p, where c, w and r are the lists de-scribed above. Let w = (w1; : : : ; wm), c = (c1; : : : ; cm) and r = (~r1; : : : ; ~rm). Then, F1:Mzk;p isparameterized by the relation RP de�ned by:RP def= f((x;~s; c); (w; r)) j R(x;w) = 1 & 8j cj = aHC~s(wj ;~rj)gThat is, RP veri�es that R(x;w) = 1 and that c contains commitments to the previouslycommitted values w.2. Upon receiving (ZK-proof; sidP ; Pi;P ; (x;~s0; c)) from F1:Mzk;p, every party in P veri�es that ~s0 = ~sand that its list of stored commitments equals c. If yes, then it outputs (CP-proof; sid; x).Otherwise, it ignores the message.Figure 4.16: A protocol for realizing F 1:Mcp for adaptive adversaries

4.9. MULTI-PARTY SECURE COMPUTATION 121Proof (sketch): The proof of this proposition is very similar to the proof of Proposition 4.7.2for the two-party case. Let A be an adaptive adversary who operates against Protocol ACP1:Min the F 1:Mzk -hybrid model. We construct a simulator S such that no environment Z can tell withnon-negligible probability whether it is interacting with A and parties running Protocol ACP1:M inthe F 1:Mzk -hybrid model or with S in the ideal process for F 1:Mcp . Simulator S operates by running asimulated copy of A and using A in order to interact with Z and F 1:Mcp . S works as follows.Simulating the initialization phase: S records the pairs (s1; t1); : : : ; (s`; t`) from the initializa-tion phase of an execution, and de�nes ~s = (s1; : : : ; s`). For every uncorrupted receivingparty Pj , simulator S chooses the pair (sj; tj) by itself. For corrupted receiving parties, thepairs are chosen by the simulated A and S obtains the tj's from A's messages to F 1:Mzk;t.Simulating the case where the committer is corrupted: We �rst describe how to simulatethe commit phase. Whenever A (controlling Pi) wishes to commit to a value, S obtainsthe message (ZK-prover; sidC ;P; (~s; c); (w;~r)) that A sends to F 1:Mzk;c. S checks that ~s is asgenerated in the initialization phase and that c = aHC~s(w;~r). If yes, then S internally passesA the message (ZK-proof; sidC ;P; (~s; c)) and externally sends (commit; sid;P; w) to F 1:Mcp .Furthermore, S adds the commitment c to its list of commitments c.We now describe the simulation of the prove phase. Whenever A wishes to prove a statement,S receives the message (ZK-prover; sidP ; (x;~s; c); (w; r)) that A sends to F 1:Mzk;p. S then checksthat the list c is as stored above and that R(x;w) = 1. If yes, then S internally passes(ZK-proof; sidP ; (x;~s; c)) to A and externally sends (CP-prover; sid; x) to F 1:Mcp . Otherwise, itignores the message.Simulating the case where the committer is not corrupted: Whenever an uncorrupted partyPi commits to an unknown value w, simulator S hands A a commitment to 0k as the com-mitment value. More precisely, whenever S receives from F 1:Mcp a message (receipt; sid; Pi;P)where Pi is uncorrupted, simulator S computes c = aHC~s(0k;~r) and hands A the message(ZK-proof; sidC ; Pi;P; (~s; c)), as if coming from Fczk. (Recall that by the aHC scheme, giventhe trapdoor information ~t = (t1; : : : ; t`), a commitment to 0 with ~s can be opened as either0 or 1; see Section 4.5.)The simulation of the prove phase is carried out as follows. Whenever S receives a message(CP-proof; sid; x) from F 1:Mcp , it internally passes A the message (ZK-proof; sidP ; (x;~s; c)),where c is the list of simulated commitments generated above.Dealing with the corruption of parties: The only private information held by a receiving partyPj is the trapdoor information tj that it chooses in the initialization phase. As we have seen inthe simulation of the initialization phase above, S knows all of the trapdoors in the simulatedexecution. Therefore, when A corrupts a receiving party Pj , simulator S internally passes tjto A.The committing party Pi's private state in an execution of Protocol ACP1:M consists of thelist of committed values w and the list of vectors of random strings r (that contain thedecommitment information of the list c). Therefore, when A corrupts the committer Pi,simulator S �rst externally corrupts Pi in the ideal process and obtains the list w. Next, Sgenerates the list r so that the simulated list of commitments c is \explained" as a list ofcommitments to w. S can do this because it has all of the trapdoor information t1; : : : ; t`(this case is identical to in the proof of Proposition 4.7.2).

122 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONThe analysis of the correctness of the simulation is analogous to in the two-party case and is omitted.4.9.4 Multi-party Secure Computation for Malicious AdversariesAs in the two-party case, multi-party secure computation in the presence of malicious adversaries isobtained by constructing a protocol compiler that transforms protocols for the semi-honest modelinto protocols for the malicious model. This compiler is then applied to Protocol �F of Section 4.9.1.The compiler is constructed in the F 1:Mcp -hybrid model and in a very similar way to the two-partycompiler. The compiler itself is described in Figure 4.17. We note that each party has to commitand prove statements to all other parties during the protocol execution. In order to do this, eachparty Pi uses a separate invocation of F 1:Mcp , with session ID sidi. (Also here, the protocol shouldmake sure that these session ID's are unique as long as the session ID of the current copy of Comp(�)is unique. This can be done by setting sidi = sid � i where sid is the session ID of the currentcopy of Comp(�). The relations parameterizing these functionalities are natural extensions of therelations parameterizing the relations F1cp and F2cp in the two-party compiler of Figure 4.11. Themulti-party compiler here also uses \standard" commitments (rather than UC commitments) forcoin-tossing. In order to remain in the F 1:Mcp -hybrid model, these commitments are implemented byF1:Mcp where the relation used is the identity relation (and so a proof is just a decommitment). Onceagain, the di�erent invocations of F 1:Mcp are distinguished by unique identi�ers (in the coin-tossingused for generating Pj 's random tape, Pi uses F 1:Mcp with session ID sidi;j = sid � i � j). Noticethat protocol Comp(�) essentially broadcasts (via F 1:Mcp) each message that was sent in �, even ifthis message was originally sent only to a single party. This is done to provide all parties withconsistent views of the execution; it clearly has no negative e�ect on the security of the protocol(since the adversary anyway sees all messages).Implicit in the above protocol speci�cation is the fact that all parties only consider messagesthat are associated with the speci�ed session identi�ers and referring to the same set of parties P.All other messages are ignored. As in the two-party case, we assume that � is such that the partiescopy their input tape onto an internal work tape when �rst activated.We now prove that the compiler achieves the desired result:Proposition 4.9.7 (multi-party protocol compiler): Let � be a multi-party protocol and let Comp(�)be the protocol obtained by applying the compiler of Figure 4:17 to �. Then, for every maliciousadversary A that interacts with Comp(�) in the F 1:Mcp -hybrid model there exists a semi-honestadversary A0 that interacts with � in the plain real-life model, such that for every environment Z,real�;A0;Z � hybridF1:McpComp(�);A;ZProof (sketch): The proof sketch is very similar to the proof of Proposition 4.8.1 for the two-partycase. We construct a semi-honest adversary A0 from the malicious adversary A. Adversary A0 runsthe protocol � while internally simulating an execution of Comp(�) for A. The key point in thesimulation is that A0 is able to complete the simulation in spite of the fact that, being semi-honest,it cannot diverge from the protocol speci�cation. This is so since A is forced to send all messagesvia F 1:Mcp that veri�es their correctness. Thus, essentially, A must behave in a semi-honest way andcan be simulated by a truly semi-honest party A0. (Of course, A is not semi-honest and can sendarbitrary messages. However, since all invalid messages are ignored by F 1:Mcp in Comp(�), they donot cause any problem.) A0 runs a simulated copy of A, and proceeds as follows:

4.9. MULTI-PARTY SECURE COMPUTATION 123Comp(�)Party Pi proceeds as follows (the code for all other parties is analogous):1. Random tape generation: When activating Comp(�) for the �rst time with session identi�er sid andset P or parties, party Pi proceeds as follows. For every party Pj , the parties run the followingprocedure in order to choose a random tape for Pj :(a) Pi chooses rji 2R f0; 1gk and sends (commit; sidi;j ;P; rji) to F1:Mcp .(b) Pi receives (receipt; sidk;j ; Pk;P) for every Pk 2 P. Pi also receives (receipt; sidj ; Pj ;P), wherePj is the party for whom the random tape is being chosen. Pi then uses F1:Mcp to decommitto its value rji . That is, Pi sends (CP-prover; sidi;j ; rji) to F1:Mcp , where the relation parame-terizing the F1:Mcp functionality with identi�er sidi;j is the identity relation (i.e., F1:Mcp sends(CP-proof; sidi;j ; rji) if rji was the value previously committed to; it thus serves as a regularcommitment functionality).(c) Pi receives (CP-proof; sidk;j ; rjk) messages for every k 6= j and de�nes the string sj =Lk 6=j rjk.(The random tape for Pj is de�ned by rj = rjj � sj .)When choosing a random tape for Pi, the only di�erence for Pi is that it sends its random stringrii to F1:Mcp indexed by session-identi�er sidi and it does not decommit (as is understood from Pj 'sbehavior above).2. Activation due to new input: When activated with input (sid; x), party Pi proceeds as follows.(a) Input commitment: Pi sends (commit; sidi;P; x) to F1:Mcp and adds x to the list of inputs xi (thislist is initially empty and contains Pi's inputs from all the previous activations of �). (At thispoint all other parties Pj receive the message (receipt; sidi; Pi;P) from F1:Mcp . Pi then proceedsto the next step.)(b) Protocol computation: Let m be the series of �-messages that were broadcast in all the activa-tions of � until now (m is initially empty). Pi runs the code of � on its input list xi, messagesm, and random tape ri (as generated above). If � instructs Pi to broadcast a message, Piproceeds to the next step (Step 2c).(c) Outgoing message transmission: For each outgoing message m that Pi sends in �, Pi sends(CP-prover; sidi; (m; si;m)) to F1:Mcp with a relation R� de�ned as follows:R� = �((m; si;m); (xi; rii)) j m = �(xi; rii � si;m)	In other words, Pi proves that m is the correct next message generated by � when the inputsequence is xi, the random tape is ri = rii � si and the series of broadcast �-messages equalsm. (Recall that rii and all the elements of xi were committed to by Pi in the past using commitactivations of F1:Mcp with identi�er sidi, and that si is the random-string derived in the randomtape generation for Pi above.)3. Activation due to incoming message: Upon receiving a message (CP-proof; sidj ; (m; sj ;m)) that issent by Pj , party Pi �rst veri�es that the following conditions hold (note that F1:Mcp with sidj isparameterized by the same relation R� as F1:Mcp with sidi above):� sj is the random string that is derived in the random tape generation for Pj above.� m equals the series of �-messages that were broadcast in all the activations until now. (Pi knowsthese messages because all parties see all messages sent.)If any of these conditions fail, then Pi ignores the messages. Otherwise, Pi appends m to m andproceeds as in Steps 2b and send-step-multi above.4. Output: Whenever � generates an output value, Comp(�) generates the same output value.Figure 4.17: The compiled protocol Comp(�)

124 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATIONSimulating the communication with Z: The input values received by A0 from Z are writtenon A's input tape, and the output values of A are copied to A0's own output tape.Simulating the \random tape generation" phase: When the �rst activation of � takes place,A0 simulates the random tape generation phase of Comp(�) for A. We describe A0's simula-tion of the random tape generation for a party Pj (this simulation is repeated for every j).We di�erentiate between the case that Pj is honest and Pj is corrupted:1. Party Pj is not corrupted: A0 hands A the message (receipt; sidj ; Pj ;P) from F 1:Mcp (thisrefers to Pj's commitment). In addition, A0 simulates all the (receipt; sidk;j; Pk;P) mes-sages that A0 expects to receive from F 1:Mcp . A0 completes the simulation by passing Athe \decommit" messages (CP-proof; sidk;j ; rjk) for every uncorrupted party Pk. A0 alsoobtains (commit; sidk;j; rjk) messages from A for the corrupted parties Pk as well as therespective decommit messages (CP-prover; sidk;j ; rjk). A0 computes sj as in the protocoland records this value.2. Party Pj is corrupted: Let rj be the random tape of the semi-honest party Pj in pro-tocol �. Now, as above, for every uncorrupted party Pk, adversary A0 passes A the(receipt; sidk;j ; Pk;P) messages that A expects to receive from F 1:Mcp . A0 also obtains(commit; sidk;j ; rjk) messages from A (for every corrupt Pk) and corrupted Pj 's commit-ment (commit; sidj ; rjj). Notice that at this point, A is bound to all the rjk values ofthe corrupted parties, whereas A0 is still free to choose the analogous values for theuncorrupted parties. Therefore, in the \decommitment" part of the phase, A0 choosesthe uncorrupted parties' values so that Lk̀=1 rjk = rj where rj is the random tape of theexternal Pj in �. (Thus, A0 forces A into using rj for the malicious Pj in Comp(�) aswell.)Simulating an activation due to a new input: When the �rst message of an activation of �is sent, A0 internally simulates for A the appropriate stage in Comp(�). This is done asfollows. Let Pi be the activated party with a new input. If Pi is not corrupted, then A0internally passes A the message (receipt; sidi; Pi;P) that A expects to receive from F 1:Mcp . IfPi is corrupted, then A0 receives a message (commit; sidi;P; x) from A (who controls Pi). A0adds x to its list xi of inputs received from Pi and passes A the string (receipt; sidii; Pi;P).Furthermore, A0 sets Pi's input tape to equal x. (Recall that in the semi-honest model, A0can modify the input that the environment writes on a corrupted party's input tape.)Dealing with messages sent by honest parties: If an uncorrupted party Pi sends a messagem in � to a corrupted party (controlled by A0), then A0 prepares a simulated message ofComp(�) to give to A. Speci�cally, A0 passes A the message (CP-proof; sidi; (m; si;m)) asexpected from F 1:Mcp .Dealing with messages sent by corrupted parties: When A sends a Comp(�)-message froma corrupted party, A0 translates this to the appropriate message in �. That is, A0 obtainsa message (CP-prover; sidi; (m; s0i;m)) from A controlling a corrupted party Pi. A0 checksthat the series of broadcasted �-messages is indeed m. A0 also checks that s0i = si, wheresi is the value de�ned in the random tape generation phase. Finally, A0 checks that m =�(xi; si�rii;m). If yes, then it delivers the message written on semi-honest party Pi's outgoingcommunication tape in �. Otherwise, A0 does nothing.

4.9. MULTI-PARTY SECURE COMPUTATION 125Dealing with corruption of parties: When the simulated A internally corrupts a party Pi, ad-versary A0 externally corrupts Pi and obtains all of its past inputs, outputs and random tapesin �. Then, A0 prepares a simulated internal state of Pi in Comp(�). The only additionalstate that Pi has in Comp(�) is the random string rii for the random tape generation phase.Since the string si is public and �xed, A0 sets rii so that ri = si � rii, where ri is Pi's randomtape in �.We now claim that Z's view of an interaction with A0 and � is distributed identically to its view ofan interaction with A and Comp(�). This follows from the same observations as in the two-partycase. The key points are as follows. For every corrupted Pi, the semi-honest adversary A0 can forceA into using the exact random tape of Pi in �. Furthermore, any modi�cation of the inputs madeby A can also be carried out by A0. We therefore have that if A follows the protocol speci�cationwith respect to these inputs and random tapes, then the semi-honest parties in � will send exactlythe same messages as the malicious parties in Comp(�). The proof is concluded by observing thatA must follow the protocol speci�cation because the F 1:Mcp functionality enforces this. Thus, A0'schecks of correctness in the simulation perfectly simulate the behavior of F 1:Mcp in a hybrid execution.Finally, the internal state revealed to A in the case of a corruption is exactly as it expects to see.This completes the proof.ConclusionsBy combining Propositions 4.9.5 and 4.9.6, and using the universal composition theorem (Theorem4.3.3), we obtain that F 1:Mcp can be securely realized in the (Fbc;F 1:Mmcom)-hybrid model, assumingthe existence of trapdoor permutations. Then, combining this with Proposition 4.9.7 we obtaina protocol compiler in the same hybrid model and under the same assumptions. Applying thiscompiler to Proposition 4.9.1, we derive universally composable multi-party computation in thepresence of malicious adversaries. That is:Theorem 4.9.8 Assume that trapdoor permutations exist. Then, for any well-formed multi-partyideal functionality F , there exists a non-trivial protocol that securely realizes F in the (Fbc;F 1:Mmcom)-hybrid model in the presence of malicious, static adversaries. Furthermore, if two-party augmentednon-committing encryption protocols exist, then for any adaptively well-formed multi-party idealfunctionality F , there exists a non-trivial protocol that securely realizes F in the (Fbc;F 1:Mmcom)-hybrid model in the presence of malicious, adaptive adversaries.By combining Theorem 4.9.8 and Proposition 4.9.4, and using the universal composition with jointstate theorem (Theorem 4.3.4), we obtain:Theorem 4.9.9 (Theorem 4.2.3 { restated): Assume that trapdoor permutations exist. Then, forany well-formed multi-party ideal functionality F , there exists a non-trivial protocol that securelyrealizes F in the (Fbc;Fcrs)-hybrid model in the presence of malicious, static adversaries. Further-more, if two-party augmented non-committing encryption protocols exist, then for any adaptivelywell-formed multi-party ideal functionality F , there exists a non-trivial protocol that securely real-izes F in the (Fbc;Fcrs)-hybrid model in the presence of malicious, adaptive adversaries. In bothcases, the protocol uses only a single copy of Fcrs.

126 CHAPTER 4. UNIVERSALLY COMPOSABLE MULTI-PARTY COMPUTATION

Appendix AAbstracts of Additional ResultsIn this appendix we present abstracts of additional work done by the author during graduate studiesat the Weizmann Institute of Science.A.1 Secure ProtocolsSession-Key Generation using Human Passwords Only [50]: In this paper, we presentsession-key generation protocols in a model where the legitimate parties share only a human-memorizable password. The security guarantee holds with respect to probabilistic polynomial-timeadversaries that control the communication channel (between the parties), and may omit, insertand modify messages at their choice. Loosely speaking, the e�ect of such an adversary that attacksan execution of our protocol is comparable to an attack in which an adversary is only allowed tomake a constant number of queries of the form \is w the password of Party A". We stress thatthe result holds also in case the passwords are selected at random from a small dictionary so thatit is feasible (for the adversary) to scan the entire directory. We note that prior to our result, itwas not clear whether or not such protocols were attainable without the use of random oracles oradditional setup assumptions.Joint work with Oded Goldreich.Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation [64]: Inthis paper we show that any two-party functionality can be securely computed in a constant numberof rounds, where security is obtained against (polynomial-time) malicious adversaries that mayarbitrarily deviate from the protocol speci�cation. This is in contrast to Yao's constant-roundprotocol that ensures security only in the face of semi-honest adversaries, and to its maliciousadversary version that requires a polynomial number of rounds.In order to obtain our result, we present a constant-round protocol for secure coin-tossing ofpolynomially many coins (in parallel). We then show how this protocol can be used in conjunctionwith other existing constructions in order to obtain a constant-round protocol for securely comput-ing any two-party functionality. On the subject of coin-tossing, we also present a constant-roundalmost perfect coin-tossing protocol, where by \almost perfect" we mean that the resulting coinsare guaranteed to be statistically close to uniform (and not just pseudorandom).Privacy Preserving Data Mining [68]: This paper addresses the issue of privacy preservingdata mining. Speci�cally, we consider a scenario in which two parties owning con�dential databases127

128 APPENDIX A. ABSTRACTS OF ADDITIONAL RESULTSwish to run a data mining algorithm on the union of their databases, without revealing any unnec-essary information. Our work is motivated by the need to both protect privileged information andenable its use for research or other purposes.The above problem is a speci�c example of secure multi-party computation and as such, canbe solved using known generic protocols. However, data mining algorithms are typically complexand, furthermore, the input usually consists of massive data sets. The generic protocols in such acase are of no practical use and therefore more e�cient protocols are required. We focus on theproblem of decision tree learning with the popular ID3 algorithm. Our protocol is considerablymore e�cient than generic solutions and demands both very few rounds of communication andreasonable bandwidth.Joint work with Benny Pinkas.Sequential Composition of Protocols without Simultaneous Termination [67]: Thequestion of the composition of protocols is an important and heavily researched one. In thispaper we consider the problem of sequential composition of synchronous protocols that do not havesimultaneous termination; i.e., the parties do not necessarily conclude a protocol execution in thesame round. A problem arises becauses such protocols must begin in synchrony; therefore a secondexecution cannot follow from the �rst in a straightforward manner. An important example of aprotocol with this property is that of randomized Byzantine Agreement with an expected constantnumber of rounds (such as the one due to Feldman and Micali). We note that expected constant-round Byzantine Agreement cannot have simultaneous termination and thus this (problematic)property is inherent.Given that the termination of the parties is not simultaneous, a natural question to consider ishow to synchronize the parties so that such protocols can be sequentially composed. Furthermore,such a composition should preserve the original running-time of the protocol, i.e. running theprotocol ` times sequentially should take in the order of ` times the running-time of the protocol.In this paper, we present a method for sequentially composing any protocol in which the playersdo not terminate in the same round, while preserving the original round complexity. An importantapplication of this result is the sequential composition of parallel Byzantine Agreement. Such acomposition can be used by parties connected in a point-to-point network to run protocols designedfor the broadcast model, while maintaining the original round complexity.Joint work with Anna Lysyanskaya and Tal Rabin.A.2 Zero-KnowledgeResettably-Sound Zero-Knowledge and Its Applications [2]: Resettably-sound proofs andarguments maintain soundness even when the prover can reset the veri�er to use the same ran-dom coins in repeated executions of the protocol. We show that resettably-sound zero-knowledgearguments for NP exist if collision-free hash functions exist. In contrast, resettably-sound zero-knowledge proofs are possible only for languages in P=poly.We present two applications of resettably-sound zero-knowledge arguments. First, we constructresettable zero-knowledge arguments of knowledge for NP, using a natural relaxation of the de�ni-tion of arguments (and proofs) of knowledge. We note that, under the standard de�nition of proofof knowledge, it is impossible to obtain resettable zero-knowledge arguments of knowledge for lan-guages outside BPP . Second, we construct a constant-round resettable zero-knowledge argument

A.3. MISCELLANEOUS 129for NP in the public-key model, under the assumption that collision-free hash functions exist. Thisimproves upon the sub-exponential hardness assumption required by previous constructions.We emphasize that our results use non-black-box zero-knowledge simulations. Indeed, we showthat some of the results are impossible to achieve using black-box simulations. In particular, onlylanguages in BPP have resettably-sound arguments that are zero-knowledge with respect to black-box simulation.Joint work with Boaz Barak, Oded Goldreich and Sha� Goldwasser.Strict Polynomial-Time in Simulation and Extraction [3]: The notion of e�cient com-putation is usually identi�ed in cryptography and complexity with probabilistic polynomial time.However, until recently, in order to obtain constant-round zero-knowledge proofs and proofs ofknowledge, one had to allow simulators and knowledge-extractors to run in time which is onlypolynomial on the average (i.e., expected polynomial time). Whether or not allowing expectedpolynomial-time is necessary for obtaining constant-round zero-knowledge proofs and proofs ofknowledge, has been posed as an important open question. This question is interesting not onlyfor its theoretical rami�cations, but also because expected polynomial time simulation is not closedunder composition. Therefore, in some cases security may not be maintained when a protocol thatutilizes expected polynomial time simulation (or extraction) is used as a part of a larger protocol.A partial answer to the question of the necessity (or non-necessity) of expected polynomial-timewas provided recently by Barak, who gave the �rst constant-round zero-knowledge argument witha strict (in contrast to expected) polynomial-time simulator. His was also the �rst protocol thatis not black-box zero-knowledge. That is, the simulator in his protocol makes inherent use of thedescription of the code of the veri�er.In this paper, we completely resolve the question of expected polynomial-time in constant-roundzero-knowledge arguments and arguments of knowledge. First, we show that there exist constant-round zero-knowledge arguments of knowledge with strict polynomial-time extractors. As in thesimulator of Barak's zero-knowledge protocol, the extractor for our proof of knowledge is not black-box and makes inherent use of the code of the prover. On the negative side, we show that non-black-box techniques are essential for both strict polynomial-time simulation and extraction. That is,we show that no constant-round zero-knowledge argument (or proof) can have a strict polynomial-time black-box simulator. Similarly, we show that no constant-round zero-knowledge argument ofknowledge can have a strict polynomial-time black-box knowledge extractor. Thus, for constant-round black-box zero-knowledge arguments (resp., arguments of knowledge), it is imperative thatthe simulator (resp., extractor) be allowed to run in expected polynomial-time.Joint work with Boaz Barak.A.3 MiscellaneousA Simpler Construction of CCA2-Secure Public-Key Encryption Under General As-sumptions [65]: In this paper we present a simpler construction of an encryption scheme thatachieves adaptive chosen ciphertext security (CCA2), assuming the existence of trapdoor permu-tations. We build on previous works of Sahai and De Santis et al. and construct a scheme that webelieve is the easiest to understand to date. In particular, it is only slightly more involved thanthe Naor-Yung encryption scheme that is secure against passive chosen-ciphertext attacks (CCA1).We stress that the focus of this paper is on simplicity only.

130 APPENDIX A. ABSTRACTS OF ADDITIONAL RESULTS

Bibliography[1] B. Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS, pages106{115, 2001.[2] B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell. Resettably-Sound Zero-Knowledgeand its Applications. In 42nd FOCS, pages 116{125, 2001.[3] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction. In 34thSTOC, pages 484{493, 2002.[4] D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO'91, Springer-Verlag (LNCS 576), pages 377{391, 1991.[5] D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Toleratinga Faulty Minority. Journal of Cryptology, Springer-Verlag, 4:75{122, 1991.[6] D. Beaver. Plug and play encryption. In CRYPTO'97, Springer-Verlag (LNCS 1294),pages 75{89, 1997.[7] M. Bellare, A. Boldyreva, and S. Micali. Public-Key Encryption in a Multi-user Setting:Security Proofs and Improvements. Eurocrypt'00, Springer-Verlag (LNCS 1807), pages259{274, 2000.[8] D. Beaver and S. Goldwasser. Multiparty Computation with Fault Majority. InCRYPTO'89, Springer-Verlag (LNCS 435), 1989.[9] D. Beaver, S. Micali and P. Rogaway. The Round Complexity of Secure Protocols. In22nd STOC, pages 503{513, 1990.[10] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. 20th STOC, pages 1{10, 1988.[11] M. Blum How to Prove a Theorem So No One Else Can Claim It. Proceedings of theInternational Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1444-1451.[12] M. Blum, P. Feldman and S. Micali. Non-interactive zero-knowledge and its applications.In 20th STOC, pages 103{112, 1988.[13] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal ofCryptology, 13(1):143{202, 2000. 131

132 BIBLIOGRAPHY[14] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-graphic Protocols. In 42nd FOCS, pages 136{145. 2001. Full version available athttp://eprint.iacr.org/2000/067.[15] R. Canetti, U. Feige, O. Goldreich and M. Naor. Adaptively Secure Multi-Party Com-putation. In 28th STOC, pages 639{648, 1996.[16] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO'01,Springer-Verlag (LNCS 2139), pages 19{40, 2001.[17] R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-KnowledgeRequires ~
(log n) Rounds. In 33th STOC, pages 570{579. 2001.[18] R. Canetti and H. Krawczyk. Universally Composable Notions of Key-Exchange andSecure Channels. In Eurocrypt'02, Springer-Verlag (LNCS 2332), pages 337{351, 2002.[19] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal Compositionin the Standard Model. Work in progress, 2002.[20] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Partyand Multi-Party Computation. In 34th STOC, pages 494{503, 2002.[21] R. Canetti and T. Rabin. Universal Composition with Joint State. Cryptology ePrintArchive, Report 2002/047, http://eprint.iacr.org/, 2002.[22] D. Chaum, C. Crepeau and I. Damgard. Multi-party Unconditionally Secure Protocols.In 20th STOC, pages 11{19, 1988.[23] R. Cleve. Limits on the Security of Coin Flips when Half the Processors are Faulty. In18th STOC, pages 364{369, 1986.[24] I. Damgard and J.B. Nielsen. Improved non-committing encryption schemes based ongeneral complexity assumptions. In CRYPTO'00, Springer-Verlag (LNCS 1880), pages432{450.[25] I. Damgard and J. Nielsen. Perfect Hiding or Perfect Binding Universally ComposableCommitment Schemes with Constant Expansion Factor. To appear in CRYPTO'02,2002.[26] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, A. Sahai. Robust Non-interactive Zero-Knowledge. In CRYPTO'01, Springer-Verlag (LNCS 2139), pages 566{598, 2001.[27] A. De Santis and G. Persiano. Zero-Knowledge Proofs of Knowledge Without Interaction.In 33rd FOCS, pages 427{436, 1992.[28] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-Interactive and Non-Malleable Com-mitment. In 30th STOC, pages 141{150, 1998.[29] G. Di Crescenzo, J. Katz, R. Ostrovsky and A. Smith. E�cient and Non-interactive Non-malleable Commitment. In Eurocrypt'01, Springer-Verlag (LNCS 2045), pages 40{59,2001.

BIBLIOGRAPHY 133[30] Y. Dodis and S. Micali. Parallel Reducibility for Information-Theoretically Secure Com-putation. In Crypto'00, Springer-Verlag (LNCS 1880), pages 74{92, 2000.[31] D. Dolev. The Byzantine Generals Strike Again. Journal of Algorithms, 3(1):14{30,1982.[32] D. Dolev, C. Dwork and M. Naor. Non-malleable cryptography. SIAM Journal ofComputing, 30(2):391{437, 2000.[33] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages409{418, 1998.[34] D. Dolev and H.R. Strong. Authenticated Algorithms for Byzantine Agreement. SIAMJournal of Computing, 12(4):656{665, 1983.[35] S. Even, O. Goldreich and A. Lempel. A randomized protocol for signing contracts. InCommunications of the ACM, 28(6):637{647, 1985.[36] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. InCRYPTO'89, Springer-Verlag (LNCS 435), pages 526{544, 1989.[37] P. Feldman and S. Micali. An Optimal Algorithm for Synchronous Byzantine Agreement.SIAM Journal of Computing, 26(2):873{933, 1997.[38] M. Fischer, N. Lynch, and M. Merritt. Easy Impossibility Proofs for Distributed Con-sensus Problems. Distributed Computing, 1(1):26{39, 1986.[39] M. Fitzi, N. Gisin, U. Maurer and O. Von Rotz. Unconditional Byzantine Agreementand Multi-Party Computation Secure Against Dishonest Minorities from Scratch. InEurocrypt'02, Springer-Verlag (LNCS 2332), pages 482{501, 2002.[40] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein and A. Smith. Byzantine AgreementSecure Against Faulty Majorities From Scratch. To appear in the 21st PODC, 2002.[41] M. Fitzi and U. Maurer. From partial consistency to global broadcast. In 32th STOC,pages 494{503. 2000.[42] Z. Galil, S. Haber and M. Yung. Cryptographic Computation: Secure Fault TolerantProtocols and the Public Key Model. In CRYPTO'87, Springer-Verlag (LNCS 293),pages 135{155, 1987.[43] J. Garay and P. Mackenzie. Concurrent Oblivious Transfer. In 41st FOCS, pages 314{324, 2000.[44] O. Goldreich. Secure Multi-Party Computation. Manuscript. Preliminary version, 1998.Available from http://www.wisdom.weizmann.ac.il/�oded/pp.html.[45] O. Goldreich. Foundations of Cryptography: Volume 1 { Basic Tools. Cambridge Uni-versity Press, 2001.[46] O. Goldreich. Concurrent Zero-Knowledge With Timing Revisited. In 34th STOC,pages 332{340, 2002.

134 BIBLIOGRAPHY[47] O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge ProofSystems for NP. Journal of Cryptology, 9(3):167{190, 1996.[48] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof systems.SIAM Journal of Computing, 25(1):169{192, 1996.[49] O. Goldreich and L. Levin. A Hard Predicate for All One-way Functions. In 21st STOC,pages 25{32, 1989.[50] O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords Only. InCRYPTO'01, Springer-Verlag (LNCS 2139), pages 408{432, 2001.[51] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems.Journal of Cryptology, 7(1):1{32, 1994.[52] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game { A Com-pleteness Theorem for Protocols with Honest Majority. In 19th STOC, pages 218{229,1987. For details see [44].[53] S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence ofImmoral Majority. In CRYPTO'90, Springer-Verlag (LNCS 537), pages 77{93, 1990.[54] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. To appear inthe 16th DISC, 2002.[55] S. Goldwasser, S. Micali and C. Racko� The Knowledge Complexity of Interactive ProofSystems. SIAM Journal of Computing, 18(1):186{208, 1989.[56] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure againstadaptive chosen-message attacks. SIAM Journal of Computing, 17(2):281{308, 1988.[57] L. Gong, P. Lincoln, and J. Rushby. Byzantine Agreement with Authentication: Obser-vations and Applications in Tolerating Hybrid and Link Faults. InDependable Computingfor Critical Applications, pages 139{157, 1995.[58] J.N. Gray. Notes on data base operating systems. In Operating Systems: An AdvancedCourse, Springer-Verlag (LNCS 60), chapter 3.F, page 465, 1978.[59] J. Kilian. Uses of Randomness in Algorithms and Protocols. The ACM DistinguishedDissertation 1989, MIT press.[60] J. Kilian and E. Petrank. Concurrent and resettable zero-knowledge in poly-logartihmicrounds. In 33rd STOC, pages 560{569, 2001.[61] J. Kilian, E. Petrank and C. Racko�. Lower Bounds for Zero Knowledge on the Internet.In 39th FOCS, pages 484{492, 1998.[62] L. Lamport, R. Shostack, and M. Pease. The Byzantine generals problem. ACM Trans-actions on Programming Languages and Systems, 4(3):382{401, 1982.[63] L. Lamport. The weak byzantine generals problem. In Journal of the ACM, 30(3):668{676, 1983.

BIBLIOGRAPHY 135[64] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation.In CRYPTO'01, Springer-Verlag (LNCS 2139), pages 171{189, 2001.[65] Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key Encryption Under Gen-eral Assumptions. Technical Report MCS02-10, Faculty of Mathematics and ComputerScience, The Weizmann Institute of Science, May 2002.[66] Y. Lindell, A. Lysysanskaya and T. Rabin. On the Composition of Authenticated Byzan-tine Agreement. In 34th STOC, pages 514{523, 2002.[67] Y. Lindell, A. Lysyanskaya and T. Rabin. Sequential Composition of Protocols withoutSimultaneous Termination. To appear in 21st PODC, 2002.[68] Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. Journal of Cryptology,15(3):177{206, 2002.[69] S. Micali and P. Rogaway. Secure computation. Unpublished manuscript, 1992. Prelim-inary version in CRYPTO'91, Springer-Verlag (LNCS 576), pages 392{404, 1991.[70] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology,4(2):151{158, 1991.[71] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults.Journal of the ACM, 27(2):228{234, 1980.[72] B. P�tzmann and M. Waidner. Information-Theoretic Pseudosignatures and ByzantineAgreement for t >= n=3. Technical Report RZ 2882 (#90830), IBM Research, 1996.[73] B. P�tzmann and M. Waidner. Composition and integrity preservation of secure reactivesystems. 7th ACM Conference on Computer and Communication Security, 2000, pp.245-254.[74] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero Knowledge With LogarithmicRound Complexity. To appear in the 43rd FOCS, 2002.[75] M. Rabin. How to exchange secrets by oblivious transfer. Tech. Memo TR-81, AikenComputation Laboratory, Harvard U., 1981.[76] T. Rabin and M. Ben-Or. Veri�able Secret Sharing and Multi-party Protocols withHonest Majority. 21st STOC, pages 73{85, 1989.[77] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.In Eurocrypt'99, Springer-Verlag (LNCS 1592), pages 415{413, 1999.[78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signaturesand public-key cryptosystems. Communications of the ACM, 21(2):120{126, 1978.[79] A. Rosen. A Note on the Round-Complexity of Concurrent Zero-Knowledge. InCRYPTO'00, Springer-Verlag (LNCS 1880), pages 451{468, 2000.[80] A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and Adaptive Chosen-Ciphertext Security. In 40th FOCS, pages 543{553, 1999.[81] A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162{167, 1986.

