
54 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Cellular Learning Automata With Multiple Learning
Automata in Each Cell and Its Applications

Hamid Beigy and Mohammad Reza Meybodi

Abstract—The cellular learning automaton (CLA), which is a
combination of cellular automaton (CA) and learning automaton
(LA), is introduced recently. This model is superior to CA because
of its ability to learn and is also superior to single LA because it is
a collection of LAs which can interact with each other. The basic
idea of CLA is to use LA to adjust the state transition probability
of stochastic CA. Recently, various types of CLA such as syn-
chronous, asynchronous, and open CLAs have been introduced.
In some applications such as cellular networks, we need to have a
model of CLA for which multiple LAs reside in each cell. In this
paper, we study a CLA model for which each cell has several LAs.
It is shown that, for a class of rules called commutative rules, the
CLA model converges to a stable and compatible configuration.
Two applications of this new model such as channel assignment
in cellular mobile networks and function optimization are also
given. For both applications, it has been shown through computer
simulations that CLA-based solutions produce better results.

Index Terms—Cellular learning automaton (CLA), dynamic
channel assignment (DCA), learning automaton (LA).

I. INTRODUCTION

C ELLULAR automata (CAs) are mathematical models for
systems consisting of large numbers of simple identical

components with local interactions. The simple components act
together to produce complex emergent global of behavior. CAs
perform complex computation with high degree of efficiency
and robustness. They are particularly suitable for modeling
natural systems that can be described as massive collections of
simple objects interacting locally with each other [1]. CA is
called cellular, because it is made up of cells like points in the
lattice, and called automata, because it follows a simple local
rule [2]. Each cell can assume a state from finite set of states.
The cells update their states synchronously on discrete steps ac-
cording to a local rule. The new state of each cell depends on the
previous states of a set of cells, including the cell itself, and con-
stitutes its neighborhood [3]. The state of all cells in the lattice is
described by a configuration. A configuration can be described
as the state of the whole lattice. The rule and the initial con-
figuration of the CA specify the evolution of CA that tells how
each configuration is changed in one step. On the other hand,
learning automata (LAs) are, by design, “simple agents for
doing simple things.” LAs have been used successfully in many

Manuscript received December 29, 2008; revised August 7, 2009. Current
version published October 30, 2009. This paper was recommended by Asso-
ciate Editor S. Misra.

H. Beigy is with the Department of Computer Engineering, Sharif University
of Technology, Tehran 11365-9363, Iran (e-mail: beigy@sharif.edu).

M. R. Meybodi is with the Department of Computer Engineering and
Information Technology, Amirkabir University of Technology, Tehran 15914,
Iran (e-mail: mmeybodi@aut.ac.ir).

Digital Object Identifier 10.1109/TSMCB.2009.2030786

applications such as control of broadcast networks [4], intrusion
detection in sensor networks [5], database systems [6], and
solving shortest path problem in stochastic networks [7], [8],
to mention a few. The full potential of an LA is realized
when multiple automata interact with each other. Interaction
may assume different forms such as tree, mesh, array, etc.
Depending on the problem that needs to be solved, one of these
structures for interaction may be chosen. In most applications,
local interaction of LA, which can be defined in a form of graph
such as tree, mesh, or array, is more suitable. In [9], CA and LA
are combined, and a new model, which is called cellular LA
(CLA), is obtained. This model, which opens a new learning
paradigm, is superior to CA because of its ability to learn and
also is superior to single LA because it is a collection of LAs
which can interact with each other.

The CLA can be classified into two groups: synchronous CLA
and asynchronous CLA (ACLA) [10]. In synchronous CLA, all
cells are synchronized with a global clock and executed at the
same time, and in ACLA, LAs in different cells are activated
asynchronously. The CLA can be classified into close and open
[11]. In the former, the action of each LA in the next stage of
its evolution only depends on the state of its local environment
(actions of its neighboring LAs), while in the latter, the action
of each LA in the next stage of its evolution not only depends
on the local environment but also on the external environments.

In [12], a mathematical framework for studying the behavior
of the CLA has been introduced. This mathematical framework
for the CLA not only enables us to investigate the character-
istics of this model deeper, which may lead us to find more
applications, but also having such a mathematical framework
makes it possible to study the previous applications more
rigorously and develop better CLA-based algorithms for those
applications. In [11], open CLA (OCLA) has been introduced,
and its steady-state behavior was studied. Asynchronous CA
was proposed in [10], and its steady-state behavior was studied.
It was shown that, for a class of rules called commutative rules,
different models of CLA converge to a globally stable state
[10]–[12]. The CLAs have been used in many applications
such as image processing [13], rumor diffusion [14], modeling
of commerce networks [15], channel assignment in cellular
networks [16], call admission control in cellular networks [10],
and sensor networks [17], to mention a few.

In some applications such as channel assignment in cellular
networks, a type of CLA is needed such that each cell is
equipped with multiple LAs. The process of assignment of
channels to a cell or a call depends on the states of the
neighboring cells. The state of each cell in the cellular network
is determined by determining the values of several variables.

1083-4419/$26.00 © 2009 IEEE

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

BEIGY AND MEYBODI: CLA WITH MULTIPLE LEARNING AUTOMATA IN EACH CELL AND ITS APPLICATIONS 55

The value of each variable is adaptively determined by an LA
assigned to that variable. We call such a CLA as CLA with
multiple LAs in each cell. In this paper, CLA with multiple
LAs in each cell is introduced, and its steady-state behavior is
studied. It is shown that, for commutative rules, this new model
converges to a globally stable and compatible configuration.
Then, two applications of this new model to cellular mobile
networks and evolutionary computation have been presented.
The simulation results for both applications show that the CLA-
based solutions produce better results.

The rest of this paper is organized as follows. Section II
presents a review of studies of the steady-state behavior of
synchronous, asynchronous, and OCLAs. In Section III, the
CLA with multiple LAs in each cell is introduced, and its
behavior is studied. Section IV presents two applications of the
proposed model to the channel assignment in cellular networks
and function optimization. Section V presents the computer
experiments, and Section VI concludes this paper.

II. CLAs

CLA is a mathematical model for dynamical complex sys-
tems that consist of a large number of simple components.
The simple components, which have learning capability, act
together to produce complex emergent global behavior. A CLA
is a CA in which an LA is assigned to every cell. The LA
residing in a particular cell determines its state (action) on
the basis of its action probability vector. Like CA, there is a
rule that the CLA operates under it. The rule of the CLA and
the actions selected by the neighboring LAs of any particular
LA determine the reinforcement signal to the LA residing in
a cell. The neighboring LAs of any particular LA constitute
the local environment of that cell. The local environment of
a cell is nonstationary because the action probability vectors
of the neighboring LAs vary during evolution of the CLA. In
the following sections, we review some recent results regarding
various types of CLA.

A. Synchronous CLA

In synchronous CLA, all cells are synchronized with a
global clock and executed at the same time. Formally, a
d-dimensional synchronous CLA with n cells is a structure
A = (Zd,Φ, A,N,F), where Zd is a lattice of d-tuples of
integer numbers, Φ is a finite set of states, A is the set of
LAs, each of which is assigned to one cell of the CLA, N =
{x̄1, x̄2, . . . , x̄m̄} is a finite subset of Zd called neighborhood
vector, and F : Φm̄ → β is the local rule of the CLA, where β
is the set of values that the reinforcement signal can take. The
local rule computes the reinforcement signal for each LA based
on the actions selected by the neighboring LAs. We assume
that there exists a neighborhood function N̄(u) that maps a cell
u to the set of its neighboring cells. We assume that the LA,
Ai, which has a finite action set αi, is associated to cell i (for
i = 1, . . . , n) of the CLA. Let the cardinality of αi be mi.

The state of all cells in the lattice is described by a con-
figuration. A configuration of the CLA at stage k is de-
noted by p(k) = (p′

1
(k), p′

2
(k), . . . , p′

n
(k))′, where p

i
(k) =

(pi1(k), . . . , pimi
(k))′ is the action probability vector of LA

Ai. A configuration p is called deterministic if the action
probability vector of each LA is a unit vector; otherwise,
it is called probabilistic. Hence, the set of all deterministic
configurations K∗ and the set of all probabilistic configura-
tions K in CLA are K∗ = {p|piy ∈ {0, 1} ∀y, i} and K =
{p|piy ∈ [0, 1] ∀y, i}, respectively, where

∑
y piy = 1 for

all i. Every configuration p ∈ K∗ is called a corner of K.
The operation of the CLA takes place as the following itera-

tions. At iteration k, each LA chooses an action. Let αi ∈ αi be
the action chosen by Ai. Then, all LAs receive a reinforcement
signal. Let βi ∈ β be the reinforcement signal received by Ai.
This reinforcement signal is produced by the application of the
local rule. The higher value of the reinforcement signal means
that the chosen action of Ai will receive higher reward. Since
each set αi is finite, the local rule can be represented by a hyper
matrix of dimensions m1 × m2 × · · · × mm̄. These n hyper
matrices constitute what we call the rule of the CLA. When all
of these n hyper matrices are equal, the CLA is called uniform;
otherwise, it is called nonuniform. A rule is called commutative
if and only if

F i(αi+x̄1 , αi+x̄2 , . . . , αi+x̄m̄
)

= F i(αi+x̄m̄
, αi+x̄1 , . . . , αi+x̄m̄−1)

= · · · = F i(αi+x̄2 , αi+x̄3 , . . . , αi+x̄1). (1)

For the sake of simplicity in presentation, a rule F i(αi+x̄1 ,
αi+x̄2 . . . , αi+x̄m̄

) is denoted by F i(α1, α2 . . . , αm̄). The ap-
plication of the local rule to every cell allows transforming a
configuration to a new one. The local rule specifies the reward
value for each chosen action. The average reward for action r
of automaton Ai for configuration p ∈ K is defined as

dir(p) =
∑
y2

· · ·
∑
ym̄

F i(r, y2, . . . , ym̄)
∏

l∈N̄(i)
l �=i

plyl
(2)

and the average reward for LA Ai and the total average reward
for the CLA are denoted by Di(p) =

∑
r dir(p)pir and D(p) =∑

i Di(p), respectively. A configuration p ∈ K is called com-
patible if

∑
r dir(p)pir ≥

∑
r dir(p)qir for all configurations

q ∈ K and all cells i. The compatibility of a configuration
implies that no LA in CLA has any reason to change its action.

The following theorems state the steady-state behavior of
CLA when each cell uses LR−I learning algorithm. Proofs of
these theorems can be found in [12].

Theorem 1: Suppose that there is a bounded differential
function D : Rm1+···+mm̄ → R such that for some constant
c > 0, (∂D/∂pir)(p) = cdir(p) for all i and r. Then, CLA for
any initial configuration in K −K∗ and with sufficiently small
value of learning parameter (max{a} → 0) always converges
to a configuration that is stable and compatible, where ai is the
learning parameter of LA Ai.

Theorem 2: A synchronous CLA, which uses uniform and
commutative rule, starting from p(0) ∈ K −K∗ and with suf-
ficiently small value of learning parameter (max{a} → 0),
always converges to a deterministic configuration that is stable
and compatible.

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

56 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

If the CLA satisfies the sufficiency conditions needed for
Theorems 1 and 2, then the CLA will converge to a compatible
configuration; otherwise, the convergence of the CLA to a
compatible configurations cannot be guaranteed, and it may
exhibit a limit cycle behavior [18].

B. ACLA

In synchronous CLA, all cells are synchronized with a global
clock and executed at the same time. In some applications such
as call admission control in cellular networks, a type of CLA
in which LAs in different cells are activated asynchronously
(ACLA) is needed. LAs may be activated in either time-driven
or step-driven manner. In time-driven ACLA, each cell is as-
sumed to have an internal clock which wakes up the LA associ-
ated to that cell. The internal clocks possibly have different time
step durations and are asynchronous, i.e., each going at its own
speed and does not change time simultaneously. In step-driven
ACLA, a cell is selected in fixed or random order. Formally,
a d-dimensional step-driven ACLA with n cells is a structure
〈Zd,Φ, A,N, F, ρ〉, where Zd is a lattice of d-tuples of integer
numbers, Φ is a finite set of states, A is the set of LAs assigned
to cells, N = {x̄1, x̄2, . . . , x̄m̄} is the neighborhood vector,
F : Φm̄ → β is the local rule, and ρ is an n-dimensional vector
called activation probability vector, where ρi is the probability
that the LA in cell i (for i = 1, . . . , n) is to be activated in each
stage.

The operation of ACLA takes place as the following itera-
tions. At iteration k, each LA Ai is activated with probability ρi,
and the activated LAs choose one of their actions. The activated
automata use their current actions to execute the rule (comput-
ing the reinforcement signal). The actions of neighboring cells
of the activated cell are their most recently selected actions. Let
αi ∈ αi and βi ∈ β be the action chosen by the activated and
the reinforcement signal received by LA Ai, respectively. The
reinforcement signal is produced by the application of local
rule F i. Finally, activated LAs update their action probability
vectors, and the process repeats.

The following theorems state the steady-state behavior of
ACLA when each cell uses the LR−I learning algorithm. Proofs
of these theorems can be found in [10].

Theorem 3: Suppose that there is a bounded differential
function D : Rm1+···+mm̄ → R such that for some constant
c > 0, (∂D/∂pir)(p) = cdir(p) for all i and r, and ρi > 0 for
all i. Then, ACLA for any initial configuration in K −K∗ and
with sufficiently small value of learning parameter (max{a} →
0) always converges to a configuration that is stable and com-
patible, where ai represents the learning parameter for LA Ai.

Theorem 4: An ACLA, which uses uniform and commu-
tative rule, starting from p(0) ∈ K −K∗ and with sufficiently
small value of learning parameter (max{a} → 0), always con-
verges to a deterministic configuration that is stable and also
compatible.

C. OCLA

In previous versions of CLA, the neighboring cells of an LA
constitute its neighborhoods, and the state of a cell in the next
stage depends only on the states of neighboring cells. In some

applications such as image processing, a type of CLA is needed
in which the action of each cell in the next stage of its evolution
not only depends on the local environment (actions of its
neighbors) but also on the external environments. This model of
CLA is called OCLA. In OCLA, two types of environments are
considered: global and exclusive environments. Each OCLA
has one global environment that influences all cells and an
exclusive environment for each particular cell.

Formally, an d-dimensional OCLA with n cells is a struc-
ture A = (Zd,Φ, A,EG, EE , N,F), where Zd is a lattice of
d-tuples of integer numbers, Φ is a finite set of states, A is
the set of LAs, each of which is assigned to each cell, EG is
the global environment, EE = {EE

1 , EE
2 , . . . , EE

n } is the set
of exclusive environments, where EE

i is the exclusive envi-
ronment for cell i, N = {x̄1, x̄2, . . . , x̄m̄} is the neighborhood
vector, and F : Φm̄ × O(G) × O(E) → β is the local rule of
the OCLA, where O(G) and O(E) are the sets of states of
global and exclusive environments, respectively.

The operation of OCLA takes place as iterations of the
following steps. At iteration k, each LA chooses one of its
actions. Let αi be the action chosen by LA Ai. The actions of
all LAs are applied to their corresponding local environments
(neighboring LAs) as well as global environments and their
corresponding exclusive environments. Then, all LAs receive
their reinforcement signal, which is a combination of the re-
sponses from local, global, and exclusive environments. These
responses are combined using the local rule. Finally, all LAs
update their action probability vectors based on the received re-
inforcement signal. Note that the local environment for each LA
is nonstationary while global and exclusive environments may
be stationary or nonstationary. We now present the convergence
result for the OCLA in stationary global and exclusive environ-
ments when each cell uses the LR−I learning algorithm. These
theorems ensure convergence to one compatible configuration
if the OCLA has one or more compatible configurations. Proofs
of these theorems can be found in [11].

Theorem 5: Suppose that there is a bounded differential
function D : Rm1+···+mm̄ × O(G) × O(E) → R such that for
some constant c > 0, (∂D/∂pir)(p) = cdir(p) for all i and
r, and ρi > 0 for all i. Then, OCLA (synchronous or asyn-
chronous) for any initial configuration in K −K∗ and with
sufficiently small value of learning parameter (max{a} → 0)
always converges to a configuration that is stable and compati-
ble, where ai is the learning parameter of LA Ai.

Theorem 6: An OCLA (synchronous or asynchronous),
which uses uniform and commutative rule, starting from p(0) ∈
K −K∗ and with sufficiently small value of learning parameter
(max{a} → 0), always converges to a deterministic configura-
tion that is stable and also compatible.

III. CLA WITH MULTIPLE LAs IN EACH CELL

All previously mentioned models of CLA [10]–[12] use one
LA per cell. In some applications, there is a need for a model
of CLA in which each cell is equipped with several LAs, for
instance, the channel assignment in cellular mobile networks
for which we need to have several decision variables, each of
which can be adapted by an LA. We call such a CLA as CLA

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

BEIGY AND MEYBODI: CLA WITH MULTIPLE LEARNING AUTOMATA IN EACH CELL AND ITS APPLICATIONS 57

Fig. 1. Equivalent representation of a linear CLA containing s LA in each cell.

with multiple LAs in each cell. In the new model of CLA, LAs
may be activated synchronously or asynchronously. In the rest
of this section, we introduce the new model of CLA and study
its steady-state behavior.

A. Synchronous CLA With Multiple LAs in Each Cell

In synchronous CLA with multiple LAs in each cell, several
LAs are assigned to each cell of CLA, which are activated
synchronously. Without loss of generality and for the sake of
simplicity, assume that each cell contains s LAs. The operation
of a synchronous CLA with multiple LAs in each cell can be
described as follows: At the first step, the internal state of all
cells is specified. The state of every cell is determined on the
basis of the action probability vectors of all LAs residing in
that cell. The initial value of this state may be chosen on the
basis of the past experience or at random. In the second step,
the rule of the CLA determines the reinforcement signal to
each LA residing in each cell. The environment for every LA
is the set of all LAs in that cell and neighboring cells. Finally,
each LA updates its action probability vector on the basis of the
supplied reinforcement signal and the chosen action of the LA.
This process continues until the desired result is obtained.

Formally, a d-dimensional synchronous LA with n cells and
s LAs in each cell is a structure A = (Zd,Φ, A,N,F), where
Zd is a lattice of d-tuples of integer numbers, Φ is a finite
set of states, A is the set of LAs assigned to CLA, where Ai

is the set of LAs assigned to cell i, N = {x̄1, x̄2, . . . , x̄m̄}
is a finite subset of Zd called neighborhood vector, and F :
Φs×m̄ → β is the local rule of the CLA, where β is the set
of values that the reinforcement signal can take. The local
rule computes the reinforcement signal for each LA based on
the actions selected by the neighboring LAs. We assume that
there exists a neighborhood function N̄(u) that maps a cell
u to the set of its neighbors. Let αi be the set of actions
that is chosen by all LAs in cell i. Hence, the local rule is
represented by function F i(αi+x̄1 , αi+x̄2 , . . . , αi+x̄m̄) → β. In
CLA with multiple LAs in each cell, the configuration of CLA
is defined as the action probability vectors of all LAs. The local
environment for each LA is all LAs residing in the cell and the
neighboring cells. A configuration is called compatible if no
LAs in CLA have any reason to change their action [12].

We now present the convergence result for the synchronous
CLA with multiple LAs in each cell, which ensures conver-

gence to one compatible configuration if the CLA has one or
more compatible configurations.

Theorem 7: Suppose that there is a bounded differential
function D : Rs(m1+···+mm̄) → R such that for some constant
c > 0, (∂D/∂pir)(p) = cdir(p) for all i and r. Then, CLA for
any initial configuration in K −K∗ and with sufficiently small
value of learning parameter (max{a} → 0) always converges
to a configuration that is stable and compatible.

Proof: In order to prove the theorem, we model the CLA
with multiple LAs in each cell using the CLA containing one
LA in each cell. In order to obtain such a model, an additional
dimension is added to the CLA containing multiple LAs in each
of its cells. For the sake of simplicity, we use a linear CLA with
s LA in each cell as an example. Consider a linear CLA with
n cells and neighborhood function N̄(i) = {i − 1, i, i + 1}.
We add s − 1 extra rows to this CLA, for example, rows 2
through s, each of which contains n cells each with one LA.
Now, the new CLA contains one LA in each cell. To consider
the effects of other LAs on each LA, the neighborhood
function must also be modified. The modified neighborhood
function is N̄1(i, j) = {(i, j − 1), (i + 1, j − 1), . . . , (i + s −
1, j − 1), (i, j), (i + 1, j), . . . , (i + s −1, j), (i, j + 1), (i + 1,
j + 1), . . . , (i + s − 1, j + 1)}, where operators + and −
for index i are modula-s operators. This modified CLA and
neighborhood function is shown in Fig. 1.

With the earlier discussion, the proof of the theorem follows
immediately from the proof of Theorem 1. �

When a CLA uses a commutative rule, the following useful
result can be concluded.

Corollary 1: A synchronous CLA (open or close) with mul-
tiple LAs in each cell, which uses uniform and commutative
rule, starting from p(0) ∈ K −K∗ and with sufficiently small
value of learning parameter (max{a} → 0), always converges
to a deterministic configuration that is stable and compatible.

Proof: The proof follows directly from Theorems 2, 6,
and 7. �

B. ACLA With Multiple LAs in Each Cell

In this model of CLA, several LAs are assigned to each cell
of CLA, which are activated asynchronously. Without loss of
generality and for the sake of simplicity, assume that each cell
contains s LA. Formally, an d-dimensional step-driven ACLA
with n cells is a structure 〈Zd,Φ, A,N, F, ρ〉, where Zd is a

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

58 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Fig. 2. System model of cellular networks.

lattice of d-tuples of integer numbers, Φ is a finite set of states,
A is the set of LAs assigned to cells, N = {x̄1, x̄2, . . . , x̄m̄} is
the neighborhood vector, F : Φs×m̄ → β is the local rule, and
ρ is an n × s-dimensional vector called activation probability
vector, where ρij is the probability that the LA j in cell i (for
i = 1, . . . , n and j = 1, . . . , s) is to be activated in each stage.

The operation of an ACLA with multiple LAs in each cell
can be described as follows: At iteration k, each LA Aij is
activated with probability ρij , and the activated LAs choose one
of their actions. The activated automata use their current actions
to execute the rule (computing the reinforcement signal). The
actions of neighboring cells of an activated cell are their most
recently selected actions. The reinforcement signal is produced
by the application of local rule. Finally, activated LAs update
their action probability vectors, and the process repeats.

We now present the convergence result for the ACLA with
multiple LAs in each cell and using commutative rules, which
ensures convergence to one compatible configuration if the
CLA has more than one compatible configuration.

Corollary 2: A synchronous CLA with multiple LAs in
each cell, which uses uniform and commutative rule, starting
from p(0) ∈ K −K∗, ρi > 0, and with sufficiently small value
of learning parameter (max{a} → 0), in all stationary global
and group environments always converges to a deterministic
configuration that is stable and compatible.

Proof: The proof follows directly from Theorems 4, 6,
and 7. �

IV. APPLICATIONS

In this section, we give some recently developed applications
of CLA with multiple LAs in each cell. These applications
include channel assignment algorithms for cellular mobile net-
works and a parallel evolutionary algorithm (EA) used for
function optimization.

A. Cellular Mobile Networks

In cellular networks (Fig. 2), geographical area covered by
the network is divided into smaller regions called cells. Each
cell is serviced by a fixed server called base station (BS),
which is located at its center. A number of BSs are connected
to a mobile switching center, which also acts as a gateway
of the mobile network to the existing wired-line networks. A
mobile station communicates with other nodes in the network,
fixed or mobile, only through the BS of its cell by employing
wireless communication. If a channel is used concurrently by

more than one communication session in the same cell or in
the neighboring cells, the signal of communicating units will
interfere with others. Such interference is called cochannel in-
terference. However, the same channel can be used in geograph-
ically separated cells such that their signals do not interfere
with each other. These interferences are usually modeled by
a constraint matrix C, where element c(u, v) is the minimum
gap that must exist between channels assigned to cells u and
v in order to avoid the interferences. The minimum distance at
which cochannel can be reused with acceptable interference is
called cochannel reuse distance. The set of all neighboring cells
that are in cochannel interference range of each other forms a
cluster. At any time, a channel can be used to support, at most,
one communication session in each cluster. The problem of
assigning channels to communication sessions is called channel
assignment problem.

There are several schemes for assigning channels to com-
munication sessions, which can be divided into three different
categories: fixed channel assignment (FCA), dynamic channel
assignment (DCA), and hybrid channel assignment (HCA)
schemes [19]. In FCA schemes, a set of channels is permanently
allocated to each cell, which can be reused in another cell,
at sufficient distance, such that interference is tolerable. FCA
schemes are formulated as generalized graph coloring problem
and belong to a class of NP-hard problems [20]. In DCA
schemes, there is a global pool of channels from where channels
are assigned on demand and the set of channels assigned to a
cell varies with time. After a call is completed, the assigned
channel is returned to the global pool [21], [22]. In HCA
schemes, channels are divided into fixed and dynamic sets [23].
The fixed set contains a number of channels that are assigned
to cells as in the FCA schemes. The fixed set of channels of a
particular cell is assigned only for calls initiated in that cell. The
dynamic set of channels is shared among all users in a network
to increase the performance of channel assignment algorithm.
When a BS receives a request for service, if there is a free
channel in the fixed set, then the BS assigns a channel from
the fixed set, and if all channels in the fixed set are busy, then
a channel from the dynamic set is allocated. Any DCA strategy
can be used for assigning channels from a dynamic set.

Considering the characteristics of cellular networks, CLA
can be a good model for solving problems in cellular net-
works, including channel assignment problem. In the rest of
this section, we introduce two CLA-based channel assignment
algorithms. Each of these algorithms uses a CLA with multiple
LAs in each cell to assign channels.

1) FCA in Cellular Networks: In FCA schemes, first, the
expected traffic load of the network is transformed to a demand
vector for deciding how many channels are needed to be as-
signed to each cell to support the expected traffic load. Next, the
required number of channels is assigned to every cell (BS) in
such a way that this assignment prevents interference between
channels assigned to the neighboring cells. When a call arrives
at any particular cell, the BS of this cell assigns one of its free
channels, if any, to the incoming call. If all allocated channels
of this cell are busy, then the incoming call will be blocked.

In the succeeding discussion, we introduce a CLA-based
algorithm for solving the FCA problem. In this algorithm, we

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

BEIGY AND MEYBODI: CLA WITH MULTIPLE LEARNING AUTOMATA IN EACH CELL AND ITS APPLICATIONS 59

Fig. 3. CLA-based FCA algorithm.

assume that the traffic load for each cell is stationary and an
estimation for the demand vector (D̂) for the network is given
a priori, where d̂v is the expected number of channels required
for cell v. In this algorithm, each assignment for channels
in the network is equivalent to a configuration of CLA. In
the proposed algorithm, the synchronous CLA evolves until
it reaches a compatible configuration that is the solution of
the channel assignment problem. In our approach, the cellular
network with n cells and total of m channels is modeled as a
synchronous CLA with n cells, where cell v is equipped with
d̂v m-action LAs of LR−I type. Since use of one channel or ad-
jacent channels in neighboring cells causes the interference, the
cells in the interference region of every cell are considered as
neighboring cells of every cell in the network. The rule of CLA
specifies cosite, cochannel, and adjacent-channel interferences.
In this algorithm, the action corresponding to channel j for
automaton i in cell u, denoted by αu

ij , is rewarded if channel j
does not interfere with other channels assigned in cell u and its
neighboring cells. Thus, the rule for the CLA can be defined as

βu
ij =

{
1, if

∣∣αu
ij − αu

kl

∣∣ < c(u, v)
0, otherwise

(3)

for all cells u, v = 1, 2, . . . , n and all channels i, j, k, l =
1, 2, . . . ,m. The value of 0 for βu

ij means the penalty, while
1 means the reward for the action j of LA Ai in cell u. The ob-
jective of our FCA algorithm is to find an assignment (configu-
ration) that maximizes the total reward of the CLA, which leads
to minimization of the interference in the cellular network.

The proposed algorithm, as shown in Fig. 3, can be described
as follows. First, the CLA is initialized, and then, the following
steps are repeated until an interference-free channel assignment
is found.

1) All LAs choose their actions synchronously.
2) If the channel corresponding to the action chosen by a

particular LA does not interfere with the channels of
neighboring cells, then the given LA is rewarded.

2) DCA in Cellular Networks: In the following, we propose
a DCA algorithm based on CLA. In this algorithm, a network
with n cells and m channels is modeled with an ACLA with
n cells, where each cell is equipped with m two-action LAs
of LR−I type. In each cell, the kth LA specifies that the
kth channel is used in this cell or not. The action set of
LAs is equal to {0, 1}, where 1 means that the corresponding
channel is selected as a candidate channel for the assignment
to the incoming call while 0 means that the corresponding

channel is not selected. The operation of this algorithm can
be described as follows: When a call arrives at cell i, all LAs
of this cell are scanned using a sweeping strategy until an
interference-free channel is found or all channels are scanned.
The sweeping strategy orders the LAs of a cell for scanning.
The sweeping strategies used for this algorithm are as follows:
fixed sweeping, maximum usage sweeping, minimum usage
sweeping, and random sweeping. Let Ii = (ji,1, ji,2, . . . , ji,m)
be the scanning order of LA of cell i specified by the sweeping
strategy. If an interference-free channel is found, the incoming
call is accepted, a channel is assigned to it, and the selected
action of the corresponding LA is rewarded; otherwise, the call
will be blocked.

The overall operation of the proposed CLA-based DCA
algorithm is shown algorithmically in Fig. 4.

In what follows, we study how the proposed algorithm is
mapped to ACLA with multiple LAs in each cell. The activation
probability vector of ACLA is obtained by taking expectation
from the product of an n-dimensional vector π1 and an n ×
nm-dimensional matrix π2. Vector π1 is called cell activation
vector and determines when a given cell is activated. It is
apparent that, when a call arrives to a cell i, it will be activated,
i.e., π1(i) = 1. Thus, E[π1(i)] is the probability that a call
arrives at cell i. Matrix π2 is called LA activation matrix and de-
termines when an LA in an activated cell is triggered. Element
π2(i, j) becomes 1 when the kth LA in cell i is activated, where
k = j − (i − 1)m. Thus, E[π2(i, j)|π1(i) = 1] is equal to the
probability of triggering the kth LA in cell i (for k = j − (i −
1)m) given that a call arrives at cell i. Vector π1 is determined
by call arrival rate, while matrix π2 is obtained from sweeping
strategies, which some of them are described hereinafter.

a) Fixed sweep strategy: This strategy scans channels of
a typical cell i one by one in an increasing order of their
indices, i.e., Ii = (1, 2, . . . ,m). Supposing that a call arrives
at cell i (for i = 1, . . . , n), then π1(i) = 1, and the LAs are
triggered using matrix π2, which is recomputed every time an
LA is triggered. The recomputation of matrix π2 is done in the
following way. At the first step, π2(i, (i − 1)m + 1) becomes
1, i.e., the first LA is activated. Then, the remaining elements of
π2 are computed according to the following rule:

π2(i, j) =
{

1, if π1(i) = 1 and π2(i, j − 1) = 1
0, otherwise

(4)

for j = (i − 1)m + 2, . . . , im. In other words, in this strategy,
LAs in cell i are triggered sequentially in increasing order of
their indices until a channel is found for the assignment.

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

60 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Fig. 4. CLA-based DCA algorithm.

b) Maximum usage strategy: In this strategy, the set of
LAs in cell i is triggered in decreasing order of their usage of
their corresponding channels until a noninterfering channel is
found. If no channel can be found, then the incoming call will
be blocked. In other words, in this strategy, LA Ak is triggered
in the kth stage of the activation of cell i if ui

k is the kth largest
element in usage vector ui = {ui

1, u
i
2, . . . , u

i
m}, where ui

k is the
number of times that channel k is assigned to calls in cell i.

c) Minimum usage strategy: In this strategy, the set of
LAs in cell i is triggered in increasing order of their usage of
their corresponding channels until a noninterfering channel is
found. If no channel can be found, then the incoming call will
be blocked. In other words, in this strategy, LA Ak is triggered
in the kth stage of the activation of cell i if ui

k is the kth largest
element in usage vector ui = {ui

1, u
i
2, . . . , u

i
m}, where ui

k is the
number of times that channel k is assigned to calls in cell i.

d) Random sweep strategy: In this strategy, the set of LAs
in cell i is triggered in random order. First, a sequence of indices
is generated randomly, and then, the set of LAs is triggered
according to this generated order.

B. CLA-EC

EAs are a class of random search algorithms in which princi-
ples of natural evolution are regarded as rules for optimization.
They attempt to find the optimal solution to problems by manip-
ulating a population of candidate solutions. The population is
evaluated, and the best solutions at each generation are selected
to reproduce and mate to form the next generation. Over a
number of generations, good traits dominate the population,
resulting in an increase in the quality of the solutions.

CLA-based evolutionary computing (CLA-EC), which is an
application of synchronous CLA with multiple LAs in each cell,
is obtained by combining CLA and evolutionary computing
models [24]. In CLA-EC, each genome in the population is
assigned to one cell of CLA, and each cell in CLA is equipped
with a set of LAs, with each of them corresponding to one
gene in the genome. The population is made from genomes
of all cells. The operation of CLA-EC can be described as

follows: At the first step, all LAs in the CLA-EC choose their
actions synchronously. The set of actions chosen by LA of a
cell determines the string genome for that cell. Based on a
local rule, a vector of reinforcement signals is generated and
given to the LAs residing in the cell. All LAs in the CLA-EC
update their action probability vectors based on the received
reinforcement signal using a learning algorithm. The process of
action selection and updating the internal structure of LAs is
repeated until a predetermined criterion is met.

CLA-EC has been used in several applications such as func-
tion optimization and data clustering, to mention a few [24].
In what follows, we present an algorithm based on CLA-EC
for function optimization problem. Assuming a binary finite
search space, a function optimization problem can be described
as the minimization of a real function f : {0, 1}m → R. In this
algorithm, the chromosome is represented using a binary string
of m bits, and then, each cell of CLA-EC is equipped with m
two-action LAs, each of which is responsible for updating a
gene. The action set of all LAs corresponds to the set {0, 1}.
Then, the following steps are repeated until the termination
criterion is met.

1) All LAs choose their actions synchronously.
2) Concatenate the chosen actions of LAs in each cell i, and

generate a new chromosome αi.
3) The fitnesses of all chromosomes are computed. If the

fitness of the new chromosome of a cell is better than the
previous one, it will be replaced.

4) A set of Ns(i) neighboring cells of each cell i is selected.
5) In the selected neighbors, the number of cells with the

same value of genes is counted. Let Nij(k) be the number
of jth genes that have the same value of k at the selected
neighboring cells of i. Then, the reinforcement signal for
jth LA of cell i is computed as

βij =
{

U [Nij(1) − Nij(0)] , if αi
j = 0

U [Nij(0) − Nij(1)] , if αi
j = 1

(5)

where αi
j is the value of jth gene in the ith chromosome

and U(.) is the step function.

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

BEIGY AND MEYBODI: CLA WITH MULTIPLE LEARNING AUTOMATA IN EACH CELL AND ITS APPLICATIONS 61

Fig. 5. CLA-EC-based optimization algorithm.

Fig. 6. Cellular network of the Philadelphia problem.

The overall operation of the CLA-EC-based optimization
algorithm is shown algorithmically in Fig. 5.

V. COMPUTER EXPERIMENTS

In this section, we give three sets of computer simulations for
CLA with multiple LAs in each cell. The first two experiments
are the simulations of the proposed fixed and DCA algorithms,
and the next one is the results of the CLA-EC-based function
optimization algorithm.

A. Channel Assignment in Cellular Networks

In order to show the effectiveness of the proposed CLA-
based channel assignment algorithms, computer simulations are
conducted. In these simulations, interference is shown by a
constraint matrix C. The element c(u, v) of constraint matrix C,
which represents the minimum gap among channels assigned to
cells u and v, is defined on the basis of normalized distance of
cells u and v, denoted by d(u, v). In the rest of this section, the
simulation results of the proposed fixed and DCA algorithms
are given.

1) FCA in Cellular Networks: In this section, we give the
results for the proposed FCA algorithm for a simplified version
of Philadelphia problem. The Philadelphia problem is a channel
assignment problem based on a hypothetical but realistic cellu-
lar mobile network covering the region around this city [25].
The cellular network of the Philadelphia problem is based on a
regular grid with 21 cells shown in Fig. 6.

In the Philadelphia problem, the interference constraints
between any pair of cells are represented by an integer, i.e.,
c(i, j), as defined by

c(i, j) =

{ 5, if i = j
2, if 0 < d(i, j) ≤ 1
1, if 1 < d(i, j) ≤ 2

√
3.

(6)

The demand vector of the Philadelphia problem is given
in the second column of Table I. If we wanted to solve the

TABLE I
DEMAND VECTORS FOR PHILADELPHIA PROBLEM

original version of Philadelphia problem, we needed to have,
in each cell, several LAs with large number of actions, which
leads to slow rate of convergence of CLA to its compati-
ble configuration. To speed up the convergence of CLA, we
have simplified the original version of Philadelphia problem
by simplifying the constraint matrix and the demand vector.
To obtain our simplified version of Philadelphia problem, we
have changed the interference model and demand vector as
explained hereinafter. In the simplified version of the problem,
the interference c(i, j) is defined as follows:

c(i, j) =

{ 2, if i = j
1, if d(i, j) = 1
0, otherwise.

(7)

Note that c(i, j) will be zero if there is no interference
between two cells i and j. Each cell and, at most, its six
neighboring cells constitute a cluster. The cells in this cluster
define the neighboring cells in CLA. In the simplified version
of the Philadelphia problem, we consider only two demand
vectors. These demand vectors are given in the last two columns
of Table I.

Figs. 7 and 8 show the evolution of the interference in
the cellular network with different set of channels during the
operation of the network. These figures show the following:
1) The interference is decreasing as time goes on; 2) the in-
terference becomes zero when CLA converges to a compatible
configuration; and 3) by increasing the number of channels
allocated to the network, the speed of convergence of CLA also
increases.

2) DCA in Cellular Networks: In this section, we present
the simulation results of the proposed CLA-based DCA al-
gorithm and compare it with two related DCA algorithms:
channel segregation [21] and reinforcement learning [22] algo-
rithms. For simulations, it is assumed that there are seven BSs,
which are organized in a linear array, that share five full-
duplex and interference-free channels. In these simulations, the

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

62 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Fig. 7. Interference for different channels for demand vector 1.

Fig. 8. Interference for different channels for demand vector 2.

Fig. 9. Average blocking probability of calls.

interference constraints between any pair of cells represented
by c(i, j) are defined as follows:

c(i, j) =
{

1, if d(i, j) ≤ 2
0, otherwise.

(8)

The elements in matrix C corresponding to pairs of noninter-
fering cells are defined to be zero. We assume that the arrival of
calls is Poisson process with rate λ and channel holding time of
calls is exponentially distributed with mean μ = 1/3. We also
assume that no handoff occurs during the channel holding time.
The results of simulations reported in this section are obtained
from 120 000-s simulations. Fig. 9 shows the average block-
ing probability of calls for the proposed algorithm, which is
compared with the results obtained for channel segregation and
reinforcement learning algorithms. Fig. 10 shows the average
blocking probabilities for different strategies for a typical run.

Fig. 10. Evolution of blocking probability of calls for a typical run.

Fig. 11. Evolution of interference among channels assigned to neighboring
cells.

Fig. 12. Probability of assigning different channels to different cells for fixed
sweep strategy.

Fig. 11 shows the evolution of the interference as the CLA
operates. Figs. 10 and 11 show that the blocking probability
and interference decrease as the learning proceeds. That is, the
CLA segregates channels among the cells of the network.

Figs. 12 and 13 show the probability of assigning different
channels to different cells for different sweeping strategies for
a typical simulation. These figures show that the proposed
algorithm can segregate channels among different cells of the
network.

The simulation results presented for fixed and DCA algo-
rithms show that the CLA-based algorithms may converge to
local optima as shown theoretically in [10]–[12]. This may
due to access to the limited information in each cell. In order
to alleviate this problem, we can allow additional information

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

BEIGY AND MEYBODI: CLA WITH MULTIPLE LEARNING AUTOMATA IN EACH CELL AND ITS APPLICATIONS 63

Fig. 13. Probability of assigning different channels to different cells for
maximum usage strategy.

regarding channels in the network to be gathered and used
by each cell in order to allocate channels. The additional
information helps CLA to find an assignment, which results in
a lower blocking probability for the network. In [26], a CLA-
based DCA algorithm is given that allows additional informa-
tion to be exchanged among neighboring cells. The simulation
results show that the exchange of additional information among
neighboring cells decreases the blocking probability of calls.

B. Function Optimization

This section presents the experimental results for two func-
tion optimization problems and then compare these results
with the results obtained using simple genetic algorithm (SGA)
[27], population-based incremental learning (PBIL) [28], and
compact genetic algorithm (cGA) [29] in terms of solution
quality, and the number of function evaluations taken by the
algorithm to converge completely for a given population size.
The algorithm terminates when the CLA completely converges.
A CLA completely converges when all LAs residing in all cells
converge. Each quantity of the reported results is the average
taken over 20 runs. The algorithm uses 1-D CLA with LR−I

LA in each cell and neighborhood vector N = {−1, 0,+1}.
The CLA-based algorithm is tested on two different standard
function minimization problems. These functions that are given
hereinafter are borrowed from the study in [30]. The first
one is the second De Jongs function given by the following
expression:

F2(x1, x2) = 100
(
x2

1 − x2

)2 + (1 − x1)2 (9)

where −2.048 ≤ x1, x2 ≤ 2.048. The second one is the forth
De Jongs function given by the following expression:

F4(x1, x2) =
30∑

i=1

i × x4
i + N(0, 1) (10)

where −1.28 ≤ xi ≤ 1.28. In order to study the speed of the
convergence of CLA-EC, the best, the worst, the mean, and the
standard deviation of fitness of all cells for each of the function
optimization problem are reported. Figs. 14 and 15 show the
result of simulations for F2 and F4. Simulation results indicate
that CLA-EC converges to near of an optimal solution. For

Fig. 14. Evolution of five-cell CLA-EC for F2.

Fig. 15. Evolution of five-cell CLA-EC for F4.

Fig. 16. Effects of population size on the evolution of five-cell CLA-EC for
function F2.

these experiments, Ns(i) is set to 2, and learning parameters
of all LAs are set to 0.01.

The size of CLA-EC (population size) is another important
parameter, which affects the performance of CLA-EC. Figs. 16
and 17 show the effect of the size of CLA-EC on the speed
of convergence of CLA-EC. Each point in these figures shows
the best fitness obtained at one iteration. For these experiments,
Ns(i) is set to 2, and learning parameters of all LAs are set
to 0.01. The results of computer experiments show that, as the
size of CLA-EC increases, the speed of convergence increases.
However, it is observed that, for some experiments, there exists
a value if the size of CLA-EC increases beyond that; no increase
in the performance occurs.

Figs. 18 and 19 compare the performance of CLA-EC with
that of SGA [11], cGA [13], and PBIL [2]. The SGA uses

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

64 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Fig. 17. Effects of population size on the evolution of five-cell CLA-EC for
function F4.

Fig. 18. Comparison of CLA-EC with some other algorithms for F2.

Fig. 19. Comparison of CLA-EC with some other algorithms for F4.

two-tournament selection without replacement and uniform
crossover with exchange probability of 0.5. Mutation is not
used, and crossover is applied with probability one. The PBIL
uses a learning rate of 0.01, and the number of selection
genomes is half of the population size. The parameters of cGA
are the same as the parameters used in [13]. Convergence is
considered as the termination condition for all algorithms. For
these experiments, Ns(i) is set to 2, and learning parameters of
all LAs are set to 0.01. The results show the superiority of the
CLA-based algorithm over the SGA, PBIL, and cGA.

VI. CONCLUSION

In this paper, the CLA with multiple LAs in each cell has
been introduced, and its steady-state behavior has been studied.

It is shown that, for commutative rules, this CLA converges to a
stable configuration for which the average reward for the CLA
is maximum. Then, two applications of the proposed model to
channel assignment in cellular mobile networks and function
optimization are given. For both applications, computer simula-
tions show that the CLA-based solutions produce better results.
The numerical results also confirm the theory. New research
on CLA can be pursued on several directions: 1) searching for
new applications; at present time, applications of CLA to the
sensor networks and ad hoc networks are being undertaken;
2) to study the behavior of CLA for different local rules; and
3) development of extended versions of CLA such as irregular,
dynamic, and associative CLAs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions which improved this
paper.

REFERENCES

[1] N. H. Packard and S. Wolfram, “Two-dimensional cellular automata,”
J. Stat. Phys., vol. 38, no. 5/6, pp. 901–946, Mar. 1985.

[2] E. Fredkin, “Digital machine: A informational process based on reversible
cellular automata,” Physica D, vol. 45, no. 1–3, pp. 254–270, Sep. 1990.

[3] J. Kari, “Reversability of 2D cellular automata is undecidable,” Physica
D, vol. 45, no. 1–3, pp. 379–385, Sep. 1990.

[4] G. I. Papadimitriou, M. S. Obaidat, and A. S. Pomportsis, “On the use of
learning automata in the control of broadcast networks: A methodology,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 6, pp. 781–790,
Dec. 2002.

[5] S. Misra, K. I. Abraham, M. S. Obaidat, and P. V. Krishna, “LAID:
A learning automata-based scheme for intrusion detection in wireless
sensor networks,” Security Commun. Netw., vol. 2, no. 2, pp. 105–115,
Mar./Apr. 2009.

[6] E. Fayyoumi and B. J. Oommen, “Achieving micro aggregation for se-
cure statistical databases using fixed structure partitioning based learning
automata,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 5,
pp. 1192–1205, Oct. 2009.

[7] H. Beigy and M. R. Meybodi, “Utilizing distributed learning automata
to solve stochastic shortest path problems,” Int. J. Uncertain., Fuzziness
Knowl.-Based Syst., vol. 14, no. 5, pp. 591–615, Oct. 2006.

[8] S. Misra and B. J. Oommen, “Using pursuit automata for estimating stable
shortest paths in stochastic network environments,” Int. J. Commun. Syst.,
vol. 22, no. 4, pp. 441–468, Apr. 2009.

[9] M. R. Meybodi, H. Beigy, and M. Taherkhani, “Cellular learning automata
and its applications,” Sharif J. Sci. Technol., vol. 19, no. 25, pp. 54–77,
2003.

[10] H. Beigy and M. R. Meybodi, “Asynchronous cellular learning automata,”
Automatica, vol. 44, no. 5, pp. 1350–1357, May 2008.

[11] M. R. Meybodi and H. Beigy, “Open synchronous cellular learn-
ing automata,” J. Adv. Complex Syst., vol. 10, no. 4, pp. 527–556,
Sep. 2007.

[12] M. R. Meybodi and H. Beigy, “A mathematical framework for cellular
learning automata,” J. Adv. Complex Syst., vol. 7, no. 3, pp. 295–320, Sep.
2004.

[13] M. R. Meybodi and M. R. Kharazmi, “Application of cellular learning
automata to image processing,” J. Amirkabir, vol. 14, no. 56A, pp. 1101–
1126, 2004.

[14] M. R. Meybodi and M. Taherkhani, “Application of cellular learning
automata in modeling of rumor diffusion,” in Proc. 9th Conf. Elect. Eng.,
Power Water Inst. Technol., Tehran, Iran, May 2001, pp. 102–110.

[15] M. R. Meybodi and M. R. Khojasteh, “Application of cellular learning
automata in modelling of commerce networks,” in Proc. 6th Annu. Int.
CSICC, Isfehan, Iran, Feb. 2001, pp. 284–295.

[16] H. Beigy and M. R. Meybodi, “A self-organizing channel assignment
algorithm: A cellular learning automata approach,” in Springer-Verlag
Lecture Notes in Computer Science, vol. 2690. New York: Springer-
Verlag, 2003, pp. 119–126.

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

BEIGY AND MEYBODI: CLA WITH MULTIPLE LEARNING AUTOMATA IN EACH CELL AND ITS APPLICATIONS 65

[17] M. Esnaashari and M. R. Meybodi, “A cellular learning automata based
clustering algorithm for wireless sensor networks,” Sensor Lett., vol. 6,
no. 5, pp. 723–735, Oct. 2008.

[18] K. S. Narendra and A. M. Annaswarmy, Stable Adaptive Systems.
New York: Prentice-Hall, 1989.

[19] I. Katzela and M. Naghshineh, “Channel assignment schemes for cellu-
lar mobile telecommunication systems: A comprehensive survey,” IEEE
Pers. Commun., vol. 3, no. 3, pp. 10–31, Jun. 1996.

[20] W. K. Hale, “Frequency assignment: Theory and applications,” Proc.
IEEE, vol. 68, no. 12, pp. 1497–1514, Dec. 1980.

[21] Y. Furuya and Y. Akaiwa, “Channel segregation—A distributed channel
allocation scheme for mobile communication systems,” IEICE Trans.,
vol. 74, no. 6, pp. 1531–1537, 1991.

[22] S. Singh and D. P. Bertsekas, “Reinforcement learning for dynamic chan-
nel allocation in cellular telephone systems,” in Proc. Conf. Adv. Neural
Inf. Process. Syst., 1997, pp. 974–980.

[23] J. Li, N. B. Shroff, and E. K. P. Chong, “Channel carrying: A novel
handoff scheme for mobile cellular networks,” IEEE/ACM Trans. Netw.,
vol. 7, no. 1, pp. 38–50, Feb. 1999.

[24] R. Rastegar, M. R. Meybodi, and A. Hariri, “A new fine-grained evolution-
ary algorithm based on cellular learning automata,” Int. J. Hybrid Intell.
Syst., vol. 3, no. 2, pp. 83–98, Jan. 2006.

[25] J. C. M. Janssen and K. Kilakos, “An optimal solution to the Philadelphia
channel assignment problem,” IEEE Trans. Veh. Technol., vol. 48, no. 3,
pp. 1012–1014, May 1999.

[26] H. Beigy and M. R. Meybodi, “Cellular learning automata based dynamic
channel assignment algorithms,” Int. J. Comput. Intell. Appl., vol. 8, no. 3,
pp. 287–314, Sep. 2009.

[27] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1987.

[28] S. Baluja and R. Caruana, “Removing the genetics from the standard
genetic algorithm,” in Proc. ICML, Palo Alto, CA, 1995, pp. 38–46.

[29] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic
algorithm,” IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 287–297,
Nov. 1999.

[30] K. A. D. Jong, “The analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, Univ. Michigan Press, Ann Arbor, MI, 1975.

Hamid Beigy received the B.Sc. and M.Sc. degrees
in computer engineering from Shiraz University,
Shiraz, Iran, in 1992 and 1995, respectively, and
the Ph.D. degree in computer engineering from
Amirkabir University of Technology, Tehran, Iran,
in 2004.

Since 2004, he has been an Assistant Profes-
sor with the Department of Computer Engineering,
Sharif University of Technology, Tehran. His cur-
rent research interests include machine learning and
statistical pattern recognition, automata learning,

computational intelligence, parallel algorithms, bioinformatics, and routing and
load balancing algorithms for networks.

Mohammad Reza Meybodi received the B.S. and
M.S. degrees in economics from Shahid Beheshti
University, Tehran, Iran, in 1973 and 1977, respec-
tively, and the M.S. and Ph.D. degrees in computer
science from Oklahoma University, Norman, in 1980
and 1983, respectively.

He is currently a Full Professor with the De-
partment of Computer Engineering and Information
Technology, Amirkabir University of Technology,
Tehran. Prior to his current position, he was an
Assistant Professor with Western Michigan Univer-

sity, Kalamazoo, from 1983 to 1985 and an Associate Professor with Ohio
University, Athens, from 1985 to 1991. His research interests include channel
management in cellular networks, learning systems, parallel algorithms, soft
computing, and software development.

Authorized licensed use limited to: Amirkabir Univ of Tech Trial user. Downloaded on December 9, 2009 at 08:06 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

