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Abstract

We propose using (bilinear) sum-of-squares programming for obtaining inner bounds of regions-

of-attraction for dynamical systems with polynomial vector fields. We search for polynomial as well as

composite Lyapunov functions, comprised of pointwise maximums of polynomial functions. Results for

several examples from the literature are presented using the proposed methods and the PENBMI solver.

I. INTRODUCTION

Finding the stability region or region-of-attraction (ROA) of a nonlinear system is a topic

of significant importance and has been studied extensively,for example in [1-12]. It also has

practical applications, such as determining the operatingenvelope of aircraft and power systems.

Most computational methods aim to compute an inner bound on the region-of-attraction,

namely a set that contains the equilibium point, and is contained in the region-of-attraction.

The methods above can roughly be split into Lyapunov and non-Lyapunov methods. Lyapunov

methods (the focus of this paper) are based on local stability theorems and search for functions

satisfying conditions which quantitatively prove local stability. Nonlinear programming is used in

[1] to optimize (by choice of positive definite matrix) the volume of an ellipsoid contained in the

region-of-attraction. Rational Lyapunov functions that approach∞ on the boundary of the region-

of-attraction are constructed iteratively in [2], motivated from Zubov’s work. Computational con-

siderations limit the degree of the rational function, and inner estimates to the ROA are obtained.
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Easy to compute estimates are considered in [3], which restricts the Lyapunov function search to

low-dimensional manifold of quadratic Lyapunov functions, obtaining analytical simplifications.

Following [1], but employing semidefinite programming techniques, [4] aims to maximize the

volume of an ellipsoid whose containment in the region-of-attraction can be ascertained with

sum-of-squares (SOS) decompositions. Attention is restricted to odd, polynomial vector fields,

and SOS optimization is combined with general nonlinear programming. A sequence of functions,

called nestedLyapunov functions, are introduced in [5] to derive stability region and rate-

of-convergence estimates. Both [6] and [7] solve a sequenceof linear semidefinite programs,

iteratively searching over Lyapunov function candidates and sum-of-squares multipliers. The

“coordinatewise” ascent method is generally effective, though no convergence result holds. By

contrast, the formulation here is more direct, but yields a single bilinear (nonconvex) SOS

program. Closely related to Lyapunov methods are viabilitymethods, which effectively integrate

an invariant set backwards in time, obtaining increasing estimates for the region-of-attraction.

Both [8] and [9] use discretization (in time) to flow invariant sets backwards along the flow

of the vector field, obtaining larger and larger estimates for the region-of-attraction. In [8], the

invariant sets are restricted to be sublevel sets of polynomials, and the discretized backwards flow

is approximated with semidefinite programming. The approach of [9] also requires discretization

in space and suffers from exponential growth in state dimension. Generally, the method is exact,

but computation may require exponential growth in state dimension. Depending on the user’s

point of view, problems of modest (between 4 and 8) state dimension are intractable. Non-

Lyapunov methods, [10] and [11] focus on topological properties of regions of attraction. A

survey of results, as well as an extensive set of examples andnew ideas, is presented in [12].

In this paper, we present a method of using sum-of-squares (SOS) programming to search

for polynomial Lyapunov functions that enlarge an inner estimate of the region-of-attraction of

nonlinear systems with polynomial vector fields. SOS programming, coupled with polynomial

Lyapunov functions has roots that can be traced back at leastto Bose and Li [13] and Brockett,

[14] and the power transform of Barkin et.al [15], which was used in [16] to find non-quadratic

Lyapunov functions for uncertain linear systems. Recent theoretical work, [17], [7] and [18],

continues to further the role of this approach. An impediment to using high degree Lyapunov

functions is the extremely rapid increase in the number of optimization decision variables as the

state dimension and the degree of the Lyapunov function (andthe vector field) increase. Here,



we propose using pointwise maximums of polynomial functions to obtain rich functional forms

while keeping the number of optimization decision variables relatively low. Pointwise maximum

and other composite Lyapunov functions have been used in many instances, [19], [20], [21],

including stability and performance analysis of constrained systems and robustness analysis of

uncertain systems, where affine and polynomial parameter-dependent Lyapunov functions are also

used, [22], [23]. The notation is generally standard, withRn denoting the set of polynomials

with real coefficients inn variables andΣn ⊂ Rn denoting the subset of SOS polynomials.

II. ESTIMATING A REGION OF ATTRACTION

Consider an autonomous dynamical system of the form

ẋ(t) = f(x(t)) (1)

wherex(t) ∈ R
n andf is ann-vector of elements ofRn with f(0) = 0. The following lemma

on invariant subsets of the region-of-attraction is a modification of ideas from [24, pg. 167] and

[25, pg. 122]:

Lemma 1: If there exist continuously differentiable functions{Vi}
q

i=1
: R

n → R such that

V (x) := max
1≤i≤q

Vi(x) is positive definite, (2)

Ω := {x ∈ R
n | V (x) ≤ 1} is bounded, (3)

Li := {x ∈ R
n | max

1≤j≤q
Vj(x) ≤ Vi(x) ≤ 1}, i = 1, . . . , q (4)

Li \ {0} ⊂ {x ∈ R
n | ∂Vi

∂x
f(x) < 0}, i = 1, . . . , q, (5)

then for all x(0) ∈ Ω, the solution of (1) exists, satisfiesx(t) ∈ Ω, and limt→∞ x(t) = 0. As

such,Ω is invariant, and a subset of the region-of-attraction for (1).

Proof: The proof is written forq = 2. The extension toq = 1 or q > 2 is straightforward.

SinceL1 ∪ L2 = Ω, condition (5) insures that ifx(0) ∈ Ω, V (x(t)) ≤ V (x(0)) ≤ 1 while the

solution exists. Solutions starting inΩ remain inΩ while the solution exists. SinceΩ is compact,

the system (1) has an unique solution defined for allt ≥ 0 wheneverx(0) ∈ Ω.

Take ǫ > 0. Define Sǫ := {x ∈ R
n | ǫ

2
≤ V (x) ≤ 1}, so Sǫ ⊆ (L1 ∪ L2) \ {0}. Note

that for eachi, (Sǫ ∩ Li) ⊆ Li \ {0} ⊂ {x ∈ R
n | ∂Vi

∂x
f(x) < 0}, so on the compact set

Sǫ ∩ Li, ∃ ri,ǫ, such that∂Vi

∂x
f(x) ≤ −ri,ǫ < 0. Consequently, ifx(t) ∈ Sǫ ∩ L1 on [tA, tB],



then V (x(tB)) ≤ −r1,ǫ(tB − tA) + V (x(tA)). Similarly, if x(t) ∈ Sǫ ∩ L2 on [tA, tB], then

V (x(tB)) ≤ −r2,ǫ(tB − tA) + V (x(tA)). Therefore, ifx(t) ∈ Sǫ ∩ (L1 ∪ L2) on [tA, tB], then

V (x(tB)) ≤ −rǫ(tB − tA) + V (x(tA)), whererǫ = min(r1,ǫ, r2,ǫ). Sincerǫ > 0, this implies that

∃ t∗ such thatV (x(t)) < ǫ for all t > t∗, i.e. x(t) ∈ Tǫ := {x ∈ R
n | V (x) < ǫ} for all t > t∗.

This shows that ifx(0) ∈ Ω, V (x(t)) → 0 as t → ∞.

Finally, let ǫ > 0. DefineΩǫ := {x ∈ R
n | ‖x‖ ≥ ǫ, V (x) ≤ 1}. Ωǫ is compact, with0 /∈ Ωǫ.

SinceV is continuous and positive definite,∃ γ such thatV (x) ≥ γ > 0 on Ωǫ. We have already

established thatV (x(t)) → 0 as t → ∞, so ∃ t̂ such that for allt > t̂, V (x(t)) < γ and hence

x(t) /∈ Ωǫ, which means‖x(t)‖ < ǫ. So x(t) → 0 as t → ∞.

Remarks: Standard modifications to the hypothesis of Lemma 1 can yieldglobal stability

conditions as well. However, neither formulation can yieldexact results for systems whose

region-of-attraction is unbounded, but not all ofR
n (since in Lemma 1,Ω must be is bounded).

See section III-C for further details. The constraints in equations (2)-(5) are not convex constraints

on V , as illustrated by a 1-dimensional example, [26]. Takef(x) = −x, q = 1 and V a
1 (x) =

16x2−19.95x3+6.4x4 andV b
1 (x) = 0.1x2. ThenV a

1 andV b
1 satisfy (2)-(5), but0.58V a

1 +0.42V b
1

does not.

In order to enlargeΩ (by choice ofV ), we define a variable sized regionPβ := {x ∈

R
n | p(x) ≤ β}, and maximizeβ while imposing the constraintPβ ⊆ Ω. Here,p(x) is a fixed,

positive definite polynomial, chosen to reflect the relativeimportance of the states. Applying

Lemma 1, the problem is posed as an optimization:

max
β∈R,Vi∈Rn

β s.t. Vi(0) = 0

V (x) := max
1≤i≤q

Vi(x) is positive definite, (6)

Ω := {x ∈ R
n | V (x) ≤ 1} is bounded, (7)

Pβ ⊆ Ω (8)

{x ∈ R
n | max

1≤j≤q
Vj(x) ≤ Vi(x) ≤ 1} \ {0} ⊂ {x ∈ R

n | ∂Vi

∂x
f(x) < 0} (9)

where (9) holds fori = 1, . . . , q. Let l1(x) be a fixed, positive definite polynomial. For eachVi,

if we requireVi − l1 ∈ Σn for i = 1, . . . , q, then both (6) and (7) are satisfied. Clearly, (8) holds



if and only if

{x ∈ R
n | p(x) ≤ β} ⊆

q
⋂

i=1

{x ∈ R
n | Vi(x) ≤ 1}, (10)

Introducing another fixed, positive definite polynomial,l2(x), we can apply Lemmas 2 and 3

(see appendix) to obtain sufficient conditions which ensureconstraints (9) and (10) hold. Written

as an optimization, the problem is

max β over β ∈ R, Vi ∈ Rn, Vi(0) = 0, s1i, s2i, s3i, s0ij ∈ Σn, i = 1, . . . q

such that

Vi − l1 ∈ Σn, (11)

−
(

(β − p)s1i + (Vi − 1)
)

∈ Σn, (12)

−
[

(1 − Vi)s2i + ∂Vi

∂x
fs3i + l2

]

−

q
∑

j=1

j 6=i

s0ij(Vi − Vj) ∈ Σn. (13)

All constraints are sum-of-square constraints, however (even for q = 1) products of decision

variables are present. Therefore, the optimization cannotbe translated into a linear semidefinite

program, but is converted to a bilinear semidefinite program. Two of the conditions require

positivity (beyond nonnegativity), and the fixed positive-definite polynomials,l1 and l2 are

introduced as offsets to enforce this. Next we present results from several small problems. We

have chosen to rely on the PENBMI solver [27], a local bilinear matrix inequality solver from

PENOPT to attack our problems. This uses a penalty method. Alternate approaches to BMIs,

such as linearization and homotopy, [28] and interior pointmethods, [29, Chap 7], may yield

improved results and/or superior computational efficiency. Resolving these questions is left for

further research.

III. EXAMPLES

All of the systems considered are locally exponentially stable. The notationnV denotes the

degree ofV , specifically eachVi includes all monomials of degree 2 up throughnV . In all

examples,p is quadratic, and the degree ofs1i is chosen so that the degree of the polynomial

in equation (12) is equal tonV . The integernA denotes degree of the polynomial in (13). Once

nV is chosen, and the vector fieldf is fixed, nA limits the degrees of the multiplierss2i, s3i

and s0ij through simple degree counting. In each case, the positive definite polynomialsl1 and



l2 are of the formlk(x) =
∑n

i=1
ek,ix

2
i . For the purposes of computation, theek,i are treated as

additional decision variables, and constrained to satisfyek,i ≥ 10−7.

A. Example 1 - Van der Pol equations

The system isẋ1 = −x2, ẋ2 = x1 + (x2
1 − 1)x2. It has an unstable limit cycle and a stable

equilibrium point at the origin. Finding its region-of-attraction has been studied extensively, for

example, in [1], [12], [11]. The region-of-attraction for this system is the region enclosed by its

limit cycle, which is easily visualized from the numerical solution of the ODE. However, our

goal is to use the bilinear SOS formulation. For this example, p is chosen to bexT Rx, for two

different Ri ∈ R
2×2,

R1 :=





0.38 −0.14

−0.14 0.28



 , and R2 :=





0.28 0.14

0.14 0.38



 ,

The results using shape factor defined byR1 using the pointwise maximum of two fixed

degree polynomials are listed in Table I. Fig. 1 shows the limit cycle and the level sets of

the certifying Lyapunov functions1. The level set of pointwise maximum of two 6th degree

polynomial functions includes nearly the entire actual region-of-attraction. The dashed line is

the level set ofp (for nV = 6), which clearly shows that ourp has been preselected to “align”

closely with the actual region-of-attraction. Of course, this would be impossible to do in general,

and we discuss the implications of this later in this section. Our results compare favorably with

[11] as well as the degree 6 solution from [7], and the final (40th) iterate from degree 6 solutions

of [8], all of which are shown in Figure 2. Clearly, the solution of [8] is a very high quality

estimate of the true ROA. Parametrizing the boundaries using polar coordinates reveals that as

a function of angle, the radius of [8] exceeds ournV = 6 radius on 52.6% of[0 2π]; is 0.22%

larger, on average, than ournV = 6 radius; exceeds ournV = 6 radius by as much as 1.4% in

some directions; is smaller than ournV = 6 radius by as much as 0.8% in other directions. We

conclude that the result in [8] is very similar, though slightly superior to our result.

It is interesting to observe how theVi functions interact in, for example, the 6th degree case.

Figure 3 shows the level sets{x | Vi(x) ≤ 1}. For V1, there are 3 connected components, one

1The certifying Lyapunov functions and SOS multipliers for all examples in this paper are available at

http://jagger.me.berkeley.edu/˜pack/certificates



TABLE I

POINTWISE MAX FOR VAN DER POL

degree of total no. of

q V s1i s2i s3i s0ij β decision variables

2 2 0 2 0 2 0.75 38

2 4 2 2 0 2 0.93 120

2 6 4 2 0 2 1.03 338

3 2 0 2 0 2 0.75 73

3 2 0 4 2 4 0.82 265
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Fig. 1. Provable ROA using pointwise maximum of two polynomial functions, with shape factorxT R1x

“large” component centered at the origin (whose boundary isessentially the limit cycle), and

2 “islands” in the 2nd and 4th quadrants. ForV2, the level set is one connected component

centered at the origin, visually the same as the large component of V1. Label the two islands as

I1 andI2, and the intersection of the two (nearly identical) centered components asΩ.

InsideI1 andI2, V̇1 6< 0, but V2 > 1 > V1, so I1 andI2 are excluded in the setΩ. Moreover,

on Ω, V̇1 < 0 whereV1 ≥ V2, andV̇2 < 0 whereV2 ≥ V1, proving thatΩ is a region-of-attraction.

Since{x | V2(x) ≤ 1} ≈ Ω, it is tempting to assume thatV2 alone can prove the stability claim.

However, many points havėV2 ≥ 0 (the shaded region inΩ).
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Fig. 2. Provable ROA, from [11], [7] and [8].

In this example, using pointwise maximum of three polynomials does not offer additional

benefits (row 1 and 4 of Table I). Better results are obtained (row 5) by increasing the degree

of the {si}, but this increases the number of decision variables, so thecomputational benefit is

effectively erased.

Finally, optimizing with the shape factor defined byR2 yields almost identical results (in

terms ofΩ). Fig. 4 illustrates the analogous level sets ofV , and also shows a level set for this

p. Clearly, the level sets for this shape factor are not aligned with the actual region-of-attraction,

nevertheless, the optimization performs quite well.

B. 6 examples from [4]

Reference [4] aims tomaximize the volumeof an innerellipsoidal estimate of the region of

attraction, presenting results from 6 examples. The volumereported in [4] is normalized: in

R
2 it is 2-dimensional area divided byπ, while in R

3 it is 3-dimensional volume divided by
4π
3

. As an exercise, we solve the same problems here. The resultsare summarized in Table II.

Maximizing volume is not directly compatible with our scalar objective involving the function

p (whose level sets may or may not be ellipsoidal). We began with a simple approach: using
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Fig. 3. VDP: Level sets of two 6th degree polynomials atV1, V2 = 1

a spherical shape factor,p(x) := xT x, solve the optimization problem and then compute the

volume of the level set{x : V (x) ≤ 1} (easily computed for a quadraticV , and estimated with

Monte Carlo integration for high degree and pointwise-maxV ’s). Problems S1, S2, S3 and S4

are successfully addressed using this approach. Note the improvement for S2 when the degree

of the multipliers is increased (vianA) even thoughnV is held constant. Problem S5 required

an alteration, referred to asbootstrap, to obtain large volumes. In this calculation, the initial

optimization was as above, with a sphericalp, using quadratic Lyapunov function candidates.

Subsequent optimizations, with richer Lyapunov function candidates used, forp, the obtained

quadratic Lyapunov function (as opposed toxT x). Problem S6 is more challenging and the

methods we present here do not obtain volumes as large as those reported in [4]. The S6 table

entry involving quartic functions is empty, as PENBMI exhibited unreliable behavior on this

problem, exposing some genuine deficiences in our overall approach.

C. Unbounded Region-of-Attraction

Considerẋ1 = x2, ẋ2 = −(1 − x2
1)x1 − x2 from [30]. The region of attraction to the stable

equilibrium atx = 0 is unbounded, but not all ofR2. Exact methods, such as those in [9], may

obtain the correct answer in this problem. By contrast, the formulation in equations (11)-(13)
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Fig. 4. Provable ROA using pointwise max of two polynomial functions, with shape factorxT R2x

TABLE II

CERTIFIED NORMALIZED VOLUME ON EXAMPLESS1-S6FROM [4]. THE VECTOR FIELDS FOREXAMPLES S3AND S4HAVE

DEGREE EQUAL TO5, WHILE ALL OTHERS HAVE DEGREE EQUAL TO3.

from [4] (nV , nA) q Vol from [4] (nV , nA) q Vol from [4] (nV , nA) q Vol

S1(10.2) (2,4) 1 7.5 S2(27.1) (2,4) 1 24.9 S3(9.51) (2,6) 1 1.68

(2,4) 2 13.7 (2,4) 2 24.9 (2,6) 2 global

(2,6) 2 43.0

S4(0.85) (2,6) 1 0.83 S5(23.5) (2,4) 1 21.3 S6(10.9) (2,4) 1 8.5

(2,6) 2 0.92 (2,4) 2 21.3 (2,4) 2 9.4

(4,8) 1 1.12 (4,6) 1 32.9 (4,6) 1 -

(4,8) 2 1.16 (4,6) 2 -

cannot, sinceΩ is necessarily compact. Using a simplep(x) := x2
1 + x2

2 shape factor, we obtain

nearly identical results for quadratic and pointwise-max quadratic Lyapunov functions, yielding

β such thatPβ nearly touches the stability boundary, and the bounded level set{x : V (x) ≤ 1} is

ellipsoidal, roughly aligned with the true region-of-attraction. Using the bootstrap, withnV = 6

yields significant improvement. The two level sets are shownin the left panel of figure 5, along



with some trajectories of the system.

D. An example from reference [2]

Another 2-state example with polynomial vector field comes from example 4 in [2]. The

dynamics areẋ1 = −0.42x1 − 1.05x2 − 2.3x2
1 − 0.5x1x2 − x3

1; ẋ2 = 1.98x1 + x1x2. The inner

estimate from [2] along with our estimate using quadratic, quartic, pointwise-max quartic, and

degree 6 functions are shown in the right panel of Figure 5. Pointwise-max (q = 2) degree 6

solutions yielded no appreciable improvement over theq = 1 case, and are not shown.
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Fig. 5. Trajectories and level setsV ≤ 1. LEFT panel: example from Section III-C; RIGHT panel: example from Section III-D

IV. BENCHMARK STUDY

There are several drawbacks to our approach, most notably searching over the non-convex

decision variable space. Given this deficiency, it is usefulto investigate how equations (11)-

(13), coupled with the PENBMI solver perform on an “easy” nonlinear problem, with respect

to “arbitrary” data and increasing problem size. Letẋ = −Ix +(xT Bx)x wherex(t) ∈ R
n, and

B ∈ R
n×n, B ≻ 0. For this system, inspired by Example 5 of [1], the set{x ∈ R

n | xT Bx < 1}

is the exact region-of-attraction for thex = 0 equilibrium point (useV (x) := xT Bx to prove

this). Let Pβ := {x ∈ R
n | xTRx ≤ β}, R ∈ R

n×n, R ≻ 0. The supremum value forβ such

that Pβ ⊆ {x ∈ R
n | xT Bx < 1} is β = [λmax(R

− 1

2 BR− 1

2 )]−1. Equations (11)-(13)can yield

this answer, specifically, takeq = 1 and for anyγ > 1, chooseτ such that1 < τ < γ. Then

for large enoughα (depending on fixed choice of quadraticl2) the choicesV (x) := γxT Bx,



s2 := 2ατxT Bx and s3 := α satisfy (13), prove that
{

x | xT Bx < 1
}

is in the region-of-

attraction. Hence, this class of problems provides a test for any specified BMI solver to actually

discover the known-to-exist solution. For eachn, 100 trials are performed. Each trial consists of

a random choice of positive definiteB andR, each with eigenvaluesexp(2ri) where eachri is

picked from a normal distribution with zero mean and unit variance, and random, orthonormal

eigenvectors. For each trial, we run the PENBMI optimizer 3 times (initial point randomly chosen

each run). Table III shows the results of the test.
TABLE III

COMPUTATION STATISTICS FOR THE BENCHMARK EXAMPLE

n variables successes worst (in 300) over 100 time (sec)

2 13 298 0.99995 1.00000 0.70

3 25 296 0.90955 0.99984 1.12

4 48 297 0.07687 0.99999 2.14

6 157 297 0.99997 0.99998 11.2

8 420 300 0.99989 0.99992 99.7

A run is classifiedsuccessfulif the solver returns the message “No problems detected”, and

classifiedfailure otherwise. Except for the case ofn = 6, there are no trials that fail for all 3 runs

(for n = 6, one trial did fail in all 3 runs, and note that this single instance, 3-trial failure is not

taken into account in the table entries described below). Among the successful runs, the quality

of the answer is assessed by the nearness ofβ×λmax to 1. The worst case (smallest) value among

the (296-300) successful runs is given. The next column shows the worst caseβ × λmax over

100 trials, exploiting the 3 repeated attempts and the randomized initial starting point chosen by

PENBMI. The entries are≈ 1, which indicates that repeated runs of the same problem eventually

lead to the optimal solution for this example. For this limited benchmark example, although our

problem formulation is bilinear in the decision polynomials and the bilinear solver, PENBMI,

is a local solver, the results obtained are encouraging.

V. CONCLUSIONS

In this paper, we presented techniques using sum-of-squares programming for finding provable

regions-of-attraction for nonlinear systems with polynomial vector fields. Several small examples

are presented. For systems with cubic vector fields, analyzing local stability using Lyapunov



functions which are the pointwise-max of quadratic and quartic functions appears to be a useful,

and modestly tractable extension to simply using polynomial Lyapunov functions.
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VII. A PPENDIX

A monomialmα in n variables is a function defined asmα(x) = xα := xα1

1 xα2

2 · · ·xαn
n for

α ∈ Z
n
+. The degree of a monomial is defined,deg mα :=

∑n

i=1
αi. A polynomial f in n

variables is a finite linear combination of monomials, withcα ∈ R:

f :=
∑

α

cαmα =
∑

α

cαxα.

DefineRn to be the set of all polynomials inn variables. The degree off is defined asdeg f :=

maxα deg mα (provided the associatedcα is non-zero). Additionally defineΣn to be the set of

sum-of-squares (SOS) polynomials inn variables.

Σn :=

{

p ∈ Rn

∣

∣

∣

∣

∣

p =
t

∑

i=1

f 2
i , fi ∈ Rn, i = 1, . . . , t

}

.

Obviously if p ∈ Σn, thenp(x) ≥ 0 ∀x ∈ R
n. A polynomial,p ∈ Σn iff ∃ 0 � Q ∈ R

r×r such

that p(x) = zT (x)Qz(x), with z(x) a vector of suitable monomials. The set ofQ that satisfies

p(x) = zT (x)Qz(x) is an affine subspace, so that semidefinite programming playsthe key role

in deciding if a given polynomial is SOS. The lemmas below areelementary extensions of the



S-procedure, [32], and very limited special cases of the Positivstellensatz, [33, Theorem 4.2.2].

In both cases, the SOS polynomials{sk}
m
i=1 are often called the “SOS multipliers.”

Lemma 2:Given p1, p2 ∈ Rn, and positive definiteh ∈ Rn, with h(0) = 0. If s1, s2 ∈ Σn

satisfyp1s1 + p2s2 − h ∈ Σ then{x : p1(x) ≤ 0} \{0} ⊂ {x : p2(x) > 0}.

Lemma 3:Given {pi}
m
i=0 ∈ Rn. If there exist{sk}

m
i=1 ∈ Σn such thatp0 −

∑m

i=1
sipi ∈ Σn,

then
⋂m

i=1
{x ∈ R

n | pi(x) ≥ 0} ⊆ {x ∈ R
n | p0(x) ≥ 0}.

SOSTOOLS, [34], [35], GloptiPoly, [36], and YALMIP, [31] automate the translation from

SOS programs to semidefinite programs, converting to solver-specific, e.g., SeDuMi [37] or

SDPT3 [38], syntax. YALMIP also handles bilinear decision polynomials, using PENBMI [27].

Despite these software tools, and even ignoring the nonconvexity of our formulation, there

are significant dimensionality problems as well: [39, Table6.1] illustrates the unpleasant growth

in the number of decision variables withn and the polynomial degree.
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[38] K. Toh, M. Todd, and R. Tütüncü, “SDPT3–a Matlab software package for semidefinite programming,”Optimization

Methods and Software, vol. 11, pp. 545–581, 1999.

[39] P. Parrilo, “Semidefinite programming relaxations forsemialgebraic problems,”Mathematical Programming Series B,

vol. 96, no. 2, pp. 293–320, 2003.


