Stability Region Analysis using polynomial and
composite polynomial Lyapunov functions and Sum
of Squares Programming

Weehong Tan and Andrew Packard

Abstract

We propose using (bilinear) sum-of-squares programminghbtaining inner bounds of regions-
of-attraction for dynamical systems with polynomial vedields. We search for polynomial as well as
composite Lyapunov functions, comprised of pointwise nmaxins of polynomial functions. Results for

several examples from the literature are presented usagribposed methods and the PENBMI solver.

I. INTRODUCTION

Finding the stability region or region-of-attraction (RPAf a nonlinear system is a topic
of significant importance and has been studied extensif@yexample in [1-12]. It also has
practical applications, such as determining the operamglope of aircraft and power systems.

Most computational methods aim to compute an inner boundhenrégion-of-attraction,
namely a set that contains the equilibium point, and is doathin the region-of-attraction.
The methods above can roughly be split into Lyapunov andlyapunov methods. Lyapunov
methods (the focus of this paper) are based on local stathiorems and search for functions
satisfying conditions which quantitatively prove localsility. Nonlinear programming is used in
[1] to optimize (by choice of positive definite matrix) thelume of an ellipsoid contained in the
region-of-attraction. Rational Lyapunov functions thppeach>o on the boundary of the region-
of-attraction are constructed iteratively in [2], motiedtfrom Zubov’s work. Computational con-

siderations limit the degree of the rational function, amaer estimates to the ROA are obtained.
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Easy to compute estimates are considered in [3], whichicesthe Lyapunov function search to
low-dimensional manifold of quadratic Lyapunov functipodtaining analytical simplifications.
Following [1], but employing semidefinite programming tacfues, [4] aims to maximize the
volume of an ellipsoid whose containment in the regionttrfaation can be ascertained with
sum-of-squares (SOS) decompositions. Attention is sttito odd, polynomial vector fields,
and SOS optimization is combined with general nonlineagmming. A sequence of functions,
called nestedLyapunov functions, are introduced in [5] to derive stdpilregion and rate-
of-convergence estimates. Both [6] and [7] solve a sequendmear semidefinite programs,
iteratively searching over Lyapunov function candidatesl aum-of-squares multipliers. The
“coordinatewise” ascent method is generally effectiveutih no convergence result holds. By
contrast, the formulation here is more direct, but yieldsirale bilinear (nonconvex) SOS
program. Closely related to Lyapunov methods are viabifigthods, which effectively integrate
an invariant set backwards in time, obtaining increasirtgreges for the region-of-attraction.
Both [8] and [9] use discretization (in time) to flow invartagets backwards along the flow
of the vector field, obtaining larger and larger estimatestlie region-of-attraction. In [8], the
invariant sets are restricted to be sublevel sets of polyalsirand the discretized backwards flow
is approximated with semidefinite programming. The appnaEd9] also requires discretization
in space and suffers from exponential growth in state dimensenerally, the method is exact,
but computation may require exponential growth in stateetision. Depending on the user’s
point of view, problems of modest (between 4 and 8) state d#io@ are intractable. Non-
Lyapunov methods, [10] and [11] focus on topological préipsrof regions of attraction. A
survey of results, as well as an extensive set of exampleawddeas, is presented in [12].
In this paper, we present a method of using sum-of-squa@S)programming to search
for polynomial Lyapunov functions that enlarge an inneineate of the region-of-attraction of
nonlinear systems with polynomial vector fields. SOS progréng, coupled with polynomial
Lyapunov functions has roots that can be traced back at teddse and Li [13] and Brockett,
[14] and the power transform of Barkin et.al [15], which waed in [16] to find non-quadratic
Lyapunov functions for uncertain linear systems. Recenbtétical work, [17], [7] and [18],
continues to further the role of this approach. An impeditrtenusing high degree Lyapunov
functions is the extremely rapid increase in the number ¢ifrapation decision variables as the

state dimension and the degree of the Lyapunov function {a@drector field) increase. Here,



we propose using pointwise maximums of polynomial functiem obtain rich functional forms
while keeping the number of optimization decision varialielatively low. Pointwise maximum
and other composite Lyapunov functions have been used iry nmstances, [19], [20], [21],
including stability and performance analysis of consedirsystems and robustness analysis of
uncertain systems, where affine and polynomial paramefeesttient Lyapunov functions are also
used, [22], [23]. The notation is generally standard, wWih denoting the set of polynomials

with real coefficients im variables and:,, C R,, denoting the subset of SOS polynomials.

[1. ESTIMATING A REGION OFATTRACTION

Consider an autonomous dynamical system of the form

2(t) = f(x(t)) (1)

wherez(t) € R™ and f is ann-vector of elements oR,, with f(0) = 0. The following lemma
on invariant subsets of the region-of-attraction is a modifon of ideas from [24, pg. 167] and
[25, pg. 122]:

Lemma 1:1If there exist continuously differentiable functiog®;};_, : R* — R such that

V(z) := max V;(x) is positive definite 2)
1<i<q
Q:={x eR"|V(x) <1} is bounded, (3)
L :={x e R"| max Vj(z) < Vi(x) <1}, i=1,...,q 4)
1<j<q
L\{0} C {z e R"[ G2 f(2) <0}, i=1,....q, (5)

then for allz(0) € €, the solution of (1) exists, satisfiegt) € 2, andlim; .. z(t) = 0. As
such,( is invariant, and a subset of the region-of-attraction for (

Proof: The proof is written forg = 2. The extension tg = 1 or ¢ > 2 is straightforward.
Since L, U L, = €, condition (5) insures that if:(0) € Q, V(z(t)) < V(2(0)) < 1 while the
solution exists. Solutions starting {d remain inQ2 while the solution exists. Sinde is compact,
the system (1) has an unique solution defined for &l 0 wheneverz(0) € €.

Take ¢ > 0. Define S, := {r € R"|5 < V(x) < 1}, soS. C (L; U Ly) \ {0}. Note
that for eachi, (S.NL;) C L; \ {0} C {z € R" %f(x) < 0}, so on the compact set
SeN L;, 3, such that%‘;if(x) < —r;e < 0. Consequently, ifz(t) € SN Ly on [ta,tg],




then V(z(tg)) < —rie(tp — ta) + V(x(ta)). Similarly, if z(t) € Sc N Ly on [ta,tp], then
V(z(tg)) < —rac(tp —ta) + V(x(ta)). Therefore, ifx(t) € SN (Ly U Ly) 0N [ta,tgs], then
V(z(tg)) < —r(tp —ta) + V(x(ta)), wherer, = min(ry ., ro.). Sincer, > 0, this implies that
3¢* such thatV (z(t)) < e for all ¢ > t*, i.e. z(t) € T, := {x € R"|V(x) < ¢} for all t > t*.

This shows that ifz(0) € Q, V(z(t)) — 0 ast — oc.

Finally, lete > 0. Define(), := {z € R"| ||z|| > ¢,V (z) < 1}. Q. is compact, with0 ¢ €.
SinceV is continuous and positive definité;y such that/’(z) > ~ > 0 on .. We have already
established that/(z(t)) — 0 ast — oo, so 3¢ such that for allt > ¢, V(z(t)) < v and hence
x(t) ¢ Q., which meang|z(t)|| < e. Soz(t) — 0 ast — oo. [

Remarks. Standard modifications to the hypothesis of Lemma 1 can \g&al stability
conditions as well. However, neither formulation can yiexact results for systems whose
region-of-attraction is unbounded, but not allRf (since in Lemma 1§2 must be is bounded).
See section II-C for further details. The constraints inaepns (2)-(5) are not convex constraints
on V, as illustrated by a 1-dimensional example, [26]. TdKe) = —x, ¢ = 1 and V*(x) =
1622 —19.9523 +6.42* and V() = 0.122. ThenV® andV} satisfy (2)-(5), bub.58V +0.42V/}
does not.

In order to enlarge2 (by choice of V'), we define a variable sized regid®; = {z €
R"™ | p(x) < B}, and maximize5 while imposing the constrain®; C 2. Here,p(z) is a fixed,
positive definite polynomial, chosen to reflect the relativgportance of the states. Applying

Lemma 1, the problem is posed as an optimization:

max [ S.t. Vi(0)=0

BeR,V;ERA

V(x) = max Vi(z) is positive definite (6)
Q:={x eR"|V(x) <1} is bounded, (7
Py CQ (8)

{z € R"| max V;(x) < Vi(z) < 1}\ {0} C {z € R"| 2%

1<5<q

f(z) <0} 9)

where (9) holds for = 1,...,q. Let[;(x) be a fixed, positive definite polynomial. For eakh
if we requireV; — [, € ¥, fori=1,...,q, then both (6) and (7) are satisfied. Clearly, (8) holds



if and only if
{z eR"|p(x) < B} C [ {z € R"|Vi(z) < 1}, (10)

i=1
Introducing another fixed, positive definite polynomial,z), we can apply Lemmas 2 and 3
(see appendix) to obtain sufficient conditions which ensorestraints (9) and (10) hold. Written

as an optimization, the problem is

ma’Xﬁ Overﬁ € R)‘/; € an ‘/;(O) - 07 81i782i7$3i780ij € vaz = 17 <o q

such that

Vi—l ex,, (11)

—(B-psi+Vi-1) e, (12)
q

— [(1 — ‘/Z‘)SQZ' + %f&’gi + lg] — Z SOij(V; — ‘/J) SIS (13)

J#i

All constraints are sum-of-square constraints, howeveer{dor ¢ = 1) products of decision
variables are present. Therefore, the optimization cabadtanslated into a linear semidefinite
program, but is converted to a bilinear semidefinite programo of the conditions require
positivity (beyond nonnegativity), and the fixed positikefinite polynomials,/; and [, are
introduced as offsets to enforce this. Next we present te$udm several small problems. We
have chosen to rely on the PENBMI solver [27], a local bilineeatrix inequality solver from
PENOPT to attack our problems. This uses a penalty methddrrisite approaches to BMiIs,
such as linearization and homotopy, [28] and interior pomgthods, [29, Chap 7], may yield
improved results and/or superior computational efficiemgsolving these questions is left for

further research.

1. EXAMPLES

All of the systems considered are locally exponentiallypbltaThe notatiom, denotes the
degree ofV, specifically eachV; includes all monomials of degree 2 up through. In all
examplesp is quadratic, and the degree of is chosen so that the degree of the polynomial
in equation (12) is equal tay. The integem , denotes degree of the polynomial in (13). Once
ny IS chosen, and the vector fielflis fixed, n, limits the degrees of the multipliers;, ss;

and sy;; through simple degree counting. In each case, the posiéfiaitdé polynomiald, and



I, are of the formi,.(x) = >, ex;2?. For the purposes of computation, the; are treated as

additional decision variables, and constrained to satigfy> 10~".

A. Example 1 - Van der Pol equations

The system isi; = —xy, 2 = 21 + (22 — 1)z,. It has an unstable limit cycle and a stable
equilibrium point at the origin. Finding its region-of-atttion has been studied extensively, for
example, in [1], [12], [11]. The region-of-attraction fdri$ system is the region enclosed by its
limit cycle, which is easily visualized from the numericallgtion of the ODE. However, our
goal is to use the bilinear SOS formulation. For this examplis chosen to be’ Rz, for two
different R; € R?*?,

0.38 —0.14 0.28 0.14
R, := , and Ry :=

—-0.14  0.28 0.14 0.38

The results using shape factor defined By using the pointwise maximum of two fixed
degree polynomials are listed in Table I. Fig. 1 shows thatlegcle and the level sets of
the certifying Lyapunov functiorts The level set of pointwise maximum of two 6th degree
polynomial functions includes nearly the entire actualioregpf-attraction. The dashed line is
the level set ofp (for ny = 6), which clearly shows that oyr has been preselected to “align”
closely with the actual region-of-attraction. Of courgestwould be impossible to do in general,
and we discuss the implications of this later in this secti@ar results compare favorably with
[11] as well as the degree 6 solution from [7], and the fidalY) iterate from degree 6 solutions
of [8], all of which are shown in Figure 2. Clearly, the soartiof [8] is a very high quality
estimate of the true ROA. Parametrizing the boundariesgugalar coordinates reveals that as
a function of angle, the radius of [8] exceeds awr = 6 radius on 52.6% of0 27]; is 0.22%
larger, on average, than ouf, = 6 radius; exceeds out, = 6 radius by as much as 1.4% in
some directions; is smaller than ouwy = 6 radius by as much as 0.8% in other directions. We
conclude that the result in [8] is very similar, though stlgtsuperior to our result.

It is interesting to observe how tHé functions interact in, for example, the 6th degree case.

Figure 3 shows the level sefs: | V;(z) < 1}. For V4, there are 3 connected components, one

1The certifying Lyapunov functions and SOS multipliers forll sxamples in this paper are available at

http://jagger.me.berkeley.edu/"pack/certificates



TABLE |

POINTWISE MAX FOR VAN DER POL

degree of total no. of
q| V| su| s2 | 83 | Soij B | decision variables
2] 2 0 2 0 2 0.75 38
2| 4 2 2 0 2 0.93 120
2|6 4 2 0 2 1.03 338
3|2 0 2 0 2 0.75 73
3| 2 0 4 2 4 0.82 265
3 —
——— Limit Cycle
---n,= 2
270 - — n,=
n, = 6
------- p(x) =1.03
1 L
X
2
0 L
_1 L
_2 L
L L L L L L L L L J

Fig. 1. Provable ROA using pointwise maximum of two polynahfunctions, with shape factar” R,z

“large” component centered at the origin (whose boundargssentially the limit cycle), and
2 “islands” in the 2nd and 4th quadrants. Fdy, the level set is one connected component
centered at the origin, visually the same as the large coergarf V;. Label the two islands as
I, and I,, and the intersection of the two (nearly identical) cerdezemponents aQ.

Inside I; and I, V; £ 0, butV;, > 1> V;, sol; and, are excluded in the sét. Moreover,
on 2, Vl < 0 whereV; > 15, andVQ < 0 whereV, > V4, proving that() is a region-of-attraction.
Since{x | Va(x) < 1} = €, it is tempting to assume th&t alone can prove the stability claim.

However, many points havi, > 0 (the shaded region if).



—— Limit Cycle
---[11]
Y — [8], Iterate 40
1 L
X
2ol
_1 L
_2 L
Il Il Il Il Il Il Il Il Il J

Fig. 2. Provable ROA, from [11], [7] and [8].

In this example, using pointwise maximum of three polyndsidoes not offer additional
benefits (row 1 and 4 of Table I). Better results are obtaimed &) by increasing the degree
of the {s;}, but this increases the number of decision variables, sedhgputational benefit is
effectively erased.

Finally, optimizing with the shape factor defined &, yields almost identical results (in
terms of(?). Fig. 4 illustrates the analogous level setslgfand also shows a level set for this
p. Clearly, the level sets for this shape factor are not atignih the actual region-of-attraction,

nevertheless, the optimization performs quite well.

B. 6 examples from [4]

Reference [4] aims tonaximize the volumef an innerellipsoidal estimate of the region of
attraction, presenting results from 6 examples. The voluep®rted in [4] is normalized: in
R? it is 2-dimensional area divided by, while in R? it is 3-dimensional volume divided by
%’T. As an exercise, we solve the same problems here. The resaltsummarized in Table Il.
Maximizing volume is not directly compatible with our scalabjective involving the function

p (whose level sets may or may not be ellipsoidal). We begah wisimple approach: using



Fig. 3. VDP: Level sets of two 6th degree polynomialsliat V> = 1

a spherical shape factop(x) := 27z, solve the optimization problem and then compute the
volume of the level sefx : V(z) < 1} (easily computed for a quadratic, and estimated with
Monte Carlo integration for high degree and pointwise-mias). Problems S1, S2, S3 and S4
are successfully addressed using this approach. Note th@wement for S2 when the degree
of the multipliers is increased (via4) even though:y is held constant. Problem S5 required
an alteration, referred to dsootstrap to obtain large volumes. In this calculation, the initial
optimization was as above, with a spherigalusing quadratic Lyapunov function candidates.
Subsequent optimizations, with richer Lyapunov functi@amdidates used, fay, the obtained
quadratic Lyapunov function (as opposedatbx). Problem S6 is more challenging and the
methods we present here do not obtain volumes as large as iiyjogrted in [4]. The S6 table
entry involving quartic functions is empty, as PENBMI exkdlol unreliable behavior on this

problem, exposing some genuine deficiences in our overalioagh.

C. Unbounded Region-of-Attraction

Consideri; = 9,79 = —(1 — 2%)x; — x5 from [30]. The region of attraction to the stable
equilibrium atz = 0 is unbounded, but not all dk2. Exact methods, such as those in [9], may

obtain the correct answer in this problem. By contrast, tiventilation in equations (11)-(13)



T T
—— Limit Cycle
n, = 2

2.5

Fig. 4. Provable ROA using pointwise max of two polynomianhdtions, with shape factor” Rz
TABLE I

CERTIFIED NORMALIZED VOLUME ON EXAMPLESS1-S6FROM [4]. THE VECTOR FIELDS FOREXAMPLES S3AND S4HAVE

DEGREE EQUAL TO5, WHILE ALL OTHERS HAVE DEGREE EQUAL TO3.

‘ from [4] ‘ (nv,na) ¢q Vol H from [4] ‘ (nv,na) ¢ Vol H from [4] ‘ (nv,na) ¢q Vo
S1(10.2)| (2,4) 1 75| S2(27.1)| (24) 1 24.9| S3(9.51)| (2,6) 1 168
(2,4) 2 137 (2,4) 2 249 (2,6) 2 global

(2,6) 2 430

S4(0.85)|  (2,6) 1 0.83| S5(23.5)| (2,4) 1 21.3| S6(10.9)| (2,4) 1 85
(2,6) 2 092 (2,4) 2 213 (2,4) 2 94

(4,8) 1 112 (4,6) 1 329 (4.,6) 1 -

@8 2 116 46 2 -

cannot, since) is necessarily compact. Using a simpler) := 2% + 23 shape factor, we obtain
nearly identical results for quadratic and pointwise-maadyatic Lyapunov functions, yielding
3 such thatPs; nearly touches the stability boundary, and the bounded $&tx : V(z) < 1} is
ellipsoidal, roughly aligned with the true region-of-atttion. Using the bootstrap, withy, = 6

yields significant improvement. The two level sets are showthe left panel of figure 5, along



with some trajectories of the system.

D. An example from reference [2]

Another 2-state example with polynomial vector field comesnf example 4 in [2]. The
dynamics arei; = —0.42x; — 1.05z5 — 2.322 — 0.52129 — 3; 29 = 19821 + x125. The inner
estimate from [2] along with our estimate using quadratigartjc, pointwise-max quartic, and
degree 6 functions are shown in the right panel of Figure tntRee-max ¢ = 2) degree 6

solutions yielded no appreciable improvement over¢he 1 case, and are not shown.

15

from[2] H
-==0=1, nv=2\

—0=1,n =4

-2.5

Fig. 5. Trajectories and level se¥s < 1. LEFT panel: example from Section 11I-C; RIGHT panel: exdenfrom Section IlI-D

IV. BENCHMARK STUDY

There are several drawbacks to our approach, most notablghseg over the non-convex
decision variable space. Given this deficiency, it is uséfulnvestigate how equations (11)-
(13), coupled with the PENBMI solver perform on an “easy” mo@ar problem, with respect
to “arbitrary” data and increasing problem size. ket — Iz + (2 Bx)x wherez(t) € R", and
B € R™", B = 0. For this system, inspired by Example 5 of [1], the &etc R" |27 Bx < 1}
is the exact region-of-attraction for the= 0 equilibrium point (usel’ (z) := 2¥ Bz to prove
this). Let P; := {z € R"|2" Rz < 3}, R € R™", R = 0. The supremum value fof such
that P; C {z € R"|2TBz < 1} is # = [Amax(R"2BR™2)]"!. Equations (11)-(13)anyield
this answer, specifically, take = 1 and for anyy > 1, chooser such thatl < 7 < ~. Then

for large enoughy (depending on fixed choice of quadrati) the choicesV (z) := ~va? Bz,



sy = 2arz’ Bz and s; := « satisfy (13), prove tha{z|z” Bz <1} is in the region-of-
attraction. Hence, this class of problems provides a tesarig specified BMI solver to actually
discover the known-to-exist solution. For each100 trials are performed. Each trial consists of
a random choice of positive definite and R, each with eigenvaluescp(2r;) where eachr; is
picked from a normal distribution with zero mean and unitiasace, and random, orthonormal
eigenvectors. For each trial, we run the PENBMI optimizeings (initial point randomly chosen

each run). Table Il shows the results of the test.
TABLE Il

COMPUTATION STATISTICS FOR THE BENCHMARK EXAMPLE

n || variables| successes worst (in 300) | over 100 | time (sec)
2 13 298 0.99995 1.00000 0.70
3 25 296 0.90955 0.99984 1.12
4 48 297 0.07687 0.99999 2.14
6 157 297 0.99997 0.99998 11.2
8 420 300 0.99989 0.99992 99.7

A run is classifiedsuccessfuif the solver returns the message “No problems detected!, an
classifiedfailure otherwise. Except for the case of= 6, there are no trials that fail for all 3 runs
(for n = 6, one trial did fail in all 3 runs, and note that this singletarsce, 3-trial failure is not
taken into account in the table entries described below)ogrthe successful runs, the quality
of the answer is assessed by the nearnegs<of,,,., to 1. The worst case (smallest) value among
the (296-300) successful runs is given. The next column shibw worst case x A,., over
100 trials, exploiting the 3 repeated attempts and the naikd initial starting point chosen by
PENBMI. The entries are: 1, which indicates that repeated runs of the same problentsign
lead to the optimal solution for this example. For this leditbenchmark example, although our
problem formulation is bilinear in the decision polynorsiand the bilinear solver, PENBMI,

is a local solver, the results obtained are encouraging.

V. CONCLUSIONS

In this paper, we presented techniques using sum-of-sgjpangramming for finding provable
regions-of-attraction for nonlinear systems with polynamnector fields. Several small examples

are presented. For systems with cubic vector fields, amadylical stability using Lyapunov



functions which are the pointwise-max of quadratic and tr&unctions appears to be a useful,

and modestly tractable extension to simply using polynbinyapunov functions.
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VIl. APPENDIX

A monomialm,, in n variables is a function defined as,(z) = = = z{"x5*-- - 2% for
a € Z%. The degree of a monomial is definetkgm, = >, a;. A polynomial f in n
variables is a finite linear combination of monomials, withe R:

f= anma = anxa.

« «

DefineR,, to be the set of all polynomials in variables. The degree gfis defined asleg f :=
max, deg m,, (provided the associateg, is non-zero). Additionally defin&,, to be the set of

sum-of-squares (SOS) polynomialssinvariables.

t
p:Zfzz 7fZERn77/:1,,t}
i=1

Obviously if p € ¥, thenp(z) > 0 Vo € R™. A polynomial,p € ¥, iff 30 < @ € R™*" such

2n = {pERn

that p(z) = 27 (2)Qz(x), with z(z) a vector of suitable monomials. The set@fthat satisfies
p(r) = 2T(2)Qz(z) is an affine subspace, so that semidefinite programming phey&ey role

in deciding if a given polynomial is SOS. The lemmas below @lementary extensions of the



S-procedure, [32], and very limited special cases of thetRsgellensatz, [33, Theorem 4.2.2].
In both cases, the SOS polynomidls, }, are often called the “SOS multipliers.”

Lemma 2:Given py, p, € R,, and positive definitdr € R,,, with h(0) = 0. If 51,5, € X,
satisfypis; + pass — h € ¥ then{z : py(z) <0} \{0} C {z : p2(x) > 0}.

Lemma 3:Given {p;}I", € R,. If there exist{s;}!", € ¥, such thatp, — >_\", sip; € X,
then(\", { € R" | pi(z) > 0} C {z € R" | po(x) > 0}.

SOSTOOLS, [34], [35], GloptiPoly, [36], and YALMIP, [31] &mmate the translation from
SOS programs to semidefinite programs, converting to salpecific, e.g., SeDuMi [37] or
SDPT3 [38], syntax. YALMIP also handles bilinear decisiarlymomials, using PENBMI [27].

Despite these software tools, and even ignoring the nomosatiyvof our formulation, there
are significant dimensionality problems as well: [39, Tahl#| illustrates the unpleasant growth

in the number of decision variables withand the polynomial degree.
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