2008

Nonlinear oscillator with discontinuity by parameter-expansion method

Shu-Qiang Wang Ji-Huan He, *Donghua University*

Available at: http://works.bepress.com/ji_huan_he/19/

Available online at www.sciencedirect.com

CHAOS SOLITONS & FRACTALS

Chaos, Solitons and Fractals 35 (2008) 688-691

www.elsevier.com/locate/chaos

Nonlinear oscillator with discontinuity by parameter-expansion method

Shu-Qiang Wang ^a, Ji-Huan He ^{b,*}

^a College of Science, Donghua University, 1882 Yan-an Xilu Road, Shanghai 200051, China ^b Modern Textile Institute, Donghua University, 1882 Yan-an Xilu Road, Shanghai 200051, China

Accepted 19 July 2007

Communicated by Prof. Ji-Huan He

Abstract

The parameter-expansion method is applied to a nonlinear oscillator with discontinuity. One iteration is sufficient to obtain a highly accurate solution, which is valid for the whole solution domain. Comparison of the obtained solution with the exact one shows that the method is very effective and convenient. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers the following nonlinear oscillator with discontinuity [1-3]:

u'' + u|u| = 0, u(0) = A, u'(0) = 0.

(1)

There exists no small parameter in the equation. Therefore, the traditional perturbation methods cannot be applied directly [3].

Recently, considerable attention has been directed towards analytical solutions for nonlinear equations without small parameters. Many new techniques have appeared in the literature, for example, the homotopy perturbation method [4-10], the variational iteration method [11-14], and the energy balance method [15-17]. A complete review is available in Refs. [3,18]. In this paper, we apply the parameter-expansion method [18-21] to the problem we are discussing.

2. Solution procedure

The parameter-expansion method [18-21] entails the bookkeeping parameter method [18,19] and the modified Lindstedt–Poincare method [18,21-23]. Recently, the method has been applied to various nonlinear oscillators, see Refs. [2,24-28]. In order to use the parameter expansion method, we re-write Eq. (1) in the following form [18,21,29]:

$$u'' + 0 \cdot u + 1 \cdot u|u| = 0$$

(2)

* Corresponding author. Tel.: +86 21 6237 8069; fax: +86 21 6237 8066. *E-mail address*: Jhhe@dhu.edu.cn (J.-H. He).

0960-0779/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2007.07.055

According to the parameter-expansion method, we may expend the solution, u, the coefficient of u, the zero, and the coefficient of u|u|, 1, in series of p:

$$u = u_0 + pu_1 + p^2 u_2 + \cdots$$
(3)

$$0 = \omega^{2} + pa_{1} + p^{2}a_{2} + \cdots$$
(4)

$$1 = pb_{1} + p^{2}b_{2} + \cdots$$
(5)

Substituting Eqs. (3)–(5) into Eq. (2) and equating the terms with the identical powers of p, we have

$$p^0: u_0'' + \omega^2 u_0 = 0 \tag{6}$$

$$p^{1}: u_{1}'' + \omega^{2}u_{1} + a_{1}u_{0} + bu_{0}|u_{0}| = 0$$
⁽⁷⁾

$$p^{2}:(1+\omega^{2})u_{2}''+a_{1}u_{1}''+a_{2}u_{0}''+b_{1}(|u_{0}''|u_{1}''+u_{0}''|u_{1}''|)+b_{2}u_{0}''|u_{0}''|=0$$
(8)

Considering the initial conditions $u_0(0) = A$ and $u'_0(0) = 0$, the solution of Eq. (6) is $u_0 = A\cos\omega t$. Substituting the result into Eq. (7), we have

$$u_1'' + \omega^2 u_1 + a_1 A \cos \omega t + b_1 A^2 \cos \omega t |\cos \omega t| = 0$$
(9)

It is possible to perform the following Fourier series expansion:

$$\cos \omega t |\cos \omega t| = \sum_{n=0}^{\infty} c_{2n+1} \cos[(2n+1)\omega t] = c_1 \cos \omega t + c_3 \cos \omega t + \cdots$$
(10)

where c_i can be determined by Fourier series, for example

$$c_{1} = \frac{2}{\pi} \int_{0}^{\pi} \cos^{2} \omega t |\cos \omega t| d(\omega t) = \frac{2}{\pi} \left(\int_{0}^{\frac{\pi}{2}} \cos^{3} \tau \, d\tau - \int_{\frac{\pi}{2}}^{\pi} \cos^{3} \tau \, d\tau \right) = \frac{8}{3\pi}$$
(11)

Substitution of Eq. (10) into Eq. (9) gives

$$u_1'' + \omega^2 u_1 + \left(a_1 + b_1 A \frac{8}{3\pi}\right) A \cos \omega t + \sum_{n=1}^{\infty} c_{2n+1} \cos[(2n+1)\omega t] = 0$$
(12)

No secular term in u_1 requires that

$$a_1 + b_1 A \frac{8}{3\pi} = 0 \tag{13}$$

If the first-order approximation is enough, then, setting p = 1 in Eqs. (4) and (5), we have

$$1 = b_1 \tag{14}$$

$$0 = \omega^2 + a_1 \tag{15}$$

From Eqs. (13)–(15), we obtain

$$\omega = \sqrt{\frac{8A}{3\pi}} \approx 2.6667 \sqrt{\frac{A}{\pi}} \tag{16}$$

The obtained frequency, Eq. (16), is valid for the whole solution domain, $0 \le A \le \infty$. The accuracy of frequency can be improved if we continue the solution procedure to a higher order, however, the amplitude obtained by this method is an asymptotic series, not a convergent one. For conservative oscillator

$$u'' + f(u)u = 0, \quad f(u) > 0 \tag{17}$$

where f(u) is a nonlinear function of u, we always use the zeroth-order approximate solution. Thus we have

$$u(t) = A\cos\left(t\sqrt{\frac{8A}{3\pi}}\right) \tag{18}$$

Fig. 1 illustrates various cases with different values of A.

Fig. 1. Comparison of approximate solution, Eq. (18), with exact one. Dashed line: approximate solution; continuous line: exact solution. (a) A = 1000, $\omega_{app} = 29.1347$; (b) A = 100, $\omega_{app} = 9.2132$; (c) A = 10, $\omega_{app} = 2.9135$; and (d) A = 1, $\omega_{app} = 0.2599$.

3. Conclusion

The parameter-expansion method is an extremely simple method. One iteration is enough. Furthermore, the obtained frequency is of high accuracy. The method can be applied to many other nonlinear oscillators.

Acknowledgment

The work was supported by the Program for New Century Excellent Talents in the University.

References

- [1] He JH. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl Math Comput 2004;151:287–92.
- [2] Liu HM. Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt-Poincare method. Chaos, Solitons & Fractals 2005;23(2):577–9.
- [3] He JH. Non-perturbative methods for strongly nonlinear problems. Dissertation. Berlin: de-Verlag im Internet GmbH; 2006.
- [4] He JH. Homotopy perturbation method for solving boundary value problems. Phys Lett A 2006;350:87-8.
- [5] He JH. Homotopy perturbation method for bifurcation of nonlinear problems. Int J Non-linear Sci Numer Simul 2005;6:207-8.
- [6] He JH. Limit cycle and bifurcation of nonlinear problems. Chaos, Solitons & Fractals 2005;26:827-33.
- [7] Cai XC, Wu WY, Li MS. Approximate period solution for a kind of nonlinear oscillator by He's perturbation method. Int J Nonlinear Sci Numer Simul 2006;7:109–12.
- [8] Ariel PD, Hayat T, Asghar S. Homotopy perturbation method and axisymmetric flow over a stretching sheet. Int J Non-linear Sci Numer Simul 2006;7:399–406.
- [9] Ganji DD, Sadighi A. Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations. Int J Non-linear Sci Numer Simul 2006;7:411–8.
- [10] Cveticanin L. Homotopy-perturbation method for pure nonlinear differential equation. Chaos, Solitons & Fractals 2006;30:1221–30.
- [11] He JH. Variational iteration method a kind of non-linear analytical technique. Int J Non-linear Mech 1999;34(4):699–708.
- [12] He JH, Wu XH. Construction of solitary solution and compacton-like solution by variational iteration method. Chaos, Solitons & Fractals 2006;29:108–13.
- [13] Odibat ZM, Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. Int J Non-linear Sci Numer Simul 2006;7:27–34.
- [14] Yusufoglu E. Variational iteration method for construction of some compact and noncompact structures of Klein–Gordon equations. Int J Non-linear Sci Numer Simul 2007;8(2):152–8.
- [15] He JH. Determination of limit cycles for strongly nonlinear oscillators. Phys Rev Lett 2003;90:174301.
- [16] D'Acunto M. Determination of limit cycles for a modified van der Pol oscillator. Mech Res Commun 2006;33:93-8.
- [17] D'Acunto M. Self-excited systems: analytical determination of limit cycles. Chaos, Solitons & Fractals 2006;30:719-24.
- [18] He JH. Some asymptotic methods for strongly nonlinear equations. Int J Mod Phys B 2006;20:1141–99.
- [19] He JH. Bookkeeping parameter in perturbation methods. Int J Non-linear Sci Numer Simul 2001;2:257–64.
- [20] Shou DH et al. Application of parameter-expanding method to strongly nonlinear oscillators. Int J Non-linear Sci Numer Simul 2007;8:113–6.
- [21] He JH. Modified Lindstedt–Poincare methods for some strongly non-linear oscillations. Part I: expansion of a constant. Int J Non-linear Mech 2002;37:309–14.
- [22] He JH. Modified Lindstedt–Poincare methods for some strongly nonlinear oscillations. Part III: double series expansion. Int J Non-linear Sci Numer Simul 2001;2:317–20.
- [23] He JH. Modified Lindstedt–Poincare methods for some strongly non-linear oscillations. Part II: a new transformation. Int J Nonlinear Mech 2002;37:315–20.
- [24] Xu L. He's parameter-expanding methods for strongly nonlinear oscillators. J Comput Appl Math 2007;207(1):148-54.
- [25] Öziş T, Yıldırım A. Determination of periodic solution for a $u^{1/3}$ force by He's modified Lindstedt–Poincaré method. J Sound Vib 2007;301:415–9.
- [26] Öziş T, Yıldırım A. Determination of limit cycles by a modified straightforward expansion for nonlinear oscillators. Chaos, Solitons & Fractals 2007;32:445–8.
- [27] Öziş T, Yıldırım A. Traveling wave solution of Korteweg-de Vries equation using He's homotopy perturbation method. Int J Non-linear Sci Numer Simul 2007;8(2):239–42.
- [28] Öziş T, Yıldırım A. A comparative study of He's homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities. Int J Non-linear Sci Numer Simul 2007;8(2):243–8.
- [29] He JH. New interpretation of homotopy perturbation method. Int J Mod Phys B 2006;20:2561-8.