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Abstract

The parameter-expansion method is applied to a nonlinear oscillator with discontinuity. One iteration is sufficient to
obtain a highly accurate solution, which is valid for the whole solution domain. Comparison of the obtained solution
with the exact one shows that the method is very effective and convenient.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers the following nonlinear oscillator with discontinuity [1-3]:

W +ulul=0, u0)=4, 4(0)=0. (1)
There exists no small parameter in the equation. Therefore, the traditional perturbation methods cannot be applied
directly [3].

Recently, considerable attention has been directed towards analytical solutions for nonlinear equations without small
parameters. Many new techniques have appeared in the literature, for example, the homotopy perturbation method [4—
10], the variational iteration method [11-14], and the energy balance method [15-17]. A complete review is available in
Refs. [3,18]. In this paper, we apply the parameter-expansion method [18-21] to the problem we are discussing.

2. Solution procedure

The parameter-expansion method [18-21] entails the bookkeeping parameter method [18,19] and the modified Lind-
stedt—Poincare method [18,21-23]. Recently, the method has been applied to various nonlinear oscillators, see Refs.
[2,24-28]. In order to use the parameter expansion method, we re-write Eq. (1) in the following form [18,21,29]:

W +0-u+1-uu =0 (2)
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According to the parameter-expansion method, we may expend the solution, u, the coefficient of u, the zero, and the
coefficient of u|u|, 1, in series of p:

u =uy + pu; + pPus + - (3)
0=’ +pa, + pPay + - - (4)
L =pb; +p*by + - ()

Substituting Eqs. (3)—(5) into Eq. (2) and equating the terms with the identical powers of p, we have

PP iul +wtuy =0 (6)
P+ o’uy + ayug + buglug) = 0 (7)
P (L4 )iy + ayd] + asug + by (||} + ugud)]) + bouglug| = 0 (8)

Considering the initial conditions u((0) = 4 and u;(0) = 0, the solution of Eq. (6) is uyp = Acoswt. Substituting the result
into Eq. (7), we have

u) + o*uy + a1A cos wt + by A* cos wt| cos wt| = 0 9)

It is possible to perform the following Fourier series expansion:

cos wt| cos wt| = Z Cap+1€08[(2n + 1)wt] = ¢j cos wt + c3coswt + - - - (10)
n=0

where ¢; can be determined by Fourier series, for example

2 (7 2( /2 . 8
== / cos® wt| cos wt|d(wt) == (/2 cos’ tdt f/ cos3rdr> =— (11)
T Jo T 0 z 3n
Substitution of Eq. (10) into Eq. (9) gives
W+ ?uy + (a + blAi Acoswt + XDC:CZ"“ cos[(2n+ 1)wt] =0 (12)
! 3n —
No secular term in u; requires that
a; + b4 8 _ 0 (13)
1A=

If the first-order approximation is enough, then, setting p = 1 in Eqgs. (4) and (5), we have
1 =b, (14)
0 :(DZ —+ a (15)
From Egs. (13)(15), we obtain

184 A
=1/=— =~ 2.66674/— 16
@ 3n \/; (16)

The obtained frequency, Eq. (16), is valid for the whole solution domain, 0 < 4 < co. The accuracy of frequency can be
improved if we continue the solution procedure to a higher order, however, the amplitude obtained by this method is an
asymptotic series, not a convergent one. For conservative oscillator

W'+ fwu=0, f(u)>0 (17)

where f(u) is a nonlinear function of u, we always use the zeroth-order approximate solution. Thus we have

u(t) = Acos (t\/%> (18)

Fig. 1 illustrates various cases with different values of A.
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Fig. 1. Comparison of approximate solution, Eq. (18

solution. (a) 4

1000, @ypp = 29.1347; (b) A = 100, wpp = 9.2132; (¢) A = 10, wypp = 2.9135; and (d) A = 1, wypp = 0.2599.

3. Conclusion

The parameter-expansion method is an extremely simple method. One iteration is enough. Furthermore, the

obtained frequency is of high accuracy. The method can be applied to many other nonlinear oscillators.
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