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Abstract

The parameter-expansion method is applied to a nonlinear oscillator with discontinuity. One iteration is sufficient to
obtain a highly accurate solution, which is valid for the whole solution domain. Comparison of the obtained solution
with the exact one shows that the method is very effective and convenient.
� 2007 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers the following nonlinear oscillator with discontinuity [1–3]:

u00 þ ujuj ¼ 0; uð0Þ ¼ A; u0ð0Þ ¼ 0: ð1Þ
There exists no small parameter in the equation. Therefore, the traditional perturbation methods cannot be applied
directly [3].

Recently, considerable attention has been directed towards analytical solutions for nonlinear equations without small
parameters. Many new techniques have appeared in the literature, for example, the homotopy perturbation method [4–
10], the variational iteration method [11–14], and the energy balance method [15–17]. A complete review is available in
Refs. [3,18]. In this paper, we apply the parameter-expansion method [18–21] to the problem we are discussing.

2. Solution procedure

The parameter-expansion method [18–21] entails the bookkeeping parameter method [18,19] and the modified Lind-
stedt–Poincare method [18,21–23]. Recently, the method has been applied to various nonlinear oscillators, see Refs.
[2,24–28]. In order to use the parameter expansion method, we re-write Eq. (1) in the following form [18,21,29]:

u00 þ 0 � uþ 1 � ujuj ¼ 0 ð2Þ
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According to the parameter-expansion method, we may expend the solution, u, the coefficient of u, the zero, and the
coefficient of ujuj, 1, in series of p:

u ¼u0 þ pu1 þ p2u2 þ � � � ð3Þ
0 ¼x2 þ pa1 þ p2a2 þ � � � ð4Þ
1 ¼pb1 þ p2b2 þ � � � ð5Þ

Substituting Eqs. (3)–(5) into Eq. (2) and equating the terms with the identical powers of p, we have

p0 : u000 þ x2u0 ¼ 0 ð6Þ
p1 : u001 þ x2u1 þ a1u0 þ bu0ju0j ¼ 0 ð7Þ
p2 : ð1þ x2Þu002 þ a1u001 þ a2u000 þ b1 ju000 ju001 þ u000 ju001 j

� �
þ b2u000 ju000 j ¼ 0 ð8Þ

Considering the initial conditions u0(0) = A and u00ð0Þ ¼ 0, the solution of Eq. (6) is u0 = Acosxt. Substituting the result
into Eq. (7), we have

u001 þ x2u1 þ a1A cos xt þ b1A2 cos xtj cos xtj ¼ 0 ð9Þ

It is possible to perform the following Fourier series expansion:

cos xtj cos xtj ¼
X1
n¼0

c2nþ1 cos½ð2nþ 1Þxt� ¼ c1 cos xt þ c3 cos xt þ � � � ð10Þ

where ci can be determined by Fourier series, for example

c1 ¼
2

p

Z p

0

cos2 xtj cos xtjdðxtÞ ¼ 2

p

Z p
2

0

cos3 sds�
Z p

p
2

cos3 sds

 !
¼ 8

3p
ð11Þ

Substitution of Eq. (10) into Eq. (9) gives

u001 þ x2u1 þ a1 þ b1A
8

3p

� �
A cos xt þ

X1
n¼1

c2nþ1 cos½ð2nþ 1Þxt� ¼ 0 ð12Þ

No secular term in u1 requires that

a1 þ b1A
8

3p
¼ 0 ð13Þ

If the first-order approximation is enough, then, setting p = 1 in Eqs. (4) and (5), we have

1 ¼b1 ð14Þ
0 ¼x2 þ a1 ð15Þ

From Eqs. (13)–(15), we obtain

x ¼
ffiffiffiffiffiffi
8A
3p

r
� 2:6667

ffiffiffi
A
p

r
ð16Þ

The obtained frequency, Eq. (16), is valid for the whole solution domain, 0 < A <1. The accuracy of frequency can be
improved if we continue the solution procedure to a higher order, however, the amplitude obtained by this method is an
asymptotic series, not a convergent one. For conservative oscillator

u00 þ f ðuÞu ¼ 0; f ðuÞ > 0 ð17Þ

where f(u) is a nonlinear function of u, we always use the zeroth-order approximate solution. Thus we have

uðtÞ ¼ A cos t

ffiffiffiffiffiffi
8A
3p

r !
ð18Þ

Fig. 1 illustrates various cases with different values of A.
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3. Conclusion

The parameter-expansion method is an extremely simple method. One iteration is enough. Furthermore, the
obtained frequency is of high accuracy. The method can be applied to many other nonlinear oscillators.
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Fig. 1. Comparison of approximate solution, Eq. (18), with exact one. Dashed line: approximate solution; continuous line: exact
solution. (a) A = 1000, xapp = 29.1347; (b) A = 100, xapp = 9.2132; (c) A = 10, xapp = 2.9135; and (d) A = 1, xapp = 0.2599.
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