
A UML-Based Pattern Specification Technique

Robert B. France, Dae-Kyoo Kim, Sudipto Ghosh, Eunjee Song

Colorado State University, Fort Collins, CO 80523, USA

Abstract

Informally described design patterns are useful for communicating proven solutions

for recurring design problems to developers, but they are inadequate for more rigorous

use of design patterns. For example, they cannot be used as compliance points against

which solutions that claim to conform to the patterns are checked. Pattern specification

languages that utilize mathematical notation provide the needed formality but often

at the expense of usability. In this paper we present a rigorous and practical technique

for specifying pattern solutions expressed in the Unified Modeling Language (UML).

The specification technique paves the way for the development of tools that support

rigorous application of design patterns to UML design models. The technique has

been used to create specifications of solutions for several popular design patterns. We

illustrate the use of the technique by specifying Observer and Visitor pattern solutions.

Keywords: Design patterns, object-oriented models, pattern specification, UML

1 Introduction

A design pattern describes a family of solutions for a class of recurring design problems.

Popular forms of design patterns consist of structured, informal descriptions of solutions for

problems targeted by the patterns (e.g., see [1, 5, 17, 18]). The informal descriptions have

proven to be effective at communicating design experience to developers, but they lack the

formality needed to support rigorous use of design patterns. Precise specification of pattern

solutions enables the development of pattern-based development techniques and supporting

tools that can be used to (1) systematically build solutions from pattern specifications (e.g.,

see [16]), (2) verify the presence of pattern solutions in designs (e.g., see [19]), and (3)

systematically incorporate a pattern solution into a design (e.g., see [4]). Formal pattern

specification languages that utilize mathematical notation (e.g., see [2, 13]) provide the

concepts needed to precisely describe pattern solutions, but using them requires sophisticated

mathematical skills. Pattern specification languages that are based on familiar software

modeling concepts are more likely to be usable by software developers.

The pattern specification technique described in this paper supports rigorous specification

of pattern solutions expressed in the UML. The UML is used for the following reasons:

• The UML is considered to be the de facto standard for object-oriented modeling, and

there is a rapidly growing UML user base in industry. In this context, work that

supports rigorous application of design patterns to UML models is relevant.

• The Object Management Group (OMG) is promoting an initiative called Model Driven

Architecture (MDA) that supports the use of models as primary artifacts of develop-

ment (see http://www.omg.org/mda). MDA is intended to raise the level of abstraction

at which complex systems are developed. Technology that supports transformation of

models is considered to be a key enabler of MDA. This has generated interest in devel-

oping tools to support the transformation of models using design patterns. Such tools

require precise specification of pattern solutions expressed in a widely used modeling

notation such as the UML [4].

The pattern specifications created by the technique are metamodels that characterize

UML design models of pattern solutions. A pattern’s metamodel is obtained by specializing

the UML metamodel.

2

The remainder of this paper is organized in the following manner. In Section 2 we give

an overview of the UML and its metamodel, and briefly discuss how the metamodel can be

specialized. In Section 3 we describe the approach to specifying pattern solutions using a

simple Observer pattern, and in Section 4 we illustrate the approach by using it to specify

V isitor pattern solutions. In Section 5 we discuss the experience gained as a result of using

the technique to specify popular design patterns, including patterns described by Gamma et

al. [5]. In Section 6 we give an overview of related work on specifying design patterns. We

conclude in Section 7 with an overview of our plans to further evolve this work.

2 Background

A UML design model consists of a number of diagrams, each describing a design view. In

this paper, a pattern solution is described from two perspectives: the structural view is

described by a class diagram and the interaction view is described by sequence diagrams. In

this section we give an overview of UML class and sequence diagrams and outline how the

UML metamodel can be specialized.

2.1 UML Diagrams

Fig. 1 shows examples of the types of UML diagrams used in this paper. The diagrams used

in this paper conform to the UML 2.0 standard (see http://www.omg.org/uml). A UML

class diagram describes classifiers (e.g., classes and interfaces) and relationships between

classifiers. A class is a classifier that characterizes a family of objects in terms of attributes

and operations that are common to the objects. Associations between classes specify links

between class objects. The ends of associations, referred to as association-ends in this paper,

have properties such as multiplicity.

3

Message

LifelineExamplesd

RoleC:ClassC

Sequence Diagram

Association

Class

Generalization

Static Structural Digram

message()

ClassA ClassC

ClassB

RoleA:ClassA

Figure 1: Overview of UML Class and Sequence Diagrams

A sequence diagram describes how instances interact to accomplish a task. An interaction

is expressed in terms of lifelines and messages. A lifeline is a participant in an interaction.

In this paper, participants are class objects. A message is a specification of a class of stimuli

passed between two objects. A stimulus is a communication and can be a request to invoke

a recipient’s method or a signal that informs its recipient of the occurrence of an event.

2.2 Specializing the UML Metamodel

The UML metamodel characterizes valid UML models. It consists of a class diagram and a

set of well-formedness rules that define the abstract syntax of the UML. Informal descriptions

of semantics are also included in the metamodel. The metamodel class diagram consists of

classes whose instances are UML model elements. For example, instances of the metamodel

class Association are UML associations. Well-formedness rules that are not expressible in

the metamodel class diagram are expressed using the Object Constraint Language (OCL)

[20] where possible, and in natural language otherwise.

Fig. 2 shows a part of the UML metamodel class diagram (class attributes and multiplic-

ities are not shown). The diagram states that UML classifiers (instances of Classifier) can

have attributes (instances of Property) and operations (instances of Operation), and that

4

an association (instance of Association) has association-ends (instances of Property) that

are connected to classifiers.

Property

Class

OperationProperty

StructuralFeature BehavioralFeature

AssociationClassifierFeature

Figure 2: A Part of the UML Metamodel

The UML metamodel can be specialized to produce a restricted form of the UML meta-

model that defines a proper subset of valid UML models. Specializing the UML metamodel

to obtain a pattern specification involves the following:

• Specializing the abstract syntax by subtyping UML metamodel classes and by making

the well-formedness rules more restrictive. The result is an abstract syntax for models

describing pattern solutions.

• Defining parameterized OCL constraints, called constraint templates, representing con-

straints that must be expressed in models characterized by the specialized metamodel.

The parameterized constraints capture semantic properties of patterns.

The result is a pattern metamodel that characterizes models describing structural and be-

havioral aspects of pattern solutions.

5

3 Specifying Pattern Solutions

A pattern specification consists of a Structural Pattern Specification (SPS) that specifies the

class diagram view of pattern solutions, and a set of Interaction Pattern Specifications (IPSs)

that specifies interactions in pattern solutions. The SPS is the core of a pattern specification.

The IPSs are defined in terms of interaction participants specified by elements in the SPS.

A UML model conforms to a pattern specification if its class diagram conforms to the SPS

and the interactions described by sequence diagrams conform to the IPSs.

3.1 Structural Pattern Specifications (SPSs): An Overview

An SPS defines the part of the pattern metamodel that characterizes class diagram views of

pattern solutions. It defines subtypes of UML metamodel classes describing class diagram

elements (e.g., UML metamodel classes Class, Association) and specifies semantic pattern

properties using constraint templates.

An SPS consists of a structure of pattern roles [9] (henceforth referred to as roles), where

a role specifies properties that a UML model element must have if it is to be part of a

pattern solution model. Formally, a role defines a subtype of a UML metamodel class. The

metamodel class is called the base of the role. A role with a base B specifies a subset of

instances of the UML metamodel class B. For example, a role that has the metamodel

class Association as its base specifies a subset of UML associations. A UML model element

conforms to (or plays) a role if it satisfies the properties defined in the role, that is, the

element is an instance of the subtype defined by the role.

A role in an SPS can be classified as a classifier or a relationship role. A role that has

the base Classifier or a base that is a subtype of Classifier (e.g., Class, Interface) is a

classifier role. A relationship role is any role that has the base Relationship or a base that

6

is a subtype of Relationship (e.g., Association, Generalization).

3.1.1 The SPS Notation

A classifier role is represented by a syntactic variant of the UML class symbol. The structure

of a classifier role is shown in Fig. 3. The top compartment of a classifier role consists of

Role realization multiplicityp

Feature roles

|RoleName

Base Role

StructuralFeature roles

BehavioralFeature roles

Figure 3: Structure of a Classifier Role

three parts:

• A label of the form Base Role, where Base is the name of the role’s base (i.e., the

name of a metamodel class).

• A declaration of the form |RoleName, where RoleName is the name of the role. We

use the symbol “|” to indicate that the following string is a role name.

• A realization multiplicity, p, that can restrict the number of classifiers playing the

role in a conforming class diagram. The multiplicity can be omitted if the number of

conforming classifiers is not constrained (i.e., the multiplicity is ∗).

The other compartments consist of feature roles that specify features associated with

conforming classifiers. There are two types of feature roles:

• StructuralFeature roles specify properties represented by structural features of conform-

ing classifiers. A StructuralFeature role can be played by an attribute or a query (i.e.,

a value-returning function with no side-effects).

7

• BehavioralFeature roles specify behavioral properties associated with conforming clas-

sifiers. A BehavioralFeature role can be played by an operation.

Each feature role is associated with a realization multiplicity that can constrain the

number of features (e.g., attributes or operations) in a conforming classifier playing the

feature role. A realization multiplicity with a lower bound of 0 (e.g., ∗) indicates that the

feature may or may not be present in a conforming classifier (i.e., it is an optional feature).

Examples of class roles are shown in Fig. 4.

A relationship role is represented by a syntactic variant of the UML association sym-

bol. Like classifier roles, each relationship role is associated with a label that indicates the

base of the role. Association roles also have association-end roles that define subtypes of

the UML metamodel Property class (see Section 2.2). Association-end roles specify multi-

plicity, navigability, and other properties associated with conforming association-ends. An

association-end role is also associated with a realization multiplicity that can constrain the

number of association-ends playing the role in a conforming model. The realization multiplic-

ity for an association role is inferred from the realization multiplicities of its association-end

roles and thus they are not shown in the SPSs presented in this paper. An example of an

association role is shown in Fig. 4.

Roles with realization multiplicities that have lower limits greater than 0 (e.g., 1..*) are

referred to as mandatory roles. A conforming model must have models elements that conform

to these roles. Both Subject and Observer in Fig. 4 are mandatory classifier roles. Roles that

have realization multiplicities with lower limits that are 0 are referred to as optional roles.

An SPS must have at least one mandatory role. If all SPS roles are optional then the SPS

metamodel characterizes all valid UML class diagrams and thus is not a good discriminator.

Well-formedness rules for the pattern metamodel that cannot be expressed in an SPS’s

role structure are expressed in the OCL. These constraints are called metamodel-level con-

8

straints. Examples of metamodel-level constraints are given in Section 3.1.2.

Semantic pattern properties are expressed as constraint templates in an SPS. For example,

constraint templates are used to constrain the form of specifications for operations that

conform to BehavioralFeature roles. Constraint templates are described in more detail in

Section 3.3. Metamodel-level constraints and constraint templates are defined separately

from the SPS role structure to avoid cluttering the diagram.

3.1.2 An SPS Example

Fig. 4(a) shows a partial SPS that specifies solutions of a restrictive variant of the Observer

pattern [5] (metamodel-level constraints, constraint templates, and some feature roles are

not shown). In this variant of the pattern, there can be one or more observer classes and one

or more subject classes. An observer class must have only one Observes association with a

subject class and a subject class must have only one Observes association with an observer

class.

The SPS in Fig. 4(a) consists of two class roles, Subject and Observer, and an association

role, Observes. The roles define subtypes (specializations) of classes in the UML metamodel,

as shown in Fig. 4(b) (not all specializations are shown). For example, the Observer role

defines a subtype of Class called Observer in the metamodel (see Fig. 4).

The class roles shown in Fig. 4 indicate that conforming class diagrams must have at least

one class that conforms to the Subject role (as indicated by the 1..∗ realization multiplicity

in the role), and at least one class that conforms to the Observer role. A class that conforms

to the Subject role (referred to as a Subject class) must have exactly one structural feature

(e.g., an attribute or query) that conforms to the SubjectState role and exactly one operation

that conforms to the Attach role. A class that conforms to the Observer role must have

exactly one structural feature that conforms to the ObserverState structural feature role,

9

1

1

Parameter

Attach

Subject

Observes

1

(a) Example of an SPS

defines

(b) A Partial View of the Specialized UML Metamodel

StructuralFeatureBehavioralFeature

1
obsv ObserverState

1 1
ObsSub

1 1

1

ClassObserver

1

1
1

11

1..*

|Update (|subj:|Subject) 1..1

|Obs 1..1

|Sub 1..1

|Attach (|obsv|Observer) 1..1

|ObserverState: |ObsStateType 1..1

|Subject
Class Role 1..*

|SubjectState: |SubjStateType 1..1
Association AssociationEnd

Class Role

|Observes
Association Role

|Observer

Figure 4: Partial Views of an Observer Pattern SPS and its Metamodel

and one operation that plays the Update BehavioralFeature role.

The association role Observes specifies associations between Subject and Observer classes.

Each conforming association must have one association-end connected to a Subject class and

the other association-end connected to an Observer class. In a conforming class diagram,

the association-end connected to a Subject class must conform to the Sub role and the

association-end connected to an Observer class must conform to the Obs role. The re-

alization multiplicity on the Sub role specifies that a Subject class must be part of only

one Observes association. Similarly, an Observer class must be part of only one Observes

association.

Additional constraints on model elements that can play roles are expressed as metamodel-

level constraints. For example, a constraint that restricts Subject classes to concrete classes

is expressed in the OCL as follows:

10

context Subject inv: self.isAbstract = false

In the above, Subject is the Class subtype (subclass) defined by the role, isAbstract is an

attribute inherited from the metamodel class Class and self refers to an instance of the

Subject subtype (i.e., a Subject class). A similar constraint is associated with the Observer

role.

Relationship roles and association-end roles can also be associated with metamodel-level

constraints. The following are some of the constraints associated with the Sub and Obs

association-end roles in the Observer pattern:

• An association-end that conforms to Sub must have a multiplicity of 1..1:

context |Sub inv: self.lowerBound() = 1 and self.upperBound() = 1

• An association-end that conforms to Obs must have a multiplicity of 0 or more (∗):

context |Obs inv: self.lowerBound() = 0

Class diagrams that conform to the above constraints describe an observer system in

which subjects can attach themselves to zero or more observers, and an observer is restricted

to monitoring only one subject.

3.2 Establishing Structural Conformance to an SPS

A class diagram structurally conforms to an SPS, with respect to a binding of model elements

to roles, if it satisfies (1) the structural constraints specified by the SPS role structure and (2)

the metamodel-level constraints. The following activities are carried out when establishing

that a class diagram structurally conforms to an SPS:

• Bind models elements to roles: Model elements are bound to the roles they are intended

to play.

11

• Check compliance with classifier role realization multiplicities: This involves checking

that the number of classifiers bound to a classifier role satisfy the realization multi-

plicities associated with the role, and checking that mandatory roles have classifiers

bound to them.

• Establish structural conformance of classifiers to their bound roles: For each classifier

bound to a classifier role this requires establishing that (1) the classifier satisfies the

metamodel-level constraints associated with the classifier role, (2) the features bound

to feature roles in the classifier role satisfy the realization multiplicities of the feature

roles, and that (3) the mandatory feature roles have features bound to them.

• Establish conformance of relationships to their bound relationship roles: This involves

checking that relationships bound to relationship roles satisfy metamodel-level con-

straints associated with the roles and that the relationships have ends attached to clas-

sifiers that conform to the roles at the ends of the relationship roles. For an association

role, bound associations must have association-ends that conform to the association-

end roles and to metamodel-level constraints associated with the association-end roles.

A class diagram that structurally conforms to the Observer pattern SPS, with respect

to a binding, is shown in Fig. 5(a). The bindings are indicated by the dashed lines between

the class diagram and the SPS in Fig. 5 (e.g., Kiln is bound to the Subject role). The class

Kiln describes kiln objects whose temperatures are monitored by TempObs objects.

A partial view of a less restrictive variant of the Observer pattern and a conforming class

diagram are shown in Fig. 6. The SPS shown in Fig. 6(b) specifies class diagrams in which

Subject classes can have one or more structural features that can be monitored and can

be part of one or more associations connected to Observer classes. The Observer pattern

variant shown in Fig. 4 is a specialization of this less restrictive pattern variant, that is, the

12

*

1..1

temp:Temp
ready:Int

AttachTempObs (o:TempObs)

Kiln

obsTemp

TempObs

currTemp: Temp

binds to

UpdateTemp (k:Kiln)

|Sub 1..1

1..*

(a) A Conforming Class Diagram

|ObserverState:|ObsStateType 1..1

|Update (|subj:|Subject) 1..1

|Attach (|obsv:|Observer) 1..1

|SubjectState:|SubjStateType 1..1

|Subject
Class Role 1..*

Class Role
|Observer

(b) Observer Pattern Specification

Association Role
|Observes

|Obs 1..1

Figure 5: A Structurally Conforming Observer Class Diagram

temp:Int
pressure:Int

AttachTempObs (o:TempObs)
AttachPressObs (o:PressObs)

*

1..1

PressureObs TempObs

obsPress

*

currTemp: IntcurrPress: Int

obsTemp

1..1

Kiln binds to

|Observes

|Sub 1..*

Association Role

(b) Pattern Specification for a Variant Observer Pattern

|Obs 1..1

|SubjectState: |SubjStateType 1..*

|Attach (|obsv:|Observer) 1..*

|Subject
Class Role 1..*

|ObserverState: |ObsStateType 1..1

|Update (|subj:|Subject) 1..1

1..*Class Role
|Observer

(a) A Conforming Class Diagram

UpdateTemp (k:Kiln)UpdatePress (k:Kiln)

Figure 6: A Partial SPS for a Variant of the Observer Pattern and a Conforming Class

Diagram

13

set of class diagrams characterized by the SPS in Fig. 4 is a proper subset of the set of class

diagrams characterized by the SPS shown in Fig. 6(b).

3.3 Specifying Semantic Pattern Properties in an SPS

The role structure and metamodel-level constraints of an SPS determine the syntactic struc-

ture of conforming class diagrams. A pattern also describes semantic properties. For ex-

ample, an operation that plays the Attach feature role must have a behavior in which the

observer passed in as an argument to the operation is linked to the subject. These seman-

tic properties are specified by constraint templates in a pattern specification. A constraint

template is an OCL constraint expressed in terms of roles.

Constraint templates that are associated with BehavioralFeature roles constrain the con-

tents of specifications associated with conforming operations. These templates are called

operation templates. An operation template for the Attach BehavioralFeature role is given

below:

context |Subject::|Attach(|obsv:|Observer)

pre: true

post: self.|Obs = self.|Obs@pre → including(|obsv)

The Attach operation template specifies behaviors that attach observer objects to subject

objects. The postcondition states that the observer object is attached. The expression

x@pre in a postcondition refers to the value of x before execution of the operation, and thus

self.|Obs@pre → including(|obsv) states that the observer parameter playing the obsv role is

added to the set of observers associated with the subject.

The Subject role is also associated with the following BehavioralFeature roles (these roles

are not shown in Fig. 4(a)):

• Detach specifies behaviors that remove observers from subjects;

14

• SetState specifies behaviors that set the subject state.

• Notify specifies behaviors that notify observers whenever a change in the subject state

occurs;

• GetState specifies behaviors that return the subject state.

The operation templates for the Detach, GetState, and SetState roles are given below.

The Notify feature role is not associated with an operation template (i.e., it does not restrict

the form of pre- and postconditions associated with conforming operations).

context |Subject::|Detach(|obsv:|Observer)

pre: self.|Obs → includes (|obsv)

post: self.|Obs = self.|Obs@pre → excluding(|obsv)

context |Subject::|GetState():|SubjStateType

pre: true

post: result = |SubjectState

context |Subject::|SetState(|newState:|SubjStateType)

pre: true

post: |SubjectState = |newState

The operation template associated with the Update feature role in Observer is given

below:

context |Observer::|Update(|subj:|Subject)

pre: true

post: |ObserverState = |Function (|subj.|SubjectState)

The above template specifies behaviors in which the state attribute of an observer is updated

15

with a value that is a function of a subject state attribute. The function is defined by the

developer and plays the Function role. The identity function is used in the cases where the

subject state is assigned to the observer state.

Constraint templates can also be used to specify invariant properties in a UML model.

These templates are referred to as property templates. For example, a property template

that specifies a semantic relationship between structural features playing the SubjectState

and the ObserverState roles is given below:

context |Subject

|Obs → forAll(|ObserverState = |Function (|SubjectState))

The presence of the above template in an Observer SPS requires that conforming class

diagrams have a constraint stating that each observer attached to a subject must have a

state value that is a function of the subject’s state value. If the observer state must be the

same as the subject state then the identity function plays the role of Function.

3.4 Establishing Full Conformance to an SPS

A class diagram fully conforms to an SPS, with respect to a binding of model elements

to roles, if (1) it structurally conforms to the SPS (see Section 3.2), and (2) the semantic

properties expressed by constraints in the class diagrams (e.g., operation specifications and

class invariants) conform to the constraint templates in the SPS. Establishing that the se-

mantic properties expressed in a class diagram conform to constraint templates in an SPS

involves (1) instantiating the constraint templates using the role bindings, and (2) establish-

ing that the constraints given in the class diagram refine the instantiations of the constraint

templates.

The result of instantiating a constraint template is an application-specific OCL expres-

sion of the properties described by the constraint template. For example, instantiating the

16

property template given in Section 3.3 using the binding shown in Fig. 5 results in the

following constraint:

context Kiln

obsTemp → forAll(currTemp = temp)

The identity function plays the role of Function in the property template. The class

diagram shown in Fig. 5 must have a constraint that implies the above instantiation if it is

to fully conform to the Observer SPS. In general, a class diagram that fully conforms to an

SPS containing property templates must have constraints that imply instantiations of the

property templates.

Instantiating the Attach operation template using the binding shown in Fig. 5 produces

the following:

context Kiln::AttachTempObs(tobs: TempObs)

pre: self.TempObs → excludes(tobs)

post: self.TempObs = self.TempObs@pre → including(tobs)

Establishing that an operation specification conforms to an operation template involves

proving that the operation specification refines the operation template instantiation. Given

an operation Op with pre- and postconditions

context Op(...): pre: preR; post: postR,

and an instantiated operation template for a feature role ROp

context Op(...): pre: preM; post: postM,

Op is said to fully conform to ROp (with respect to the binding used to produce the instan-

tiation) if (1) preM ⇒ preR, and (2) (preM and postR) ⇒ postM .

These proof obligations must be discharged before one can assert that an operation fully

conforms to a BehavioralFeature role.

As an example, consider the following pre- and postcondition for the AttachTempObs

17

operation shown in Fig. 5:

context Kiln::AttachTempObs(tobs: TempObs)

pre: self.TempObs → excludes(tobs)

post: self.TempObs = self.TempObs@pre → including(tobs) and

ready = ready@pre + 1

The preconditions for AttachTempObs and the instantiation of the Attach constraint

template are equivalent so only the second operation proof obligation needs to be discharged:

self.TempObs → excludes(tobs) and

self.TempObs = self.TempObs@pre → including(tobs) and

ready = ready@pre + 1 ⇒ self.TempObs = self.TempObs@pre → including(tobs)

Automated support for structural conformance checking is possible: mechanisms that

check conformance of UML models to the abstract syntax defined by the UML metamodel

can be extended to support well-formedness checks for patterns as defined by SPSs. Tools

that can mechanically discharge most proof obligations are not likely to appear in the near

future, but it is possible to build a tool that generates proof obligations that can then be

discharged by humans.

3.5 Interaction Pattern Specifications (IPSs)

An Interaction Pattern Specification (IPS) describes a pattern of interactions and is defined

in terms of roles defined in an SPS. The SPS roles are used to specify participants in an

interaction pattern. Formally, an IPS defines a part of the pattern metamodel that specifies

conforming interaction diagrams.

Fig. 7(a) shows an IPS that describes the pattern of interactions between a subject and

its observers initiated by the invocation of the subject’s Notify operation. The expression

|subj : |Subject indicates that the lifeline role subj is played by an instance of a Subject class

18

|state:|SubjStateType := |GetState()

|Update (|subj:|Subject)

|obsv[i]:|Observer

|subj:|Subject

(b) A Partial View of the Specialized UML Metamodel(a) Example of an IPS

Interaction Message

defines

1

1

1

subj
1

GetState

Update

state

|NotifyInteraction

1..*

1..*

1111

|Notify()

Lifeline

1

1..*
obsv

subj

ValueSpecification

i = 1..NumOfObservers

repeat

|NotifyInteraction 1..*

Figure 7: An IPS for the Observer Pattern and a Partial View of its Specialized UML

Metamodel

(i.e., a class that conforms to the Subject role defined in the Observer SPS). The lifeline role

obsv[i] is played by the ith observer in the set of observers attached to the subject playing

the subj role. The repeat fragment in the IPS indicates that the enclosed interaction is

repeated for each observer attached to the subject playing the subj role. NumOfObservers

is the number of observers attached to the subject. The repeat fragment is used to concisely

represent parts of conforming interaction diagrams that have a common structure.

The IPS describes the following interaction pattern:

• Invocation of a subject’s Notify operation (i.e., an operation that conforms to the

Notify feature role) results in calls to the Update operation in each observer linked to

the subject.

• Each Update operation calls the GetState operation in the subject.

An IPS consists of an interaction role that defines a specialization of the UML metamodel

19

class Interaction. In the UML 2.0 an interaction is a structure of lifelines and messages.

Consequently, an interaction role is a structure of lifeline and message roles. Each lifeline

role is associated with a classifier role: a participant that plays a lifeline role is an instance

of a classifier that conforms to the classifier role.

In this paper we restrict attention to messages that represent operation calls. A message

role is associated with a BehavioralFeature role: a conforming message specifies a call to an

operation that conforms to the BehavioralFeature role. For example, the Update message

role is associated with the feature role Update.

Part of the metamodel defined by the NotifyInteraction IPS is given in Fig. 7(b). Life-

line roles define specializations of the Lifeline class and message roles define specializations

of Message.

A sequence diagram conforms to an IPS if the conforming interactions respect the relative

order specified in the IPS. A sequence diagram that conforms to the NotifyInteraction IPS

is shown in Fig. 8. The subject participant in the interaction, s, has two observers attached

s:Kiln

UpdateTemp (s:Kiln)

t2:TempObst1:TempObs

st:int := GetKilnTemp()

m:Monitor

st:int := GetKilnTemp()

UpdateTemp (s:Kiln)
LogUpdateRecd(s)

LogUpdateRecd(s)

NotifyObs()

KilnInteractionsd

Figure 8: A Sequence Diagram that conforms to the Observer IPS

to it: t1 and t2. The sequence diagram has the interaction pattern specified in the IPS: the

20

relative order of the conforming messages, NotifyObs, UpdateTemp, and GetKilnTemp is

the same as the relative order specified in the IPS.

4 Specifying Visitor Pattern Solutions

A class diagram and a sequence diagram describing a typical Visitor pattern solution are

respectively shown in Fig. 9 and Fig. 10. This solution is used by Gamma et al. [5] to

describe the structure and behavior of Visitor pattern solutions. The model describes a

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

Visitor

ObjectStructure

Client

ConcreteVisitor1

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

Element

Accept(Visitor)

ConcreteElementA ConcreteElementB

Accept(Visitor v)
OperationA() OperationB()

Accept(Visitor v)

1 1..*

v−>VisitConcreteElementB(this)v−>VisitConcreteElementA(this)

Figure 9: A Visitor Pattern Solution: Class Diagram

solution consisting of two types of visitors, ConcreteV isitor1 and ConcreteV isitor2, whose

instances visit elements in an element collection (instances of ObjectStructure) consisting

of two types of elements, ConcreteElementA and ConcreteElementB.

The sequence diagram shown in Fig. 10 describes a typical interaction in which the

anObjectStructure object (an instance of ObjectStructure) calls the Accept operation for

21

Accept(aConcreteVisitor)

Accept(aConcreteVisitor)

VisitConcreteElementA(aConcreteElementA)

VisitConcreteElementB(aConcreteElementB)

anObjectStructure aConcreteElementA aConcreteElementB

OperationA()

OperationB()

aConcreteVisitor

Figure 10: A Visitor Pattern Solution: A Sequence Diagram

each of its elements. The element collection consists of two elements - aConcreteElementA is

an instance of ConcreteElementA and aConcreteElementB is an instance of ConcreteElementB.

Execution of the Accept operation in an element results in an operation call to the visitor

passed in as an argument of the Accept operation. The visitor then performs an operation

on the element.

A pattern specification for a variant of the Visitor pattern described by Gamma et al.

[5] is presented in this section. It characterizes simple solution models involving flat sets of

elements such as the one described above, and more complex solutions that involve composite

element structures.

4.1 A Visitor SPS

Fig. 11(a) shows an SPS for the Visitor pattern. The SPS consists of two role hierar-

chies: The V isitor and the Element role hierarchies. A role hierarchy is used to classify

roles. For example, there are two types of V isitor roles in the SPS: the AbstractV isitor

role must be played by classifiers that are either interfaces or abstract classes (referred to

as abstract classifiers), and the ConcreteV isitor role must be played by concrete classes.

22

Class Role
|ConcreteVistor

Classifier Role
|AbstractVistor

Class Role
|ObjectStructure

Classifier Role
|AbstractElement

|Visitor
Classifier Role

|ObjStructElem
Association Role

Class Role
|Element

|ConcreteElement
Class Role

1..*

1..*

ObjectStructure

OperationB()

ConcreteElementB

Accept(Visitor)

Element

OperationA()

ConcreteElementA

|VisitElem(|elem:|ConcreteElement)

1..*

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

Visitor

ConcreteVisitor1 ConcreteVisitor2

|Obj 1..*

|Elem 1..1

1..*

|Accept(|vis:|ConcreteVisitor)
|Operation()

1..*

(a) Visitor SPS (b) A Structurally Conforming Class Diagram

Figure 11: Visitor SPS

The metamodel-level constraints that express these constraints will be given later. A sub

role in a role hierarchy inherits all the roles associated with its super role. For example,

ConcreteV isitor inherits the V isitElem feature role defined in its super role, V isitor.

The Visitor SPS specifies class diagrams consisting of Visitor classifiers that can be

abstract classifiers (e.g., interfaces, abstract classes) or concrete classes, and ObjectStructure

classes associated with Element classifiers. There must be at least one class that plays the

ConcreteV isitor role, at least one class that plays the concreteElement role and at least one

class that plays the ObjectStructure role in a conforming class diagram. Abstract visitor

and element classifiers are optional.

The following are some of the metamodel-level constraints for the Visitor SPS:

23

A classifier that conforms to AbstractV isitor must be an interface or an abstract class:

context |AbstractVisitor inv: self.oclIsTypeOf(Interface)

or (self.oclIsTypeOf(class) and self.isAbstract = true)

A classifier that conforms to ConcreteV isitor must be a concrete class:

context |AbstractVisitor inv: self.oclIsTypeOf(Class)

and self.isAbstract = false

An association-end that conforms to Obj must have a multiplicity of 0..1:

context |Obj inv: self.lowerBound() = 0 and self.upperBound() = 1

An association-end that conforms to Elem must have a multiplicity of one or more:

context |Elem inv: self.lowerBound() = 1

The class diagram shown in Fig. 9 structurally conforms to the Visitor SPS with respect

to the bindings shown in Fig. 11. A more complex class diagram that conforms to the Visitor

SPS is shown in Fig. 12. This diagram includes an element class structure that describes

composite elements. Stereotypes are used to indicate the roles played by model elements

(this is an informal use of UML stereotypes - the stereotype syntax is used simply to visually

mark elements). An instance of CompositeEquipment is a composite element structure that

can also be an element in a larger element structure (i.e., it can be visited by an instance of

the visitor class PricingVisitor). The CompositeEquipment thus plays two roles: Element

and ObjectStructure.

The semantic properties expressed in the visitor pattern concern the interactions that take

place in the context of the V isitElem, Accept and Operation behaviors. These properties

are described by the pattern’s IPS (see Section 4.2). There are no constraint templates

associated with the Visitor SPS.

24

...

...

Equipment

<<Element>>

<<Element>>
Chassis

Accept()
NetPrice():Currency

...

...

CompositeEquipment

Accept()
NetPrice():Currency

...

RemoveEquip()
AddEquip()

0..1

<<Element>>

Accept()

...

<<ObjectStructure>>

<<ObjectStructure>>

<<ObjStructElemAssoc>>

FloppyDisk
<<Element>><<Element>> <<Element>>

Accept()
NetPrice():Currency

Accept()
NetPrice():Currency

Accept()
NetPrice():Currency

BusCard

...

...
...

...

NetPrice():Currency

<<Visitor>>
PricingVisitor

Total:Currency

...
VisitBus()
VisitChassis()
VisitCompEquip()
VisitCard()
VisitFloppyDisk()

...

name:String
1..*

composed−of

Figure 12: A More Complex Visitor Conformant Class Diagram

4.2 An IPS for the Visitor Pattern

Fig. 13 shows an IPS named CompositeInteraction that describes the interactions that take

place when accessing a composite element structure with a visitor.

An instance of an ObjectStructure class plays the lifeline role obj. The ith element of

the object structure plays the lifeline role elem[i]. The interaction structure enclosed in

the repeat fragment is repeated for each element in the object structure that plays the

lifeline role obj. NumOfElements is the number or elements associated with the object

structure. An Accept message is sent to each element, elem[i], in the object structure.

If the element, elem[i], is a composite element then the interaction structure defined in

CompositeInteraction is recursively applied with elem[i] becoming the ObjectStructure

25

|obj:|ObjectStructure

|Accept(|vis:|ConcreteVisitor)

|Accept(|vis:|ConcreteVisitor)

|Operation()

|VisitElem(|elem[j]:|ConcreteElement)

|elem[i]:|Element

|vis:|Visitor

alt

|CompositeInteraction 1..*

i = 1..NumOfElements
repeat

[Else]

|CompositeInteraction
|obj = |elem[i]

[IsChildComposite]

Figure 13: A Visitor IPS

participant (i.e., |obj = |elem[i]). If the element is not a composite element (i.e., it is

a primitive element) then the element calls the V isitElem operation in the visitor. This

results in the visitor invoking an operation on the element. The choice between interaction

structures for primitive and composite elements is represented by the fragment labeled alt.

This fragment is divided into two regions describing alternative interaction structures. A

guard condition determines the region of an alt fragment that is selected in a particular

situation. The guard condition for the top region is [IsChildComposite] which is true if

the element is composite (i.e., the element is an object structure) and false otherwise. The

bottom region of the alt fragment has a guard [Else] which is true when IsChildComposite

is false, and false otherwise.

The simple interaction diagram shown in Fig. 10 conforms to the Visitor IPS:

• The anObjectStructure lifeline conforms to the lifeline role obj,

26

• Lifelines for aConcreteElementA and aConcreteElementB conform to the elem[i]

lifeline role.

• The aConcreteV isitor lifeline conforms to the lifeline role vis.

• The relative order of interactions conforms to the order specified in the IPS. The calls

to the Accept operations and the ensuing interactions are described by interaction

structures obtained by applying the Else part of the alt fragment twice.

Card1:CardFloppyDisk2:FloppyDisk

Bus2:BusChassis1:ChassisFloppyDisk1:FloppyDisk

Bus1:Bus Chassis2:Chassis

EquipStructure:CompositeEquipment

Figure 14: A Composite Part Structure

An example of a composite element structure described by the class diagram given in

Fig. 12 is shown in Fig. 14. The composite element EquipStructure consists of three el-

ements: a primitive element F loppyDisk1, a primitive element Bus2, and a composite

element Chassis1. The composite element Chassis1 consists of a primitive element Bus1

and a composite element Chassis2. Fig. 15 shows a Visitor sequence diagram that is based

on the composite structure shown in Fig. 14.

The interaction sequence involving F loppyDisk1 and the sequence involving Bus2 have

the structure specified by the Else part of the alt fragment. The interaction sequences

involving Chassis1 has the structure specified by the IsChildComposite region of the alt

27

Accept(PricingVisitor)

Operation()

Operation()

Bus1:Bus

Accept(PricingVisitor)

Accept(PricingVisitor)

FloppyDisk1: FloppyDiskEquipStructure:CompositeStructure:Client

VisitFloppyDisk(FloppyDisk1)

Accept(PricingVisitor)
Accept(PricingVisitor)

VisitFloppyDisk(FloppyDisk2)

:PricingVisitor

Operation()

Operation()

Operation()

Card1:Card

Accept(PricingVisitor)

VisitFloppyDisk(Bus1)

Bus2:Bus

FloppyDisk2:FloppyDiskChassis2:ChassisChassis1:Chassis

VisitFloppyDisk(Card1)

VisitFloppyDisk(Bus2)
Accept(PricingVisitor)

GetTotal()

CalcPrice(PriceVisitor)

EquipmentVisitsd

Figure 15: A Conforming Visitor Sequence Diagram

fragment. Establishing this involves recursively applying the CompositeInteraction struc-

ture: Chassis1 becomes the ObjectStructure lifeline, Card1 becomes the primitive element

involved in the interactions described by the Else region, and Chassis2 becomes the com-

posite element involved in the interactions described by the IsChildComposite region.

28

The two examples of conforming sequence diagrams given in this section demonstrate the

wide range of interaction structures characterized by the concisely stated Visitor IPS.

5 An Analysis of Early Experience

The goal of our work is to create a practical pattern specification technique that supports

the use of patterns during design modeling. To achieve this goal we developed a pattern

specification language that (1) uses the UML syntax to the extent possible, and (2) specifies

patterns as specializations of the UML metamodel to support the use of patterns in UML

system modeling. The UML was used as the syntactic base for the pattern specification

language to make it easier for UML modelers to create, understand, and evolve pattern

specifications, and to enable the use of UML modeling tools for creating and evolving pattern

specifications.

To determine the extent to which the technique can be supported by UML modeling

tools we developed a prototype tool for creating pattern specifications on top of the Rational

Rose tool. The tool currently allows users to create SPSs, and to use the SPSs to generate

conforming class diagrams. A problem was encountered when we tried to provide support for

creating and instantiating constraint templates. The version of Rational Rose used did not

support manipulation of OCL constraints. We are not aware of any commercially available

UML modeling tool that fully supports the OCL. It is expected that this situation will change

as tools that support UML 2.0 and OCL 2.0 become available.

To date we have developed full pattern specifications for the following design patterns

[3]: Abstract Factory, Bridge, Decorator, Singleton, Observer, Composite, and Visitor. The

pattern specification language has been presented to and used by graduate students in a

software engineering course to develop specifications of design patterns. All the students

29

were familiar with the UML and had used the UML and patterns in previous courses. Our

collective experience revealed the following about the pattern specification technique:

• The students were able to create specifications for patterns that did not involve the use

of recursion in the interaction diagrams after two lectures on the pattern specification

notation. It was expected that the metamodel level at which the patterns are described

would create some difficulty in presenting the concepts to students not familiar with

metamodeling concepts. The use of the UML notation to express roles helped in

communicating the concepts to the students. Plans for designing and carrying out

controlled experiments that more fully evaluate the ease of learning and using the

technique are underway.

• Specifying patterns that describe behaviors localized in methods or in objects (e.g.,

see the Factory Method and the Iterator patterns) is problematic when the behaviors

cannot be fully captured by operation templates or interaction diagrams. We are

developing extensions to the pattern specification notation that will allow developers

to specify solutions modeled by UML state machines and activity diagrams [10]. It is

important to note that the pattern specification technique is restricted to descriptions

of structure and behavior that can be expressed in the UML.

• Defining recursive behaviors (as required by the Visitor and Decorator patterns) was

problematic using the UML 1.4 interaction diagrams, and the resulting IPSs were often

not easy to understand. The UML 2.0 sequence diagram notation used in this paper

offers a richer set of constructs, including constructs for packaging and referencing

interactions. We had to modify the interpretation of these constructs to fulfill our

needs (e.g., the repeat construct is an adaptation of the UML 2.0 loop construct), but

we were able to maintain the sequence diagram “look and feel” in IPSs. The Visitor

30

IPS given in this paper illustrates how these constructs can be used to represent a

range of behaviors concisely.

We have also used the pattern specification language to specify a large domain pattern for

checkin-checkout systems [8, 11]. The pattern specifies a family of checkin-checkout systems

(e.g., car rental and library systems). We used the pattern to develop UML designs for a

library system and for a car rental system [8].

6 Related Work

There has been considerable work done on specifying design patterns using formal specifi-

cation techniques (e.g., see [2, 13, 15]). Mikkonen [15] uses DisCo, a specification method

based on the Temporal Logic of Actions [12], Eden [2] created a formal specification language

called LePus to specify pattern properties, and Lano et al. [13] use an extension of their

object calculus to specify patterns. The mathematically-based notation can make the tasks

of creating and evolving the pattern specifications difficult for pattern authors.

Lauder and Kent [14] propose an approach to presenting patterns precisely and visually

using graphical constraint diagrams. In their work, patterns are described in terms of three

layers of models: role-model, type-model and class-model. A role-model describes the essential

aspects of a pattern in terms of highly abstract state and behavior elements. A type-model is

a refinement of a role-model in that it refines the role-model state and behavior elements in

terms of types that abstractly specify domain realizations of the role-model. A class-model is

a deployment of a type-model in terms of concrete classes. In their work, pattern realization

is viewed as a refinement process in which a high-level pattern description is refined to a

model realization. Establishing that a model conforms to a pattern (as expressed by a role-

model) involves defining refinement relationships across the model levels. The authors use a

31

graphical form of constraints that is appealing but is not currently integrated with the UML

and it is not clear how tools can support the notation.

Guennec et al. [6] use a UML metamodeling approach in which pattern properties are

expressed in terms of meta-collaborations that consist of roles that are played by instances of

UML metamodel classes. They point out deficiencies in the UML notion of role models and

provide an alternative representation in terms of meta-collaborations that utilize a family

of recurring properties initially proposed by Eden in [2]. Their work does not address (1)

the specification of semantic pattern properties (e.g., behavioral properties), and (2) the

characterization of UML behavioral models.

7 Conclusion and Further Work

The pattern specification technique described in this paper can be used as a base for tools

that support creation and evolution of patterns, and rigorous application of design patterns

to UML models. The tool-independent UML-based notation facilitates sharing of design

patterns across UML modeling tools.

Specifying pattern solutions at the UML metamodel level allows tool developers to build

support for creating patterns and for checking conformance to pattern specifications. This

can be accomplished through interfaces that allow developers to access and specialize a

tool’s internal representation of the UML metamodel. This does not have to require direct

modification of the internal metamodel: the specializations can be created and managed by

a layer that sits on top of the UML metamodel layer in the tool. A new generation of UML

tools that allow software developers to specialize the UML metamodel in limited ways are

emerging (e.g., Rational XDE). These tools are expected to mature to the point where users

can define pattern by specializing the metamodel as described in this paper.

32

A prototype tool that supports the creation of SPSs, and that uses pattern specifications

to generate conforming class diagrams has been developed. A prototype pattern mining tool

that utilizes pattern specifications to search for patterns in UML models generated from

code is currently under development.

The popularity of the UML and the heightened interest in model-driven approaches to

software development has raised interest in model transformations. Techniques and tools

that support systematic and rigorous application of design patterns through model transfor-

mations can ease access to and reuse of design experience during software development. Our

current work is concerned with using the pattern specification technique to support practical

and rigorous pattern-based model transformation techniques [7].

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of

Patterns: Pattern-Oriented Software Architecture. Wiley, 1996.

[2] A. Eden. Precise Specification of Design Patterns and Tool Support in Their Application.

PhD thesis, University of Tel Aviv, Israel, 1999.

[3] R. France, D. Kim, E. Song, and S. Ghosh. Role-Based Modeling Language (RBML)

Specification V1.0. Technical Report 02-106, Computer Science Department, Colorado

State University, Fort Collins, CO, June 2002.

[4] Robert France, Sudipto Ghosh, Eunjee Song, and Dae-Kyoo Kim. A metamodeling ap-

proach to pattern-based model refactoring. IEEE Software, 20(5), September/October

2003.

33

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley, 1995.

[6] A.L. Guennec, G. Sunye, and J. Jezequel. Precise Modeling of Design Patterns. In

Proceedings of UML’00, pages 482–496, 2000.

[7] Sheena R. Judson and Robert B. France. Model transformations at the metamodel level.

In Proceedings of the Workshop in Software Model Engineering, UML’03 Conference,

October 2003.

[8] D. Kim, R. France, and S. Ghosh. A UML-Based Language for Specifying Domain-

Specific Patterns. Special Issue on Domain Modeling with Visual Languages, Journal

of Visual Languages and Computing, To be published in 2004.

[9] D. Kim, R. France, S. Ghosh, and E. Song. A Role-Based Metamodeling Approach to

Specifying Design Patterns. In Proceedings of 27th IEEE Annual International Com-

puter Software and Applications Conference (COMPSAC), Dallas, Texas, November,

2003.

[10] D. K. Kim, R. France, S. Ghosh, and E. Song. A UML-Based Metamodeling Language

to Specify Design Patterns. In Proceedings of Workshop on Software Model Engineering

(WiSME) with UML 2003, San Francisco, California, October 2003.

[11] Dae-Kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee Song. Using Role-Based

Modeling Language (RBML) as Precise Characterizations of Model Families. In Pro-

ceedings of the Interational Conference on Engineering Complex Computing Systems

(ICECCS 2002), Greenbelt, MD, December 2002. ACM Press.

[12] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming

Languages and Systems, 16(3):872–923, May 1994.

34

[13] K. Lano, J. Bicarregui, and S Goldsack. Formalising Design Patterns. In Proceed-

ings of 1st BCS-FACS Northern Formal Methods Workshop, Electronic Workshops in

Computer Science. Springer-Verlag, 1996.

[14] A. Lauder and S. Kent. Precise Visual Specification of Design Patterns. In Proceedings

of ECOOP’98, pages 114–136, 1998.

[15] T. Mikkonen. Formalizing Design Patterns. In Proceedings of the 20th International

Conference on Software Engineering, pp. 115-124, Kyoto, Japan, April 1998.

[16] B.-U. Pagel and M. Winter. Towards pattern-based tools. In Proceedings of EuropLop,

Munchen, 1996.

[17] W. Pree. Design Patterns for Object-Oriented Software Development. Addison Wesley,

1995.

[18] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Ar-

chitecture: Patterns for Concurrent and Networked Objects. Wiley, 2000.

[19] M. Sefikla, A. Sane, and R. H. Campbell. Monitoring Compliance of a Software System

with its High-Level Design Models. In Proceedings of the International Conference on

Software Engineering, 1996, 1996.

[20] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with

UML. Addison-Wesley, 1999.

35

