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F-RATIONAL RINGS HAVE RATIONAL SINGULARITIES

By KAREN E. SMITH

Abstract. It is proved that an excellent local ring of prime characteristic in which a single ideal
generated by any system of parameters is tightly closed must be pseudorational. A key point in the
proof is a characterization of F-rational local rings as those Cohen-Macaulay local rings (R, m) in
which the local cohomology module Hd

m(R) (where d is the dimension of R) have no submodules
stable under the natural action of the Frobenius map. An analog for finitely generated algebras over
a field of characteristic zero is developed, which yields a reasonably checkable tight closure test for
rational singularities of an algebraic variety over C , without reference to a desingularization.

With the development of the theory of tight closure by M. Hochster and
C. Huneke [HH1], a natural question arose. What information does this powerful
new tool provide about the structure of the singularities of an algebraic variety?
The main theorem of this paper is the following:

THEOREM 3.1. If an excellent local ring has the property that all ideals generated
by a system of paramenters are tightly closed, then the ring is pseudorational.

Pseudorationality (Definition 1.8) is a desingularization-free analog of the
notion of rational singularities which makes sense for any scheme. Theorem 3.1
has a characteristic zero version (Theorem 4.3) which can be used to test for
rational singularities of a complex algebraic variety. Recently, A. Conca and
J. Herzog have used Theorem 3.1 to prove that an interesting class of varieties
generalizing Schubert varieties, called the ladder determinantal varieties, have
rational singularities [CH].

Theorem 3.1 is not unexpected. Striking similarities had suggested a connec-
tion between rings with rational singularities and rings in which all (or certain)
ideals are tightly closed. Both are preserved upon passing to direct summands
([Bo], [HH1]). Both are natural settings for the “Briançon-Skoda theorems,” re-
lating powers of ideals to integral closures their powers in a uniform way ([LT],
[HH1]). In the graded case, both force strong restrictions on the degrees of nonva-
nishing elements in local cohomology modules (the so-called a-invariant must be
negative; see [FW]). Prior to this paper, several special cases of Theorem 3.1 had
been proved before, by Hochster and Huneke, and by R. Fedder and K.-I. Watan-
abe; see [FW] and its references.

Manuscript received September 28, 1995.
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The converse to Theorem 3.1 is open. Fedder and Watanabe, both jointly
and individually, have made contributions to this study (see the references). They
jointly coined the term “F-rational” to describe those rings in which ideals gener-
ated by a system of parameters are tightly closed; the name indicates the suspicion
that such rings may well correspond precisely to those with rational singularities.
In particular, the properties are known to be equivalent for graded complete in-
tersections with an isolated singularity [FW] and for all two dimensional graded
algebras [F3], [S3].

More recently, several fascinating connections have been discovered between
tight closure and other types of singularities. Watanabe has proven under certain
additional hypotheses (including the rather strong assumption that the canonical
class of R is finite order in the divisor class group) that F-regular rings have log-
terminal singularites and the F-pure rings have log canonical singularities [W4].
For two dimensional excellent local rings, the link between quotient singularities
F-regular rings is well established [Ha].

Most of the previous progress on the question of rational singularities relied
on techniques partial to the graded case. The main point here is a new charac-
terization of F-rationality (Theorem 2.6) which is interesting in its own right:
a Cohen-Macaulay local ring (R, m) of dimension d and prime characteristic is
F-rational if and only if its highest local cohomology module with support in
the maximal ideal, Hd

m(R), has no nontrivial submodules that are stable under the
action of Frobenius. Equivalently, (R, m) is F-rational if and only if Hd

m(R) is sim-
ple as a left R[F] module, where R[F] denotes the (noncommutative) subring of
EndGrpR generated by R (acting by left multiplication) and the Frobenius operator
(raising elements to their pth powers). This characterization is sufficiently pow-
erful to imply the pseudorationality of F-rational ring without any assumptions
on the singular locus, and without assuming the ring is a complete intersection
or even graded.

Prime characteristic techniques have also been used to study rational sin-
gularities of Schubert varieties and related cohomological problems by Mehta,
Ramanathan, and others (see e.g. [MR], [R]). Indeed, their study of F-split al-
gebraic varieties is closely related to Hochster and Roberts’ concept of F-pure
rings. The existence of an F-split desingularization for a local scheme V places
strong restrictions on the singularities of V and can often be combined with other
ideas to prove rational singularities for V; unfortunately, however, the existence
of the F-split desingularization is neither necessary nor sufficient for rational sin-
gularities. Tight closure appears to narrow this gap, providing a sufficient (and
conjectured necessary) condition for the rational singularities of V without refer-
ring to a desingularization.

The paper is organized as follows. Section 1 contains some preliminary def-
initions and lemmas about tight closure and about rational singularities. In Sec-
tion 2, we develop a cohomological characterization of F-rationality for a local
ring (Theorem 2.6). Section 3 then uses this characterization to prove the main
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prime characteristic result: an excellent local F-rational ring is pseudorational.
The fourth section treats the “geometric case”, that is, the case of finitely gener-
ated algebras over a field of characteristic zero. Because F-rationality is primarily
a prime characteristic concept, we must first define a zero characteristic analog,
which we call F-rational type (Definition 4.1). We then employ fairly standard
“reduction to characteristic p” techniques (similar to, for example, the techniques
of [PS]) to prove the main zero-characteristic result, Theorem 4.3. The final sec-
tion demonstrates how one may use Theorem 4.3 to prove that certain algebraic
varieties over C have rational singularities.

Acknowledgment. The author thanks Mel Hochster for his patience and gen-
erosity while teaching her so much about tight closure.

1. Preliminaries. Throughout this paper R will denote a commutative
Noetherian ring and R� the complement of its minimal primes. The characteristic
of R will often be a prime number p, and in this case q will always denote pe,
where e is some nonnegative integer. When I is an ideal of R, I[q] will denote
the ideal of R generated by the qth powers of the elements of I, or equivalently,
of the generators of I. The notation (R, m) will denote a local ring with unique
maximal ideal m.

Tight closure. In its primary setting, tight closure is a closure operation
performed on ideals in a commutative, Noetherian ring of characteristic p > 0.
One may define tight closure for modules as well, but we will not treat that issue
here. We restrict attention here to the prime characteristic setting, putting off all
zero characteristic considerations until Section 4.

Definition 1.1. [HH1] Let I be an ideal of R. The tight closure I� of I is
defined by

z 2 I�

if and only if there exists c 2 R� and a nonnegative integer N such that

czpe
2 I[pe]

for all integers e � N.
The set of all such z clearly forms an ideal I� containing I.
If I� = I, we say that I is tightly closed. The tight closure operation is a

true closure operation in the sense that (I�)� = I�. We refer the reader to [HH1],
particularly Proposition 4.1, for the elementary properties of tight closure.

Rings in which all ideals are tightly closed (called weakly F-regular rings)
have distinguished themselves as having exceptionally nice properties. However,
nice geometric properties such as normality and Cohen-Macaulayness, and even
certain Briançon-Skoda type theorems will hold for rings in which certain key
ideals, the parameter ideals, are tightly closed.
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Definition 1.2. Elements x1, x2, : : : , xi of a ring R are called parameters if their
images form part of a system of paramenters in every local ring RP of R such
that the prime ideal P contains them. Equivalently, x1, x2, : : : , xi are parameters
if they generate an ideal of height at least i (hence equal to i when they do not
generate the unit ideal).
An ideal of R is said to be a paramenter ideal if it can be generated by parameters.

When R is a local ring which is both equidimensional and catenary (e.g.
excellent), the elements x1, x2, : : : , xi are parameters if and only if they form part
of a system of parameters (s.o.p.) for R.

Definition 1.3. A ring of prime characteristic is F-rational if every parameter
ideal is tightly closed.

We recall that an excellent ring R is F-rational if and only if Rm is F-rational
for each maximal ideal m of R (theorems 4.2 and 6.27 of [HH2]). Furthermore, for
an excellent equidimensional local ring, this is equivalent to some ideal generated
by some full s.o.p. being tightly closed (see proposition 6.27 of [HH2], although
this was first shown in [FW] with some additional hypotheses). Since the main
case of concern to us is the excellent local domain case, we see that the formidable
task of checking that all parameter ideals are tightly closed is therefore reduced
to verifying that some ideal generated by a full s.o.p. is tightly closed. Moreover,
should R happen to be Gorenstein as well, then the fact that some ideal generated
by a s.o.p. is tightly closed implies that, in fact, all ideals are tightly closed
(theorem 4.2g of [HH2]).

Two important properties of F-rational rings are the following: 1) an F-rational
ring is always normal (theorem 4.2 of [HH2]); and 2) an excellent local F-rational
ring is Cohen-Macaulay (theorem 6.27 of [HH2]).

Of course, the goal of this paper is to add a third property to this list: an
excellent local F-rational ring is pseudorational, which is to say, roughly, that it
has rational singularities.

We will need the following lemma, whose proof we sketch below although
the ideas are implicit throughout [HH2].

LEMMA 1.4. If (R, m) is an excellent local ring, then R is F-rational if and only
if R̂ is F-rational.

Proof. In general, it is not difficult to see that if R ,! S is faithfully flat, then
any ideal I � R such that IS� = IS must be tightly closed in R. On the other
hand, parameters in R will be parameters in S, also by faithful flatness. So if R̂
is F-rational, then R is F-rational.

Conversely, if R is F-rational, then it is normal, so R̂ is a domain. Since R̂
is equidimensional and excellent, it is enough to check that some full system
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of parameters x1, : : : , xd generates a tightly closed ideal I of R̂. We may choose
these parameters lying in R.

Now if z 2 R̂ is in (IR̂)� computed in R̂, then we may assume that z is
in R as well, since I is m-primary. The excellence of R ensures that it has a
completely stable test element c 2 R (see theorem 6.1 of [HH2]). This means
that for z 2 (IR̂)� we have

czq 2 I[q]R̂

for all q. But then

czq 2 I[q]R

for all q as well, by the faithful flatness of R ,! R̂, whence z 2 I� in R as well.

Another fact that we will need is the “colon capturing property” of tight
closure.

THEOREM 1.5. Let (R, m) be an equidimensional excellent local ring.
If x1, : : : , xd, xd+1 are parameters in R, then (x1, : : : , xd)�: xd+1 � (x1, : : : , xd)� and
(x1, : : : , xt+s

d )�: xs
d � (x1, : : : , xt

d)�.

Proof. This theorem is essentially due to Hochster and Huneke, but does not
appear in the literature in this generality. Using the existence of completely stable
test elements, however, the proof is easily reduced to the complete case. It is easy
to show that Theorem 1.5 follows from [HH1, theorem 7.15a]. This is worked
out explicitly in [S1], theorem 1.3.2.

Rational singularities. We recall some basic definitions and facts about
rational singularities.

Definition 1.6. A point x on a normal variety X is said to be a rational

singularity if there exists a desingularization W
f
! X such that (Ri f�OW)x = 0

for all i � 1.

We say that X has rational singularities if every point of X is a rational singu-
larity. Obviously, rational singularity is a local property, so it is worth pointing out
that when X is affine, Ri f�OW is the sheaf determined by the module Hi(W,OW ),
the usual sheaf cohomology on W.

It is clear that smooth varieties have rational singularities. Moreover, if x 2 X
is a rational singularity, then the local ringOX,x is Cohen-Macaulay. We also have
the following characterization of rational singularities (see [KKMS, pp. 50–51]):

THEOREM 1.7. Let (R, m) be a normal local Cohen-Macaulay ring essentially
of finite type over a field of characteristic 0. The scheme X = Spec R has rational
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singularities if and only if f�!W = !X, where !W is the canonical sheaf for W and
!X is the canonical sheaf for X.

Pseudorationality is a property of local rings which is an analog of rational
singularities for more general schemes, e.g. rings which may not have a desingu-
larization. When the ring is essentially of finite type over a field of characteristic
zero these two notions are the same. We now recall Lipman and Tessier’s defi-
nition of pseudorationality [LT]:

Definition 1.8. Let (R, m) be a d-dimensional local ring. Then R is pseudo-
rational if it is normal, Cohen-Macaulay, analytically unramified, and if for any
proper, birational map �: W ! X = Spec R with W normal and closed fiber
E = ��1(m), the canonical map

Hd
m(��OW ) = Hd

m(R)
�d
��! Hd

E(OW)

is injective.

Remark 1.9. When Spec R admits a desingularization W �
! Spec R, it is

enough to check only that the map �d
� on local cohomology induced by this � is

injective (see [LT, section 2]).

The map �d
� appearing in Definition 1.8 is an edge map in the Leray-Serre

spectral sequence for the composition of the functors H0
E � f� = H0

f�1(E). We wish
to treat these edge maps in some detail, recording some important facts for future
reference.

We are given a map of schemes f : W ! X, a closed set E � X, and a
quasicoherent sheaf F on W. The composition of functors

H0
E( f�(�)) = H0

f�1(E)(�)

gives rise to a spectral sequence

Hp
E(Rq f�(F)) =)

p
Hp+q

f�1(E)(F),

for any sheaf F of OW modules. The edge maps in the spectral sequence thus
induce a natural map of local cohomology modules for each i and each F :

�i
f : Hi

E( f�F)! Hi
f�1(E)(F).

In particular, this holds when X = Spec R and i = d = dim R and we retrieve the
map �d

f as in Definition 1.8.
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An important property of these edge maps is the following “functoriality
statement”:

LEMMA 1.10. Given a composition of maps of schemes,

W
f
�! Z

g
�! X,

a closed set E � X, and a quasicoherent sheaf F on W, we have

Hi
E((gf )�F)

�i
g
�! Hi

g�1(E)( f�F)
�i

f
�! Hi

f�1g�1(E)(F)

with �i
f � �

i
(g�f ).

Proof. The proof is left to the reader. This general statement about the edge
map in a spectral sequence is easiest to see from the point of view of the derived
category. The reader seeking an explicit proof is referred to [S1], lemma 6.1.7.

Another essential property of the edge maps is “naturality.” Given a map of
schemes

W �
�! X

and a closed set E � X, let Ẽ denote the closed set ��1(E) � W. We have two
different functors from the category of OW-modules to the category of abelian
groups:

fOW � modg
Hi

Ẽ�! fABg

fOW � modg
Hi

E����! fABg.

Fortunately, we have the following naturality relation between them:

LEMMA 1.11. The transformation �i
� is a natural transformation from the func-

tor Hi
E � �� to the functor Hi

E.

Explicitly, this means that for each F 2 ObfOW�modg, there is a morphism
of abelian groups

�i
�(F): Hi

Ẽ(��F)! Hi
E(F)
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such that given any F
�
�! G 2MorfOW � modg, the diagram

Hi
Ẽ(��F)

�i
�

(F)
���! Hi

E(F)

Hi
Ẽ

(���)
?
?
y Hi

E(�)
?
?
y

Hi
Ẽ(��G)

�i
�

(G)
���! Hi

E(G)

commutes.

Proof. We omit the proof of this general statement about edge homomor-
phisms in the Leray spectral sequence for the composition of two additive func-
tors on abelian categories with enough injectives. The reader seeking an explicit
proof is refered to [S1].

Assume that the following diagram of schemes

W 0
�

���! W

�0

?
?
y �

?
?
y

X0
�

���! X

commutes, and let E be a closed subscheme of X with inverse image E0 in X0, Ẽ
in W, and Ẽ0 in W 0. Suppose that G is a sheaf of OW modules, F is a sheaf of
OW0 modules, and  is a map between them, meaning we have a map

G
 
�! ��(F)

of OW modules. There is an obvious induced map

��G
�
�! ��(�

0
�F).

The edge maps involved will all behave nicely, as the next proposition guarantees.

PROPOSITION 1.12. With notation as in the preceding paragraph, the diagram

Hi
Ẽ0(F)  ���

��
Hi

Ẽ(��F)  ���
 

Hi
Ẽ(G)

x
?
?��0

x
?
?��

x
?
?��

Hi
E0(�

0
�F)  ���

��

Hi
E(���0�F)  ���

�
Hi

E(��G)

commutes.
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Proof. The left square commutes by Lemma 1.10 and the right square com-
mutes by Lemma 1.11.

Lipman and Tessier describe a dual definition for pseudorationality in sec-
tion 4 of [LT], whenever R admits a residual complex, which will be the case, for
instance, when R is essentially of finite type over a field. By applying the exact
contravariant functor HomR ((�), E(R=m)), where E(R=m) is an injective hull of
the residue field for R to the setup in Definition 1.8, they are led to:

THEOREM 1.13. Let (R, m) be a d-dimensional local ring with canonical mod-
ule !R. Then R is pseudorational if and only if it is normal, Cohen-Macaulay,
analytically unramified, and if for any proper, birational map �: W ! X = Spec R
with W normal,

��!W = !X

where !x denotes the canonical sheaf of X = Spec R, whose global sections are
of course !R, and !W denotes the canonical sheaf of W. Equivalently, the global
section map H�(W,!W ) �

�! H0(X,!X) is surjective.

Remark 1.14. The map � is obviously an isomorphism upon localization at
any point in the nonsingular locus of Spec R, so that both the maps � and � are
nonzero.

As in Remark 1.9, if Spec R admits a desingularization W �
�! Spec R, it is

enough to check that the corresponding map of canonical sheaves is surjective
for just this one map.

By comparing Theorem 1.13 with Theorem 1.7, it is now easy to see that
pseudorationality is equivalent to rational singularities for rings essentially of
finite type over a field of characteristic zero (e.g. for local rings of algebraic
varieties over C ).

2. A characterization of F-rationality. Throughout this section we let
(R, m) be a local ring of dim d > 0 and x1, : : : , xd a system of parameters for R.
We abbreviate the product Πd

i=1xi simply by x.
We recall that the local cohomology modules with support in m, denoted by

Hi
m(R), can be described as a limit of Koszul cohomology. In particular, for any

fixed system of parameters, x1, : : : , xd,

Hd
m(R) �= lim

�!

t

R
(xt

1, : : : , xt
d)R

,

where the maps are given by multiplication by x = Πd
i=1xi as follows:

R
(xt

1,:::, xt
d) !

R
(xt+1

1 ,:::, xt+1
d )R
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z + (xt
1, : : : , xt

d)R 7! xz + (xt+1
1 , : : : , xt+1

d )R

For a local ring (R, m) of dimension d, we will make the identification

Hd
m(R) = lim

�!

t

R
(xt

1, : : : , xt
d)

throughout, choosing the system of parameters x1, : : : , xd as convenient. With this
identification, it will be convenient to denote an element � 2 Hd

m(R) by

[z + (xt
1, : : : , xt

d)]

(for sufficiently large t). That is, � is represented by z mod (xt
1, : : : , xt

d) 2 R
(xt

1,:::, xt
d)

in the direct limit system defining Hd
m(R). Note that � is equally well written

[xz+(xt+1
1 , : : : , xt+1

d )]. Of course, since any s.o.p. works in the definition of Hd
m(R),

we may change notation, setting xi = xt
i, and therefore we lose no generality by

assuming that a given � 2 Hd
m(R) is represented by [z + (x1, : : : , xd)].

Discussion 2.1. When R has characteristic p, the Frobenius endomorphism

F: R! R

sending r to rp naturally induces a map of local cohomology modules

F: Hi
m(R)! Hi

m(R).

When i = d, the explicit map on elements is easily described: for � = [z +
(xt

1, : : : , xt
d)] 2 Hd

m(R) = lim
�!

t

R
(xt

1,:::, xt
d)

, we have F(�) = [z p + (x pt
1 , : : : , x pt

d )]. Of

course, iterating Frobenius we therefore have:

Fe: Hd
m(R)! Hd

m(R)

� = [z + (xt
1, : : : , xt

d)] 7! �q = [zq + (xqt
1 , : : : , xqt

d )].

Some readers may prefer to think of the local cohomology Hd
m(R) as the

(d � 1)thČech cohomology Hd�1(U ,ORjU) for the scheme U = Spec R � fmg.
That is, Hd

m(R) can be thought of as the cokernel of the final map in the Čech
complex for the open cover of Spec R�fmg given by Spec Rxi as xi runs through
the s.o.p. x1, : : : , xd:

Πd
i=1R x

xi
! Rx.

Under the natural identification, � = [z + (x t
1, : : : , x t

d)] 2 lim
!t

R
(x t

1 ,:::,x t
d)

is easily seen
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to be represented by the equivalence class z
xt 2 Rx in the cokernel, or equally

well (of course) by xz
xt+1 .

The action of Frobenius on Hd
m(R) is then easily interpreted by considering

the action of Frobenius on the sections of OR. In particular, because the action
of F on the sections of OR simply raises them to the pth power, we see that for
� 2 Hd

m(R) represented by z
xt in Rx, F(�) is represented by zp

xpt in Rx. This agrees
with our previous description of the action of Frobenius on Hd

m(R) = lim
!t

R
(xt

1,:::, xt
d)

.

Definition 2.2. Let (R, m) be a local ring of char p and dimension d. We say
that a submodule M of Hd

m(R) is F-stable if F(M) � M.

Note that when M is an F-stable submodule of Hd
m(R), we have a descending

chain of submodules of Hd
m(R),

M = F0(M) � F(M) � F2(M) � F3(M) � � � � ,

where (in a slight abuse of notation) we denote by F(M) the R submodule of
Hd

m(R) generated by F(M). Because Hd
m(R) satisfies the descending chain condi-

tion, this chain eventually stabilizes; that is, there exists a nonnegative integer e
such that Fe(M) = Fe+f (M) for all nonnegative integers f .

For any characteristic p local ring (R, m) of dimension d > 0, we can always
construct F-stable submodules of Hd

m(R). In particular, we state the following
definition:

Definition 2.3. Let (R, m) be a local ring of dimension d > 0. for � = [z +
(x1, : : : , xd)] 2 Hd

m(R), the F-span N� of � in Hd
m(R) is the R submodule of Hd

m(R)
generated by

fFe(�) = [z pe
+ (x pe

1 , : : : , x pe

d )]g1e=0.

It is clear that the F-span of any � 2 Hd
m(R) is an F-stable submodule of

Hd
m(R).

Alternative interpretation 2.4. Let R[F] denote the (noncommutative) subring
of EndGrpR generated by R (acting by left multiplication) and by the Frobenius
map F. The Frobenius action described in Discussion 2.1 makes Hd

m(R) into a
left R[F] module. Interpreted in this context, an F-stable R module is simply a
left R[F] submodule of Hd

m(R). The F-span of an element � 2 Hd
m(R) is just the

cyclic R[F] submodule of Hd
m(R) generated by �.

PROPOSITION 2.5. Let (R, m) be an excellent equidimensional local ring of char-
acteristic p with system of parameters x1, : : : , xd. Then z 2 (x1, : : : , xd)� if and only
if there is some c 2 R0 that annihilates the F-span N� of � = [z + (x1, : : : , xd)] in
Hd

m(R).
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Proof. If z 2 (x1, : : : , xd)�, then there is some c0 2 R0 and some q0 such
that c0zq 2 (xq

1, : : : , xq
d) for all q > q0. Let c = xq0

1 c0. Clearly c 2 R0, and
czq 2 (xq

1, : : : , xq
d) for all q = pe � 1. We conclude that c kills each Fe(�) = [z pe

=

(x pe

1 , : : : , x pe

d )] and hence annihilates N�.
Conversely, suppose that cN� = 0. If R is Cohen-Macaulay, the direct limit

system defining Hd
m(R) is injective, so we may immediately conclude that c[zq +

(xq
1, : : : , xq

d)] = 0 implies that czq 2 (xq
1, : : : , xq

d) for all q, and hence z 2 (x1, : : : , xd)�.
However, some technical modifications are required when R is not Cohen-

Macaulay. In this case, from the fact that c kills N�, we may only conclude that
for each q, there is some nonnegative integer t such that

cxtzq 2 (xq+t
1 , : : : , xq+t

d ).(y)

In this case we can apply the colon capturing properties of tight closure (Theo-
rem 1.5) to see that (y) implies that

czq 2 (xq
1, : : : , xq

d)�.

Because R is excellent, it has a (weak) test element for R : there exists d 2 R0 and
q0 such that d works in all tight closure tests with Q � q0 [HH3, theorem 6.1].
In particular, d “works” in each tight closure test for czq 2 (xq

1, : : : , xq
d)�, so that

for all Q � q0, we have d(czq)Q 2 (xq
1, : : : , xq

d)[Q]. For Q = q0 this yields

dcq0zqq0 2 (xqq0
1 , : : : , xqq0

d )

for all q� 0. Since q0 is fixed and dcq0 2 R0, we deduce that z 2 (x1, : : : , xd)�.

Experts will observe that the condition of Proposition 2.5 that there exists
some c 2 R0 that kills the F-span of � is simply the condition that � is in the
tight closure of 0 in Hd

m(R). This point of view is developed in [S2].
The following theorem shows that the apparent abundance of F-stable sub-

modules suggested by Definition 2.3 is an illusion.

THEOREM 2.6. Let (R, m) be an excellent local Cohen-Macaulay ring of dimen-
sion d and characteristic p > 0. The ring R is F-rational if and only if Hd

m(R) has
no proper nontrivial submodules stable under the action of Frobenius.

Equivalently, R is F-rational if and only if Hd
m(R) is a simple left R[F] module.

Proof. Assume that R is not F-rational and choose a system of parameters
x1, : : : , xd and an element z 2 (x1, : : : , xd)� but not in (x1, : : : , xd). The Cohen-
Macaulayness of R ensures that the direct limit system defining Hd

m(R) is injective,
so that � = [z + (x1, : : : , xd)] is nonzero. Hence the F-span N� of � is clearly a
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nonzero F-stable submodule of Hd
m(R). Now Proposition 2.5 ensures that because

z 2 (x1, : : : , xd)�, this submodule is killed by some c 2 R0. Thus N� can not be
all of Hd

m(R), since Hd
m(R) has annihilator 0. We conclude that N� is a nontrivial

proper F-stable submodule of Hd
m(R).

We now prove the converse. Since R is F-rational if and only if R̂ is, and
since the R submodules of Hd

m(R) are exactly the same as the R̂ submodules of
Hd

m(R) = Hd
mR̂

(R̂), the conclusion will follow for R if we can prove the theorem
for R̂. We henceforth assume that R is a complete local F-rational ring.

The F-rationality of R implies that R is normal and Cohen-Macaulay, so we
may furthermore assume that R is a Cohen-Macaulay domain. Assume Hd

m(R)
has a proper nontrivial F-stable submodule M. Choosing any nonzero � = [z +
(x1, : : : , xd)] in M, we see that the F-spat N� of � is contained in M. We may ther-
fore replace M by N� and assume that our proper nontrivial F-stable submodule
is of the form N� for some � = [z + (x1, : : : , xd)] 2 Hd

m(R).
Letting C be the cokernel of the inclusion map N� ,! Hd

m(R), we have an
exact sequence of R modules with DCC:

0! N� ! Hd
m(R)! C! 0.

Applying the contravariant exact Matlis Dual functor Hom (�, E) (denoted by
�_), where E is an injective hull of the residue field of (R, m), we have an exact
sequence of R modules with ACC:

0 N_
�  Hd

m(R)_  C_  0.

Since Hd
m(R)_ is a canonical module for R, it is a torsion-free R module of rank 1,

its submodule C_ is also torsion-free.
Thus, denoting the fraction field of R by K, we see that either K 
 C_ = 0

or K 
 N_
� = 0. But in the former situation, the torsion-freeness of C_ would be

a contradiction unless C_ = 0, whence C = Hom (C_, E) must also be 0. But this
forces N� = Hd

m(R), contrary to the properness of N� � Hd
m(R).

On the other hand, if K
N_
� = 0, there is some c 2 R0 such that c annihilates

N_
� . but then c also annihilates Hom (N_

� , E) = N�. An application of Proposi-
tion 2.5 then demonstrates that z 2 (x1, : : : , xd)�. However, N� was assumed to
be nonzero, so that [z + (x1, : : : , xd)] 6= 0 and thus z is not in (x1, : : : , xd), contrary
to the assumption that R is F-rational. The theorem is proved.

3. F-rational implies pseudo-rational. We can now prove the main theo-
rem.

THEOREM 3.1. Let (R, m) be an excellent local ring of characteristic p. If R is
F-rational, then it is pseudorational.
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The proof is not difficult after an appeal to the characterization of F-rationality
(theorem 2.6) proved in Section 3, given the “abstract nonsense” of Proposi-
tion 1.12.

Proof of Theorem 3.1. Because R is excellent, it is analytically unramified.
Since excellent local F-rational rings are normal and Cohen-Macaulay, we need
check only the map �d

� is injective for all proper birational maps W �
�! Spec R,

with W normal.
Now if dim R = 0, R must be a field, and the result follows trivially, so we

assume dimension d > 0.
Let W be any normal scheme mapping properly and birationally to X =

Spec R:

W �
�! X,

and let E = ��1(fmg). We now prove that the kernel of

Hd
m(R)

�d
��! Hd

E(OW)

is an F-stable submodule of Hd
m(R).

We have a commutative diagram

1W
F̃

���! W

�

?
?
y �

?
?
y

1X
F

���! X

where 1W = W and the map F̃: 1W ! W is the identity map on the underlying

topological spaces, but the corresponding map of structure sheaves OW
 
�!

F̃�O1W is the Frobenius map: for any open set U � W

OW(U)! F̃�O1W (U) = O1W (F̃�1(U)) = O1W (U)

r 7! r p

Likewise, for the affine scheme Spec R, the map 1X F
�! X is the identity map

on the underlying topological spaces, but the map of sheaves �: OX ! F�O1X

is given by the global section map R ! 1R sending r to r p, that is, the usual
Frobenius endomorphism of R.

Of course, the map OW ! F̃�O1W is a map of OW modules, but the sheaf
F̃�O1W of OW modules must be carefully interpreted. On any open set U � W,
the OW(U)-module F̃�O1W(U) is, as an abelian group, the same abelian group as
OW(U). However, the action of an element r in the ring OW (U) on an element x
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of the group F̃�O1W(U) = OW(U) is defined by r � x = r px. The same is true for
the Ox module structure of F�O1X .

We wish to apply Proposition 1.12 to this situation, where 1W = W plays the
role of W 0 from the proposition, where the structure sheaf O1W plays the role
of F , where OW plays the role of G, and where the map between them is the
obvious map  : OW ! F̃�O1W defining the scheme map above. The pushdown
of this map to the affine scheme X = Spec R,

�� : ��OW ! ��F̃�O1W ,

corresponds to the map, here described by global sections,

R!1 R

r 7! r p

Proposition 1.12 reveals the following commutative diagram:

Hd
E(O1W )  ���

�F̃
Hd

E(F̃�O1W )  ���
F̃

Hd
E(OW)

x
?
?��

x
?
?��

x
?
?��

Hd
m(1R)  ���

�F
Hd

m(1R)  ���
F

Hd
m(R).

The bottom row in this diagram describes exactly the same action as the F-

action described in Discussion 2.1: the map Hd
m(R) F

�! Hd
m(1R) is the natural map

induced by the map of R modules R F
�! 1R whereas the map Hd

m(1R)
�F�! Hd

m(1R)
is the map that reinterprets the second copy of 1R as a ring, as opposed to an R
module via Frobenius (as in the first copy). The top row in this diagram may be
interpreted as giving a natural action of Frobenius on Hd

e (OW).
Condensing the above diagram, we have a commutative diagram

Hd
e (OW)  ���

F̃
Hd

E(OW)
x
?
?��

x
?
?��

Hd
m(R)  ���

F
Hd

m(R).

It is now easy to see that the kernel of �� is F-stable. For if � 2 Hd
m(R) is in the

kernel of ��, then F̃(��(�)) = 0 = ��(F(�)), so F(�) 2 kernel �� as well.
This completes the proof of Theorem 3.1, for if R is pseudorational but fails

to be F-rational, the kernel of

Hd
m(R)

�d
��! Hd

E(OW)
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is a nonzero F-stable submodule of Hd
m(R). But �� is never the zero map, because it

is dual to the natural map � : ��!W ! !X of the canonical sheaves (Remark 1.14),
and therefore kernel �� must be a proper submodule as well. This contradicts
Theorem 2.6, the theorem that ensures that for a local F-rational ring, Hd

m(R)
should have no proper, nontrivial F-stable submodules.

An immediate consequence of Theorem 3.1 is a characteristic p analog of
Boutôt’s theorem that a direct summand of a rational singularity (in characteris-
tic 0) is a rational singularity [B].

COROLLARY 3.2. If a local excellent ring R of characteristic p is a direct sum-
mand, as an R module, of a regular (or even F-regular) overring, then R is pseu-
dorational.

Proof. It is easy to prove that a ring which is direct summand of an F-regular
ring must itself be F-regular. In particular, such rings are F-rational, and therefore
pseudorational.

We also note an interesting corollary that gives a sufficient condition for a
ring to be pseudorational in terms of its integral extensions.

COROLLARY 3.3. If (R, m) is an excellent local domain of characteristic p 6= 0
such that every ideal generated by parameters (equivalently, some ideal generated
by a full system of paramenters) is contracted from every module finite extension,
then R is pseudorational.

In particular, if R is a direct summand (as an R module) of every integral
extension, then R is pseudorational.

Proof. This is an immediate consequence of the characterization of the tight
closure of parameter ideals given in [S2]: I� = IR+\R for any parameter ideal I in
an excellent local domain of prime characterisitc, where R+ denotes the integral
closure of R in an algebraic closure of its fraction field.

It is possible that the condition that some ideal generated by a full system
of parameters is contracted from every module-finite extension and characterizes
pseudorational rings of characteristic p 6= 0.

4. Results in zero characteristic. Although tight closure is essentially a
characteristic p phenomenon, several notions of tight closure exist for various
classes of rings containing a field of characteristic zero [HH3]. However, the
theory is not yet very well developed. It is not at all clear whether or not the
various definitions are the same; and if not, it is not clear which of the definitions
is the “right” one. Moreover, there has been very little progress towards defining
tight closure in mixed characteristic, i.e., for rings containing Z but not Q .

The goal of this section is to make sense of the property of F-rationality in
characteristic zero for the “geometric case,” that is, for finitely generated algebras



F-RATIONAL RINGS HAVE RATIONAL SINGULARITIES 175

over a field of characteristic zero, and then to give an analog of Theorem 3.1 in
this case. We will accomplish this not by appealing to any of the various defini-
tions of tight closure alluded to above, but rather by a straightforward reduction
to characteristic p approach that bypasses the need to define tight closure for these
rings. Our definition of “F-rational type” (Definition 4.1) is an analog of “F-pure
type” as defined by Hochster and Roberts in [HR] and “F-contracted type” (or
“F-injective type” in more recent parlance) as defined by Fedder in [F2]. It is pos-
sible that our definition is equivalent to the property that all parameter ideals are
tightly closed with respect to some given definition of tight closure, a method of
defining F-rationality explored in [HH3]. However, this issue remains unresolved,
and the definition given here appears to be geometrically more natural.

We first indicate briefly the idea involved in the definition of F-rational type
before recording the precise definition (Definition 4.1). Suppose that R is a finitely
generated algebra over a field k of characterisitic zero. We replace the structural
homomorphism k! R by a flat map of finite type A! RA where A is a finitely
generated Z-subalgebra of k, RA is some finitely generated A algebra and such that
by tensoring over A with k we get back the structural homomorphism k! R. The
closed fibers of the map A! RA are all finitely generated algebras over various
finite fields. Because this map is flat, our geometric intuition indicates that if all
the closed fibers (at least on some dense open set of Spec A) have a particular
“nice” property, then indeed, the fiber over the generic point (which is roughly
the original ring R) should share this “nice” property.

We now proceed with the formal definition.

Definition 4.1. Let k be a field of characteristic 0 and let R be a finitely
generated k-algebra. We say that R is of F-rational type if there exists a finitely
generated Z-algebra A contained in k, a finitely generated A-algebra RA, and a
flat map A ,! RA such that:

(i) (A ,! RA)
A k is isomorphic to k ,! R, and
(ii) the ring RA 
A

A
�

is F-rational for all maximal ideals � in a dense open
subset of Spec A.

We note that whether or not the k-algebra R is F-rational, a finitely generated
Z-algebra A and a finitely generated A-algebra always exist such that condition
(i) holds, In fact, if R has presentation R = k[X1,X,:::, XN ]

(F1,F2,:::, FM) , then we can let A
be the finitely generated Z algebra to which all the elements of k have been
adjoined which occur as coefficients of the F0is and let RA = A[X1,X,:::, XN ]

(F1,F2,:::, FM) . The
map A! RA can then be replaced by a suitable localization so as to ensure the
flatness required by condition (i). It is not difficult to check, then, that condition
(ii) does not depend on the choice of A.

By localizing A and RA further at an element of A, we may assume that condi-
tion (ii) holds for all maximal ideals of A. Furthermore, an additional application
of the lemma of generic freeness allows us to assume, by localization of A and
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RA at an appropriate element of A, that any finite number of finitely generated
RA-modules or RA-algebras are also A free (theorem 24.1, [M]).

We are led to the natural extension

Definition 4.2. Let X be a scheme of finite type over a field of characterisitic
zero. We say that a point x 2 X has F-rational type if x has an open affine
neighborhood defined by a ring R of F-rational type. We say that the scheme X
has F-rational type if every x 2 X has F-rational type.

We now present the characteristic zero version of the main theorem:

THEOREM 4.3. Let X be a scheme of finite type over a field of characteristic
zero. If X has F-rational type, then X has rational singularities.

Proof. Because both conditions are local, we assume X is the affine scheme
Spec R, where we have fixed a presentation

R =
k[X1, X, : : : , XM]
(F1, F2, : : : , Ft)

for R as a k-algebra. We thus think of X = Spec R as embedded in A M
k . If W is

a desingularization for X, the W may be identified with BlIR = Proj(R[It]) for
some ideal I defining the singular locus of R [H]. That is, W � PN

R for some N.
We now choose a finitely generated Z-algebra A contained in k such that A

contains not only all the coefficients of the elements Fi occurring in the presen-
tation for R, but also all the coefficients of some finite set elements generating
the ideal I. Thus, we have IA � RA such that IAR = I. Not only does RA
A k = R,
but when WA = Proj(RA[IAt]), we have that WA 
A k = W as well.

By localizing A sufficiently, we may assume that all of IA, RA, R=IA, and R[It]
are A-free. Hence both the maps WA �! Spec A and Spec R = X �! Spec A
are flat. In fact, because the map WA �! Spec A is generically smooth, we may
further localize A so as to assume that WA is actually A-smooth.

For a given maximal ideal � in Spec A we let A=� = Ā and we denote the

corresponding closed fiber schemes and maps by WĀ
f Ā
�! XĀ = Spec RĀ and so

forth. Note that WĀ ! Spec Ā is smooth because it arises by base change from
the smooth map WA ! A.

The scheme WA is a closed subscheme of PM
RA
� A M

A � PN
SA

, where SA =
A[X1, : : : , XM] defines the affine space into which XA embeds, and the fibered
product is taken over Spec A. We can therefore define the relative canonical
sheaf !WA of WA as

!WA = EXT d
O
P

N
SA

(� N � 1))
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and by yet further localization of A, we also assume that !WA is a flat sheaf of
OA-modules.

With this setup, the OA-flatness of OWA implies that for a given A-albegra B,
the natural map

OB 
OA EXT
i
O
P

N
SA

(OWA ,O
P

N
SA

(� N � 1)) �!

EXT i
(O
P

N
SA


OB)(OWA 
OA OB, (O
P

N
SA

(� N � 1)
OA OB))

�= EXT i
O
P

N
SB

(OWB , (O
P

N
SB

(� N � 1))

is an isomorphism.
Thus, for any field L such that A! L, we have L
A!WA

�= !WL . In paricular,
!WA 
OA OĀ = !WĀ

and !WA 
OA Ok = !W .
We now begin the descent to characteristic p by replacing the structural

homomorphism k! R by the map A {
! RA as described in the above discussion.

We know that each closed fiber of { is a finitely generated algebra over a field
and is F-rational, thus Cohen-Macaulay and normal. Hence the generic fiber as
well enjoys these properties, and so does RA 
A k = R. Certainly R is excellent,
hence analytically unramified.

It remains to show that the natural map

f�!W
�
! !X

is surjective. Because X is affine, it is enough to check that the map of global
sections, denoted by !W (W) �

! !X(X) = !R, is surjective.

We consider the map WA
fA! Spec RA = XA which induces the map of OX-

modules ( fA)�!WA

�A�! !XA and a global section map,

!WA(WA)
�A�! !RA .

By localization at a single element of Spec A we may assume that the cokernel of
�A is A-free of some rank. Choose a maximal � in Spec A. After tensoring over
A with A=� = Ā, the map

!WĀ
(WĀ)

�Ā�! !RĀ

has A=�-free cokernel of the same rank. But !AĀ
is the canonical sheaf for the

desingularization WĀ of Spec RĀ, and our assumption that R be F-rational type
implies that RĀ is F-rational. Therefore, RĀ is psuedorational by Theorem 3.1,
and �Ā must be surjective, by 1.13, a contradiction.
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5. Applications. In general, it is quite difficult to verify that a given variety
has rational singularities. Work of Flenner [Fl], Watanabe [W1], Fedder [F1] [F2],
and Fedder and Watanabe [FW] has addressed this issue in the case where the
variety in question is the spectrum of a graded algebra over a field. In particular,
Flenner [Fl] and Watanabe [W1] independently characterized rational singularities
for graded rings with an isolated singularity at the irrelevant maximal ideal.

Theorem 4.3 provides a new tool for easily checking that certain varieties
have rational singularities. We briefly indicate how this may be accomplished
here.

Example 5.1. Consider the “ladder” of indeterminates:

X11 X12 X13

X21 X22 X23 Y13

X31 X32 X33 Y23

Y31 Y32 Y33

We let ∆1 denote the determinant of the matrix (Xij) and ∆2 denote the
determinant of the matrix (Yij) (setting X22 = Y11, X23 = Y12, X32 = Y21, X33 =
Y22). The ring

R =
k[Xij, Yij]
(∆1, ∆2)

is the coordinate ring for a complete intersection variety of dimension 12 sitting
in A 14. This is a simple example of what is known as a “ ladder determinantal
variety.” Ladder determinantal varieties were first studied by Abhyankar [Abh]
during his investigations of the singularities of Schubert varieties.

Theorem 4.3 can be used to demonstrate that the variety determined by ∆1, ∆2

in A 17
k (that is, Spec R) has rational singularities, when k is any field of charac-

teristic zero.
The point is that the map

Z �!
Z[Xij , Yij]
(∆1, ∆2)

is a faithfully flat (indeed free) map. The fibers over the closed points all have
the form

Z=pZ[Xij , Yij]
(∆1, ∆2)

for vaious prime numbers p. One then easily checks directly that these closed fiber
rings are all F-rational by verifying by brute force that a particular linear system
of parameters is tightly closed. Or one can use the criterion for F-rationality of
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graded algebras described in [HH3, theorem 7.8]. This implies that the generic
fiber ring

Q [Xij , Yij]
(∆1, ∆2)

has F-rational type, as does any ring of the same form where Q is replaced by
some larger field, e.g. C . Theorem 4.3 now implies that the variety V(∆1, ∆2) �
A 17

k has rational singularities.
A general method for checking F-rationality in rings of this type is developed

in [GS], where it is shown that all complete intersection ladder determinantal va-
rieties are F-regular and hence have rational singularities. The above is an easy
special case. Conca and Herzog have generalized these results, using Theorem 3.1
to prove that all ladder determinantal varieties are rational singularities. Although
it is possible that the particular Example 5.1 may be directly checked to have
rational singularities, as far as the author knows, there is no proof that ladder
determinantal varieties in general are rational singularities that does not use The-
orem 3.1.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, DEPARTMENT OF MATHEMATICS, 2-167,
CAMBRIDGE, MA 02139
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