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Robert Glöckner2, Stefan Kolling3 and Thomas Böhlke1

Abstract

Mechanical properties of short-fiber reinforced composites are crucially influenced by their microstructure. The micro-

structure itself is mainly governed by the manufacturing process like injection or compression molding. The main

contribution of this paper lies in the homogenization of linear elastic properties using experimental microstructural

information. For this purpose, the microstructure of injection-molded specimens made of polypropylene reinforced with

30wt.% of short glass fibers are analyzed through micro-computer tomography (mCT) measurements. Applying a recently

developed segmentation algorithm, the spatial position, the orientation distribution and the length of the fibers are

determined. This data is evaluated in terms of orientation tensors and length distribution, and is used within three mean

field approaches: a self-consistent homogenization method, the interaction direct derivative estimate, which is based on

the three-phase model, and a two-step bounding method. All methods account for the orientation, the length and the

diameter distribution. The numerical results are compared to experimental tensile tests.
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Introduction

Due to the growing effort in building lightweight parts,
materials such as short-fiber reinforced composites
(SFRCs) have taken over a substantial market share.
This class of material is relatively cheap, comparatively
easy to process, and provides advantageous specific
mechanical properties. However, to design parts made
of SFRCs is still a challenging task, since their mech-
anical behavior strongly depends on the microstructure.
The microstructure of SFRCs is characterized by the
spatial distribution, the orientation distribution, the
distribution of the aspect-ratio, and the volume fraction
of the fibers.1 Particularly in shell-like parts, the fibers
are oriented in layers.2,3 In the boundary layer, the
fibers are mostly oriented in the filling direction, and
in the core layer in the transversal direction, which is
perpendicular to the filling direction, see Figure 1.
Thus, a reliable prediction of the mechanical properties
depends on the particularities of the microstructure. In
order to obtain this microstructural information, X-ray

observations by means of computed tomography are,
meanwhile, a common approach. Micro-computer
tomography (mCT) in laboratories or synchrotron tom-
ography have been used not only to observe and evalu-
ate microstructures but also to characterize damage
through ex situ and in situ observations.4,5 A detailed
review on X-ray tomography can be found in Maire
and Withers.6 This methodology produces a three-
dimensional voxel-based picture of the specimen in
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grayscale, and the question arises of how this informa-
tion could be used to predict the mechanical properties.
As a consequence of the complex microstructure and
material behavior, phenomenological approaches are
not quite suitable for this task. Alternatively, full field
approaches based on solutions of finite element and
finite cell models or fast Fourier transformation meth-
ods may be applied partially relying on mean micro-
structure data like orientation tensors, which have been
previously extracted from CT data.7–9 Compared to the
details of the microstructure, efforts to calculate full
field solutions directly based on CT scans are still han-
dicapped by rough meshes since the computational time
is extremely high for these methods.10,11 Due to their
efficient and straight forward algorithms, mean field
approaches can be applied to calculate the effective
material behavior regarding experimentally determined
microstructure data. Especially in the case of SFRCs,
the microstructure information, such as the fiber orien-
tation distribution, can be extracted from the CT
images in two different ways: In the first approach, the
mean fiber orientation distribution in terms of fabric or
orientation tensors is calculated directly using voxel
data.2 The second approach consists of a segmentation
of the fibers, and a calculation of the mean orientation
distribution based on these segmented data.

Generally, the set of mean field methods can be
divided into bounding and estimating methods. The
former specify an admissible range of possible effective
properties for given microstructural information. Since
the first order or simple bounds, known as the Voigt and
Reuss bounds,12,13 only take into account the volume
fractions, they enclose a wide range of admissible effect-
ive properties. Provided by Hashin and Shtrikman,14–16

the second-order bounds are based on a variation prin-
ciple. This approach was extended and applied to aniso-
tropic materials17 and also nonlinear material
behavior18 as well. Contrary to the bounding methods,
estimating approaches give approximations of the

effective properties. The Mori-Tanaka,19 the self-consis-
tent20 (SC), the generalized self-consistent21 and the
interaction direct derivative (IDD)22 estimates are
prominent representatives of such mean field schemes,
which take the interaction of the inclusions into account.
Based on the Eshelby solution,23 the general idea of SC is
to embed each inclusion in an infinite matrix with the
properties of the effective material. Due to this assump-
tion, the SC approach owns an inherently implicit char-
acter. The SC method was applied to granular and also
to particulate materials with multiple phases and non-
linear properties.24–26 The major shortcoming of SC is
that the interaction between the inclusions and the sur-
rounding matrix is not considered directly. This draw-
back is the main motivation to apply methods like IDD,
which are based on the three-phase model. Here, one
inclusion interacts with the matrix directly and with
the other inclusions through the effective medium.
Additionally, two-step (TS) methods may be applied
to homogenize particulate materials with arbitrarily ori-
ented inclusions.27 Within these methods, the micro-
structure is decomposed into as many domains as there
exist different inclusions. Each domain is homogenized
individually, and then all domains are homogenized to
determine the effective properties. This method can be
applied to a much larger class of microstructures com-
pared to second-order bounding schemes28 and also in
conjunction with strength prediction.29

In the present work, a composite material consisting
of polypropylene reinforced with 30wt.% of short glass
fibers (PPGF30) is examined. The microstructure of this
composite material is analyzed and segmented using
mCT and a new segmentation algorithm. The segmented
microstructure data consist of non-aligned fibers with
varying aspect-ratios. It is used within three homogen-
ization approaches directly, namely the SC method, the
IDD and a bounding TS approach. In all applied meth-
ods, each fiber is considered in the homogenization pro-
cedure without a need of orientation averaging of
transversal isotropic stiffnesses or compliances for uni-
directional structures like it is often done in conjunction
with the Mori-Tanaka approach.30

Notation

A direct tensor notation is preferred throughout the
text. If tensor components are used, then Latin indices
are used and Einstein’s summation convention is
applied. Vectors and second-order tensors are denoted
by lowercase and uppercase bold letters, e.g., a and A,
respectively. The composition of two second-order or
two fourth-order tensors is formulated by AB and AB.
A linear mapping of second-order tensors by a fourth-
order tensor is written as A ¼ C½B�. The scalar product
is denoted by A � B. We define the composition

Figure 1. Three-layer model of injection-molded shell-like

parts.
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operator « via ðA«BÞ½C� ¼ ACB, the dyadic product
operator � as A� Bð Þ C½ � ¼ B � Cð ÞA and the contrac-
tion operator �½ �½ � with ða� bÞ � ðC a� b½ �½ �Þ

¼ ða� aÞ � ðC½b� b�Þ. Arbitrary vectors a and b,
second-order tensors A, B and C, and the fourth-
order tensor C are used in the foregoing definitions.
The identity on symmetric second-order tensors is
denoted by I

s. The brackets h�i indicate ensemble aver-
aging which for ergodic media can be identified with
volume averages in the infinite volume limit. A super-
imposed bar, e.g., �", indicates that the quantity refers to
the macroscale. The quantity 30wt.% denotes a mass
fraction of 30%.

Experimental methods

Fabrication of specimens

The materials for the test specimens were compounded
at the Fraunhofer-LBF to ensure control of all constitu-
ents. The polypropylene (PP) Moplen HP500N
(Lyondell-Basell) was used as matrix material. In the
reinforced configuration (PPGF30), a fraction of
30wt.% of short glass fibers was added to the polymeric
bulk material. To assure stability, durability, and an
adequate performance of the reinforced system, three
additives were appended to the compound. A fraction
of 0.5wt.%of Irganox B225 (BASF) served as long-term
thermal stabilizer. Moreover, 0.07wt.% of the calcium
stearate acid scavenger Ceasit AV (Baerlocher) and
3.0wt.% of the coupling agent Exxelor PO 1015
(ExxonMobil) were added. To ensure the determination
of the effect of the reinforcing glass fibers on the mech-
anical properties, these additives were added not only
to the reinforced material but also to the pure PP
material.

Plates of the dimensions 80mm � 80mm � 2:5mm
were produced by means of injection molding from
each of the compounded materials. In order to achieve
a homogeneous filling of the plate cavity with a parallel
melt front, a triangular gating system was used as
infeed.31,32 The specimens required for mechanical test-
ing were machined from these plates. The specimen
geometry has been chosen in accordance with
Becker.31 For the determination of anisotropic material
behavior, the mechanical tests were performed at dif-
ferent orientations. Considering the SFRC, the speci-
mens were extracted at an angle of 0

�

in reference to the
filling direction during injection molding, and angles of
45
�

and 90
�

, respectively. For the examination of the
non-reinforced material, the specimens were extracted
at 0

�

and 90
�

. Details concerning the specimen geom-
etry of the tension rod as well as the different extraction
angles are shown in Figure 2(a).

Quasi-static testing methods

The quasi-static tensile tests were conducted on a Z020
testing machine by Zwick-Roell with a velocity of
1mm/min. Temperature and humidity during the test-
ing procedure were kept at constant values of 23�C and
50%, respectively. To avoid influences of long-term
post-crystallization processes taking place in the PP
matrix phase, all samples were tested within a two
week time frame.

The deformation of the specimen was observed using
2D digital image correlation.33,34 Therefore, all speci-
mens were spray-painted with a stochastic grayscale
pattern. During the testing procedure, different stages
of the sample deformation were captured with a mono-
chromatic CCD-camera equipped with a resolution of
1280 px � 1024 px, a color depth of 8 bit and a pixel-

Figure 2. (a) Locations of specimen extraction from plate (circles distinguish position of samples for microstructural analysis) and

(b) example of 2D surface strain field calculated by the correlation software, and averaging area on a tension specimen.
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size of 8 mm/px. Subsequently, local strain measurement
was performed using the software package Vic2D
(Limes GmbH). This software calculates the strain
field of the grayscale pattern for an area of interest,
by analyzing the deformation of predefined grayscale
facets between consecutive deformation steps and a ref-
erence image. As the correlation results refer to pixel
differences, they have to be calibrated to the actual
geometry of the specimen. In order to get stress–
strain curves, the local strain values in a rectangular
area of 12mm � 2mm over the region of maximum
deformation were averaged and combined with the
data from the machine integrated force sensor. The sur-
face strain field and the averaging area are shown in
Figure 2(b).

For each test configuration, the final result was gen-
erated from average values of five single tests. In
Figure 3(a), these results are shown for the pure PP
matrix material for specimen oriented in flow (0

�

) and
transversal (90

�

) direction. Since the difference between
the two curves is in the range of scatter of the single ex-
periments, the matrix material was considered to be iso-
tropic and the results of both orientations were averaged.

The stress–strain response of the SFRC shows a sig-
nificant deviation depending on the orientation of
sample extraction from the sample plate, see
Figure 3(b). This mechanical anisotropy is a result of
the material orientation induced by the fiber distribu-
tion inherent in the injection-molded plates.

The linear elastic properties for the subsequent hom-
ogenization procedure have been calculated according
to DIN EN ISO 527 1-4.35 Since no distinct definition
of a linear elastic region is possible, the data were eval-
uated in the small strain intervals 0.05–0.25%, 0.05–
0.5% and 0.05–1.0%, as shown in Table 1. Any
influence of viscous material behavior was neglected.

Based on Hooke’s law, Young’s modulus was calcu-
lated as the secant gradient in the examined strain
range as shown in Figure 3(a). The values of Young’s
modulus and Poisson’s ratio for both materials are
given in Table 1. The Poisson’s ratios were calculated
as the secant gradient in the interval of interest of the
lateral strain versus longitudinal strain curve. The elas-
tic properties of the glass fibers were taken from litera-
ture and are also shown in Table 1.

Analysis of microstructure

Micro-computer tomography measurement

The cylindrical specimens for micro-computer tomog-
raphy (mCT) measurements were milled from the afore-
mentioned plate at the positions defined in Figure 2(a).
To achieve the maximum resolution needed to accur-
ately resolve the reinforcement fibers, the diameter of
the specimen should have a maximum diameter of
4 mm. An exemplary mCT specimen is shown in
Figure 4(a) on the planar mount.

The samples have been analyzed with a SkyScan
1072-100 CT apparatus, using its maximum resolution
of 1.8 mm. As shown in Figure 4(b), the specimen is
exposed to a low intensity X-ray while being rotated
around its vertical axis. The absorption of the X-ray
depends on the density of the constituents in the
sample and, therefore, the amount of the X-ray that
reaches the detector varies with the sample orientation.
For each full rotation, the sample is analyzed in small
steps on the vertical axis, resulting in layer-wise voxel
information of the density distribution. The detected
images are transformed to slice images as shown in
Figure 5 and to a three-dimensional geometrical repre-
sentation of the sample.

(a) (b)

Figure 3. (a) Stress–strain curve of PP matrix material showing details on derivation of Young’s modulus and (b) stress–strain curve

of SFRC with 30 wt.% of glass fibers.
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Evaluation of microstructure

With the new evaluation method, it is possible to deter-
mine the fiber length, the diameter, the orientation and
the local position distributions by means of an iterative
analysis of mCT images.36 This analysis method is based
on model assumptions considering geometrical and
symmetrical properties of the fiber objects, such as a
constant diameter and a small curvature without turn-
ing points. From these assumptions, heuristic

approaches for the identification attempts of single
fibers are derived. Furthermore, the model assumptions
allow for assigning voxels of the mCT images to indi-
vidual fibers in spite of the inherent image noise. As
shown in Figure 6, the new approach consists of four
functional units: in the image initialization phase, the
mCT images are prepared for the evaluation process by
means of filtering and binarization (see Figure 5). To
achieve a reasonable binarization, the proper fiber
volume fraction has to be defined. For the present
work, the fiber volume fraction, known from the plate
fabrication process, was confirmed by a thermogravi-
metric analysis. In the next step, the iterative Monte-
Carlo pattern recognition process is started. Each of the
parallel executed recognition processes evaluates inte-
grals over a spherical region at random positions to
identify centers of separate fiber sections.36 After the
identification of these fiber centers, first approximations
of the fiber orientation n are determined by using the
main eigenvalues of second-order moments. Exact
orientation and length of the fiber are then obtained
by the calculation of integrals over a cylindrical
region for different directions n ¼ �n� �n.

Figure 4. (a) Specimen for analysis of microstructure on mCT mount and (b) mCT measurement setup.

Table 1. Experimental values of Young’s modulus E and Poisson’s ratio �.

Strain interval

0.0005� 0.0025 0.0005� 0.005 0.0005� 0.01

Material E ½MPa� � ½�� E ½MPa� � ½�� E ½MPa� � ½��

PP 0� 1665.5� 6.6% 0.364� 6.4% 1608.1� 3.3% 0.360� 4.4% 1450.4� 2.1% 0.371� 2.0%

PP 90� 1748:4�15:3% 0:346� 3:0% 1663:7� 6:0% 0:357� 3:4% 1501:3� 3:1% 0:368� 2:2%

mean PP 1706 0.355 1636 0.359 1476 0.37

PPGF30 0� 4482:4� 2:9% 0:271� 11:2% 4137:4� 4:8% 0:273� 10:1% 3671:4� 2:9% 0:294� 6:3%

PPGF30 45� 3540:9� 5:4% 0:304� 4:7% 3250:6� 5:1% 0:300� 7:4% 2947:7� 4:3% 0:310� 8:0%

PPGF30 90� 3452:4� 2:2% 0:217� 2:1% 3227:7� 1:8% 0:222� 3:5% 2938:8� 1:2% 0:238� 5:0%

Glass fibers 73000 0.22 – – – –

Figure 5. mCT slice image of PPGF30.

Müller et al. 5

 at PENNSYLVANIA STATE UNIV on May 18, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


XML Template (2015) [5.3.2015–9:51am] [1–16]
//blrnas3.glyph.com/cenpro/ApplicationFiles/Journals/SAGE/3B2/JCMJ/Vol00000/150030/APPFile/SG-JCMJ150030.3d (JCM) [PREPRINTER stage]

Parallelization allows multiple scans of fibers at vari-
able starting points, whereby fiber recognition can be
improved. Each recognition process is followed by the
control process that merges information from parallel
calculations, finds duplicate fibers, deletes voxels of rea-
sonably well detected fibers from the input image and
adjusts the Monte-Carlo pattern parameters before
starting the next iteration of the fiber recognition pro-
cess. In case of reaching a predefined detection accur-
acy, the control process terminates the recognition
procedure and initiates the geometric analysis of the
detected reinforcement fibers. The resulting data con-
sisting of the position, orientation, length and diameter
of each recognized fiber is called segmented mCT data
in the following and can be used to reconstruct the
microstructure, see Figure 7.

The algorithm was evaluated in three ways: first,
artificially generated fiber data with three different
lengths were mapped on a regular mesh, which corres-
pond to a 3D voxel picture. The fiber positions were
chosen randomly, however, the length and orientation
were correlated. An analysis of this volume-image
reveals an overestimation of the fiber length of up to
8% for the short fibers. Secondly, the polymer material
of the composite was removed via combustion and the
residual fibers were measured via microscope.
Qualitatively, similar length distributions were found.
Thirdly, a visual comparison of the volume-image and
the detected fibers was undertaken. This confirmed
visually the mentioned small overestimation of the
fiber length. Additionally, the reproducibility of the
algorithm was checked by repeated measurement of
three different specimens. A standard deviation of the
length of approximately 5% was found. Further details
on the image analysis method and its properties can be
found in Glöckner et al.36

Properties of microstructure

In the reconstructions of the microstructure of the eval-
uated specimen shown in Figure 7, the characteristically
graded mesostructure of injection-molded plates made
of SFRCs can be recognized. This phenomenon is well
known in the literature.32 Since the segmented mCT
data allow a detailed analysis of the properties of the
microstructure, the mCT datasets were partitioned into
20 equal-sized layers in through-thickness direction of
the plate. The mean aspect-ratio of the fibers �a� and the
mean orientation distribution in terms of the second-
order moment tensor N� of the fiber orientations have
been determined for each layer. The second-order
moment tensor, also called fabric tensor37 or orienta-
tion tensor,38 is generally defined by

N ¼

Z
S

f ðnÞ n� n dS: ð1Þ

Herein, f ðnÞ is the fiber orientation distribution func-
tion, n the fiber axis orientation and dS a surface elem-
ent of the unit sphere S :¼ fn 2 R

3 : jjn jj ¼ 1g.
Utilizing Dirac’s delta distribution �ðn� n�Þ on unit
vectors, the empirical orientation distribution func-
tion37 for N orientations is given by

f ðnÞ ¼
1

N

XN
�¼1

�ðn� n�Þ: ð2Þ

Inserting the last equation in the definition of the
second-order tensor given in equation (1) results in a
discrete form of the second-order fabric tensor

N ¼
1

N

XN
�¼1

n� � n�: ð3Þ

Figure 6. Fiber recognition process.
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Since the available microstructure data does not con-
tain only the orientations of the fiber axes, but also
their length and diameter, it is reasonable to consider
these quantities during the calculation of the fabric
tensor. Thus, in this work, fabric tensors are considered
in a weighted manner. For each of the 20 layers, the
weighted fabric tensor N� is calculated as

N� ¼
XN�

�¼1

!� n� � n�: ð4Þ

In the last equation, N� is the number of fibers in
layer �, and !� is the volume fraction of the fiber with
the axis direction n�. In Figure 8, the mean aspect ratio
of the fibers �a� , the diagonal components (N11, N22, and
N33), and the eigenvalues (�1, �2, and �3) of the second-
order fabric tensor N� are shown for all three seg-
mented mCT datasets. The indices ð�Þ11, ð�Þ22, and ð�Þ33
correspond to the e1, e2, and e3-directions, respectively,
introduced in Figure 2(a), whereby, the e2-direction is
the filling direction. From Figure 8(a), (d), and (g), it is
obvious that the mean aspect ratio of the fibers in each
layer is not constant throughout the thickness of the
plate. Especially in the case of the mCT-specimens
(�10) and (00), see Figure 2(a), the mean aspect ratio
of the fibers in the layers near the bounding sections is
slightly larger than those in the core section. The over-
all mean aspect ratio and the overall mean length for
each specimen are approximately 26.3 and 330 mm,
respectively. The overall mean aspect ratio is marked
in Figure 8(a), (d), and (g).

The fiber orientation distribution is also not constant
throughout the thickness. In Figure 8(b), (e), and (h),
the diagonal components N11, N22, and N33, and in
Figure 8(c), (f), and (i), the eigenvalues of the fabric
tensor N� , are shown. In particular, the former three
diagrams highlight the sectional structure of injection-
molded plates made of SFRCs: in the bounding

sections, layers 1–2 and 19–20 in Figure 8, respectively,
the majority of the fibers are oriented in the filling dir-
ection. In the layers 11 and 12 at the core section of the
specimen, the fibers are oriented in the transversal
direction.

In the literature,39,40 the fiber orientation distribu-
tion is usually characterized only through the diagonal
components N11, N22, and N33 of the second-order
fabric tensor N� . The comparison of the diagonal
components with the eigenvalues of N� of the 8th
and 14th layer for the (00) data in Figure 8(e) and
(f) highlights that the diagonal components do not
specify completely the orientation distribution.
According to the diagonal components of N� in the
aforementioned layers, the orientation distribution
seems to be planar isotropic. The eigenvalues for the
same cases indicate, however, a planar isotropic distri-
bution for layer 14, not for layer 8. These results are
confirmed through the stereographic projections of all
fiber axes orientations in each of the layers 8, 11, and
14 in Figure 9. Here, the out-of-plane direction coin-
cides with the filling direction (e2-direction) and the
horizontal direction with the transversal direction
(e1-direction). Thus, the vertical direction in these fig-
ures corresponds to the through thickness direction,
which is perpendicular to the injection-molded plate.
In Figure 9(a), a preferred orientation of the fibers
between the out-of-plane direction and the transversal
direction in layer 8 can be seen. In the pole figure for
layer 11, Figure 9(b), the preferred orientation of the
fibers corresponds to the transverse direction. In the
case of layer 14 in Figure 9(c), an approximately
planar isotropic fiber orientation distribution can be
noticed. The through-thickness orientation distribu-
tion in the other segmented mCT datasets is qualita-
tively and quantitatively similar to the section
discussed before.

The stereographic projections of the entire seg-
mented mCT data are shown in Figure 10. Since each

(a) (b) (c)

Figure 7. Segmented mCT data for specimen at the positions (a) ð�10Þ, (b) (00), and (c) (10).
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mCT dataset contains more than 6000 fibers, continu-
ous representations of the stereographic projections are
shown. In all examples, the fiber orientation distribu-
tion is only approximately planar isotropic. There exists
rather a preferred orientation different from the filling
direction. This can be affiliated with the manufacturing
process and the flow conditions during manufacturing.
The mean length �l, the diagonal components, and the
eigenvalues of N for the entire datasets are summarized
in Table 2.

Homogenization of linear elastic
properties

Modeling preliminaries

In the present work, the polymeric matrix and the arbi-
trarily oriented glass fibers are assumed to be linear
elastic and isotropic with piecewise constant properties.
The microstructure of this composite consists
of a matrix reinforced with N fibers. The matrix

Figure 8. (a), (d), and (g) Mean aspect ratio of the fibers in each layer �a� and the whole dataset �a; (b), (e), and (h) Diagonal

components of N� for each layer; (c), (f), and (i) eigenvalues of N� for each layer.
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phase is specified by the stiffness tensor CM and the
volume fraction cM. Each fiber is characterized with
the stiffness C�, the volume fraction c�, the length l�,
the diameter d�, and the orientation of its axis n�. The
axis is parameterized in spherical coordinates with the
polar angle � and azimuthal angle ’, see Figure 11.
The fibers are approximated by spheroids of equal
length and volume. Thus, the half-axes of the spheroid
are correlated with the length and diameter of the cor-
responding fiber according to the following prescrip-
tion: 2a1� ¼ l� and 2a2� ¼

ffiffiffiffiffiffiffiffi
3=2
p

d�, whereby a1�
and a2� are the first and the second half-axis of the
spheroid related to fiber �. The total fiber volume
fraction is cF ¼ 1� cM ¼

PN
�¼1 c�. The material

behavior of the fibers is assumed to be uniform, i.e.,
C� ¼ CF 8�.

Self-consistent homogenization

The effective stiffness tensor C of a Nþ 1-phase par-
ticulate composite is generally given by

C ¼ CM þ
XN
�¼1

c� C� � CMð ÞA�, ð5Þ

where c� denotes the volume fraction of fiber � and A�

the fourth-order strain localization tensor.41

(a) (b) (c)

Figure 9. Pole figures for the layers 8, 11, and 14 of mCT data at position (00).

(a) (b) (c)

Figure 10. Stereographic projection of fiber axes for the mCT data ð�10Þ, (00), and (10).

Table 2. Number of fibers, mean length with standard deviation, diagonal components and eigenvalues of N for three mCT datasets.

Data N �l [mm] �N11; �N22; �N33 eigðNÞ

ð�10Þ 6329 330.28� 165.9 ð0:381; 0:593; 0:026Þ ð0:594; 0:380; 0:026Þ

(00) 6355 330.18� 167.4 ð0:392; 0:584; 0:024Þ ð0:635; 0:341; 0:024Þ

(10) 6200 332.66� 164.3 ð0:404; 0:571; 0:025Þ ð0:613; 0:361; 0:025Þ
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N corresponds to the number of fibers inside the con-
sidered volume element, see Figure 7. The index ð�ÞNþ1
is replaced with the index ð�ÞM, which denotes the
matrix phase. The special case of an spheroidal
approximation of the fibers and the assumption that
each fiber is embedded in an infinite homogeneous
matrix with the properties equal to the effective mater-
ial C ¼ C

SC, lead to the following expression for the
strain localization tensor A�

A� ¼ AðC
SC,C�,Z�Þ ¼ I

s
þ P

SC
� C� �C

SC
� �� ��1

: ð6Þ

In this representation, the strain localization tensor
A� depends on the effective stiffness C

SC, the fiber stiff-
ness C� and the spheroidal approximation of the fiber
Z�, where the orientation of the fiber axis is included

jjx jj2Z ¼ x � ZT
�Z�x

� �
	 1: ð7Þ

In the last equation, x specifies a position vector in
three-dimensional space. Since, an spheroidal geometry
of the fibers has been assumed, the polarization tensor
P

SC
� can be determined explicitly41

P
SC
� ðC

SC,Z�Þ

¼
1

4	 detðZ�Þ

Z
S

HðnÞ n � Z�T� Z�1� n
� �� ��3=2

dS
ð8Þ

with HðnÞ ¼ I
s
ðK�1 « ðn � nÞÞIs, and

K ¼ C
SC n� n½ �½ �: PSC

� depends on the stiffness C
SC and

the spheroidal geometry of the fibers Z�. In the last
equation, dS is a surface element of the unit sphere
S :¼ fn 2 R

3 : jjn jj ¼ 1g and detðZ�Þ represents the
determinant of Z�. The integral in equation (8) has
been calculated numerically using Gauss quadrature
after a decomposition of the surface of the sphere
according to Weber.42

Combining equations (5) and (6), and using the self-
consistent approximation C ¼ C

SC gives an implicit
equation for the stiffness C

SC

C
SC
¼ CM þ

XN
�¼1

c� C� �CMð Þ I
s
þ P

SC
� C� �C

SC
� �� ��1

:

ð9Þ

This implicit equation for the unknown tensorial
quantity C

SC was solved numerically using a Newton-
Raphson algorithm combined with a line search pro-
cedure. Despite the isotropic modeling of the matrix
and fiber material, the SC homogenization delivers a
non-isotropic effective stiffness tensor, which reflects
the anisotropic fiber orientation distribution.

Interaction direct derivative estimate

The interaction direct derivative (IDD) estimate, pro-
posed by Zheng and Du22 is based on the generalized
self-consistent scheme21 (GSCS), which for its part is
based on the three-phase model. In the three-phase
model, the inclusions are embedded in a finite matrix
material region, directly. This inclusion-matrix cell
itself is embedded in the unbounded initially unknown
effective medium. The difference between the three-
phase model and IDD can be identified in the estima-
tion of the stresses in the inclusions: contrary to the
three-phase model, Zheng and Du22 assume an
unbounded medium with the properties of the matrix
for the embedding of the inclusion in the matrix mater-
ial. Du and Zheng43 have proven that the stresses in the
inclusions are well approximated by this assumption
with an error of second order of the inclusion volume
fraction. The advantage of the IDD is its explicit struc-
ture, which is valid for multi-phase composites with
different material symmetries and distributions.

The following prescription gives the IDD estimation
of the properties of the effective medium

C
IDD
¼ CM þ I

s
�
XN
�¼1

c� C� �CM

� �
N�P

D
�

 !�1

�
XN
�¼1

c� C� �CMð ÞN�,

ð10Þ

with N� ¼ I
s
þ P� C� � CMð Þð Þ

�1. Here,
P� ¼ PðCM,Z�Þ is Hill’s polarization tensor as defined
in equation (8) but C

SC replaced with CM. If the matrix-
inclusion cell takes on an ellipsoidal shape, then,
P

D
� ¼ PðCM,ZD

� Þ is the polarization tensor correspond-
ing to an ellipsoidal inclusion with geometry of the
matrix-inclusion cell ZD

� , which is embedded in an

Figure 11. Parametrization of the fiber axis n in spherical

coordinates.
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infinite matrix with the stiffness CM. The shape of
the matrix-inclusion cell defines the inclusion distri-
bution in the composite.22 In the present work, this
shape is assumed to be equal to the shape of the spher-
oidal approximation Z� of the corresponding inclusion
itself.

Particularly, if the distribution is constant for all
inclusions (ZD

� ¼ ZD), the IDD estimate is equivalent
to the Hashin–Shtrikman estimate of Ponte Castañeda
and Willis,44 which is based on the Hashin–Shtrikman
variational structure in the form developed by
Willis.45,46 A detailed discussion of the relation of
IDD to the estimate of Ponte Castañeda and Willis44

and, e.g., Mori-Tanaka can be found in Zheng and
Du22 and Du and Zheng.43

A two-step bounding method

The SC and IDD approaches deliver estimates of the
effective elastic properties. The two-step bounding
method (TS) is a simple method providing an admis-
sible range of possible effective properties. The first step
consists of the decomposition of the microstructure into
as many domains as there are different fibers. Fibers of
equal shape and equal orientation are combined into
unidirectional domains. In each domain, the fiber
volume fraction corresponds to the total fiber volume
fraction cF. For each combination of fiber and matrix,
the effective elastic properties are calculated using the
unidirectional (UD) special case of the second-order
Hashin–Shtrikman (HS) bounds41

C
UD
� ¼ cFC�A� þ 1� cFð ÞCMAM: ð11Þ

Here, the strain localization tensors A� and AM do not
depend on the effective material, but on a reference
material C0

A� ¼M� Mh i
�1,M� ¼ I

s
þ P

UD
0 C� �C0

� �� ��1
ð12Þ

with Mh i ¼ cFM� þ ð1� cFÞMM, where � denotes the
fibers � or the matrix M, respectively. In the case of
unidirectional aligned ellipsoidal inclusions, the polar-
ization tensor P

UD
0 is known explicitly.41 Specifying the

softer matrix material or the stiffer fiber material as the
reference material C0 gives a lower C

UD�
� and an upper

bound C
UDþ
� , respectively, for the quasi-coated fiber

domains. The resulting bounds exhibit a transversely
isotropic behavior.

Within the second step, again HS bounds are calcu-
lated assuming an isotropic two-point correlation func-
tion for the domains.47 Herein, corresponding bounds
are combined: the lower (upper) HS bound of the
domains is homogenized with the lower (upper) HS
bound for the granular system. Thus, this procedure

results in the stiffnesses tensors C
TS� and C

TSþ,
respectively

C
TS�
¼
XN
�¼1

c�
cF

C
UD�
� A

�
� ¼

XN
�¼1

c�
cF

C
UD�
� M

�
� M

�
� ��1

ð13Þ

with

M
�
� ¼ I

s
þ P0ðC

UD�
� � C

�
0 Þ

� ��1
,

M
�

� �
¼
XN
�¼1

c�
cF

I
s
þ P0ðC

UD�
� � C

�
0 Þ

� ��1
:

ð14Þ

In the last equation, the definition of P0 depends on
modeling assumptions concerning the shape and distri-
bution of the domains. Assuming an isotropic two-point
correlation of the domains, P0 corresponds to the spher-
ical polarization tensor. Another possible assumption
would be an ellipsoidal two-point correlation. Due to
simplicity, the isotropic two-point correlation has been
assumed. In the case of the upper (lower) HS bound, for
C
�
0 the maximum (minimum) isotropic part of all stiff-

ness tensors of the domains C
UDþ
� (CUD�

� ) is taken.

Results and discussion

The mean values of Young’s moduli and Poisson’s
ratios of the isotropic polypropylene material in the
strain region 0.0005–0.0025, as shown in Table 1,
were used as input parameters for the homogenization
of the composite. The fiber mass fraction is 30wt.%,
which corresponds to a fiber volume fraction of
cF ¼ 0:13.

Combining these data with the segmented mCT data,
the effective elastic properties were calculated according
to the methods described in the foregoing section. To
compare the experimentally measured Young’s moduli
to the computational results, for each homogenized
stiffness, the direction-dependent Young’s modulus48

EðdÞ, given in equation (15), was determined and eval-
uated in the appropriate direction

1

E dð Þ
¼ d� d � S d� d½ �: ð15Þ

In combination with the direction-dependent bulk
modulus KðdÞ

1

3KðdÞ
¼ I � S d� d½ � ð16Þ

the linear elastic behavior is completely defined. In
equation (15), the direction d is parametrized with
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spherical coordinates, and S ¼ C
�1 is the compliance

tensor.
In the following first, the numerical results based on

the three segmented mCT datasets are compared to each
other, and second, the numerical estimations are com-
pared to the experimentally measured Young’s moduli.
In Figure 12, the contours of the direction-dependent
Young’s moduli in the x–y plane are shown in depend-
ence of the azimuthal angle as depicted in Figure 11. It
can be seen that the SC and IDD estimates are located
between the bounding TS results for all three datasets.
SC predicts a stiffer behavior than IDD. The direction-
dependence of Young’s modulus is more pronounced
by SC and IDD than by the TS methods. The TS
bounding methods exhibit a rather large range of
admissible Young’s moduli. Furthermore, in Figure
12, it can be observed that the direction-dependence

of Young’s moduli is very similar for the (00) and the
(10) data, see Figure 12(b) and Figure 12(c). The data at
the position ð�10Þ yield a different direction-depen-
dence of the Young’s modulus, see Figure 12(a). This
can be attributed to the flow conditions during the
manufacturing process. The same phenomenon is vis-
ible in the stereographic projections of all fibers in
Figure 10. The maximum Young’s modulus is located
apart from the filling direction (e2-direction), which is
also an effect of the inhomogeneous flow process.

Since the volume element analyzed with the mCT
measurements is small compared to the size of the ten-
sile specimen, the three mCT datasets are combined to
an overall dataset for the comparison of the numerical
and experimental results. In Figure 13, the shapes of the
direction-dependent Young’s moduli are shown on the
x1–x3, x2–x3 and x1–x2 plane for the overall data. As

(a) (b)

(c)

Figure 12. Comparison of numerical Young’s moduli for the three mCT datasets.
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the specimens for the tensile test were prepared in the
x1–x2 plane, the experimental results are added to
Figure 13(c). It can be observed that the direction-
dependent Young’s modulus of the overall data exhi-
bits a defined symmetry in the x1–x3 and the x2–x3
plane. In the x1–x2 plane, no characteristic symmetry
is obvious. In Table 3, the experimental and the numer-
ical results for all homogenization methods for the
overall data are given.

In addition to the qualitative evaluation of the
numerical results compared to experimental measure-
ments in Figure 13 and Table 3, it is interesting to
notice that the predicted anisotropy of the direction-
dependent Young’s modulus essentially depends on
the homogenization procedure. Especially, the upper
bound of the two-step approach does not represent
the anisotropy accurately. It predicts a rather isotropic
material behavior.

To observe this more quantitatively, the ratios
E90=E0, E45=E0 and E90=E45 between the Young’s
modulus values in different directions were calculated
for experimental and numerical results separately.

In Figure 14, the comparison of these ratios is given
for the overall mCT data.

The TS methods predict a smaller anisotropy for
E90=E0 and E90=E45 and TS� also for E45=E0. SC pre-
dicts a greater anisotropy for E90=E0 and E45=E0 and
IDD only for E45=E0. The lower bound of TS reflects
the experimental anisotropy ratios better than the
upper bound. Generally, all ratios of the upper bound
are on a similar elevated level. This conveys a nearly
isotropic material behavior.

(a) (b)

(c)

Figure 13. Orientation dependence of Young’s modulus in the (a) x1–x3 plane, (b) x2–x3 plane and (c) x1–x2 plane for the overall data.

Table 3. Comparison of experimental and numerical Young’s

modulus E ½MPa� for the overall dataset.

Eexp ETS� EIDD ESC ETSþ

0
�

4.482 3.798 4.809 5.463 7.754

90
�

3.452 3.035 3.741 4.167 6.842

45
�

3.541 2.986 3.661 4.087 6.912
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Summary and conclusions

The present paper discusses the examination of the
thermoplastic composite PPGF30 through tensile tests
in three different directions, and its microstructure
through mCT measurements in combination with a sto-
chastic fiber analysis approach. The microstructure was
analyzed by means of the resulting segmented mCT
data. Three different mean field homogenization meth-
ods were applied to estimate the effective elastic proper-
ties directly based on segmented microstructural data.

Relying on the experimental and numerical results,
the following conclusions can be made:

. Anisotropy: The evaluated injection-molded SFRC
specimens show an anisotropic material behavior.
The experiments in different directions indicate the
importance of attaining detailed knowledge of the
microstructure in order to dimension parts made of
such a material.

. Inhomogeneity: Important properties of the micro-
structure, like the fiber orientation distribution and
fiber length distribution, can be analyzed by using
the segmented mCT data. Thus, a layer-wise analysis
reveals the dependence of these properties on the
position in the specimen. Thereby, a more accurate
observation of the microstructure of SFRCs is
possible.

. Microstructural information: All presented mean
field homogenization approaches consider the seg-
mented mCT data and take advantage of the infor-
mation about the distribution of the fiber axes, fiber
lengths and fiber radii.

. Two-step homogenization: In order to get an admis-
sible range for the effective properties, two-step
bounding methods have been applied: In the first
step, the Hashin–Shtrikman bounds for unidirec-
tional aligned fiber domains and, in the second

step, the Hashin–Shtrikman bounds for granular
systems have been calculated.

. SC and IDD estimates: Both methods, SC and IDD,
allow for a direct consideration of the segmented
mCT data. IDD uses the matrix material as reference
material. SC is an implicit approach using the effect-
ive properties as reference material. In addition to
the shape, the orientation, and the material proper-
ties, IDD accounts for a statistical description of the
distribution of the inclusions. Here, a spheroidal dis-
tribution equal to the shape of the spheroidal
approximation of the fibers has been used.

. Experimental vs numerical results: The self-consistent
homogenization method delivers a stiffer material
behavior compared to experimental measurements.
Due to the inherent characteristics of the SC
approach,49,50 this method tends to overestimate
the elastic properties for the case of hard inclusions
embedded in a soft matrix similar to the problem at
hand.
The Young’s modulus values predicted by IDD are
located between the lower TS bounds and SC. Like
SC, this approach delivers also a stiffer material
behavior compared to experiments. The IDD predic-
tions of the Young’s modulus values show the clo-
sest agreement with experimental measurements.
In terms of the anisotropy ratios, SC and IDD show
similar trends. Both methods predict a close agree-
ment with experiments for E90=E0, a larger anisot-
ropy for E45=E0 and a smaller for E90=E45.
The TS methods, except TS� for E45=E0, show
larger anisotropy ratios compared to experiments.
Two reasons are responsible for that: first, in the
second step, the reference material has to be iso-
tropic. Therefore, the minimal and maximal iso-
tropic part of the domain stiffnesses, respectively,
has been taken as reference material. Second, an iso-
tropic two-point correlation function has been
assumed by applying the spherical polarization
tensor for TS� and TSþ.

The present investigation shows the modeling of the
elastic behavior of SFRCs, using homogenization tech-
niques in combination with detailed microstructural
data from a micro-computer tomography image ana-
lysis method. The homogenization results demonstrate
the need of realistic microstructural data for the simu-
lation of parts made of SFRCs. In engineering practice,
the fiber configuration of complex SFRC components
is derived from injection molding simulations. Further
investigations should, thus, be dedicated to the valid-
ation of these simulations, taking advantage of the new
possibility of extracting detailed mCT fiber information
from real parts. Additionally, further experimental
measurements like bending tests should reveal

Figure 14. Anisotropy ratios of Young’s modulus for the

overall mCT data.
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properties of the composite material, which are due to
the inhomogeneous fiber orientation distribution in
through-thickness direction.

Funding and Acknowledgment

The research documented in this manuscript was partially
initiated by the German-Canadian research group
‘‘Integrated engineering of continuous-discontinuous long

fiber reinforced polymer structures’’. The support of the
Institute of Engineering Mechanics at KIT by the German
Research Foundation (DFG) is gratefully acknowledged.

Conflict of interest

None declared.

References

1. Thomason JL. Micromechanical parameters from macro-

mechanical measurements on glass reinforced polypro-

pylene. Compos Sci Technol 2002; 62: 1455–1468.

2. Bernasconi A, Cosmi F and Dreossi D. Local anisotropy

analysis of injection moulded fibre reinforced polymer

composites. Composites Science and Technology 2008;

68: 2574–2581.
3. Bernasconi A, Cosmi F and Hine PJ. Analysis of fibre

orientation distribution in short fibre reinforced poly-

mers: A comparison between optical and tomographic

methods. Compos Sci Technol 2012; 72: 2002–2008.
4. Bull DJ, Helfen L, Sinclair I, et al. A comparison of

multi-scale 3D X-ray tomographic inspection techniques

for assessing carbon fibre composite impact damage.

Compos Sci Technol 2013; 75: 55–61.
5. Bull DJ, Spearing SM and Sinclair I. Observations of

damage development from compression-after-impact

experiments using ex situ micro-focus computed tomog-

raphy. Compos Sci Technol 2014; 97: 106–114.
6. Maire E and Withers PJ. Quantitative X-ray tomog-

raphy. Int Mater Rev 2013; 59: 1–43.
7. Demirci E, Acar M, Pourdeyhimi B, et al. Finite element

modelling of thermally bonded bicomponent fibre non-

wovens: tensile behaviour. Computat Mater Sci 2011; 50:

1286–1291.
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