
IBM Research Division

© Copyright IBM Corp 2006
1

IBM Technical Report 2006
TR-20060603

Accepted to appear in Journal of Object Technology (JOT) at www.jot.fm

An Overview of the Systems Modeling Language for
Products and Systems Development

Laurent Balmelli, Ph.D.
balmelli@us.ibm.com

IBM Research Division
T.J. Watson Center and Tokyo Research Lab

10/2/06 – rev 14.

keywords: SysML, UML, product development.

Abstract

In this paper we present an overview of the capabilities of the Systems Modeling
Language (SysML.) SysML is a standard from the Object Management Group. It is
geared toward incrementally refinable description of conceptual design and product
architecture. Elements in the design represent abstractions of artifacts in the various
engineering disciplines involved in the development of the system. The design
represents how these artifacts collaborate to provide the product functionalities. This
paper explores all the diagrams available in SysML through the real-life example of
an embedded system.

1. Introduction...2
2. Context, Requirement and Use Cases ...3
3. Structure of the Rain Sensing Wiper system...8
4. Behavior..16
5. Allocation ...22
6. Conclusion ..23
7. References...24
Appendix A: the Rain Sensing Wiper Story ...25
Appendix B: Additional Diagrams..26

IBM Research Division

© Copyright IBM Corp 2006
2

1. Introduction
 Today's competitive pressures and other market forces drive
manufacturing companies to improve the efficiency with which they design and
manufacture products and systems. Across the product lifecycle, one area where there
has been a notorious lack of efficiency support is the conceptual stage, during which
the functional architecture (and sometimes the physical architecture) is decided upon.

 The conceptual stage follows the transformation of customer needs into
product functions and use cases, and precedes the design of these functions across the
engineering disciplines (for example, mechanical, electrical, software, etc.). A lack of
support during product conceptualization makes it difficult to efficiently trace the
realization of requirements in the product. The lack of a formal representation for
concepts also results in an inadequate ability to make decisions at the level of systems
in the product, such as during feasibility studies. Moreover, the lack of a clear vision
of the product architecture hinders team understanding and communication, which in
turn often increases the risk of integration issues. It is these and other challenges
confronted during the conceptual phase of product and system development that
SysML is designed to mitigate.

 SysML is based on the actual standard for software engineering, the Unified
Modeling Language (UML) developed within the Object Management Group (OMG)
consortium. SysML was developed as a response to the request for proposal (RFP)
issued by the OMG in March 2003. The development team includes representatives
from more than ten companies. IBM has played a leadership role in the definition of
the standard by authoring part of the specification.

Figure 1 Comparison of SysML1.0 with UML2.0: The text in the figure summarizes the
various diagrams available in SysML. Requirements, Parametrics and Allocations are
new diagrams available only in SysML. Activity and Block diagrams are reused from

UML2.0 and extended in SysML. Lastly, State Machines, Interactions and Use cases are
reused from UML2.0 without modifications.

 SysML is a modeling language for representing systems and product
architectures, as well as their behavior and functionalities. It builds on the experience
gained in the software engineering discipline of building software architectures in

IBM Research Division

© Copyright IBM Corp 2006
3

UML (think of the classic Class Diagram.) The architecture represents the elements
realizing the functional aspect of their product. The physical aspect is sometimes
represented too, for example when the architecture represents how the software is
deployed on a set of computing resources.

 The overview of SysML presented in this paper covers all the diagrams
available in SysML. We explore most of the constructs attached to this diagram and
refer to the OMG specification [OMGSysML] for the ones that we do not address. In
Figure 1 we compare SysML1.0 to UML2.0 in term of re-use. The text in the figure
summarizes the various diagrams available in SysML. Requirements, Parametrics and
Allocations are new diagrams available only in SysML. Activity and Block diagrams
are reused from UML2.0 and extended in SysML. Lastly, State Machines,
Interactions and Use cases are reused from UML2.0 without modifications.

 We explore the capabilities of SysML through an example: the Rain Sensing
Wiper (RSW) system. This sample problem is inspired from a real-life product failure
that can be easily found using your preferred Internet search engine. In Appendix A
we explain in details the background story of the example that we are using in this
paper. This example is a nice illustration of the importance of having an
understanding of a product at the level of its sub-systems in order to prevent complex
failure modes involving costly product recalls. In the story, the product manufacturer
endures a lengthy (hence costly) root cause analysis that eventually requires a design
change. In this article, we present a model that is resilient to the failure experienced
by the manufacturer.

 We briefly explain now the purpose of the RSW: The goal of the RSW is to
wipe the surface of the windshield automatically (i.e. without user intervention)
whenever droplets of liquid are detected. In addition, the amount of liquid detected
dictates the speed of the wiper. This system has three main components: the software
that controls the behavior of the wiper, an electronic control unit that executes the
software and a sensor fixed on the windshield whose task is to sense droplets through
the windshield.

 In this article, we give a detailed model that describes many aspects of this
system. This example constitutes a realistic product in the area of embedded
electronics (for the automotive industry) whose design greatly benefits from a SysML
representation. We conclude this paper by summarizing the capabilities offered by
SysML and give a perspective for the potential improvements that SysML brings for
products and systems development.

2. Context, Requirement and Use Cases
 When modeling a system, an important primary task is to decide what belongs
to the system and what does not. The Context Diagram is an informal means
(informal in the sense that it does not carry precise semantics) to represent the
boundaries of the system. In Figure 2 we show a context diagram for the RSW. Three
actors for the system are identified in the context: Maintenance (for repair purposes),
Car Electrical System (to activate the system in the car) and Driver (to manually
disable the system for example.) Three external systems are considered here: the
wiper interface, the windshield and the car electrical system. Note that the car
electrical system also provides electrical power to the RSW. Hence it is considered

IBM Research Division

© Copyright IBM Corp 2006
4

both an actor and external system. The context diagram establishes the scope of the
system. Note that a user-defined keyword “external” is used to qualify the external
components.

Figure 2 Context diagram for the Rain Sensing Wiper system.

 In the introduction of this paper, we explain that the conceptual stage of the
lifecycle succeeds to the analysis of the customer needs into product requirements.
Requirements have been traditionally represented as text (accompanied with figures
and drawings) and stored in files or databases. The requirements describe all the
product functions and the constraints under which these functions should be realized.

 SysML allows the representation of requirements as model elements. Hence
requirements become an integral part of the product architecture. The language offers
a flexible means to represent text-based requirements of any nature (e.g. functional or
non-functional) as well as the relationships between them.

 In Figure 3 we represent a requirement diagram for the RSW. Note that it
contains both functional and non-functional requirements. Requirements in SysML
are abstract classifiers (i.e. they cannot be instantiated) with no operations or
attributes. They cannot participate in associations or generalizations, however a set of
predefined relationships help to characterize the relationships between the
requirements. We review these relationships below.

 Sub-requirements are related to their parent requirement using the crosshair
relationship (that denotes namespace embedding). For example in Figure 3, some of
the sub-requirements of the requirement Automatic Wiping are connected to it using
the crosshair. The parent requirement is a package for the embedded requirements. In

IBM Research Division

© Copyright IBM Corp 2006
5

that sense, deleting the parent requirement will automatically delete all the embedded
ones. Another example of requirement acting as a package for other requirements is
the requirement Core Functions which contains two sub-requirements. For readability
in the model, a user-defined keyword “package” is rendered next to the Requirement
stereotype.

 During requirement analysis (e.g. decomposition and flow-down) new
requirements are created by derivation. These new requirements can be connected to
the initial ones with the DeriveRqt dependency. For example in Figure 3, a set of core
functions for the product are derived from the set of requirements under Automatic
Wiping. The name DeriveRqt was chosen in order to avoid any confusion with the
standard Derive dependency in UML2.0. Other examples of derived requirements are
the technical choices for each function (see the box Technical Choices in Figure 3.)
Note that in the Figure, the designer captures a Rationale comment to explain his
choice for using a sensor fixed on the windshield. A last example of derived
requirement is the quality requirement System Calibration stating that the system
should be calibrated. This is the requirement added to the product after the infamous
RSW failure was identified (see the Appendix A for more details.) The satisfaction of
this requirement insures that the product will be resilient to changes in the sensor and
windshield characteristics.

 Another relationship between requirements is Refine. An example of
requirement refinement is shown in Figure 3. The requirement on speed actuation is
refined by the possible selection for speed (slow, medium or fast.) Lastly, a generic
Trace dependency can be used to emphasize that a pair of requirements are related in
some way or another. In Figure 3, the requirement for manual deactivation is traced to
the one about automatic deactivation.

 Requirements have a number of derived attributes to store the status of the
relationships reviewed in the above paragraphs. We will see later in this paper that
these attributes become particularly handy when requirement relationships are
represented outside requirements diagrams.

IBM Research Division

© Copyright IBM Corp 2006
6

Figure 3 SysML Requirement Diagram for the Rain Sensing Wiper system.

 Often requirements are elicited during the whole product lifecycle and
additional requirement diagrams are used to represent them. Hence the product
requirements are typically laid out on a set of requirement diagrams.

 SysML provides a generic model for requirements that allows the modeling of
both functional and non-functional requirements. A non-normative set of requirement
types are proposed in the appendix of the OMG SysML specification [OMGSysML].
Specific types of requirements (for example related to timing or scheduling, etc) are
handled by language extensions. SysML supports a profile mechanism to extend the
language. The Object Management Group (OMG) has released a series of modeling
standards that address specific needs: for the modeling of non-functional requirements
related to performance and quality [QoS, STP], and for the modeling of test cases
[Testing profile]. These profiles can be used in SysML without restriction.

IBM Research Division

© Copyright IBM Corp 2006
7

 SysML provides a use case diagram that is inherited from UML2.0 without
modifications. In Figure 4 we show the interaction of the external actors with some of
the main use cases (represented by ellipses) owned by the RSW. We represent the
three actors and connect them to their respective use cases. In this figure, a central use
case Automatic Wiping is composed of a series of sub-use cases. The hierarchical
relationship is modeled using the Include dependency.

Figure 4 SysML Use Case Diagram

 SysML has the capability for representing test cases and attach them to their
related requirements or use cases. A test case can be an operation or a behavioral
model (Interaction, State Machine or Activity.)

 In Figure 5 we show a test case for the RSW. The test case verifies the
requirement System Calibration (see Figure 3.) This is done by: First, retrieving the
characteristics of the different components (sensor, windshield and software
configuration file.) Second, using these characteristics to compute an operating range
(both for the sensor and windshield) in order to assess their compatibility. If the
sensor and windshield are compatible, then the test case is successful. Otherwise, an
alert is triggered. The actions in the activity diagram contributing to each step are
enclosed in illustrative boxes (Figure 4a) for the sake of clarity.

 The first step is realized in this example using a set of webservices to access
the repositories containing the artifacts related to the different components (see the
leftmost enclosing box in Figure 4a.) More precisely, the bill of material (e.g. in a
product data management system) is queried for the characteristics of the sensor and
the windshield and the configuration file is retrieved, for example, from a software
configuration management system.

 The second step (see central box in Figure 4a) is realized by defining
constraints on the attributes of the sensor and the windshield in SysML Parametric
Diagrams. We will explore how these diagrams are constructed later in this paper.

IBM Research Division

© Copyright IBM Corp 2006
8

 In Figure 4b a test context is created to host prototypes for the webservices
and other functions necessary to execute the test case. This context is traced to the
requirement. The activity diagram uses the functions of the test context for its
execution.

(a) The test case is realized with an activity diagram.

(b) Requirement and test case traceability

Figure 5 SysML Test Case for the quality requirement System Calibration.

 This concludes our review of the capabilities of SysML for modeling uses
cases and requirement. In the next section, we show how SysML is used to create a
product structure that satisfies these requirements.

3. Structure of the Rain Sensing Wiper system

IBM Research Division

© Copyright IBM Corp 2006
9

 In this section, we build now a structure for the RSW. We assume that a set of
sub-systems and components have been identified through the requirements
engineering process based on stakeholder concerns such as cost, performances, etc.

 SysML provides a basic structural element called Block whose aim is to
provide a discipline-agnostic building block for systems. Blocks can be used to
represent any type of components of the system, e.g. functional, physical, and human,
etc. Blocks assemble to form architectures that represent how different elements in the
system co-exist.

 The SysML Block Definition Diagram (BDD) is the simplest way to describe
the structure of the system. It is the equivalent to the Class Diagram in UML. It is
used to represent the system decomposition using for example associations and
composition relationships. The BDD is ideal to display the features of a block, such as
its properties, and operations. SysML allows blocks to own special types of
properties: Block Properties and Distributed Property. Block properties impose
additional constraints on classic UML Properties, and can for instance own a SysML
Value Type. Value Types are designed to hold units (e.g. physical units) and
dimensions. Distributed Properties let the user apply a probability distribution to the
values of the property. SysML proposes model libraries for possible values of units,
dimensions and probability distributions.

 In Figure 5 we show a BDD for the RSW. For the sake of readability of the
diagram, we do not render the associations between the sub-systems and the Rain
Sensing Wiper element, although these associations exist in the model. Instead we use
an illustrative box around each set of components (composite and external) and a
black diamond shape over the composite component as a visual clue for composition.
The main components of the RSW are: an interface to actuate the wiper, an electronic
control unit, a sensor and the windshield element. Both the interface and the
windshield can exist in the car with or without the RSW (In SysML they are so-called
reference properties.)

 The properties and the operations for each block are visible in Figure 5.
Properties (more precisely SysML BlockProperties, shown using the stereotype
<<blockProperty>>) are used to model the physical characteristics of the components.
The operations (called sometimes services) represent the functional aspects of the
system.

IBM Research Division

© Copyright IBM Corp 2006
10

Figure 6 Block Definition Diagram for the Rain Sensing Wiper.

 We now examine how the product structure and the product requirements can
be related: One of the important consequence of having requirements as model
elements is that it allows the designer to specify which components in the system
satisfy a given set of requirements. This is called allocation process. We show an
example of requirement allocation in Figure 7. In the figure, the part on the left hand
side represents some elements of the RSW, and the part on the right hand side is a
hierarchy of requirements. One way to perform allocation is to use the Satisfy
dependency. In the figure the rain sensing wiper model element is allocated to the
requirement named “Automatic Wiping”. Any element in SysML can be used to
satisfy a requirement.

 Another way to display allocation is to use a dedicated compartment named
“Requirement related”. This compartment displays the status of a set of derived

IBM Research Division

© Copyright IBM Corp 2006
11

properties related to requirements. In Figure 7 the element ECU displays this
compartment: The ECU element is allocated to the requirement named “Use
dedicated ECU”.

Figure 7 Example of requirement allocation.

 The SysML Internal Block Diagram (IBD) allows the designer to refine the
structural aspect of the model. The IBD is the equivalent of the composite structure in
UML. In the IBD properties (or parts) are assembled to define how they collaborate to
realize the behavior of the block. A part represents the usage of another other block.

 The most important aspect of the IBD is that it allows the designer to refine
the definition of the interaction between the usages of blocks by defining Ports, as
explained below.

 Ports are parts available for connection from the outside of the owing block.
Ports are typed by interfaces or blocks that define what can be exchanged through
them. Ports are connected using connectors that represent the use of an association in
the IBD.

 Two types of ports are available in SysML: Standard ports handle the requests
and invocations of services (i.e. function calls) with other block, and Flow ports let
blocks exchange flows of information or material. For standard ports, an interface
class is used to list the services offered by the block. For flow ports, a Flow
Specification is created to list the type of data that can flow through the port. When
only a single type of object can flow through a port, then the type is used as type for
the port directly. Such a port is named Atomic Port. The class Item Flow is used to
represent what does actually flow between blocks in a particular usage context. We
refer the interested reader to the standard specification [OMGSysML] for more details
on item flows. An example of IBD is given in Figure 8.

IBM Research Division

© Copyright IBM Corp 2006
12

Figure 8 Internal structure of the Rain Sensing Wiper system.

 In Figure 8 we refine our initial description of the RSW by showing how parts
are interacting inside the block named Rain Sensing Wiper. Previously to constructing
the IBD, we need to define a model for the associations characterizing the
relationships between the different blocks. Also additional blocks are defined for
example to type the ports. We show this model in another BDD that can be found in
Figure 18 (Appendix B.)

 The central part of Figure 8 consists of the parts of the system that represent
the embedded hardware. The parts underneath are used for mounting the system in the
car. The ones above represent the software. A set of standard ports and interfaces are
defined to represent the functional aspect of the communication between the parts.
For example, the processing unit accesses the actuation interface of the wiper through
the interface WiperECUCommunication. Details about the interfaces used in this IBD
are found in Figure 17.

 The processing unit communicates with the sensor using a flow port. The data
exchanged is two bitstreams, one containing the measurements from the sensor and
another containing synchronization data. The port is typed with a specification of
these flows using the element SensorECUCommunication (see Figure 17.) Note the
direction of the flows in the definition.

 For convenience a flow port can be conjugated in the sense that its input and
outputs are inversed (flows declared as “in” becomes “out” and vice-versa) with
respect to the definition of the interface. This is useful when connecting two systems
whose flow ports are conjugated with respect to each other. This is the case for
instance between the processing unit and the sensor in Figure 8. A conjugated flow
port is represented in black. Since the synchronization data flow is declared as “inout”,
the conjugation of the port has no effect on it.

IBM Research Division

© Copyright IBM Corp 2006
13

 Note that in Figure 8 connectors between ports link parts defined within the
block. SysML actually allows direct connection between ports defined at different
levels of granularity, for example between a port and another one defined inside a part.
This type of connector are called nested connectors. We refer readers to the standard
specification [OMGSysML] for more details about these connectors.

 Flow ports are also useful to define physical contact between parts: For
example the SensorAttachement unit is fixed to the windshield using an adhesive. The
block representing the adhesive material (AttachementAdhesive in Figure 18) is used
to type the flow port connecting these parts.

 We explain now how to represent requirements allocation in an IBD:
Requirements are classifiers and therefore cannot be represented on an IBD. For this
type of diagrams, the compartment notation as introduced in Figure 7 is used.

 An example is shown in Figure 8: The parts representing the windshield and
the sensor attachment are used to satisfy the requirements named “Use Sensor on
Windshield” and “System Calibration”, respectively (see Figure 2.) The satisfaction
of these requirements is displayed in each part.

 A large and complex model is composed of hundreds, maybe of thousands
elements. Hence such a model is laid out over a set of BDD’s. Typically, the content
is organized according to stakeholders concerns.

 Most design methodologies advocate the use of viewpoints to organize the
model, for example according to stakeholder’s interests. SysML provides a model
element Viewpoint that allows users to capture the characteristics of a viewpoint (for
example, targeted stakeholders, concerns addressed, construction rules, etc.) A
container element called View is then used to organize the model according to the
viewpoint description.

 Figure 9(a) represents a model for the definition of a viewpoint. In our
example model, the elements of the system are contained in a central package called
Systems. Some elements are imported from this package into a view called RSW
Power whose purpose is to gather elements playing a role in the power consumption
of the system. The view conforms to the definition given by the viewpoint description.
Within the view, an element Power System RSW is defined to describe how the
various imported elements are collaborating in the scope of the power consumption of
the system.

IBM Research Division

© Copyright IBM Corp 2006
14

(a) Definition of the view RSW Power. The block Power System RSW is defined
in the context of the view and uses a set of elements imported from the

package Systems for its definition.

(b) An internal block diagram for the block Power System RSW. The diagram

describes the roles of the imported elements in the context of the power subsystem of
the car.

Figure 9 Separation of concerns using viewpoint modeling.

 In Figure 9(b) the car electrical system powers the parts using atomic flow
ports typed using the Power Supply Channel Block (Figure 18). In this case, the
direction of the port (in or out) is specified in one of the port’s attributes.

 We have seen so far how attributes are defined for blocks in order to represent
their physical characteristics. Often attributes of a set of systems are not independent.
Consider two sub-systems A and B having attributes a and b, respectively, and that
the constraint {A.a greater than B.b} must hold true. SysML ConstraintBlocks allows
the engineer to define any relationships (e.g. analytical) between the system attributes.
These constraints form networks of expressions that are typically leveraged in
simulations, for example for requirements verification. Note that constraint blocks are
not instantiated as runtime objects, but rather used to type special properties of blocks,
as explained below.

 Constraints are properties in sub-systems (i.e. blocks) named
ConstraintProperty and are typed by ConstaintBlocks. A constraint block defines an
expression and the attributes that represent its parameters. SysML does not prescribe

IBM Research Division

© Copyright IBM Corp 2006
15

any language to represent the expressions or provide a solver for it. This setting is
typically offered within the usage of a particular tool.

 The RSW uses a set of analytical constraints to verify that the system is
properly calibrated (requirement “System Calibration” in Figure 2.) Three constraints
are shown in Figure 10: The constraint SensorEffectiveRange computes an operational
range for the sensor, based on some of its parameters. Similarly, the constraint
WinshieldIREffectiveRange computes an operating range for infrared sensor that can
be compared with the one computed for the sensor. Finally the constraint
SensorWindshieldRangeCompare is used to compare the above values.

Figure 10 Definition of Constraint Blocks for the Rain Sensing Wiper system.

 The SysML Parametric Diagram (PD) is used to represent the usage of
constraint blocks as constraint properties. Syntactically the PD is actually is similar to
IBD. In a PD, constraint properties are connected to each other through the
parameters defined by their constraint block. In turn they connect to other properties
in the context of their owning block. These other properties must be directly bound to
parameters of the constraint properties because they can only play a “feeding role” to
the constraints parameters in a PD.

 An example of PD is shown in Figure 11. Constraint properties are
represented by boxes with rounded corners. In this diagram, both the sensor and
windshield parts compute an operational range that is compared by the property
named “compare”. These values are also fed to the part representing the configuration
file (bottom of the figure.) If the sensor and the windshield are compatible, the flag
IsCalibrated (exposed as a port) is set to true. The verification of the calibration
requirement is hence reduced to testing the value of this port. The system is therefore
resilient to changes in windshield and sensor characteristics.

 The usage of the constraint blocks WinshieldIREffectiveRange and
SensorEffectiveRange can be seen in the diagrams of Figure 19 and Figure 20,
respectively (Appendix B.) They are nested in the parts named RainSensor and

IBM Research Division

© Copyright IBM Corp 2006
16

CarWinshield (see comments in the figure.) Note that the parametric diagrams of
Figure 11,Figure 19 and Figure 20 are used to implement the second step of test case
that we presented in Figure 5.

 An attractive aspect of constraint blocks is that they provide a reusable
mechanism to define types of constraints. Hence the same constraint can be used
several times in the model. It is important to note that a constraint does not specify
which variable is an input or an output. Values are assigned by the context and a
numerical solver will provide results for the variables of the system. Note to conclude
our review of SysML constraints that remarkable work on this topic is available from
Peak et al. [GTech].

Figure 11 Parametric Diagram for the Rain Sensing Wiper system.

 Requirement allocation is shown in PD’s using compartments: In Figure 11,
the requirement allocation compartment is displayed in both the constraint used for
comparison and the part representing the configuration file. These elements satisfy the
requirement named System Calibration.

4. Behavior
 In this section, we explore how SysML is used to model the behavior of the
product. The expression of the behavior of a system equates to realizing its Use Cases
under a specified set of non-functional constraints. SysML offers three types of
behavioral constructs: Interactions, State Machine and Activities. Several behavioral
models from UML are not reused for the sake of simplicity or because of some
maturity concerns. We examine these three models below through our RSW example.

IBM Research Division

© Copyright IBM Corp 2006
17

 The first behavior model that we review is the SysML Interaction Diagram.
This diagram allows the designer to model a sequence of service calls between
components. SysML leverages the UML2.0 interaction model but restrict its use in the
interaction diagram only. Other forms of interaction diagrams (e.g. communication
diagram) are not used.

 In Figure 12 we represent the initialization sequence of the RSW using an
interaction diagram. The initialization sequence consists of a synchronization protocol
between the components. This diagram is well adapted to represent this type of
behavior. Initially, the car electrical system starts the RSW, which in turn queries the
sensor and the wiper interface for an acknowledgement. After that, the software is
loaded in the memory of the ECU and its execution is started. Once the software is
started, it reads the parameters stored in the calibration file.

Figure 12 Interaction Diagram for the initialization of the Rain Sensing Wiper system.

 The use case named Initialization (Figure 4) is realized by the interaction
model in Figure 11. One mechanism for expressing the relationship between the
interaction model and the realized use case is to use the SysML Allocation mechanism,
as introduced below.

 In our previous examples, we have seen how requirements are allocated to
system elements aiming at satisfying or verifying them. SysML generalizes this
concept by allowing any elements to be related to any elements to express a particular

IBM Research Division

© Copyright IBM Corp 2006
18

relationship. We will examine this mechanism in more details in the coming examples
and in Section [Allocation]. Similarly to requirement relationships, elements in
SysML have derived properties to display the status of their allocations to other
elements. For example, at the bottom of the interaction diagram, we can read that the
behavior model is allocated to the use case Initialization. In addition, the model is
allocated to the system state named Initializing (see below.)

 The second behavior model that we introduced is the SysML State Machine
Diagram. This diagram is used to represent the different states of the RSW. This
behavioral model is also reused from UML and not extended in SysML. Protocol
State Machines from UML2.0 are excluded from SysML for simplicity.

 In Figure 13 the different states of the RSW are represented as well as their
transitions. Three states are identified: Deactivated, Initializing and Activated. In
deactivated mode (for instance manually by the user), the system waits for an
activation command. When this signal is received, it transits to the initializing state. In
that state, the interaction sequence in Figure 12 is executed. When completed
successfully, the system transits to the “activated” state. Note that, when entering and
exiting states, flags are set and unset, respectively. These flags are used for example
to display the current status of the system on the driver dashboard.

Figure 13 State Machine Diagram for the Rain Sensing Wiper system.

 Allocation can also be shown in the state machine diagram as well. In Figure
12 the states Initializing and Activated both exhibit requirement and allocation
compartments.

 The third type of the behavior that we review is the SysML Activity Diagram.
SysML leverages and extends the activity model from UML to support continuous

IBM Research Division

© Copyright IBM Corp 2006
19

systems. The SysML Activity Diagram offers many innovations presented briefly
below. A more thorough description of the SysML activity model is available in
[Bock].

 The modeling of activities in SysML consists of describing behavior as a flow
graph. An activity is defined as a set of actions represented as graph nodes (these
actions are the usage of other activities) linked by edges carrying control flow and
data flow between actions. Object nodes represent the type of data that can traverse
the flow graph and are used as containers for the data as it traverses the graph. For
example, object nodes are used to store input parameters of actions (called pins.)
Finally, control nodes are used to route control and data flows through the activity
(for example create forks, duplicate flows, etc.) An example of activity model is
shown in Figure 15.

 Since UML2.0, activities are classifiers and can be represented in Class
Diagram. SysML clarifies the semantic of association between activities. As a result,
Activities can be related to each other to represent for example functional
decomposition in a similar way that blocks represent structural decomposition in a
BDD. In Figure 14 we represent a decomposition of the main functions of the system.

 In this setting, the upper limit at the part end represents the maximum number
of instances that can execute concurrently. In Figure 14 the lower and upper limits for
each activity owned by Rain Sensing Wiper Main (i.e. Actuate, Process and Sense) are
enclosed in an illustrative box. The example setting allows only one instance of each
activity to be run concurrently in the system.

 Activities can also be associated to classifiers when the latter are used as type
of object node. In the case, the upper limit at the classifier end represents the
maximum number of instances that can reside in an object node at any given time. In
Figure 13 we can see that the upper limit for the number of instances that can be
owned by Process is ten.

 In Figure 13, we can see that the activities Sense and Process share a common
type of object node named SensorMeasurement. Also, all activities use the type
InterfaceCommand. Note that both these blocks are specializations of a data type
named Bitstream. The bitstream modeled by the block InterfaceCommand is used to
implement the services communications between the ECU and the wiper interface
(defined by the various service ports between the parts.)

IBM Research Division

© Copyright IBM Corp 2006
20

Figure 14 Activities and object node types for the sensing activity of the RSW.

 The requirements that the Actuate and Sense functions satisfy are also
represented in Figure 14. In addition the main function of the product is allocated to
the rain sensing wiper block using an Allocate relationship. In this case, the designer
expresses that the function is owned by this block. The activity Actuate displays its
allocation compartment which shows that this activity is allocated to the block
WiperInterface.

 The rain sensing function is implemented in the activity diagram in Figure 14.
The three functions defined in Figure 13 (Actuate, Process and Sense) are used as
actions in the activity.

 In Figure 14 the data flows across edges that connect the actions through their
pins. The type of data that can flow between actions is defined by the type of their
pins. For example, objects of type InterfaceCommand are flowing from the action
Process to the action Actuate.

 SysML introduces notions to specify the rate at which data can flow across
edges and parameters (pins) of activities. Two types of the rate are defined: Discrete
and Continuous. In the example of Figure 14, the bitstream exchanged between the
function Process and Actuate is limited in rate by the serial link that is used to connect
the parts owning these functions (these parts are shown in Figure 8.) In Figure 14, this
is modeled by the edge (of type Discrete) named”serial data channel”. Edges of type

IBM Research Division

© Copyright IBM Corp 2006
21

Continuous are used when the time interval between objects tends towards zero. Note
that in order to use rate-controlled edges and pins, activity parameters must be
“streaming”1. An activity with streaming parameters can accept values at any time
during its operation.

Figure 15 Sensing activity for the Rain Sensing Wiper system.

 The UML2.0 action model only enables actions to start. SysML introduces the
notion of control operators as a special type of actions able to enable or disable other
actions. A control operator named ManualControl is used in Figure 14 to start and
stop the rain sensing function. It deactivates the function upon reception of a
“deactivate” signal (for example triggered by the pressure of a button on the
dashboard.) It can restart the function later when receiving the proper signal. The type
of data exchanged between the actions Process and ManualControl is of type
ControlValue. SysML defines some types of control values (enable action, disable
action) that can be extended by users according their needs (for example, a suspend
action value can be added.)

 SysML also introduces two new types of object nodes to support continuous
concept such as transient states (e.g. for the modeling of electrical signals.) In Figure
14, the action Process exposes a pin of type Overwrite to collect the data sent from the
sensor. An object node of type overwrite will ensure that the latest measurements
from the sensor are available to the Process action by erasing older ones in the object
node. Note that up to ten values can be stored in the pin according to the bound (0..10)
defined in Figure 13. The second new type of object node is NoBuffer: In this case,
the pin does not store any value; hence a value is discarded if it is not directly
accepted by outgoing edges (in the case of an output pin) or an action (when used as
input.)

1 UML2.0 notion.

IBM Research Division

© Copyright IBM Corp 2006
22

 Lastly, SysML supports assigning probabilities to activity edges (whose
source is a decision node or object node) and parameter sets. It allows the modeler to
assign a probability for an object value in order for it to traverse an edge. In the case
of a parameter set, it assigns a probability for the set to be assigned a value at runtime.
This feature can be used for instance to simulate loss in a communication channel.

 Allocation to requirements or other elements is shown in the activity diagram
using the compartment notation. In Figure 14, the action called “manual control”
satisfies the requirement named “manual disablement”. Also, this action is allocated
to the block representing the dashboard button to emphasize that this button causes
the system to deactivate.

5. Allocation

 The review of the SysML Allocation mechanism will conclude this
presentation of the Systems Modeling Language. We have introduced some examples
of allocations in the previous examples of Figure 11 to 14.

 The concept of allocation allows the user to bridge between various modeling
techniques. By allowing allocation between any pair of elements, the designer can
enforce consistency between the various parts of the model.

 Through the examples of Figures 11 to 14, we have seen that allocations can
be displayed using special compartments or using the Allocate dependency. The usage
of this dependency is only possible when the related elements can be represented on
the same diagram.

 Allocation is often used to represent mapping of function to structure, as used
in the example of Figure 13. Mapping between elements can be complex and require
the display of several relationships. To allow a scalable display of dependencies
between elements, SysML provides a tabular notation for relationships, as explained
below.

 In Figure 15 we show the allocation relationships between the edge named
“serial data channel” in Figure 14 (linking the actions Process and Sense) and other
elements in the model. Note that the type of an activity edge is shown as ObjectFlow
in the table. The figure shows that the edge is allocated to four elements in the model.

Figure 16 Display of allocation relationships using the tabular notation.

 Requirement dependencies can also be displayed using the tabular notation.
To conclude this review of the SysML Language, we show in Figure 16 the result of

IBM Research Division

© Copyright IBM Corp 2006
23

an allocation query for the requirement System Calibration. Note that the direction of
the relationship depends on whether the requirement is the client or the supplier.

Figure 17 The tabular notation is used to display the requirements relationships.

6. Conclusion

 In this paper we have toured the different capabilities that SysML offers to
system engineers and product designers. SysML is aimed at supporting the conceptual
stage of the lifecycle of the product. This stage is preceded by the decomposition of
the customer needs into product features. We have seen that SysML allows the
representation of these features as requirements in the model. In turn these
requirements can be allocated to the use cases, to the sub-systems and components
(whether functional or physical) identified for the product.

 The conceptual stage requires the specification of the various sub-systems and
the need for details depends on their level of integration. SysML provides a set of
constructs to support the description of the structure of the product. Blocks are used to
model sub-systems and components, and ports support the description of their
interfaces. Dependencies (e.g. analytical) between structural properties are expressed
using constraints and represented using the parametric diagram.

 In addition to structure, the conceptual stage should clarify how the product
behavior is expressed through the interaction of its components. For example,
behavior modeling gives a detailed description of the product use cases. SysML
provides three means for explicating the product behavior, namely interactions, state
machine and activities. These three mechanisms are built as a unified behavior
concept and can consequently be orchestrated in a single, uniform and complex
behavior model for the whole product.

 A complex product model is form by several “sub”-models of different nature
(for example requirements, blocks, constraints, activities, etc.) SysML provides a
mechanism to relate different aspects of the model and to enforce traceability across it.

 The conceptual stage precedes the detailed elaboration of the components
within the different engineering disciplines. The conceptual design plays therefore

IBM Research Division

© Copyright IBM Corp 2006
24

many central roles in the product lifecycle and we emphasize below some of the most
important ones in our opinion.

 The formal description of the product at an early stage of the lifecycle
improves the understanding of the product requirements and how they answer the
customer needs. The allocation of requirements to the model elements ensures that
these needs are covered and provides a rationale for the engineer in charge of
fulfilling these requirements. The rationalization of the design is therefore a
communication tool spanning organizational levels and lifecycle stages. It improves
communication across teams, between teams (think of the different engineering
disciplines) and between teams and decision makers. It uses a generic language (in the
sense that it is not specific to any engineering discipline) that accommodates the
incremental detailing of the product representation. That last aspect allows coping
with organizational levels. Note that such a formal description is well suited to
methodologies.

 The SysML model provides an electronic representation of the product that is
leveraged as a decision tool. Trade-off studies are performed by evaluating functions
on the model (cost function, estimation of the integration effort.) At an early stage in
the lifecycle, often rough estimations are used, hence the model need not necessarily
have a great amount of details in order to be used efficiently. When details are added,
or artifacts (for example sub-system simulations) are produced by detailed
engineering, the model is used to orchestrate the various simulations and perform
requirement verification. Hence the SysML model is an evolving decision tool
available throughout the whole lifecycle of the product, and not only at the conceptual
stage.

 The product model represents abstractions of artifacts that are progressively
elaborated throughout the lifecycle. These artifacts are distributed across the
engineering disciplines participating to the design. Hence the model forms a
traceability scaffold that provides a means to measure the development progress,
perform change impact analysis, and manage dependencies between processes and the
produced artifacts. The SysML model is hence a management and integration tool
for the stakeholders.

 The role of the system model clearly extends beyond the capabilities that we
describe above. We aim at discussing some of the attractive ones in our opinion.
Modeling for conceptual design is a young discipline and best practices will grow out
of it.

7. References
[OMGSysML] SysML 1.0 Specification (ptc/06-05-04), OMG final adopted
specification, available at http://www.omgsysml.org/
[QoS] UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms (ptc/04-06-01), OMG final adopted specification,
available at http://www.omg.org/docs/ptc/04-06-01.pdf
[STP] UML Profile for Schedulability Performance and Time (ptc/05-01-02), OMG
final adopted specification, available at www.omg.org/technology/documents/
formal/schedulability.htm

IBM Research Division

© Copyright IBM Corp 2006
25

[Testing profile] UML Testing Profile (ptc/05-07-07), OMG final adopted
specification, available at www.omg.org/technology/documents/formal/schedula-
bility.htm
[GTech] Peak RS, Friedenthal S, Moore A, Burkhart R, Waterbury SC, Bajaj M, Kim
I (2005) Experiences Using SysML Parametrics to Represent Constrained Object-
based Analysis Templates. 7th NASA-ESA Workshop on Product Data Exchange
(PDE): The Workshop for Open Product & System Lifecycle Management
(PLM/SLiM), Atlanta. See also http://www.pslm.gatech.edu/topics/sysml/
[Bock] Conrad Bock, SysML and UML 2 Support for Activity Modeling, Wiley
InterScience (www.interscience.wiley.com) DOI 10.1002/sys.20046

Appendix A: the Rain Sensing Wiper Story

 The development of the first Rain Sensing Wiper illustrates how a classic
failure to fully conceptualize a product's physical architecture resulted in the
discovery of integration issues at servicing time, thus quickly leading to engineering
change requests. The scenario revolves around the initial introduction of the Rain
Sensing Wiper (RSW) feature in an automobile manufacturer's vehicle program.

 Before examining the reason of the failure of the RSW, let us briefly review
the characteristics of the system. The RSW contains mechanical (optical mounting
device), electronics (IR sensors and ECU), and software (computer vision algorithm)
components that are procured by tier-one suppliers. These components are simply
integrated by the manufacturer. The main parameters of the system are: (1) the optical
and geometric specifications of the windshield, in particular its thickness and glass
optical indexes, and (2) the ranges of operation of the electronic optical sensors. The
detection software also has normal ranges of operation relative to these parameters,
but in addition relies on data about the actual values of the parameters of the
windshield.

 The fact that the RSW electronics and software specifications include ranges
for the relevant windshield properties is important, because it allows more flexibility
on the choice of the windshield itself. This is a critical design choice, the procurement
and integration costs associated with the windshield being an order of magnitude
greater than that of the RSW. For optimal performance, the actual values of the
windshield properties should fall near the center of the normal operating ranges both
for the RSW sensors and the software; however, acceptable operation should be
guaranteed for the whole range.

From a procurement standpoint, the windshield is simultaneously purchased from
different suppliers. Depending on the year of production and where the product is
manufactured, suppliers may modify the design of their windshields. Also, one or
more changes of suppliers can occur during the production phase.

 In the failure scenario, which occurred during the first year of the RSW's
introduction, a local windshield supplier provided a component whose characteristics
were incompatible with the operating range of the sensor. Unfortunately, no
requirement for calibrating the system properly (i.e., for verifying that sensor and
windshield are compatible) had been captured for the RSW at that point. Thus cars
were sent to customers with a non-functioning wiper system.

IBM Research Division

© Copyright IBM Corp 2006
26

 Initial diagnostics designated the software as the culprit for the malfunction,
since it was difficult for mechanics to test its behavior. The other components (ECU,
sensor, and windshield) were functioning normally when tested independently. The
failure mode for the RSW resided at the level of its sub-systems, which made it
difficult for the manufacturer to discover it. After discovering the root cause, a new
requirement was captured to ensure that new systems will be properly calibrated at the
production stage.

 In our SysML model, this requirement is named System Calibration and shown in
Figure 3 and Figure 5.

Appendix B: Additional Diagrams

Figure 18 Associations between Blocks and Additional Elements

IBM Research Division

© Copyright IBM Corp 2006
27

Figure 19 Parametric Diagram for the Sensor.

Figure 20 Parametric Diagram for the Windshield.

