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ABSTRACT

Web page classification is one of the essential techniques
for Web mining. Specifically, classifying Web pages of a
user-interesting class is the first step of mining interesting
information from the Web. However, constructing a classi-
fier for an interesting class requires laborious pre-processing
such as collecting positive and negative training examples.
For instance, in order to construct a “homepage” classifier,
one needs to collect a sample of homepages (positive exam-
ples) and a sample of non-homepages (negative examples).
In particular, collecting negative training examples requires
arduous work and special caution to avoid biasing them. We
introduce in this paper the Positive Example Based Learn-
ing (PEBL) framework for Web page classification which
eliminates the need for manually collecting negative train-
ing examples in pre-processing. We present an algorithm
called Mapping-Convergence (M-C) that achieves classifica-
tion accuracy (with positive and unlabeled data) as high as
that of traditional SVM (with positive and negative data).
Our experiments show that when the M-C algorithm uses
the same amount of positive examples as that of traditional
SVM, the M-C algorithm performs as well as traditional
SVM.
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1. INTRODUCTION

Automatic categorization or classification” of Web pages
have been studied extensively since the Internet has become
a huge database of information, in terms of both volume and
variance. Given the fact that Web pages are based on loosely
structured text, many variances of statistical text learning
algorithms have been applied to Web page classification.

Previous approaches for multi-class classification prob-
lems [2, 15] define mutually exclusive classes a priori, train
each class from training examples, and choose one best match-
ing class for each testing data. However, mutual-exclusion
between classes is not a very realistic assumption because
of the fact that a single page usually falls into several cate-
gories. Also, the pre-defined classes usually do not fit end-
users’ search purposes because it is hard for a pre-defined
set of classes to satisfy the diverse and changing interests
of users. For example, a company wants to find “XML ex-
pert” pages from the Internet. They may start by searching
for the keywords “XML” or “expert” on any search engine,
then trying to refine the search results repeatedly until they
collect a fair amount of “XML expert” pages. However,
if they specify a search class or domain information such
as “resume” or “personal homepage”, the refining process
could be eliminated by applying a query of “XML” upon
the classes of resume or personal homepage.

Researchers have realized these problems, and proposed
the classifications of user-interesting classes such as “calls for
paper”, “personal homepage” [9]. This involves binary clas-
sification techniques that distinguish Web pages of a user-
interesting class from all others. This binary classifier is
an essential component for Web mining because identifying
Web pages of a particular class from the Internet is the first
step of mining interesting data from the Web. A binary
classifier is a basic component of building a domain specific
engine [12] as well as a multiclass classification system [16,
1]. When binary classifiers are considered independently

1

! Classification is distinguished from clustering in terms that
classification requires a learning phase (training phase) be-
fore actual classification (testing phase).



within a multiclass classification system, an item may fall
into none, one, or more than one class, which relaxes the
mutual-exclusion assumption between classes [8].

Constructing a binary classifier for Web pages requires la-
borious pre-processing. For instance, in order to construct
a “homepage” classifier, one needs to collect a sample of
homepages (positive training examples) and a sample of non-
homepages (negative training examples). Collecting nega-
tive training ezamples is especially delicate and arduous be-
cause (1) negative training examples must uniformly repre-
sent the universal set excluding the positive class (e.g. sam-
ple of non-homepage should represent the Internet uniformly
excluding the homepages), and (2) manually collected neg-
ative training examples could be biased because of human’s
unintentional prejudice, which could be detrimental to clas-
sification accuracy.

We present here the Positive Example Based Learning
(PEBL) framework for Web page classification, which elim-
inates the need of manually collecting negative training ex-
amples in pre-processing. The PEBL framework uses a sam-
ple of the universal set as unlabeled data, and learns from
additional positive data and the given unlabeled data with-
out requiring labeled data. Labeled data indicates both pos-
itive and negative examples manually classified to train a
classifier, which our framework does not require. Unlabeled
data indicates random samples of the universal set for which
the class of each sample is unknown and irrelevant. (e.g.
samples of homepages and non-homepages are labeled data
because we know the class of the samples from manual clas-
sification, and random sampling of the Internet provides un-
labeled data because the classes of the samples are of no con-
cern.) In many real-world learning problems including Web
page classification problem, unlabeled and positive data are
widely available while negative data sets are rare and expen-
sive [13, 5]. For example, consider the automatic diagnosis
of diseases: unlabeled data are easy to collect (all patients
in the database), and positive data are also readily avail-
able (the patients who have the disease), but negative data
are expensive if detection tests for the disease are expensive
since all patients in the database cannot be assumed to be
negative samples if they have never been tested.

Our goal is to achieve classification accuracy from positive
and unlabeled data as high as that from labeled (positive
and negative) data. (We only assume that the unlabeled
data is unbiased.) There are two main challenges in this
approach: (1) collecting unbiased unlabeled data from uni-
versal set (e.g. the Internet), and (2) achieving classifica-
tion accuracy from the positive and unlabeled data as high
as that from the labeled (positive and negative) data. To
address the first issue, we assume it sufficient to use ran-
dom sampling to collect unbiased unlabeled data. Random
sampling is supported in most databases and warehouses,
including search engine databases, or can be done indepen-
dently directly from the Internet.

In this paper, we focus on the second challenge, achieving
classification accuracy as high as that from labeled data. We
introduce an algorithm called Mapping-Convergence (M-C)
that learns from positive and unlabeled data as accurately
as a traditional SVM (Support Vector Machine) that learns
from labeled data. The M-C algorithm uses SVM technol-
ogy [3], especially the marginal property of SVMs, which
ensures classification accuracy from positive and unlabeled
data converges to the accuracy received from labeled data.

‘We present the details of the SVM properties in Section 3.

Our experiments (Section 5) fall into two different do-
mains of universal sets: one is the Internet (Ezperiment 1),
and the other is computer science department sites (Ezper-
iment 2). Both experiments show that the PEBL frame-
work using the M-C algorithm achieves classification accu-
racy from positive and unlabeled data as high as that from
labeled data.

One might argue that using a sample of universal set it-
self as a substitute for negative training data is valid since
the portion of positive class in universal set (P(C)) is usu-
ally much much smaller than the portion of its complement
(P(C)). However, when training a SVM, a small number of
false positive training data could be detrimental to classifi-
cation accuracy. Experiment 2 (i.e. CS department sites)
shows that using sample of the universal set as a substi-
tute for negative training examples degrades accuracy sig-
nificantly in classifying every class in the domain.

The new contributions of our PEBL framework are the
following.

e Pre-processing for classifier construction requires col-
lecting only positive examples, which speeds up the en-
tire process of constructing classifiers and also opens
a way to support example-based query on the Inter-
net. Figure 1 shows the difference between a typical
learning framework and the PEBL framework for Web
page classification. Once a sample of the universal set
is collected in PEBL, the sample is reused as unlabeled
data for every class, therefore users would not need to
resample the universal set each time they construct a
new classifier.

e PEBL achieves accuracy as high as that of a typical
framework without loss of efficiency in testing. PEBL
runs the M-C algorithm in training phase to construct
an accurate SVM from positive and unlabeled data.
Once the SVM is constructed, classification perfor-
mance in the testing phase will be equivalent to that of
a typical SVM in terms of both accuracy and efficiency.

o Although we address Web page classification in this
paper because of its high demand for this application,
our PEBL framework can be easily applied to other
classification problems within different domains, such
as diagnosis databases, text databases, or electronic
commercial databases.

Note that this paper concentrates on the classification al-
gorithms, and not on other related important problems for
Web page classification, such as feature modeling and ex-
traction. For instance, taking advantage of the structures of
the documents or hyperlinks is also an important issue for
Web page classification [20, 22, 18]. Additionally, selection
of good features is critical to the classification accuracy re-
gardless of the algorithms. However, these issues are beyond
the scope of this paper. We consider a set of commonly used
and clearly defined Web based features of Web pages in our
experiments, such as URL, head text, all text, hyperlink,
and anchor text (see Section 5 for more details).

The remainder of the paper is organized as follows: Sec-
tion 2 describes related work including the review of us-
ing unlabeled data in classification. Section 3 reviews the
marginal properties of SVMs. Section 4 presents the M-C
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Figure 1: A typical learning framework versus the Positive Example Based Learning (PEBL) framework.
Once a sample of the universal set is collected in PEBL, the same sample is reused as unlabeled data for

every class.

algorithm and provide justification of why it works. Section
5 reports the result of a systematic experimental compari-
son using two classification domains: the Internet and CS
department sites. Section 6 outlines several important is-
sues to consider regarding learning algorithm, and the PEBL
framework. Finally, Section 7 reviews and concludes our dis-
cussion of the PEBL framework.

2. RELATED WORK

Previous approaches have used unlabeled data, which present

issues that need discussion.

How are unlabeled data useful when learning classifica-
tion? Unlabeled data contains information about the joint
distribution over features other than the class label. Clus-
tering techniques utilize the features of unlabeled data to
identify natural clusters of the data. However, class labels
do not always correspond to the natural clustering of data.
When unlabeled data are used with a sample of labeled
data, it increases classification accuracy in certain problem
settings. This is called semi-supervised learning. The EM
algorithm is a representative algorithm which can be used
for either semi-supervised learning or unsupervised learning
[6]. However, the result depends on the critical assumption
that the data sets are generated using the same paramet-
ric model used in classification. Kamal Nigam inserted two
parameters into EM (to relax the generative assumptions):
one for controlling the contributions of labeled data and un-
labeled data, and the other for controlling the quantity of
mixture components corresponding to one class [17]. An-
other semi-supervised learning occurs when it is combined
with SVMs, to form transductive SVM [11]. With careful
parameter settings, both of those works show good results
within certain environments, such as environments with an
extremely low amount of labeled data. When the number
of labeled data grows or the generative assumptions are vi-
olated, semi-supervised learning schemes suffer significant
degradation of classification accuracy.

Another stream of research which uses unlabeled data in
classification is termed learning from positive and unlabeled

data. In 1998, F. Denis defined the PAC learning model
for positive and unlabeled examples, and showed that k-
DNF (Disjunctive Normal Form) is learnable from positive
and unlabeled examples [7]. Since then, some experimental
attempts to learn using positive and unlabeled data have
been tried using k-DNF or decision trees [13, 5]. However,
those methods are not very useful for Web page classifica-
tion problems because; (1) k-DNF or decision trees are not
very tolerant with high dimensionality and sparse instance
space, which are the properties of Web page classification,
(2) their algorithms require knowledge of the proportion of
positive instances within the universal set, which is not avail-
able in many classification problems, and (3) they perform
poorer than traditional learning schemes given sufficient la-
beled data. The M-C (Mapping-Convergence) algorithm in-
troduced in this paper relaxes the above three limitations in
Web page classification from positive and unlabeled exam-
ples.

One-class SVMs have been recently developed, which dis-
tinguish one class of data from the rest of the feature space
given only positive data set [19, 14]. One-class SVMs draw
the class boundary of the positive data set in the feature
space. However, due to lack of the information about neg-
ative data distribution, they require much larger amount
of positive training data to induce accurate boundary, and
their performance is dependent on the user parameters in-
dicating how strictly the boundary should fit around the
data. From our experiments of the one-class SVM using the
LIBSVM?, the one-class SVM performs initially very poor
with the standard parameter setting, and even with careful
parameter setting, the performance is much worse than that
of our M-C algorithm because the one-class SVM does not
utilize the distribution of unlabeled data.

Our approach is fundamentally different from previous ap-
proaches. The first stage of the M-C algorithm (called the
mapping stage) is based on 1-DNF, which was previously
proven learnable from positive and unlabeled data [7]. The

http://www.csie.ntu.edu.tw/ cjlin/libsvm
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Figure 2: A graphical representation of a linear
SVM in a two-dimensional case. (i.e. Only two fea-
tures are considered.) M is the distance from the
separator to the support vectors in feature space.

second stage of the M-C algorithm (called the convergence
stage) uses SVM (Support Vector Machine) technology [3],
especially the marginal property of SVMs.

3. MARGINAL PROPERTY OF SVM

As a binary classification algorithm, SVM gains increasing
popularity because it has shown outstanding performance in
many domains of classification problems [8, 10, 21]. Espe-
cially it tolerates the problem of high dimensions and sparse
instance spaces. There has been a recent surge of interest
in SVM classifiers in the learning community.

SVM provides several salient properties that other learn-
ing algorithms do not have, such as maximization of margin
and nonlinear transformation of the input space to the fea-
ture space using kernel methods [3]. To illustrate, consider
its simplest form, a linear SVM. A linear SVM is a hyper-
plane that separates a set of positive data from a set of
negative data with mazimum margin in the feature space.
The margin (M) indicates the distance from the hyperplane
(class boundary) to the nearest of the positive and negative
data in the feature space. Figure 2 shows an example of a
simple two-dimensional problem that is linearly separable.
Each feature corresponds to one dimension in the feature
space. The distance from the hyperplane to a data point
is determined by the strength of each feature of the data.
For instance, consider a resume page classifier. If a page has
many strong features related to the concept of “resume” (e.g.
words “resume” or “objective” in headings), the page would
belong to positive (resume class) in the feature space, and
the location of the data point should be far from the class
boundary on the positive side. Likewise, another page not
having any resume related features but having many non-
resume related features should be located far from the class
boundary on the negative side.

In cases where the points are not linearly separable, the
SVM has a parameter, C (the penalty imposed on training
data that fall on the wrong side of the decision boundary).
The SVM computes the hyperplane that maximizes the dis-
tances to support vectors for a given parameter setting. For
problems that are not linearly separable, advanced kernel
methods can be used to transform a non-linear input space
to a linear feature space. We used the linear kernel of SVM
in our experiments because of it’s speed and relatively high

Figure 3: Strength of negative

classification accuracy. We discuss the usage of advanced
kernel methods within our framework in Section 6.

4. THE MAPPING-CONVERGENCE (M-C)
ALGORITHM

The main thrust of this paper is how to achieve classifi-
cation accuracy (from positive and unlabeled data) as high
as that from labeled (positive and unbiased negative) data.
The M-C algorithm achieves this goal.

What can we learn from positive and unlabeled data? We
can identify strong positive features from positive and unla-
beled data by checking the frequency of those features within
positive and unlabeled training data. For instance, a feature
that occurs in 90% of positive data but only in 10% of unla-
beled data would be a strong positive feature. Suppose we
build a list of every positive feature that occurs in the pos-
itive training data more often than in the unlabeled data.
By using this list of the positive features, we can filter out
every possibly positive data point from the unlabeled data
set, which leaves only strongly negative data — We call these
strong negatives. For instance, we say a strong negative is a
data point not having any of the positive features in the list.
(In this case, the list is considered 1-DNF.) In this way, we
can extract strong negatives from the unlabeled data. This
is what the mapping stage of the M-C algorithm accom-
plishes. However, using the list, we can only identify strong
negatives that are located far from the class boundary. In
other words, although 7-DNF is potentially learnable from
positive and unlabeled data, its resulting quality of learning
is not good enough.

What can we do with the strong negatives to construct an
accurate class boundary? We were given samples of positive
and unlabeled data, and now we have strong negatives ex-
tracted from the unlabeled data through the mapping stage.
If we construct a SVM from the positives and only the strong
negatives, the class boundary would be far from accurate
due to the insufficient negative training data. We use the
marginal property of SVMs to refine the inaccurate bound-
ary into the accurate one. This process is the convergence
stage of the M-C algorithm. In this section, we explain the
details of the M-C algorithm.

4.1 Definitions

The distance from the hyperplane (the class boundary) to
a negative data point in the feature space is proportional to



its relative strength. For instance, consider a resume classi-
fier. Assume that there are two negative data points (non-
resume pages) in the feature space: one is “how to write
a resume” page and the other is “how to write an article”
page. In the feature space, the article writing page is consid-
ered to be more distant from the resume class because the
resume writing page has more features related to resumes
(e.g. the word “resume” in text) though it is not an actual
resume page. The following definition quantizes the level of
the negative strength into n discrete levels. (This is concep-
tual division of the strength. In real cases, the levels of the
strength may be continuous.)

Definition 1. (Map of Negative: M;(neg)) The map of
strongest negative, Mi(neg), is farthest from POS (the pos-
itive) in the feature space of universal set, U. A map of
negatives, M;(neg), is farther than M;y;(neg) from POS.
The map of weakest negative, My (neg), is nearest to POS.
Figure 3 visualizes the strength of negative.

UZ_; M;i(neg) is equivalent to the set of the negative data
points, everything that excludes positives in the universal
set.

Definition 2. (Subsumption of Positive: S;(pos)) Let S;(pos)

be a set subsuming POS. Namely,

Si(pos) = U My (neg) U POS
k=i+1

for i=0 to n-1 where U = Sp(pos). Note that S;(pos) =
Si+1(pos) U M;11(neg), and U = S1(pos) U Mi(neg)

4.2 Mapping-Convergence (M-C) algorithm

As alluded to earlier, the Mapping-Convergence (M-C)
algorithm consists of two stages — (1) the mapping stage
and (2) the convergence stage.

4.2.1 Mapping Stage

The mapping stage maps the strongest negative, Mi (neg),
from U using 1-DNF learning without great concern for the
quality of the mapping. The remaining data points, ex-
cluding the strongest negative (M1(neg)) from U, would be
S1(pos) which subsumes the positive as defined previously.
k-DNF has been proven learnable from positive and unla-
beled data in previous work [7], which supports the feasi-
bility of the mapping stage execution when not overly con-
cerned with the quality of the mapping. A condition for the
mapping stage is that M;(neg) excludes true positive. The
quality of the mapping is not critical to the performance
of the M-C algorithm if this condition is not violated. We
discuss this more in Section 4.3.

4.2.2 Convergence Sage

The convergence stage trains the SVM repeatedly to ag-
gregate mapped negatives (M;(neg)) as close as possible to
the unbiased negatives (NEG). We illustrate this through
the following example.

Ezample 1. (Convergence) Consider classifying “faculty
pages” in a university site. POS is a given sample of faculty
(positive) pages. U is a sample of the university site (an
unbiased sample of the universal set). NEG is a set of the
other pages in the university site excluding faculty pages

(unbiased negative pages). POS and U are assumed to be
given, and NEG is initially set to null because negative
examples are not given. We assume that a university site
has the following four different levels (n=4) of the negative
strength.

My(neg): the weakest negative pages considered most
similar to the faculty pages (e.g. staff pages)

M3s(neg): the secondly weakest negative pages which are
less similar to the faculty pages (e.g. student pages)
M>(neg): the negative pages not very similar to the faculty
pages (e.g. project or course pages)

M;(neg): the strongest negative pages considered most dis-
parate from the faculty pages (e.g. information or facility
pages)

Next, consider how we fill the NEG with unbiased neg-
ative data extracted from U. Let’s say the 1-DNF identi-
fies only the strongest negative, M;(neg) (e.g. information
or facility pages). We save the Mi(neg) into NEG, and
the rest of U will be Si(pos). (S1(pos) = Ui_,Mx(neg) U
POS.) We train a SVM with the NEG (currently contain-
ing Mi(neg)) and the given POS. The SVM generates a
hyperplane between NEG and POS, which keeps a maxi-
mal margin between them in the feature space. (See Fig-
ure 4.(a).) When, using the SVM, we test Si(pos), the
SVM divides the Si(pos) into Mz(neg) (e.g. project or
course pages) and Sz(pos). (S2(pos) = POS U My(neg) U
Ms(neg).) We now accumulate the M>(neg) into NEG, and
then we re-train the SVM with the NEG (currently con-
taining M (neg) U Ma(neg)) and the given POS. The SVM
generates another hyperplane between NEG and POS also
keeping maximal margin between them in the feature space.
(See Figure 4.(b).) When we test S2(pos) using the SVM,
the SVM divides the S2(pos) into Ms(neg) (e.g. student
pages) and Ss(pos). (S3(pos) = POSU M4(neg).) We accu-
mulate the M3(neg) into NEG again, and re-train the SVM
with the NEG (currently containing U3_, My (neg)) and the
given POS. We iterate these processes until the M;(neg) be-
comes empty set. The SVM constructed at the end of the
process will be close to the SVM constructed from positive
and unbiased negative data because NEG will converge into
the unbiased negative data in the universal set, U. (U was
assume to be an unbiased sample of the universal set.) Fig-
ure 5 shows the outline of the M-C algorithm, and Figure 6
shows the corresponding data flow of each part of the algo-
rithm.

Example 1 may discretize too much the boundary of each
level of the negative strength. However, in real cases with
continuous levels, as you see in Figure 4, the marginal prop-
erty of SVMs urges the hyperplane to converge into the real
boundary of the two classes (positive and negative classes)
in the feature space. Our experiments in Section 5 show that
the M-C algorithm with positive and unlabeled data actu-
ally performs as well as the traditional SVM with labeled
data.

4.3 1-DNF Mapping

The goal of the mapping stage is to subsume positive with-
out great concern for the quality of the mapping as we dis-
cussed in Section 4. We do this by building a disjunction
list of positive features, which is equivalent to I-DNF. Af-
ter we construct the 1-DNF of positive features, we map
the subsuming positive (S1(pos)) and the strongest negative
(M1(neg)) by filtering the universal set (U) through the 1-
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DNF. (The beginning of Section 4 discuss the intuition of
the mapping stage.) The choice of k-DNF, however, not crit-
ical to the final accuracy of the M-C algorithm as long as
S1(pos) subsumes POS, because UM;(neg) converges into
the unbiased negatives through the iterations regardless of
the quality of the initial mapping. The poor quality of the
initial mapping would increase the number of the iterations
in the algorithm, which ends up longer training time, but
the final accuracy would be the same. Our experiments show
that classification accuracy of the M-C algorithm converges
into that of the traditional SVM trained from labeled data
in every class no matter how bad the initial mapping is. (See
Figure 7 and 8 in Section 5.2.)

5. EXPERIMENTAL RESULTS

In this section, we provide empirical evidence that our
PEBL framework using positive and unlabeled data per-
forms as well as the traditional SVM using manually labeled
(positive and unbiased negative) data. We present experi-
mental results with two different domains of universal sets:
the Internet (Ezperiment 1), and university computer sci-
ence department (Ezperiment 2).

5.1 Data Sets and Experimental Methodology

Ezperiment 1. (The Internet) The first universal set in
our experiments is the Internet. To collect random samples
of Internet page, we used DMOZ?, which is a free open di-
rectory of the Web containing hundreds of millions of Web
pages. Random sampling of a search engine database such
as DMOZ is sufficient (we assume) to construct an unbi-
ased sample of the Internet. We randomly selected 2388
pages from DMOZ to collect unbiased unlabeled data. We

30pen Directory Project, http://dmoz.org

also manually collected 368 personal homepages, 192 col-
lege admission pages, and 188 resume pages to classify the
three interesting classes: personal homepages, college ad-
mission pages, and resume pages. (Each class is classified
independently.) We used around half of the pages of each
class for training and another half for testing. For testing
negative data (for evaluating the classifier), we manually
collected 449 non-homepages, 450 non-admission pages, and
533 non-resume pages. (We collected negative data just for
evaluating the classifier we construct. The PEBL does not
require collecting negative data to construct classifiers.) For
instance, for personal homepage class, we used 183 positive
and 2388 unlabeled data for training, and used 185 positive
and 449 negative data for testing.

Ezxperiment 2. (University computer science department)
The WebKB data set [4] contains 8282 Web pages gathered
from university computer science departments. The collec-
tion includes the entirety of computer science departments
from various universities. The pages are divided into seven
categories: student, project, faculty, course, staff, depart-
ment and others. In our experiments, we classify the three
most popular categories (from all independently): student,
project, faculty. The number of the pages in each category
is 1641, 504, and 1124 respectively. We randomly selected
1052 and 589 student pages, 339 and 165 project pages, and
741 and 383 faculty pages for training and testing respec-
tively. For testing negative data, we also randomly selected
662 non-student pages, 753 non-project pages, and 729 non-
faculty pages. We picked up randomly 4093 pages from all
categories to make a sample universal set, and same sample
is used for four classes as unlabeled data. For instance, for
faculty page classification, we used 741 positive and 4093
unlabeled data for training, and used 383 positive and 729
negative data for testing.



Input:

e positive training examples, POS

e unlabeled examples (sample of universal set), U
Output:

e a3 SVM
Algorithm:

e 1-DNF := construct_1-DNF (POS, U); // ...
M (neg), S1(pos) := 1-DNF.classify (U); // ...@
NEG := @;1i:=1;
do {

— NEG := NEG U M;(neg);
SVM := construct_SVM (POS, NEG); /] ...
Mj41(neg), Sit1(pos) := SVM.classify (S;(pos));
@

i=i+ 1

} while (M;(neg) # 9);
return SVM;

Rationale:

e 1-DNF learns from POS and U...D, and extracts the
the strongest negative (Mi(neg)) from U...@. (The
remainder is S1(pos).) Save the Mj(neg) into NEG,
and construct a SVM from POS and the NEG...d.
The SVM classifies S1(pos) into the secondly strong
negative (M2z(neg)) and the remainder (S2(pos))...®.
Accumulate the M>(neg) into NEG, and construct a
SVM again from POS and NEG...). The SVM classi-
fies S2(pos) into M3(neg) and S3(pos)...@. We iterate
these processes until M;(neg) becomes empty set.

Analysis:

e Training time is proportional to the time of training a
SVM multiplied by % (# of iterations).

e i (# of iterations) is logarithmic to the size of negative
space because @ and @ include half of the rest of space

at each iteration.

Figure 5: Mapping-Convergence (M-C) algorithm
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Figure 6: Data flow diagram of the Mapping-
Convergence (M-C) algorithm

We extracted features from different parts of a page —
URL, title, headings, link, anchor-text, normal text, and
meta tags. Each feature is a predicate indicating whether
each term or special character appears in each part. (e.g.
‘~’ in URL, a word ‘homepage’ in title) We did not use
stemming or a stoplist because it could hurt performance in
Web page classification. For example, a common stopword,
“I” or “my”, is a good indicator of a student homepage.

For SVM implementation, we used SVM light*. As we dis-
cussed in Section 3, we used linear kernel method because
it is simple and efficient. We discuss more about the usage
of advanced kernel methods in Section 6. For the param-
eter, C (the penalty imposed on training data that fall on
the wrong side of the decision boundary), we used the de-
fault parameter, [ave./x * ] "' of the SVM light. We didn’t
rigorously try to find out the optimal C, because the de-
fault setting showed good performance in all cases. In many
other learning algorithms, finding best parameters is usually
critical to the performance. It is necessary for them to per-
form cross-validation to determine many problem-specific
parameters, which is a time consuming and laborious man-
ual process. Without it, they perform extremely poorly
(sometimes, poorer than random). The strong mathemat-
ical foundation of SVM makes it possible to run the M-C
algorithm fully automatically without human interruption
to determine best parameter setting for each iteration or
each specific problem. We used the same parameter, C, for
all our experiments, so the whole process can be done auto-
matically and generally (not dependent on specific problem).

Result reports are based on precision-recall breakeven point
(P-R), a standard measure for binary classification. Accu-
racy is not a good performance metric because very high
accuracy can be achieved by always predicting the negative
class. Precision and recall are defined as:

# of correct positive predictions

Preciston =
# of positive predictions

# of correct positive predictions

Recall = # of positive data

The precision-recall breakeven point (P-R) is defined as the
precision and recall value at which the two are equal. We
adjusted the decision threshold b of the SVM at the end of
each experiment to find P-R.

5.2 Results

We first show the performance comparison between PEBL
and traditional SVM (trained from manually labeled data)
on the six classes of the two universal sets — the Internet
and CS department sites. We first constructed a SVM from
positive (POS) and unlabeled data (U) using PEBL. On the
other hand, we manually classified the unlabeled data (U)
to extract unbiased negatives from them, and then we built
a traditional SVM from POS and those unbiased negatives.
We tested the same testing documents using those two SVMs
— PEBL and TSVM (Traditional SVM). Table 1 shows the
P-R (precision-recall breakeven points) of each SVM, and
it also shows the number of iterations to converge in the
case of the PEBL. In most cases, PEBL without negative
training data performs almost as well as the traditional SVM
with manually labeled training data. For example, when we

“http://svmlight.joachims.org
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Figure 7: Convergence of negatives (NEG) and performance (P-R: precision-recall breakeven point) when
the universal set is the Internet. TSVM indicates the traditional SVM constructed from manually labeled

(positive and unbiased negative) data.

Table 1: Precision-recall breakeven points (P-R)
showing performance of PEBL (Positive Exam-
ple Based Framework) and TSVM (the Traditional
SVM trained from manually labeled data) in the two
universal sets (U). The number of iterations to the
convergence in PEBL is shown in parentheses.

U Class TSVM PEBL
homepage 88.11  86.49 (7)

The Internet  admission  92.0 92.0 (4)
resume 96.2 96.2 (4)
student 94.74  94.23 (14)
CS Department  project 86.67  86.06 (12)
faculty 92.95 91.12 (11)

manually classify 109 resume pages and 2388 unbiased non-
resume pages to train a SVM in a traditional way, it gives
96.2% P-R (precision-recall breakeven point). When we use
PEBL with only the 109 resume pages without non-resume
pages, it gives also 96.2% P-R.

Figure 7 and 8 show the details of convergence (of the
induced negative training data and corresponding P-R) at
each iteration in the experiment of the universal set, the In-
ternet and CS department sites respectively. For instance,
consider the graphs of the first column (personal homepage
class) in Figure 7. The number of induced negatives at the
first iteration is around 250 (shown on the first row of the
graph), and the P-R of the SVM trained from positive and
those 250 negatives is 0.60 (shown on the second row of
the graph). At the second iteration, the number of induced
negatives is around 800, and the SVM trained from positive

and those 800 negatives gives 0.64 P-R. Likewise, at the sev-
enth iteration, the number of induced negatives is almost the
same as the number of real unbiased negatives, and also the
P-R at the point is as high as the P-R of the traditional SVM
(TSVM). The performance (P-R: precision-recall breakeven
point) of M-C is converging rapidly into that of TSVM in
all our experiments.

The P-R convergence graphs in Figure 8 show one more
line (P-R of UN), which is the P-R when using the sample of
universal set (U) as a substitute for negative training data.
As we discussed at the end of Section 1, they obviously show
the performance decrement when using U as a substitute
for negative training data, because a small number of false
positive training data affects significantly the set of support
vectors which is critical to classification accuracy.

6. DISCUSSION

In this section, we discuss several important issues to con-
sider regarding learning algorithm and PEBL framework.

1. Possible extension of PEBL methodology to non-SVM

learning method?

Other supervised learning methods such as probabilistic (e.g.,
naive bayes) or mistake-driven learning methods (e.g., per-
ceptron, winnow) do not maximize the margin. As we dis-
cussed in Section 3, SVM maximizes the margin, which en-
sures that the initial class boundary converges into the real
boundary of the two (positive and negative) class. Other
learning methods do not guarantee the convergence of the
class boundary, and even if they converge the boundary oc-
casionally, the rate of convergence would be slower.

2. Choice of kernel functions.
SVMs provide nonlinear transformation of input space to
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Figure 8: Convergence of negatives (NEG) and performance (P-R: precision-recall breakeven point) when the
universal set is computer science department sites. TSVM indicates the traditional SVM constructed from
manually labeled (positive and unbiased negative) data. UN indicates the SVM constructed from positive
and sample of universal set as a substitute for unbiased negative training data

feature space using advanced kernels (i.e. polynomial or
gaussian kernels) [3]. Polynomial kernel combines input fea-
tures to create high dimensional features in feature space.
As the degree of polynomial kernel grows, higher dimen-
sional function is used to try to fit more training data, which
ends up overfitting at some point. In our experiments with
Web pages, even the second degree of polynomial kernel de-
graded the accucary due to the overfitting. For Web page
classification, polynomial kernel may not be a good choice
because of its inefficiency and easy overfitting. From our
experiments with Gaussian kernel, it shows 1 ~ 3% higher
accuracy than linear kernel overall but with careful setting
of the parameters, v and C. Default setting of v and C
usually gives poor accuracy. The usage of gaussian kernel in
the M-C algorithm would increase the accuracy but also in-
crease the training time multiply because searching the best
parameters requires time-consuming process such as cross-
validation. We used linear kernel in the experiments because
it is efficient and shows also good accuracy. Identifying or
building proper kernel functions for specific problems is still
ongoing research.

3. Further improvement of algorithm performance.
The M-C algorithm takes several times longer to train one
class than traditional SVM does since the iteration of train-
ing SVM in the M-C algorithm has to be serialized due
to data dependency between adjacent iterations. However,
only part of the NEG (the negatives accumulated each it-
eration) is dependent between each iteration, which leaves a
room for speeding up by parallel processing such as pipelin-
ing techniques. Using pipeline architecture to speed up
this training process and using advanced kernel methods

with the enhanced architecture to increase classification ac-
curacy for specific problems could be good future works.
Once training is done (a classifier is constructed), however,
the speed of testing (classifying) is equivalent to traditional
SVM, which makes our framework practical in many real-
world problems.

7. SUMMARY AND CONCLUSIONS

Web page classification is one of the essential techniques
for Web mining. Specifically, classifying Web pages of a
user-interesting class is the first step of mining interesting
information from the Web. However, constructing a classi-
fier for an interesting class requires laborious pre-processing
such as collecting positive and negative training examples.
In particular, collecting negative training ezamples requires
arduous work and special caution to avoid biasing them.
The Positive Ezample Based Learning (PEBL) framework
for Web page classification eliminates the need for manually
collecting negative training examples in pre-processing. The
Mapping-Convergence (M-C) algorithm in the PEBL frame-
work achieves classification accuracy (with positive and un-
labeled data) as high as that of traditional SVM (with pos-
itive and negative data). Our experiments show that when
the M-C algorithm uses the same amount of positive exam-
ples as that of traditional SVM, the M-C algorithm achieves
classification accuracy as high as that of traditional SVM.
PEBL framework using the M-C algorithm contributes to
automating pre-processing of Web page classification with-
out much loss of classification accuracy.
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