
ar
X

iv
:0

90
5.

15
87

v1
 [

cs
.D

M
]

 1
1

M
ay

 2
00

9

Unsatisfiable Linear CNF Formulas Are Large, and

Difficult to Construct Explicitely

Dominik Scheder ⋆

Theoretical Computer Science, ETH Zürich
CH-8092 Zürich, Switzerland

dscheder@inf.ethz.ch

May 11, 2009

Abstract. We call a CNF formula linear if any two clauses have at most one
variable in common. We show that there exist unsatisfiable linear k-CNF formulas
with at most O(k34k) clauses, and on the other hand, any linear k-CNF formula

with at most 4
k

4e2k3 clauses is satisfiable. The upper bound uses a probabilistic
construction, and we have no explicit construction coming even close to it. We
give some arguments why it is difficult to find explicit constructions: First, any
treelike resolution refutation of any unsatisfiable linear k-CNF formula has size

at least 22

k−1
2 −1. Second, if we require the unsatisfiable linear k-CNF formula to

exhibit a certain recursive structure, then we need at least α
α

...α

clauses, where
α is roughly 2 and the size of this tower is roughly k.

1 Introduction

How difficult is it to come up with an unsatisfiable CNF formula? Stupid question, of
course: {{x}, {x̄}}, here is one. Two clauses, each containing one literal, and unsatisfi-
able. Well, yes, but what if we want a k-CNF formula, i.e., we require that every clause
contains exactly k literals? Now it is a little bit less trivial, but still easy: Take a clause
{x1, x2, . . . , xk}, then {x̄1, x2, . . . , xk}, {x1, x̄2, . . . , xk}, until you have exhausted all 2k

combinations of negative and positive literals. Each assignment to the k variables dis-
satisfies exactly one clause: This formula has 2k clauses, and it is unsatisfiable. It is
extremal in the sense that all smaller k-CNF formulas are satisfiable. What if we impose
further restrictions? For example, what if any two clauses must be disjoint, i.e., have no
variable in common? This is too much to ask for: Such formulas are always satisfiable.
Let us weaken the disjointness restriction a little bit. What if we require that any two
clauses have at most one variable in common? This is what we call a linear formula.
Are there unsatisfiable k-CNF formulas of that type? For which k, for all k? If yes, how
do they look, how large are they? The goal of this paper is to give some answers to
these questions. The class of linear formulas has already been investigated by Porschen,
Speckenmeyer and Zhao [1], but that work focuses more on existence and hardness of
linear formulas, and not on extremal parameters, as this paper does.

A related question, in the context of hypergraphs, has drawn some attention for quite
some time already. A hypergraph is called linear if any two hyperedges share at most
one vertex. The term linear probably comes from the fact that lines in a vector space
intersect at most once. The hypergraph analog to our question reads as follows: Do there
exist r-uniform linear hypergraphs that are not k-colorable, for any r and k? If yes,

⋆ Research is supported by the SNF Grant 200021-118001/1

http://arxiv.org/abs/0905.1587v1

II

how large (in terms of the number of hyperedges) are they? This first question has been
answered positively. The proof of the case k = 2 is due to Abbott [2]. For general k,
existence follows for example from the Hales-Jewett theorem [3]. Rather tight bounds
on the size of linear r-uniform non-k-colorable hypergraphs have later been given by
Kostochka, Mubayi, Rödl and Tetali [4], using probabilistic techniques.

In the context of CNF formulas, a different extremal parameter has been examined.
For a CNF formula F and a variable x, let d(x, F) denote the number of clauses containing
x or x̄, and let d(F) = maxx d(x, F). A (k, d)-CNF formula is a k-CNF formula F such
that d(F) ≤ d. We define the extremal function f(k) by

f(k) := max{d
∣

∣ every (k, d)-CNF formula is satisfiable} . (1)

The function f(k) has first been investigated by Tovey [5], who showed, using Hall’s
Theorem, that every (k, k)-CNF formula is satisfiable, thus establishing f(k) ≥ k. Kra-

tochv́ıl, Savický and Tuza [6] later proved that f(k) ≥ 2k

ek
, and that while (k, f(k))-CNF

formulas are all trivially satisfiable, satisfiability of (k, f(k)+1)-CNF formulas is already
NP-complete. For an upper bound, it is clear that f(k) ≤ 2k − 1, see for example the
k-CNF formula we gave at the very beginning. However, better bounds are known. Hoory

and Szeider [7] showed that f(k) ∈ O
(

ln(k)2k

k

)

, and recently Gebauer [8] proved that

f(k) ∈ O
(

2k+2

k

)

, thus f(k) is now known up to a constant factor.

Returning to our question, we define:

mLIN(k) := max{m
∣

∣ every linear k-CNF formula with ≤ m clauses is satisfiable} .(2)

For proving lower bounds on mLIN(k), we will actually use the lower bound on f(k)
given by Kratochv́ıl, Savický and Tuza [6]. Upper bounds on mLIN(k) are obtained by
probabilistic constructions, not by explicit ones, as for f(k). In fact, we will prove that no
”straightforward” (in a sense to be made precise later) construction can yield an upper
bound on mLIN(k) that comes even close to its true value. This, we think, highlights in
some strong way the power of the probabilistic method.

The paper is organized as follows: In Section 3, we will give a randomized construction
of an unsatisfiable linear k-CNF formula with roughly O(k34k) clauses. We will show that
this is optimal up to a factor polynomial in k. In Section 4, we will give arguments why it is
probably difficult to explicitely construct “reasonably-sized” unsatisfiable linear formulas.
The first argument is that when one constructs CNF formulas whose unsatisfiability
is “obvious” from the way one constructs them, then most of these formulas have a
small treelike resolution refutation. In contrast, we will show that any tree-like resolution

refutation of any unsatisfiable linear k-CNF must have size at least 22
k
2 . Our second

argument is that if we want our formula F to have a certain recursive structure (to be

defined later), then F will have a “tower-like” size, i.e. at least αα...α

, where α > 1 and
the height of the tower is roughly k.

2 Notation

We think of a formula as a set of distinct clauses, and of a clause as a set of literals.
A literal is either a variable x or its negation x̄. We assume no clause contains both x
and x̄, for any x. In some abuse of terminology, we say a clause C contains a variable
x if x ∈ C or x̄ ∈ C. By vbl(C), we denote the set of variables contained in C. Hence,

III

a formula is linear if |vbl(C) ∩ vbl(D)| ≤ 1 for any distinct C, D ∈ F . For a formula F
and a partial assignment α to its variables, we write F [α] to denote the formula obtained
from F by removing all clauses satisfied by α, and removing all dissatisfied literals from
the remaining clauses. We define the function towerα(k) as recursively by

towerα(0) = 1

towerα(k + 1) = αtowerα(k) .

3 Existence and Upper and Lower Bounds

3.1 Existence

Theorem 3.1 ([1], [9]). For every k, there exists an unsatisfiable linear k-CNF formula
Fk containing mk clauses, where m0 = 1 and mk+1 = mk2mk .

Proof. We set F0 = {�}. Suppose we have constructed Fk, and want to construct Fk+1.
We create mk new variables x1, . . . , xmk

, and let D1, D2, . . . , D2mk be all possible clauses
over these variables. The formula G := {D1, D2, . . . , D2mk } is unsatisfiable, but not

linear. We take 2mk variable disjoint copies of Fk, denoted by F
(1)
k , F

(2)
k , . . . , F

(2mk)
k . For

each 1 ≤ i ≤ 2mk , we build a linear (k + 1)-CNF formula F̃
(i)
k from F

(i)
k by adding, for

each 1 ≤ j ≤ mk, the jth literal of Di to the jth clause of F
(i)
k . Note that F̃

(i)
k ≡ Di, i.e.

they really describe the same boolean function. Finally, we set Fk+1 =
⋃2mk

i=1 F̃
(i)
k . This

is an unsatisfiable linear (k + 1)-CNF formula with mk+1 = mk2mk clauses. ⊓⊔

This construction is simple, but it produces formulas of gigantic size, larger than
tower2(k). For example, printing F4 would exceed the amount of paper available in the
universe. However, unsatisfiable linear k-CNF formulas of manageable size do exist, as
we shall see.

3.2 Upper Bounds

Theorem 3.2. There exists an unsatisfiable linear k-CNF formula with at most 8k34k

clauses.

Proof. Take a linear k-uniform hypergraph H = (V, E) with n vertices and m edges, to
be determined later. By viewing the vertices as variables and hyperedges as clauses, this
is a (satisfiable) linear k-CNF formula. We now replace each literal in each clause by its
complement with probability 1

2 , independently in each clause. Let F denote the resulting
(random) formula. Any fixed assignment α has a 1 − 2−k chance of satisfying a given
clause of F , and thus

Pr[α satisfies F] = (1 − 2−k)m < e−m2−k

.

There are 2n distinct assignments, hence by the union bound

Pr[some α satisfies F] < 2ne−m2−k

= eln(2)n−m2−k

.

If m/n ≥ ln(2)2k, the above expression is at most 1, and hence with positive probability,
no assignment satisfies F , in other words, some F is unsatisfiable.

We construct a linear k-uniform hypergraph with few hyperedges, but with a large
hyperedge-vertex ratio. Let q ∈ {k, . . . , 2k} be a prime power. Choose d ∈ N such that
q2 ln(2)2k ≤ qd < q3 ln(2)2k and set n := qd. Consider the d-dimensional vector space F

d
q

IV

over the field Fq. It has n elements, called points. In a vector space, there is a line through

any pair of points, and a line has q elements. Hence there are exactly
(

n
2

)

/
(

q
2

)

≥ n2

q2 lines

in F
d
q . By choice of d, we show that this lower bound is tight, up to a polynomial factor

in k. The upper bound is similar to the bound for non-2-colorable linear k-uniform

hypergraphs, but the proof is somewhat simpler.have n ln(2)2k ≤ n2

q2 , hence we can

choose m := n ln(2)2k distinct lines in F
d
q . From each such line arbitrarily select k points

and form a hyperedge. Let E be the set of all m hyperedges formed this way. The reader
may check that two distinct lines cannot yield the same hyperedge. Let E be the set
of these m lines obtained this way. Thus, H = (Fd

q , E) is a k-uniform hypergraph. It is
linear, since any pair of distinct lines intersect in at most one point. By construction,
m
n

= ln(2)2k, and m = n ln(2)2k ≤ q3n ln(2)24k ≤ ln(2)28k34k, which proves the upper
bound. ⊓⊔

3.3 Lower Bounds

One of the miracles of the probabilistic method is that, though seemingly coarse, it often
leads us pretty close to the truth.

Theorem 3.3. Any linear k-CNF formula on at most 4k

4e2k3 clauses is satisfiable.

The proof of the Theorem is quite similar to the proof by Erdős and Lovász [10] of a
lower bound on the size of linear hypergraphs that are not 2-colorable. We say a variable

x is frequent in F if d(x, F) ≥ 2k

2ek
. Theorem 3.3 will follow easily from the following

lemma.

Lemma 3.4. Let F be a linear k-CNF formula. If there are less than 2k

2ek
variables that

are frequent in F , then F is satisfiable.

Proof. Our proof will use a result by Kratochv́ıl, Savicky and Tuza [6], itself a conse-
quence of the Lovász Local Lemma. Here, a (≥ k)-CNF formula is a CNF formula where
every clause has at least k literals.

Theorem 3.5 ([6]). If F is a (≥ k)-CNF formula, and d(x, F) ≤ 2k

ek
for every variable,

then F is satisfiable.

We cannot apply Theorem 3.5 directly to our linear formula F . First, we will obtain a
new, “stricter” formula F ′ from F , by deleting certain literals from certain clauses. We
can then apply Theorem 3.5 to F ′ to show that F ′ is satisfiable. Let F ′ be defined as
follows. For each C ∈ F , we distinguish two cases. If C contains exactly one variable
that is frequent in F , obtain C′ from C by deleting the literal of that frequent variable.
Otherwise, let C′ just be C. We define F ′ := {C′

∣

∣ C ∈ F}. Observe that F ′ contains
k-clauses as well as (k−1)-clauses, and if some C ∈ F ′ contains a variable that is frequent
in F , it contains at least two of those.

Claim: d(x, F ′) ≤ 2k

ek
, for any variable x. If variable x is not frequent in F , then the

claim is trivial, since d(x, F ′) ≤ d(x, F). So suppose x is frequent in F , write t := d(x, F ′),
and let C1, C2, . . . , Ct be the clauses of F ′ containing x. By construction of F ′, each Ci

contains, besides x, a variable yi that is frequent in F . The yi are all distinct, since if
yi and yj were the same variable, then the clauses Ci and Cj would share more than
one variable, namely x and yi, contradicting the fact that F ′ is linear. This is the only
point in the proof where we use linearity. Hence, there are at least t variables that are
frequent in F , namely y1, y2, . . . , yt (of course, there are even more, for example x, but

let’s not be picky). By assumption, there are at most 2k

ek
frequent variables in F , hence

V

d(x, F ′) = t ≤ 2k

ek
, which proves the claim.

Theorem 3.5, applied to F ′, with k− 1 instead of k, shows that F ′ is satisfiable. Any
assignment satisfying F ′ satisfies F , as well. This proves the lemma. ⊓⊔

Proof (of Theorem 3.3). We prove the contrapositive. Let F be an unsatisfiable linear

k-CNF formula. Let U be the set of frequent variables in F . By Lemma 3.4, |U | ≥ 2k

2ek
.

We obtain

k|F | =
∑

x

d(x, F) ≥
∑

x∈U

d(x, F) ≥ |U | 2k

2ek
>

(

2k

2ek

)2

.

This proves the theorem. ⊓⊔

The trick in this proof is that by deleting certain literals in F , we seem to make our
life harder, by making F “less satisfiable”. However, though the new formula F ′ has less
satisfying assignments than F , its structure makes it easier for the Lovász Local Lemma
(which here is hidden in Theorem 3.5 to detect them. This might sound surprising.
However, one should keep in mind that for any satisfiable formula F , there is a way to
delete literals such that satisfiability becomes obvious to everybody: Just fix a satisfying
assignment for F , then remove all literals not satisfied. This new formula F ′ only has
pure literals, and its satisfiability it obvious. The point is that in the proof of Lemma 3.4,
we have clear criteria which literals to delete.

4 Why are Explicit Constructions So Bad?

In the last section, we have seen simple proofs of almost matching upper and lower
bounds on the size of unsatisfiable linear k-CNF formulas. This is in stark contrast to
the gigantic size of the formula constructed in Theorem 3.1. In fact, we have not found
any explicit construction that yields formulas that are not tower-like. In extremal com-
binatorics, one is used to probabilistic constructions being better than explicit ones, but
this case seems extreme. In this section we will shed some light on why this is so.

To explain the difficulty of explicitely constructing unsatisfiable linear k-CNF for-
mulas, let us make a – rather philosophical – distinction between direct and indirect
constructions of CNF formulas. Later we will give a precise, albeit quite restrictive def-
inition of direct constructions. Suppose we construct an unsatisfiable formula F from
smaller ones, say F1, . . . , Fm, which we have already constructed, by modifying the Fi

in some way, and then combining them to form a new formula F , in a way that makes
sure that F is unsatisfiable. This we call a direct construction. For example, the con-
struction in Theorem 3.1 is a direct one. Other authors, like Kratochv́ıl et al. [6], Hoory
and Szeider [7], and, recently, Gebauer [8], who have studied the function f(k) defined
in (1) obtained good upper bounds using direct constructions.

By contrast, what we consider indirect constructions are typically used for proving
lower bounds on resolution complexity. One takes a simple combinatorial theorem and
translates the negation of it into a CNF formula. The theorem in question could be the
pigeon hole principle (Buss and Pitassi [11]), or the fact that in a graph, the number of
odd-degree vertices is even (these are called Tseitin formulas, see [12]). For a fixed num-
ber of pigeons and holes, or for a graph on a fixed number of vertices, the statement can
be formulated in propositional logic, and thus resolution can be used to prove it. See for
example Ben-Sasson and Wigderson [13] for lower bounds on the resolution complexity

VI

of these formulas. In indirect constructions, unsatisfiability is clear from global “combi-
natorical” or “algebraic” considerations, whereas for direct constructions, it is clear from
local considerations during the construction process. Consequently, directly constructed
formulas typically admit short resolution proofs, or even short treelike resolution proofs.
A good argument for why there are no good (direct) constructions for unsatisfiable linear
k-CNF formulas would thus be to give a lower bound on their resolution complexity. This
is will be our first result in this section.

Definition 4.1. A clause C is obtained from clauses D1, D2 by a resolution step if there
is a variable x such that x ∈ D1, x̄ ∈ D2, and C = (D1 \ {x}) ∪ (D2 \ {x}). We call x
the resolved variable and C the resolvent of D1, D2. A resolution tree of a formula F is
a binary tree T whose vertices are labeled with clauses, such that

– every leaf of T is labeled with a clause in F ,
– if a node labeled C has children labeled D1 and D2, then C is the resolvent of D1

and D2.

If there is a resolution tree T of F with the root labeled C, we say C can be derived
from F by resolution. A basic fact about resolution is that F logically implies C if and
only if there is a clause D ⊆ C that can be derived from F by resolution. Hence, F is
unsatisfiable iff � can be derived from F by resolution.

Theorem 4.2. Let F be an unsatisfiable linear k-CNF formula. Then any resolution

tree of F whose root is labeled with � has at least 22
k−1
2 −1 nodes.

We see that although there exist exponentially large unsatisfiable linear k-CNF for-
mulas, every resolution tree proving their unsatisfiability must have doubly exponential
size. Our second result in this section is about a rather strict notion of ”direct construc-
tions”.

Definition 4.3. A resolution tree T of F is called strict if every clause of F appears
exactly once as a a label of a leaf of T .

The difference is that in a non-strict resolution tree, several leaves can be labeled
with the same clause of F . We call F strictly treelike if there is a strict resolution tree T
of F whose root is labeled with �.

Definition 4.4. A formula F is recursively decomposable if either

– F = {�}, or

– there is a variable x and a bipartition F = F0 ⊎F1, such that F
[x 7→0]
0 and F

[x 7→1]
1 are

both recursively decomposable.

Lemma 4.5. If F is minimal unsatisfiable, then it is strictly treelike if and only if it is
recursively decomposable.

The proof uses induction over the structure of the strict resolution tree T and the
tree implicitely defined in Definition 4.4 and is quite straightforward.

Let us give some examples. A smallest unsatisfiable k-CNF formula can be obtained
by taking k variables V = {x1, . . . xk}, and setting F to be the set of all 2k clauses
over V . This is minimal unsatisfiable. We claim that F is strictly treelike. To see this,
let F0 ⊆ F and F1 ⊆ F consist of all clauses containing xk and x̄k, respectively. Then

F
[xk 7→0]
0 = F

[xk 7→1]
1 , namely they consist of all clauses over V \{xk}, and by induction they

VII

are strictly treelike (the base case is k = 0, where F = {�}, of course). By Lemma 4.5,
F is strictly treelike.

As a second example, take the formula of Theorem 3.1. Here, seeing that it is strictly
treelike is easier from Definition 4.3 itself than from Definition 4.4.

As a third example, the formula constructed by Gebauer [8] that, up to small constant
factor, achieves the lower bound of Kratochv́ıl, Savicky and Tuza [6] on dk, is strictly
treelike.

It should be said that our treelike formulas are closely related to so-called MU(1)
formulas. A formula F is MU(1) if it is minimal unsatisfiable, and its number of clauses
exceeds the number of variables by exactly 1. The value 1 is not chosen arbitrarily: It is
the smallest possible value, since every minimal unsatisfiable formula has strictly more
clauses than variables, as Aharoni and Linial [14] have shown. If in Definition 4.4, we
require F0 and F1 to have no common variables besides x, we obtain exactly the class
of MU(1) formulas. This has been shown by Davydov, Davydova and Kleine Büning [15].

MU(1) formulas have been used by Hoory and Szeider [16] to compute an approxima-
tion of f(k), the maximum number d such that any k-CNF formula with F with d(F) ≤ d
is satisfiable. Surprisingly, it is still unknown whether f(k) is computable at all. However,
if one defines its restriction to MU(1) formulas, say, define f ′(k) to be the maximum d
such that there is no MU(1) formula F with d(F) ≤ d, then f ′(k) is computable, and,
as a consequence of the result of Gebauer [8], f ′(k) approximates f(k) up to constant
factor. Our result will be in stark contrast to this. We will prove that no strictly treelike
linear k-CNF formula, hence neither any linear MU(1) formula, is significantly smaller
than the formula of Theorem 3.1.

Theorem 4.6. For any ǫ > 0, there exists a constant c such that that any strictly treelike
linear k-CNF formula has at least tower2−ǫ(k − c) clauses.

4.1 Proofs

Proof (of Theorem 4). Let F be an unsatisfiable linear k-CNF formula, and let T be a
resolution tree of F , whose root is labeled with �. We want to show that T has a large
number of nodes. It is not difficult to see that a resolution tree of minimal size is regular,
meaning that no variable is resolved more than once on a path from the root to a leaf.
See Urquhart [17], Lemma 5.1, for a proof of this fact. Hence we assume that T is a
regular resolution tree. We take a random walk of length ℓ in T starting at the root, in
every step choosing randomly to go to one of the two children of the current vertex. If
we arrive at a leaf, we stay there. We claim that if ℓ ≤

√
2k−1, then with probability at

least 1
2 , our walk does not end at a leaf. Hence, at least half of all possible 2ℓ possible

walks lead to distinct nodes, and thus T has at least 22
k−1
2 −1 nodes.

To analyze our random walk, note that each edge in T can be associated with an
assignment to the resolved variable, as illustrated in Figure 4.1: If C is the resolvent of
D1 and D2, x the resolved variable, and x ∈ D1 and x̄ ∈ D2, we label the edge from C
to D1 by x 7→ 0 and from C to D2 by x 7→ 1. Every path from the root to a node gives
a partial assignment, by simply combining all variable assignments on its edges. Since T
is a regular resolution tree, no variable is assigned twice on that path.

VIII

{x} {x̄}

{x, y} {ȳ} {x̄, u} {x̄, ū}

x
7→

0

y
7→

0

x 7→
1

u
7→

1

y
7→

1

u
7→

0

Fig. 1. A resolution tree, with its edge labeled in the obvious way. Every clause is un-
satisfied when applying the assignments on the path to the root.

If p is a path in T leading from the root to a node labeled C, and α is the partial
assignment associated with p, then C [α] = �. In our random walk, let αi denote the
partial assignment associated with the first i steps. Hence α0 is the empty assignment,
and αi assigns exactly i variables (if we are not yet at a leaf). Write Fi := F [αi]. The αi

and Fi are random objects. For a formula G, we define the weight w(G) to be

w(G) :=
∑

C∈G,|C|≤k−2

2k−|C| .

Since F is a k-CNF formula, w(F) = 0, and if a formula G contains the empty clause,
then w(G) ≥ 2k.

Lemma 4.7.
E[w(Fi+1)] ≤ E[w(F)i] + 2i .

Since w(F0) = 0, this immediately implies E[w(Fℓ)] ≤ 2
(

ℓ
2

)

≤ ℓ2. If our random walk

ends at a leaf labeled C ∈ F , then � = C [αℓ] ∈ Fℓ, and w(Fℓ) ≥ 2k. Therefore

ℓ2 ≥ E[w(Fℓ)] ≥ 2k Pr[the random walk ends at a leaf] .

We conclude that at least half of all paths of length ℓ∗ =
√

2k−1 starting at the root do
not lead to a leaf, and T has at least 2ℓ∗−1 internal nodes, which proves the theorem. It
remains to prove the lemma.

Proof (of the lemma). For a formula G and a variable x, let dk−1(x, G) denote the number
of (k−1)-clauses containing x or x̄. Since F = F0 is a k-CNF formula, dk−1(x, F) = 0, for
all variables x. We claim that for any x and any step i in our random walk, dk−1(x, Fi) ≤
dk−1(x, Fi+1)+1. Why is this so? If we are already at a leaf, we do not extend the partial
assignment αi, hence dk−1(x, Fi) = dk−1(x, Fi+1). Otherwise, Fi+1 is obtained from Fi

by setting some variable y to 0 or 1. If x = y, then dk−1(x, Fi+1) = 0. There is only one
possibility how dk−1(x, Fi+1) can be larger than dk−1(x, Fi), namely that some k-clause
C contains both x and y, and y is set such that C becomes a (k − 1)-clause in Fi+1.
Since F is linear, there is at most one such clause (this is the only point where we use
linearity). We see that dk−1(x, Fi+1) ≤ dk−1(x, Fi) + 1, and therefore dk−1(x, Fi) ≤ i.
Consider w(Fi), which was defined as

w(Fi) =
∑

C∈Fi,|C|≤k−2

2k−|C| .

IX

Let Fi+1 be obtained from Fi by setting y to 0 or 1. If C ∈ Fi does not contain y nor ȳ,
then C contributes as much to w(Fi+1) as to w(Fi). If C contains y, and |C| ≤ k−2, then
with probability 1

2 , y is set such that it satisfies C, and its contribution to w(Fi+1) will be
0. Also with probability 1

2 , y is set such that C shrinks by one literal, so its contribution
to w(Fi+1) doubles. On expectation, its contribution stays the same. If |C| = k, it does
not contribute to w(Fi) nor to w(Fi+1). The only case is if |C| = k− 1 and it contains y.
Then its contribution to w(Fi) is 0, and with probability 1

2 , y is set such that C becomes
a (k − 2)-clause in Fi+1 and its contribution to w(Fi+1) is 4. Hence on expectation each
clause containing y increases its contribution by 2. By the above observation, there are
at most dk−1(y, Fi) ≤ i such clauses, hence E[w(Fi+1)] ≤ E[w(Fi)] + 2i. ⊓⊔
This concludes the proof of the theorem. ⊓⊔

4.2 Proof of Theorem 4.6

Recall that we are dealing with a strictly treelike linear k-CNF formula F . This means
there is a resolution tree T of F whose root is labeled with � and the leaves of T are in
1–1-correspondence with the clauses of F . We want to show that the size of T is at least
tower2−ǫ(k − c). One would like to define a complexity measure for clauses appearing
as labels of nodes in T that is huge for leaves and small for the root, and does not de-
crease too much in a resolution step. We actually do something slightly different, namely
defining a whole vector of complexity measures for each clause. To say some words about
notation, we will use letters u, v, w to denote nodes in the resolution tree, C, D to denote
clauses, and x, y, z to denote variables.

For each node u in T , let Cu be the clause u is labeled with, and let Fu be set of
clauses occurring as labels at the leaves of the subtree of T rooted at u. Hence Fu ⊆ F ,
and if u is a leaf, then Fu = {Cu}, and Froot = F . With every node u of T we associate
a graph Gu with vertex set Cu, and two literals connected by an edge if they are both
containined in some D ∈ Fu. Resolution now has a simple interpretation as a ”calculus
on graphs”. See Figure 4.2. If u is a leaf, then Gu = Kk, and Groot is the empty graph
(∅, ∅), containing no vertices.

zx

y

x̄ u

v

uz̄

a

vy

ā

z

y

u

v

z̄

y

u

v

y

u

v

Fig. 2. Resolution as a calculus on graphs. A resolution step amounts to deleting the
resolved vertex and taking the union of the two graphs. If F is linear and T is strictly
treelike, then no union produces multiple edges.

We define our “complexity measure” for nodes u in T in terms of Gu. For a graph
G, let κi(G) denote the minimum size of a set U ⊆ V (G) such that G − U contains no

X

i-clique. Thus, κ1(G) = |V (G)|, and κ2(G) is the size of a minimum vertex cover of G.
For the complete graph Kk, we have κi(Kk) = k − i + 1. We write κi(u) := κi(Gu).

Proposition 4.8. If v is a child of u in T , then κi(u) ≥ κi(v) − 1.

Proof. The follows from the fact that removing one vertex can decrease κi by at most
one, and adding vertices and edges can only increase it. Let Cu be the resolvent of Cv

and Cw, and let x be the resolved literal. We assume w. l. o. g. that x ∈ Cv and x̄ ∈ Cw.
By the definition of resolution, Cv − {x} ⊆ Cu, therefore Gv − {x} is a subgraph of Gu.
If there is a set U ⊆ V (Gu) such that Gu − U does not have an i-clique, then surely
Gv − (U ∪ {x}) does not have an i-clique, either. Thus κi(v) ≤ κi(u) + 1. ⊓⊔

If u is an ancestor of v in T , let dist(u, v) denote the number of edges in the T -path
from u to v. Repeatedly applying Proposition 4.8 yields that κi(u) ≥ κi(v) − dist(u, v).

To prove Theorem 4.6, we have to define some parameters. These definitions look
ugly, but the precise values of the parameters are artefacts of the proof and are not
really important. Let k be as in the proof, i.e. the size of the clauses of F . Fix some value
1 ≤ ℓ ≤ k and define αi and θi for 1 ≤ i ≤ l as follows:

αℓ := 1

θℓ :=

⌊

k − ℓ + 1

2

⌋

− 1

αi :=
αi+1θi+1 − 1

θi

⌊

θi

θi+1

⌋

, 1 ≤ i < ℓ

θi :=

⌊

2αi+1θi+1−2

θi+1

⌋

− 1 , 1 ≤ i < ℓ

For the right value of ℓ, θ1 is a tower function in k. More precisely, for any ǫ > 0,
there exists a c ∈ N such that when choosing ℓ = k − c, then θ1 ≥ tower2−e(k − c).

Theorem 4.9. Let F be a recursively decomposable linear k-CNF formula. Then F has
at least 2α1θ1 clauses.

Proof. We call a node u in T i-extendable if κj(u) ≤ θj for each i ≤ j ≤ ℓ. If u is i-
extendable, by definition it is also (i+1)-extendable. For i = ℓ+1, the condition is void,
so every node (ℓ + 1)-extendable. Let r denote the root of T . Since θi ≥ 0 and κi(r) = 0
for all i, r is clearly 1-extendable.

Definition 4.10. A set W of descendants of u in T such that (i) no vertex in W is an
ancestor of any other vertex in W and (ii) dist(u, w) ≤ d for all w ∈ W is called an
antichain of u at distance ≤ d. If furthermore every w ∈ W is i-extendable, we call W
an i-extendable antichain.

Lemma 4.11. Let 1 ≤ i ≤ ℓ, and let u be a node in T . If u is i-extendable, then there
is an (i + 1)-extendable antichain W of u at distance ≤ θi such that |W | = 2αiθi .

The lemma implies the theorem: The root r of T is 1-extendable, and since each
w ∈ W has at least one leaf in its subtree, T has at least 2α1θ1 leaves. Hence it remains
to prove the lemma.

Proof. We use induction on ℓ − i. For the base case i = ℓ, we have κℓ ≤ θℓ, as u is
ℓ-extendable. Since each leaf v of T has κℓ(v) = k− ℓ + 1 ≥ 2θℓ +2, Proposition 4.8 tells
us that every leaf in the subtree of u has distance at least θℓ + 2 from u. Since T is a

XI

complete binary tree, there are 2θℓ descendants of u at distance exactly θℓ from u. This
is the desired antichain W of u. Since every node is (ℓ + 1)-extendable by definition, the
base case holds.

For the step, let i < ℓ, i.e., u is i-extendable.

Proposition 4.12. Let v be a descendant of u with dist(u, v) ≤ θi. If v is (i + 1)-
extendable, then there is an (i+1)-antichain W of v at distance ≤ θi+1 of size 2αi+1θi+1−1.

u

v

Wv

θi

θi+1

Fig. 3. Illustration of Proposition 4.12. If node u is i-extendable, and v is a not too far
(i + 1)-extendable descendant of u, then v itself has many not too far descendants Wv,
at least half of which are (i + 1)-extendable themselves.

Proof. By applying the induction hypothesis of the lemma to v, there is an (i + 2)-
extendable antichain W of v at distance ≤ θi+1 of size 2αi+1θi+1 . We will show that at
least half the nodes w ∈ W satisfy κi+1(w) ≤ θi+1, thus half of W is (i + 1)-extendable.
This will prove the proposition.

Assume for the sake of contradiction that κi+1(w) ≥ θi+1 + 1 for more than half the
nodes w ∈ W . Let the set of these nodes be called W ′. By assumption, |W ′| ≥ 2αi+1θi+1−1.
Consider any w ∈ W ′, and let P be the set of resolved variables on the path from w
to v. Clearly, |P | = dist(v, w) ≤ θi+1, and vbl(Cw) \ P ⊆ vbl(Cv), simply by the way
resolution works. Viewing P as a set of vertices, we see that Gw − P is a subgraph of
Gv. Since |P | ≤ θi+1 and κi+1(w) ≥ θi+1 +1, Gw −P contains at least one (i+1)-clique,
by the definition of κi+1. This clique is also contained in Gv. Hence for each w ∈ W ′,
Gv contains at least one (i + 1)-clique of Gw. These cliques need not be vertex disjoint.
However, an edge {x, y} in Gw for w ∈ W means that there is a clause C ∈ F occurring
at a leaf in the subtree of w such that x, y ∈ vbl(C). Since F is linear, and W ′ is an
antichain, it means that for two distinct w1, w2 ∈ W ′, the graphs Gw1

and Gw2
do not

share an edge. Hence each w ∈ W ′ contributes an edge-disjoint copy of Ki+1 to Gv.
Therefore, Gv contains at least |W ′| edge-disjoint copies of Ki+1.

XII

Since v is (i + 1)-extendable, κi+1(v) ≤ θi+1, so there exists a set U ⊆ V (Gv) of size
≤ θi+1 such that Gv −U contains no (i + 1)-clique. Each of the |W ′| edge-disjoint copies
of Ki+1 in Gv contains a vertex of U . Thus, there exists a vertex x ∈ U contained in at

least |W ′|
|U| ≥ 2αi+1θi+1−1

θi+1
≥ 2θi + 1 edge-disjoint copies of Ki+1. Two such copies cannot

share any vertex besides x. Thus Gv contains at least 2θi +1 vertex-disjoint copies of Ki,
and therefore κi(v) ≥ 2θ+1. By Proposition 4.8, κi(u) ≥ κi(v)−dist(u, v) ≥ θi +1. This,
however, contradicts the assumption of Lemma 4.11 that u is i-extendable. We conclude
that |W ′| ≤ 1

2 |W |, which proves the proposition. ⊓⊔

Let us continue with the proof of the lemma. For some (i+1)-extendable descendant
v of u such that dist(u, v) ≤ θi, Proposition 4.12 tells us that v produces 2αi+1θi+1−1

new (i + 1)-extendable nodes w with dist(u, w) ≤ dist(u, v) + θi+1. Formally, we de-
fine a sequence W0, W1, . . . of (i + 1)-extendable antichains for u such that |Wj+1| ≥
|Wj |2αi+1θi+1−1, and for every w ∈ Wj we have dist(u, w) ≤ jθi+1. We define W0 = {u}.
For given Wj with (j + 1)θi+1 ≤ θi, we apply Proposition 4.12 to each v ∈ Wj ,
obtaining an antichain Wv whose vertices have distance ≤ (j + 1)θi+1 from u. Set
Wj+1 :=

⋃

v∈Wj
Wv. This is an (i+1)-extendable antichain for u at distance jθi+1+θi+1,

and |Wj+1| ≥ |Wj |2αi+1θi+1−1. The Wj are defined for all j ≤ j∗ :=
⌊

θi

θi+1

⌋

, and thus

|Wj∗ | ≥
(

2αi+1θi+1−1
)

j

θi
θi+1

k

= 2αiθi .

Thus, Wj∗ is the antichain of (i + 1)-extendable nodes claimed by Lemma 4.11. This
completes the proof of the lemma. ⊓⊔

As already argued, we can apply Lemma 4.11 to the root r of T , which is clearly
1-extendable, simply because κi(r) = 0 for all i, and obtain an antichain of size 2α1θ1

nodes. This proves the theorem. ⊓⊔

XIII

5 Open Problems

What is the asymptotic value of mLIN(k)? We have determined mLIN(k) up to a poly-
nomial factor in k. We do not have any strong feeling about whether the true value lies
closer to the upper or to the lower bound.

How do unsatisfiable linear k-CNF formulas look like? We would really like to see
an explicit construction of an unsatisfiable linear k-CNF formula of reasonable size. We
suspect one has to find some algebraic construction.

What is the resolution complexity of linear k-CNF formulas? We have seen that the
tree resolution complexity is doubly exponential in k. We suspect the same is true for
general resolution.

References

1. Porschen, S., Speckenmeyer, E., Zhao, X.: Linear cnf formulas and satisfiability. Discrete
Appl. Math. 157(5) (2009) 1046–1068

2. Abbott, H.: An application of Ramsey’s Theorem to a problem of Erdős and Hajnal. Canad.
Math. Bull. (1965) 515–517

3. Hales, A.W., Jewett, R.I.: Regularity and Positional Games. Trans. Amer. Math. Soc. 106
(1963) 222–229

4. Kostochka, A., Mubayi, D., Rödl, V., Tetali, P.: On the chromatic number of set systems.
Random Structures Algorithms 19(2) (2001) 87–98

5. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8(1)
(1984) 85–89

6. Kratochv́ıl, J., Savický, P., Tuza, Z.: One more occurrence of variables makes satisfiability
jump from trivial to NP-complete. SIAM Journal of Computing 22(1) (1993) 203–210

7. Hoory, S., Szeider, S.: A note on unsatisfiable k-CNF formulas with few occurrences per
variable. SIAM Journal on Discrete Mathematics 20(2) (2006) 523–528

8. Gebauer, H.: Disproof of the neighborhood conjecture and its implications to sat (2008)
submitted.

9. Scheder, D.: Unsatisfiable linear k-CNFs exist, for every k. CoRR abs/0708.2336 (2007)
10. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related

questions. In Hajnal, A., Rado, R., Sós, V.T., eds.: Infinite and Finite Sets (to Paul Erdős
on his 60th birthday), Vol. II. North-Holland (1975) 609–627

11. Buss, S., Pitassi, T.: Resolution and the weak pigeonhole principle. In: Computer Science
Logic (Aarhus, 1997). Volume 1414 of Lecture Notes in Comput. Sci. Springer, Berlin (1998)
149–156

12. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic (Part 2) (1968) 115–125

13. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple. J. ACM
48(2) (2001) 149–169

14. Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal unsatisfiable
formulas. J. Combin. Theory Ser. A 43(2) (1986) 196–204

15. Davydov, G., Davydova, I., Büning, H.K.: An efficient algorithm for the minimal unsatis-
fiability problem for a subclass of CNF. Ann. Math. Artificial Intelligence 23(3-4) (1998)
229–245

16. Hoory, S., Szeider, S.: Computing unsatisfiable k-SAT instances with few occurencesper
variable. Theoretical Computer Science 337(1-3) (2005) 347–359

17. Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic Logic 1 (1995)
425–467

	Unsatisfiable Linear CNF Formulas Are Large, and Difficult to Construct Explicitely
	Dominik Scheder

