
A Framework forSNMPv2 in ErlangMartin Bj�orklundKlas ErikssonComputer Science LaboratoryEllemtel Telecommunications Systems LaboratoryMay 31, 1995

Master's Thesis in Computer Science (12 credits)at the School of Computer Science and EngineeringDepartment of Numerical Analysis and Computing Science (NADA)Royal Institute of Technology (KTH)S-100 44 Stockholm, SwedenExaminer: Lars Kjelldahl, NADA, KTHSupervisors: Claes Wikstr�om, Ellemtel AB andJoacim Hal�en, NADA, KTH

ii

AbstractThe Simple Network Management Protocol (SNMP) has mainly beenused for managing IP (Internet Protocol) networks. Until recently,OSI (Open Systems Interconnection) management has been thechoice for managing non-IP-networks as well as larger systems wheremanagement by delegation is necessary. With version 2, SNMP be-came more suitable for these systems.One of the drawbacks of SNMP has been that it focuses more onimplementation than on design. When implementing large networkmanagement systems, the design phase is essential. This reportpresents a framework for SNMPv2 where iterations in the designphase have a low turn-around time. Prototyping of MIBs (Manage-ment Information Bases) is simpli�ed by automated implementationof instrumentation functions for scalar variables as well as tables.The purpose of the framework is to facilitate MIB design and agentimplementation by providing a user-friendly environment. For this,the Erlang programming language has shown to be an appropriatechoice.The report also discusses design tools that could be built on top ofthe framework.Keywords: Network Management, SNMP, MIB, OSI, Erlang.
iii

iv

Ett programmeringsverktygf�orSNMPv2 i ErlangReferatTidigare har "The Simple Network Management Protocol" (SNMP)f�orst och fr�amst anv�ants f�or att �overvaka IP-n�atverk (Internet Pro-tocol), men i och med version 2 har SNMP blivit mer l�ampat �avenf�or andra n�atverk. F�or st�orre system har OSI (Open Systems In-terconnection) management varit det naturliga valet, men nu b�orjarSNMP bli ett realistiskt alternativ.SNMP har kritiserats f�or att det �ar mer inriktat p�a implementations-fasen �an designfasen. Om det skall vara m�ojligt att bygga st�orre n�at-verks�overvakningssystem med SNMP, beh�ovs hj�alpmedel f�or designoch prototypning. I denna rapport beskrivs ett programmeringsverk-tyg i Erlang som �ar ett f�orsta steg i denna riktning.Med hj�alp av verktyget �ar det enkelt att implementera en prototypf�or en SNMP-agent, d.v.s. en agent d�ar MIB:en (Management Infor-mation Base) inte har n�agon koppling till den faktiska enheten somden skall styra. Agenten kan besvara f�orfr�agningar genom att sj�alvlagra tabeller och variabler i en databas. Verktyget underl�attar ocks�avid implementation av en riktig agent.I rapporten behandlas dessutom n�atverks�overvakning i allm�anhet ochSNMP i synnerhet. F�orslag och skisser p�a �annu kraftfullare MIB-utvecklingsverktyg presenteras ocks�a.
v

vi

PrefaceThis Master's project was performed at the Computer Science Laboratory atEllemtel. We would like to thank our supervisor Claes Wikstr�om and the rest ofthe laboratory for their help and support.Section 2.2 on Enterprise Management is inspired by our discussion with RichardBruvik who is head of the Network Operations Center at Ellemtel.For more information about this Master's project, send e-mail tod90-mbj@nada.kth.se (Martin Bj�orklund) ord90-ker@nada.kth.se (Klas Eriksson).

vii

viii

Contents1 Introduction 11.1 Design Goals : 11.2 Intended Audience : 21.3 Outline of this Report : 22 This is Network Management 32.1 The need for Network Management : : : : : : : : : : : : : : : : : : 32.2 Enterprise Management : 32.3 Management in Telecom : 53 Network Management Concepts 73.1 Architectural Model : 73.1.1 Information Model : 83.1.2 Organizational Model : 103.1.3 Communication Model : 103.1.4 Functional Model : 113.2 Concepts of SNMP : 123.2.1 Information Model : 123.2.2 Organizational Model : 133.2.3 Communication Model : 133.2.4 Functional Model : 143.3 Concepts of OSI management : 153.3.1 Information Model : 153.3.2 Organizational Model : 153.3.3 Communication Model : 163.3.4 Functional Model : 163.4 Discussion : 163.4.1 The four Models : 163.4.2 Requirements on the Information Model : : : : : : : : : : : 183.4.3 The Future : 184 MIB design 194.1 Design Example : 19ix

5 Description of SNMPv2 235.1 Organizational Model : 235.1.1 Party Concept : 235.1.2 Context Concept : 245.1.3 Access Policy Concept : 245.1.4 Operations Example : 245.2 Traps : 245.3 ASN.1 : 255.3.1 Instance Identi�cation : 266 Our Framework 276.1 General : 276.2 Description of the Program : 276.2.1 MIB Description : 276.2.2 Instrumentation Functions : : : : : : : : : : : : : : : : : : : 286.2.3 Atomic Set : 306.2.4 Default Instrumentation Functions : : : : : : : : : : : : : : 306.2.5 Traps : 336.2.6 Default Con�guration : 336.2.7 Fault-tolerance : 336.3 Future Extensions : 347 High Level Tools 357.1 Entity Relationship : 357.2 Object-Orientation : 367.3 Syntactic Extensions : 378 Conclusions 399 Abbreviations 41References 43x

A Example MODEM-MIB 47A.1 The MIB in ASN.1 : 47A.2 MIB implementation : 51A.2.1 Prototype implementation : : : : : : : : : : : : : : : : : : : 51A.2.2 Real implementation : 53A.3 Association �le : 59

xi

xii

1 IntroductionIn the open network management world, two main approaches are taken. We willrefer to these as OSI management and Simple Network Management Protocol(SNMP).Since the need for open network management protocols arose, the telecommu-nications community has favored the OSI network management protocol andspeci�cation language. Recently, interest of SNMP has aroused. One purposeof this project was to analyze SNMP's scalability properties, to investigate howSNMP can be used in larger systems, such as telecommunications software. An-other purpose was to design and implement a framework for SNMP agents inErlang.SNMP was developed in the Internet world, for managing IP-networks. It is notobvious that SNMP is suitable for more general purposes. In fact, version 1 is notsuitable for anything else than managing IP-networks. The protocol de�nition[RFC1157] only considers certain IP related tables and explicitly states how tohandle these. This problem is taken care of in SNMP version 2. Consequentlywe have only considered SNMPv2 in our work. We will use the term SNMP forSNMPv2 throughout this report.Both SNMP and OSI management are described since the latter has been thenatural choice for large networks. We present an architectural model and describethe approaches according to it.We are not comparing SNMP to OSI management. Such comparisons have beendone before ([HEGE], [SLOM] and [RUTT]). OSI management is based on anobject-oriented approach, whereas SNMP is based on a hierarchy containingsimple variables and tables. Therefore a comparison can not evaluate `SNMPobject-oriented features' [SLOM]. Most comparisons have evaluated SNMPv1,which means that they are out of date, as SNMP has undergone major enhance-ments. Some people claim that `S' in SNMP now stands for Sophisticated ratherthan Simple [BERK].Even though this report is not a comparison, it can be read simultaneously toone. In this way you will get a fair picture of SNMP's pro�ts and limitations. Itis important to bear in mind that the two management approaches are suited fordi�erent problems. Hopefully, this report in combination with existing literaturewill give you a clue of which approach to use.1.1 Design GoalsThe design goals for our SNMP framework implementation are:� Ease of use. The user should have to specify as little as possible to get arunning agent. All details of SNMP interaction should be hidden from theuser and automatically taken care of. The programming interface shouldto be simple, in order to support for rapid prototyping.1

� Flexibility of functionality. It must be possible for the user to override thedefault behavior whenever necessary. As well as making prototypes andperform testing, constructing a real product should be possible.� Flexibility of code. Our code should be designed to facilitate the construc-tion of any SNMP program, for example an SNMP manager.� Extensible. It should be possible for our environment to serve as a basisfor implementing other tools, such as tools for MIB design, simulation andtesting.� Compactness. Our source code should be small and easy to understand.1.2 Intended AudienceThis document is intended for readers interested in network management in gen-eral and SNMP in particular. We have focused on the agent side of SNMP, so wehope MIB designers and implementors will �nd this report interesting. We pro-pose a simple way of setting up an SNMP-agent. Those with experience of othernetwork management tools will hopefully notice the di�erence in complexity.We assume that our readers are familiar with some basic concepts of networking,protocols, data modeling and concurrent programming.1.3 Outline of this ReportOur work has been divided into two phases. Firstly, we wanted to gain experiencewith SNMP and networking are. To do this we implemented an SNMP-agent inthe Erlang programming language [ARMS]. Secondly, we studied the theoreticalaspects of networking, mainly design of MIBs for SNMP.The �rst part of the report concerns the theoretical aspects of our work. Themost technical aspects, our implementation, is in the second half. For a moredetailed description of the framework, please consult the User's Manual.Chapter 2 concerns network management in general.Chapter 3 introduces an architectural model for network management frame-works, and describes SNMP and OSI management according to this model.Chapter 4 gives an introduction to MIB design, and contains guidelines for struc-turing management information.Chapter 5 introduces the technical basics of SNMP.Chapter 6 describes our generic SNMP agent framework and how it is used.Chapter 7 gives some examples on how it is possible to use the design principlesfrom chapter 4 to build higher levels tools upon our framework.2

2 This is Network Management2.1 The need for Network ManagementNetwork management could be de�ned as all procedures and products for plan-ning, con�guring, controlling and monitoring computer networks. The intentionis to ensure e�cient use of all resources. From the user's point of view, the bestnetwork is the invisible network where you can communicate without botheringabout what is in between. To achieve this, it is important to understand whynetwork management is a complex problem.Networks of today are populated by a large and increasing number of resourcesfrom di�erent suppliers. Common components are hosts, routers and printers butas new services are being added, they are becoming even more varied. All theseheterogeneous components should be managed in some standardized manner.Most networks of any considerable size have a network control center to controland monitor the computer communications. The computer dedicated to this taskis called the management station. It is responsible for handling the enormousamount of information from all network components.When a fault occurs in the network, the challenge for the network operator is oftennot how to correct the error, but to �nd out where the fault occurred. Thereforethe management station must help the operator to e�ciently sieve informationfrom the components. Sieving should be so e�cient that the management sta-tion is completely quiet most of the time. If a small fault occurs in a resourcesomewhere, this is automatically reported by the resource to the managementstation which is to take appropriate action. Since most faults come from erro-neous con�guration, they can be corrected easily or even automatically by thesystem itself. The vision is a computer network which is quiet until somethinggoes wrong, then it sends a message to the operator describing the error and howto correct it. The situation today is far from this ideal.2.2 Enterprise ManagementNetwork management could be divided into three sub-areas. These are shownin �gure 1. Even the most primitive computer systems of today can monitorconnectivity, usually with a command similar to the Unix command ping to �ndout whether or not computer A is connected to computer B. In addition to pureconnectivity monitoring, larger systems collect statistics such as response times,throughput, loading, error rates and availability. Either this is done manually orautomated, that is, the management station polls selected components for inter-esting information. The third sub-area of network management slowly gainingground is con�guration management. In our experience, only a very few andsimple con�guration tasks can normally be performed remotely today.These three sub-areas capture what is commonly meant by network management.The aim is to keep the network running smoothly. In a larger perspective, every3

Goal

AI

Applications

Configuration

Statistics

Connectivity

Enterprise
Management

Network
Management

System
Management

Figure 1: The Pyramid of Enterprise Managemententerprise has a global goal. Thus, networks should be managed with that goal inmind. When taking on this more holistic perspective, we are talking of enterprisemanagement. This concept is pictured in the pyramid in �gure 1.When management has become so mature that con�guration can be done fullyremote, we are ready to begin managing the system as a whole. This is calledsystem management. At this stage, applications important for the goal of theenterprise can be monitored and controlled. One scenario is a heavy batch pro-cess running at night, perhaps a backup procedure. If this is not �nished untilmorning, the ordinary work will be negatively a�ected. The management stationshould detect this, and signal an alarm Operator: Backup not �nished in time.On top of this is the layer termed `Arti�cial Intelligence'. This is a managementsystem taking own initiatives. If the enterprise gets a large order, the managementsystem would be able to predict that the existing computer resources is notenough, and send an order for more computing power.Today, the network management world is entering the system management level,where we are able to manage the system as a whole. This is necessary sinceit would be inconvenient trying to manage large systems \by hand", in otherwords, staying at level 2-3 in the pyramid. As networks become larger and morecomplex, even more must be automated, hence we have to continue to higherlevels in the pyramid. 4

2.3 Management in TelecomApart from managing true computer networks, there is also a need to managetelecommunications networks. This is essentially the same problem as in com-puter networks. The aim of management in Telecom is to achieve interconnectionamong the operating systems and telecommunications systems that must ex-change management information to assure the smooth and continuous operationof the telecommunications services. Telephone networks, mobile radio networksand data networks should be managed in a uniform way. These networks consistsof more complex components than an ordinary computer network, furthermorethe number of components is large.Management in Telecom is meaningful �rst when entering the system manage-ment level. Con�guration, that is, subscribing new customers, changing telephonenumbers etc. is the business concept. Therefore this level must be completely de-veloped before management of these networks can succeed.
Telephones GSM ISDN

Management of
Telecommunications networksFigure 2: Management of Telecommunications Networks

5

6

3 Network Management ConceptsThis chapter describes the fundamental concepts of network management. Theconcepts are essential to understand the various aspects of networking. To �ndout what is needed for design of complex network management systems, thescalability properties of the system have to be investigated. If the system grows,what parts will be a�ected and how?The network management world is divided into two competing halves, at leastwhen considering open systems. Within the Internet world the Simple NetworkManagement Protocol (SNMP) evolved and in parallel ISO developed OSI man-agement. Today SNMP is market leader.SNMP was designed with the two most important philosophies of the Internetcommunity in mind: the importance of implementation experience, and the im-portance of lean design with absence of extraneous features and misfeatures. Itfocuses more on implementation and test phases, than on speci�cation and designphases. This allows the MIB-designer to do `quick and dirty' implementations,although structured MIB-design is indeed possible.For larger systems, OSI management has been the natural choice. OSI man-agement was designed with a completely di�erent approach: it should be \theultimate solution" to all network management problems.3.1 Architectural ModelTo deal with a heterogeneous network management environment we need a gen-eral framework, an architectural model. Within this framework, speci�c manage-ment systems are implemented.The system requirements come from di�erent sources. First, the user should beguaranteed good service and maximal availability. Second, the system managerwants a user-friendly application where it is easy to monitor the network asa whole. Third, it should be simple enough for network element providers toimplement. Finally, the architecture should be scalable in order to accomplishenterprise management.The fundamental network management system consists of:� several managed nodes (for example, a bridge, modem, router or host),each containing an agent.� at least one manager, human or automated, that can perform managementactivities. 7

Communicates with

Manager

Agent

Network

Resource

MIB

Sees definition ofFigure 3: The Manager-Agent modelThe Manager-Agent model is based on the client-server principle, see �gure 3.One di�erence from the ordinary client-server model is that there is one client(manager) and many servers (agents).To be able to clearly identify di�erences and similarities between SNMP and OSImanagement, we have chosen to describe the two architectures according to foursubmodels from [HEGE]. They are also helpful when identifying aspects a�ectedby a growing system. The four submodels are:� Information model. `How is management information modeled?'� Organizational model. `Who are the participants in the management sys-tem and what are their roles?'� Communication model. `How does the protocol work?'� Functional model. `What functionality is provided?'In the following subsections these submodels are presented in detail.3.1.1 Information ModelThere is a lot of information in the resources that should be managed and thereare several theories of how to model the information. Well known models arethe relational database model, the hierarchical model (used in for example �lesystems) and the object-oriented (OO) model.The conceptual repository for management information is called theManagementInformation Base (MIB). It is conceptual since it does not hold any data, merely8

a de�nition of what data which can be accessed. The MIB is a fundamentalconcept in network management because it de�nes the interface between a re-source and the management system. More speci�c, a resource is represented by amanaged object residing in the MIB which describes how to manage, monitor andcontrol the resource. A description of a MIB is simply a description of a collec-tion of managed objects. A managed object typically has at least the followingproperties:� What it is (type).� Who it is (name).� How it is assembled (attributes, what data it carries).� How it can be manipulated (methods).For example, a modem could be represented as:type: Modemname: "IBM modem 12"data: {speed: Integer, off-hook: Boolean}methods: {hang-up(), reset(), set-speed(Integer),get-speed()}Managed objects have di�erent complexity in di�erent network architectures. Amanaged object can be described as a class in OO, as a plain variable or as atable.It is important to note that the managed object is a logical object, that is, itdoes not necessarily have to correspond to an object in the physical world. Fromthe manager's point of view, it is not important if a value is physically storedin memory or needs to be computed, to answer a manager request. From theoutside, it is the same logical object.The normal procedure when constructing an agent, is to de�ne the MIB in a spec-i�cation language, along with the implementation of managed object methods,sometimes called the instrumentation functions. A well-designed speci�cationlanguage is concise and helpful for the information structuring process. In addi-tion, it should be exible and easy to revise, since the underlying resource oftenis in a process of change. Consequently, the language should support informationencapsulation.What makes the MIB concept so useful is that it de�nes a standardized interfacefor managing a resource. It is then up to each provider of network componentsto implement the MIB. Assume that we have a modem MIB. Then every modemmanufacturer must implement the managed objects in the MIB. For example,they must implement the hangup() method for their particular modem.In the design phase of large network management systems, the information modelis extremely important. Chapter 4 is devoted to this.9

3.1.2 Organizational ModelThe organizational model de�nes the participants in the network architecture,their roles and how to distribute the management work. The simplest and moststraightforward model is the Manager-Agent model, presented in the beginningof this chapter. In practice, this model is often too na��ve, simply because of thesize of the network being managed. Instead of having a at organization withonly one or a few managers and many agents, larger systems could be built using`management by delegation'. This means that middle-managers are introducedto be responsible for interaction with a subset of all agents. The middle-managerplays a dual role as an agent for some higher level manager and as a managerof a subordinate agent. Suppose that a company has many agents for managingmodems from di�erent manufacturers, then a middle-manager can keep count ofthe total online time.
Communicates with

Manager

AgentAgentAgent

Agent

Manager

Agent

Manager

Agent

Manager

Figure 4: A hierarchy of agents and managersWe get a hierarchy (�gure 4) of abstraction which has the property of beingscalable when the network grows and enterprise management is getting closer.3.1.3 Communication ModelThe communication model describes the schemes for exchanging information be-tween the actors within the network management system. It speci�es the actorsand what kind of messages they can process. The messages can be of di�erentnature. For example, a modem pool which suddenly gets a malfunction maysend a trap message to the manager station, simply saying `Replace modem 14immediately due to serious malfunction'. Other types of messages are sent fromthe manager to a agent in managed resource, such as: `Give me your uptime' (a10

status query), or `Your new IP-address is 1.2.3.4' (an action). It should also bede�ned in the communication model whether these messages are synchronous orasynchronous.Apart from the semantics of the messages, the syntax must be de�ned. Thesyntax describes how to put the message into a protocol data unit (PDU), anduniquely encode it into the bits which are to be transmitted over the network.Another important aspect is to know what is required from the underlying proto-col. Is an unreliable protocol such as UDP (User Datagram Protocol) su�cient,or do we need a protocol which is both reliable and connection-oriented (TCP)?Few requirements will make protocol embedding an easy task. A exible networkmanagement protocol should be able to run on top of anything, no matter if it isUDP, TCP/IP or Appletalk.3.1.4 Functional ModelThe functional model divides management activities into various functional areas.Examples of functional areas are:� Con�guration management. Detecting and controlling the state of the net-work.� Performance management. Controlling, analyzing and logging of through-put and error rate.� Fault management. Detecting, isolating and controlling abnormal behavior,such as excessive line outages.� Accounting management. Collecting and processing data related to re-source consumption.� Security management. Controlling access to network resources.The reason for specifying distinct functional areas, is that the management stationneeds a generic way to handle management within an area. An area de�nesthese generic mechanisms and it is up to every resource to follow them. Forexample, collecting statistical data, such as sysUpTime, should be done in auniform way on di�erent resources. The aim is to be able to manage the networkas a whole. Hopefully it will also help the MIB-designer to structure informationin the resource.There are two schools of thought on how to implement a functional model. Oneis to include functional area de�nitions directly in the network architecture. Theother is to use the information model to build generic MIBs for various functionalareas. 11

3.2 Concepts of SNMP\Perfection is not achieved when there is nothing left to add, but when there isnothing left to take away." | Antoine de St. Exup�ery (pilot and writer)This section introduces the most fundamental and most important concepts ofSNMP. In chapter 5, a more detailed description is given.3.2.1 Information ModelIn an SNMP MIB, the managed objects are either scalar variables (single valued,not multi valued as vectors or structures) which have only one instance, or tablesthat can grow dynamically. Every managed object is given a globally unique nameusing a universal naming tree. A node could for example be named 1.12.4.9.2.3.For convenience, mnemonic names such as sysUpTime exist for each object.Tables are two-dimensional, that is, all elements in a table must be scalar vari-ables. Every column has to be accessed separately, hence the only processableunit in SNMP is a scalar variable. This means that there is no protocol sup-port for handling entire rows in a table, although the SNMP framework de�nesconventions for this. Actually, there is no support at all in the protocol for ta-ble operations. All table operations (foe example, looking up a row with a keyor deleting a row) are emulated by simple variables, using a trick in the globalnaming tree (see section 5.3.1). Hereafter the term variable will be used both forordinary scalar variables and for elements in a table.The MIB speci�cation language is a subset of the ASN.1 language [X208]. ASN.1stands for Abstract Syntax Notation One and is an internationally standardizedlanguage for de�ning syntaxes, more on this in section 5.3. A speci�c MIB isdescribed by all its variables and tables along with their global names. Forexample, a de�nition of the managed object sysLocation looks like this in ASN.1(there is no need to understand the details):-- (comment) Example of how the managed object `sysLocation'-- is defined in ASN.1.sysLocation OBJECT-TYPESYNTAX DisplayString (SIZE (0..255)) -- its data typeMAX-ACCESS read-writeSTATUS currentDESCRIPTION"The physical location of this node (e.g.,`telephone closet, 3rd floor')."::= { system 6 } -- sysLocation's global name is defined-- as the 6th node under the system subtree.12

In SNMP, managed objects do not have methods. The only operations avail-able are set variable value and get variable value. The implementation of theseoperations is called the instrumentation functions.It is important to note that the variables are conceptual variables, that is, it is notrequired that a variable has a one-to-one correspondence to a real resource. Thisapproach obviates the need for imperative commands, because any command canbe realized by setting a variable which has been specially de�ned for this purpose.For example, to implement a command to reboot a device, one could provide aninteger valued variable rebootDevice, which when set to 1 by a manager rebootsthe device.Since the only way to represent information dynamically is in two-dimensional ta-bles, information modeling in SNMP is essentially the same as relational databasemodeling.3.2.2 Organizational ModelSNMP's organizational model is based on the Manager-Agent model. Scalabilityis achieved by forming hierarchies.In addition to the manager and agent roles, there is a third role, called proxyagent. An agent which has to communicate with another remote agent in orderto access the management information, is called a proxy agent (see �gure 5). Thebene�t is that the manager only knows about the proxy agent, which in turn candistribute its work freely.
Manager AgentProxy

agent

request

response

request

responseFigure 5: A Proxy AgentThere are several reasons for using a proxy relationship, for example, when theremote device does not support the transport protocol, or when can be usefulto let the proxy agent take care of the administration in order not to burden analready busy device.3.2.3 Communication ModelThe principle for exchanging information in SNMP is by getting or setting vari-ables in the MIB. This is the only way a manager can control the agent. There isalso a way to retrieve large quantities of data, for example, a subset of the datain the global naming tree or large parts of a table. This is done by traversing thetree in depth-�rst order with the get-bulk or get-next request. This is a very13

simple but powerful method. The get-next operation is fundamental in SNMPand is often referred to as the powerful get-next.The complete listing of messages that can be sent in an SNMP PDU:� Set-request. Setting a variable.� Get-request. Getting a variable.� Get-next-request. Given a variable, �nd next instance in the global namingtree and return its name and value.� Get-bulk-request. Retrieve large amounts of data by depth-�rst search intree until a given amount of data is collected. Get-bulk was introduced inSNMPv2 in order to minimize network tra�c.� Response. Responds to the requests above.� Inform-request. For sending messages between managers. This requestwas also introduced in SNMPv2 making it possible to build hierarchies ofagent/managers.� Trap. The only way for an agent to initiate a communication. If someextraordinary event occurs in the resource, this is signaled to the managerwith a trap.One PDU can contain multiple requests of the same kind, but di�erent requestsmust be sent in distinct PDUs.SNMP has no requirements on the underlying protocol. Usually it runs on top ofUDP, but TCP/IP, Appletalk or even the OSI stack is indeed possible. It is up tothe SNMP entities to make sure that all messages sent reaches the destination.A de�ciency is that traps have 'maybe'-semantics, there is no guarantee thatit reaches the manager. This could be solved by using TCP/IP (which is bothreliable and connection-oriented) or a specially designed MIB for handling this.3.2.4 Functional ModelSNMP uses the approach of de�ning special MIBs for each functional area. Forexample, one notable de�ciency in SNMP was previously the di�culty of monitor-ing networks as a whole, as opposed to nodes on networks. A quite substantialfunctional enhancement was achieved by the de�nition of RMON, the RemoteNetwork Monitoring MIB, which consists of a set of standardized managed ob-jects for collecting di�erent kinds of information from the resources.14

3.3 Concepts of OSI managementThe alternative framework is a set of standards being developed for use in envi-ronments based on Open Systems Interconnection (OSI), known as OSI SystemsManagement. OSI environments consist of the 7 layer protocol stack.1 Our de-scription of OSI management is based on the [PSCG] presentation; more detaileddescriptions can be found in [HEGE], [SLOM] or [STAL].3.3.1 Information ModelThe information model uses an object-oriented approach to model the resourcesrelevant to management. Hence the managed objects can inherit from each otherunlike SNMP's simple objects. Along with the object-oriented model comes sup-port for reuse and information encapsulation as well as the method concept toperform actions on objects.The managed objects are de�ned in the object-oriented MIB speci�cation lan-guage called Guidelines for De�nitions of Managed Objects (GDMO). This lan-guage has all conventional object-oriented constructs plus a concept called pack-ages. Packages are a collection of characteristics (that is, attributes, attributegroups, noti�cations, actions and behavior) and are similar to uninstantiatedobject classes but cannot participate in inheritance relationships. Furthermore,packages can be conditional, that is, a package is only present in a particularclass if certain conditions are met.3.3.2 Organizational ModelThe Manager-Agent model is applicable to OSI management too, but here theroles may be assigned dynamically, in other words, they could in principle changeduring runtime. As in SNMP, a participant could take on both roles simultane-ously.The organizational model of OSI management has a concept called domain (al-though it is not yet speci�ed in detail). A domain is de�ned as a grouping ofresources formed for executive or structural organizational reasons. For example,a collection of resources may be responsible for the security domain. Normallydomains are formed after the functional grouping (see section 3.1.4). If a re-source handles functionality from di�erent groups, it will be a member of severaldomains at the same time.1Physical, link, network, transport, session, presentation and application layer.15

3.3.3 Communication ModelIn addition to the object methods, there is a higher level service to performmeta-operations on multiple objects. This is called the Common ManagementInformation Service (CMIS). CMIS de�nes operations to create or delete man-aged object instances, retrieve or modify attributes on managed object instancesand mechanisms for scoping and �ltering. CMIS is a connection-oriented serviceimplemented by the Common Management Information Protocol (CMIP) in OSIlayer 7.Scoping selects a set of managed object instances on which operations are per-formed. It is done by specifying a base object or all sub-trees beneath it in themanaged object containment tree. This allows many operations to be requestedin one CMIP transfer, as means of improving protocol e�ciency.In combination with scoping, �ltering can be used. Filtering permits testing ofattribute values for =, <, >, substring or presence and can be combined withlogical operators (and, or, not). If an object matches the �lter criteria, someoperation will be performed on it.3.3.4 Functional ModelThe functional areas identi�ed in OSI management are the same �ve as men-tioned in section 3.1.4 namely: fault, performance, con�guration, accounting andsecurity management. These areas are implemented by 15 System ManagementFunctions (SMF2). One example from the Con�guration Management area isthe State management function. This SMF provides general operations for statemanagement of managed objects; in other words, a general state model is speci-�ed and a set of operations for controlling the state transitions is de�ned. Someof the SMF are quite complex functions, which are mostly de�ned generically forhigh exibility [HEGE].3.4 Discussion3.4.1 The four ModelsIn our opinion, this subdivision into four models is adequate since it providesa clear way of describing distinct parts of a network architecture. The divisionwithin the submodels can sometimes be questioned, especially for the functionalmodel. Earlier we have described why networks of today are of such heterogeneousshape. This implies that it is almost impossible to �nd all aspects of networkmanagement and group them in a concise and logical way.One problem is the fact that many interactions between the functional areas areconceivable, and therefore exact delimitation is not always possible. The need forinterfaces between the functional areas arises, for example when the manager gets2SMF actually refers to functionality area.16

an error report from the fault management area, and wants to do a con�gurationto automatically correct it. We see a risk that these interfaces grow too complex,indicating an erroneous functional grouping.Another pitfall is object-oriented modeling, which can lead to unnecessarily com-plex solutions if you use inheritance when it is not appropriate. Inheritanceshould be used to simplify problems, but sometimes a generic base class onlymakes complicated problems even more complicated. This always happens whenthe similarities are too small.In OSI management there is a functional area for con�guration managementconsisting of for example the State management functions (�gure 6, from [HEGE]page 124). It consists of a set of functions and a model of how to use them.We think that this model is suspectly complicated. Con�guration can be thiscomplicated but mostly it is not. It looks like the model was designed withthe following thought in mind `What state model can handle all con�gurationproblems?'. Perhaps this is a too general formulation. This state model might begood if we have a huge switchboard to con�gure, but for most problems it seemstoo complex. The use of inheritance or generalization should have stopped at anearlier stage.
Disabled

Unlocked

Enabled

Unlocked

Active

Unlocked

Busy

Unlocked

Enable

Disable

New user New user

User quitU
se

r
qu

it

Last

user quit

N
ew

user

User quit (nonsharable object)
New user (nonsharable object)DisableDisable

Active Busy

Shutting
down

Shutting
down

User quit

U
se

r
qu

it

S
hut dow

n

U
nl

oc
k S

hut dow
n

U
nl

oc
k

Enable

Disable

Disabled

Locked

Enabled

Locked

U
nl

oc
k

U
nl

oc
k

Lock

Lock

Lock

Lock

Last user

quit

User quit
(nonsharable object)

Disable
Disable

O
R

 L
oc

kO
R

 L
oc

k

Figure 6: State Model of OSI Con�guration Management17

3.4.2 Requirements on the Information ModelIn section 3.1.1 we explained what is required from an information model. Whendesigning a MIB you need help with structuring the information. We mustsay that OO is more powerful than SNMP's MIB speci�cation language basedon ASN.1 macros. An important feature missing in SNMP is the function (ormethod) concept. Executing a function in SNMP is emulated by setting a vari-able. This is su�cient if no parameters are needed, but if they are, there isno well-de�ned solution. One approach would be to de�ne scalar variables thatrepresent the parameters, and let the manager set these �rst, and then set an`execute variable'. This introduces the problem of mutual exclusion.3A clear example where the lack of a function concept leads to spaghetti con-ventions, is SNMP's handling of tables. Of course this is a trade-o� betweensimplicity and functionality. In the implementation phase you want simplicity,but in the design phase you might need a little more than tables and simple vari-ables. It would be nice if the MIB speci�cation language was closer to the MIBdesign language.43.4.3 The FutureThe two architectures of OSI management and SNMP are designed with com-pletely di�erent approaches. The intention of OSI management is to design acomplete solution in a longer perspective, whereas SNMP leans on simplicity.For providers of simple network components SNMP is de�nitely more attractive,since it is easy to get a low-cost product �nished fast. A reason for this is thatSNMP's information model with tables and simple variables is closer to hardwarethan the more complex, object-oriented model of OSI management. Today SNMPforms the basis for the majority of manufacturer-independent solutions, but asnetworks become larger and OSI more mature, many people ([ROSE1], [HEGE])think that the network management world will turn to OSI. The reasons for thisis its \in�nite" scalability and structured support for enterprise management. Weourself, believe that SNMP will gradually evolve as network management growsin complexity (upwards in the pyramid of �gure 1). This solution might not bequite as well-structured as OSI management, but it will be the solution to thecorrect problem. Today we do not yet know what problems management will facein the future.3This can also be solved in SNMP. It is trivial to implement a variable with atomic`test and set' semantics on a single set-request.4Any kind of data modeling technique. 18

4 MIB designThere are two common approaches to MIB design, bottom-up and top-down.The bottom-up approach primarily answers the question \what information isavailable?". The top-down approach answers the question \what information isneeded?". A provider of computer network components usually uses bottom-upMIB design. He simply has some new hardware and maps a managed objectto each hardware element, and does not have to worry about the manager ap-plication. The top-down approach on the other hand, takes into account howthe information in the MIB should be used from within a manager application.The di�erent approaches are appropriate in di�erent situations. For example, ifa network whose functionality often is extended or changed,5 all of the hardwaremust be available to the manager. This could be accomplished by specifying inthe MIB what resources actually are available. In the case of added functionality,only the management application needs to be rewritten, whereas in the case of atop-down designed MIB, the MIB probably would have to be redesigned.When designing a MIB, it is possible to use the standard modeling techniquessuch as object-orientation or entity-relationship diagrams (ER-diagrams). Sucha model is always possible to translate into a MIB, although the work neededdepends on the model used and the MIB speci�cation language. For example,an OO-model �ts easily into OSI management, as GDMO is object-oriented, andan ER-diagram �ts quite easily into SNMP, as SNMP essentially is a relationdatabase. We will only consider MIB design in SNMP here, but it is worth men-tioning that given a description of a MIB in GDMO, there exists an automatedprocedure to translate it into an SNMP MIB [RFC1442]. Today there are nocommercially available high level SNMP MIB design tools.4.1 Design ExampleThe support for reuse is important during MIB design. There are three reuseaspects to consider. First, reuse of semantics from previously designed MIBs.SNMP supports this with a construct6 that allows a user to de�ne new typesthat maps to one of the simple types, as well as describing the semantics of thenew type. The second aspect is direct reuse of managed objects. The supportfor this is quite limited in SNMP. Mainly this is achieved by using tables. Newtables can of course index into old ones. It is also possible to de�ne extensions toa table in SNMP7 without changing the table being extended. The third aspectis reuse of instrumentation. This has to be taken care of by the programmer.We will now look at how a MIB is modeled and described directly in SNMP'sinformation model, not using a higher level design technique, although whendesigning large complicated systems, this would be appropriate.5for example, services in a telecommunications network.6The ASN.1 macro TEXTUAL CONVENTION.7The ASN.1 macro AUGMENTS allows this.19

Let us look at a simple example of how to model a speci�c situation in SNMP.The example is to enlighten the reuse aspects of MIB design. A well-designedMIB can easily be reused, whereas an improper design rules out all chances ofreuse.Consider a standardized MIB for modems. To keep things simple, suppose themodem has two single-valued attributes, online and speed, and a table of thephone numbers it knows of. The straightforward solution would be to de�ne theMIB as shown in �gure 7.
online speed noTable

phoneNo name

mdmMIB

Figure 7: Simple MIB for modemsWith a MIB like this, we can have an SNMP agent for each modem, and amanager can manage all of them in the same way, by connecting to a speci�cagent, and everything works �ne.Suppose now that we want to collect many modems in racks, and that we wantto have one agent for each rack. Of course we want to reuse the standard MIBfor modems shown above. We now have to design a MIB for the rack. In thesame way as before, we would say that a rack has one single-valued attribute,location, and a table of modems. So each entry in the modem table shouldhave a reference to one modem. But the modem MIB will not allow this, becausethere can only exist one instance of each scalar variable in the system, as theMIB is static and only can represent one modem. In the example above this washandled by letting one agent control one modem, but now we want one agent tocontrol many modems. So the modem MIB in �gure 7 is not appropriate for thissituation. The problem resides in the design of the modem MIB. When designinga MIB, you must consider if there possibly could exist multiple instances of theMIB in one agent (normally this is the case). If so, the MIB must be designed forthis, using tables, as the only way to dynamically create management informationin SNMP is by adding rows to tables8. We redesign the modem MIB to provide8The object-oriented approach to this is to allow multiple instances of each managedobject class. In this example, the modem would be a managed object class, of which it20

a table of modems, instead of just one single modem. The result is shown in�gure 8. (In this �gure and the following, there is a table within another table.This is not possible to achieve in SNMP directly, but will be implemented as twoseparate tables, with the �rst table containing an index into the second table.) Inthe �gure, we have added a �eld mdmIndex. This is used to uniquely identify eachmodem. We will not consider how the values for the index actually is computed.
online speed noTable

phoneNo name

mdmTable

mdmMIB

mdmIndex Figure 8: Improved MIB for modemsNow we can design our rack MIB, using the standard modem MIB given in�gure 8. First, we realize that there could probably exist more than one rack ineach system controlled by an agent, so we should make our MIB as a table ofracks. Then, each rack has a rackIndex (used to identify the rack), a locationvariable, and a table of indexes into the modem table. The rack MIB is shownin �gure 9.With these MIBs, an SNMP manager can control the modems in a rack by �rstlooking in the modem table of the rack, and then using the indexes found toretrieve entries from the modem MIB. This is a exible solution, because evenif there exists only one rack right now, the situation could change, without ushaving to redesign our MIB.Another advantage of specifying the MIB as a table, is that it is possible to extenda table in SNMP, without changing the original table. This makes it possible tode�ne a standard MIB for modems, and later de�ne MIBs for enterprise speci�cmodems as extensions to the standard MIB. For example, IBM could de�ne aMIB for their modems, simply saying that an IBM modem is a standard modem,is possible to create many instances. 21

rackMIB

rackIndex

rackTable

mdmTable

mdmIndex

locationFigure 9: Simple MIB for racksplus some additional features. A manager who is aware of the standard MIB only,could still be able to manage IBM-modems. It is not possible, however, for oneagent to implement both the standard modem MIB and more than one extensionto it.

22

5 Description of SNMPv2This section is intended as a brief introduction to SNMPv2, needed to understandour agent prototype. For total documentation, see [ROSE2].SNMP is designed to be small and simple, so it can be implemented on simplemanaged nodes. The protocol only supports basic operations; it is up to themanager application (or the agent) to provide intelligence. Every design decisionthat seems restrictive falls back on this principle.5.1 Organizational ModelAn SNMP entity can act in two distinct roles; a manager role and an agent role.This makes it is possible to build hierarchical relations between entities. Forexample, one could have a system with many local networks, each controlled bya manager which reports to a central manager. This central manager will thenhave a view of the important aspects of the whole system.There are three central concepts in SNMP. The �rst one is the party concept.This refers to entities communicating via a management protocol and a transportservice using authentication and encryption facilities. The second concept is thecontext concept. This refers to a subset of management information. The lastconcept is the access policy concept, which determines the operations that maybe performed when one party asks another party to perform some operation onobjects in a speci�c context. All this SNMP-related information is in the partyMIB de�ned in [RFC1447], in the form of tables, which each SNMP entity hasto implement. This means that SNMP is con�gured and administrated withinSNMP.5.1.1 Party ConceptAll communication in SNMP takes place between two parties. An SNMP partyis a logical process in an SNMP entity. Each entity can contain various parties.Each party is associated with three kinds of attributes: transport attributes, whichde�ne the transport service and transport address being used, authenticationattributes, which de�ne the authentication protocol and the corresponding databeing used, and privacy attributes, which de�ne the encryption protocol and thecorresponding data being used. The entity must keep information of all local andremote parties known to it, in order to process SNMP messages. This informationis held in the party table in the party MIB.23

5.1.2 Context ConceptAn SNMP context is a collection of management information accessible by aparty, held in the context table. A context can either be local or remote. Ifthe context is local, it refers to a MIB view. Each MIB view is a collection ofsubtrees of the MIB, de�ned in the view table. If it is remote, it de�nes a proxyrelationship. Consequently the party has to communicate with a remote partyin order to access the management information connected to this context (seesection 3.2.2).5.1.3 Access Policy ConceptAn SNMP access policy de�nes the operations that are allowed on a context,when a party communicates with another party. This information is held in theacl table.5.1.4 Operations ExampleTo understand how the party MIB is used, let us look at an example. Whena manager wishes to perform some operation (for example, get or set) on someobjects, it searches its party table for a party at the agent which meets its re-quirements of authentication and encryption. This party is called the destinationparty. When found, it determines in which context the objects are visible. Giventhis, it sends to the agent a possibly encrypted message containing the names ofthe manager party and the destination party,9 the context and the objects. Whenthe agent gets this message, it searches the party table for the destination party,and determines if encryption and/or authentication is in use. Next, it consultsthe access table to �nd out which operations the manager party is allowed toperform when talking to the destination party, requesting objects in the currentcontext.5.2 TrapsWhen an extraordinary event occurs, the agent takes initiative and sends traps toone or more managers to make them aware of the event. When a trap is de�ned,it is decided which variables in the MIB that will be sent in the trap PDU to themanagers. The managers use these variables to diagnose the event. Each trap isgiven a unique identi�er, which is an ASN.1 OBJECT IDENTIFIER, see section 5.3.In this way, the trap is viewed as a member of the MIB, so it can be containedwithin a MIB view.When the agent decides to send a trap, it looks for a local context that refers toa MIB view which contains the trap. Then it searches the acl table to �nd the9The destination party is not encrypted, in order for the agent to be able to determinewhether to use decryption or not. 24

entries for this context allowing traps to be sent from a local party to anotherparty. The agent will send traps to all these parties. The agent will then lookupeach value for the variables included in the trap de�nition, and include thosevalues in the trap message being sent.5.3 ASN.1SNMP uses ASN.1 for two di�erent purposes: de�ning the format of the messagesbeing sent, and de�ning the management information. SNMP uses the BasicEncoding Rules (BER) [X209] for a well-de�ned encoding of the de�ned typesinto a stream of bits, in a machine-independent way.SNMP uses a subset of ASN.1, for example it uses only the four simple typesINTEGER, OCTET STRING, BIT STRING and OBJECT IDENTIFIER, along with thetwo constructed types SEQUENCE, which is like a \record" or a \structure" in aconventional programming language, and SEQUENCE OF, which is a list of anotherASN.1 type. OBJECT IDENTIFIER is an important type, which has to be under-stood. An OBJECT IDENTIFIER is a sequence of non-negative integers, resultingfrom traversing a global tree. Each node in the tree has an integer valued label,as well as a symbolic label.
b(1)a(0) c(2)

d(1) e(2)

f(1)

j(1) k(2)

g(1) h(2) i(3)Figure 10: Naming treeFor example, in �gure 10, the object g has OBJECT IDENTIFIER 2.2.1. It is alsopossible to use the symbolic names in the OBJECT IDENTIFIER, or to mix symbolicnames and integers, for example, g could also be named as 2.e.g. An OBJECTIDENTIFIER is used to give a unique name to an object. The object can haveany semantics, for example, it could be a document, a managed object or a trap.SNMP uses OBJECT IDENTIFIERs to identify variables.25

5.3.1 Instance Identi�cationRecall that there can only be one instance of each scalar variable in SNMP.To identify the instance of a variable, for example, in a get operation, a zero isappended to the OBJECT IDENTIFIER de�ning the variable. For example, supposethe object g in �gure 10 is a scalar variable, and that we want to refer to the oneand only instance of this variable. The OBJECT IDENTIFIER 2.2.1.0 identi�esthis instance.A table has one or more columns as keys, or indexes. This means that givenvalues for the keys in a table, the row is uniquely identi�ed. As SNMP onlyallows manipulation per object (column) in a row, the following trick is used toidentify a column in a speci�c row: First, to the OBJECT IDENTIFIER identifyingthe table, the column number is appended. Second, the values of the keys areappended in order. Consider the following situation. Suppose f in �gure 10 is atable entry, and that each row in the table consists of the INTEGER valued columnsj and k, indexed by j. To identify the column k in the row in which j has value4, we would specify the OBJECT IDENTIFIER 2.1.1.2.4, as the table is 2.1.1,we want column 2, and the index of the row is 4.SNMP imposes a lexicographic ordering over all object instances (that is, over theOBJECT IDENTIFIERs identifying them). With this ordering, it is possible to getall values in a table without knowing the keys for each row. This is taken careof by the get-next operator. Given an OBJECT IDENTIFIER, get-next returnsthe next (in the lexicographic ordering) object instance, as well as its value. Soto retrieve the �rst column in the �rst row in the table above, we would issuea get-next command, with the OBJECT IDENTIFIER 2.1.1. If the row speci�edabove is the only row in the table, we would get 2.1.1.2.4 along with the valueof k in this row.
26

6 Our Framework6.1 GeneralOur framework provides an environment which supports rapid prototyping ofMIBs and testing of MIBs which lacks instrumentation functions (that is, func-tions for get or set of speci�c variables). It is also possible to implement a com-plete SNMP agent. Further, the framework could serve as a basis for buildinghigh level tools.In order to use our program, it is necessary to understand the basics of SNMP,its operations and their semantics, and how MIBs are de�ned using ASN.1.To verify that our agent really understands SNMPv2, we have tested it usingCMU's SNMPv2 manager.106.2 Description of the ProgramGiven a MIB description in ASN.1, and names of instrumentation functions writ-ten in Erlang for the managed objects, our program sets up a running SNMPagent.A complete example of a MIB in ASN.1 and the corresponding instrumentationfunctions is given in Appendix A.6.2.1 MIB DescriptionFor our program to run, the user must create a MIB in ASN.1 format in a text�le, and run it through our MIB compiler. The MIB compiler checks the syntax,and produces a �le with the MIB in an internal format. This compiled �le is readby the agent on startup.Given a compiled MIB, it is possible to load it into a running agent withoutrestarting the agent. It is also possible to unload a MIB from a running agent.
10It can be found at Carnegie-Mellon University, ftp://lancaster.andrew.cmu.edu/27

6.2.2 Instrumentation FunctionsTo actually attach the managed objects with real resources, a user-de�ned instru-mentation function for each variable is needed. This function will be called by theagent on a get or set operation. Such a function could for example read a registeron some hardware, do some calculation, or whatever is necessary to implementthe semantics associated with the conceptual variable. These functions must bewritten both for scalar variables and for tables. They are speci�ed in a text�le where the OBJECT IDENTIFIER for each managed object is associated withan Erlang tuple {Module, Function, ExtraArgument}. When a managed ob-ject is referenced in an SNMP operation, the associated {Module, Function,ExtraArgument} is looked up, and the function will be applied to some standardarguments (for example, the operation type), and the extra argument suppliedby the user.In order to understand how this works, let us look at how the instrumentationfunctions should be de�ned in Erlang for the di�erent operations. In the fol-lowing, RowIndex is a list of key values for this table, and Column is a columnnumber.Get operationFor scalar variables:variable_access(get, ExtraArg)For tables:table_access(get, ExtraArg, RowIndex, Column)These functions must return the current value of the associated variable.Set operationFor scalar variables:variable_access(set, ExtraArg, NewValue)For tables:table_access(set, ExtraArg, RowIndex, <columns>)where <columns> is a list of tuples {Column, NewValue}.These functions returns noError if the assignment was successful, otherwisean error code.Next operationThis should only be de�ned for tables.table_access(next, ExtraArg, RestOfOid)RestOfOid is a (possibly empty) list of integers. It is a list representationof the OBJECT IDENTIFIER speci�ed, minus the OBJECT IDENTIFIER for thetable itself. So if the list is non-empty, the �rst integer is the column, andthe rest is values for the keys. This function should return the lexicograph-ically next instance of a managed object in the table, in the same formatas RestOfOid (that is, as a list with the �rst element being the columnnumber, and the rest being the keys for the row).28

Note: normally the functions described above behave exactly like this, but theyare free to do anything else too. For example, a get-request may have side e�ectssuch as setting some other variable, perhaps a global lastAccessed variable.The �rst two functions, get and set, have a one to one correspondence to SNMPrequests, but the third has not. If the agent gets a get-next-request, it will �rstcall the next function and then the get function. It would be inconvenient forthe programmer to have to implement a get-next operation when get is alreadyimplemented. Further, with the choice of these three basic operations, the agentwill be able to handle the get-bulk-request as well.In addition to these functions, it is possible to specify a test function, which hasthe same syntax as the set operation above, except that the �rst argument isis_set_ok instead of set. This function will be called before the variable is set,to ensure that it is permissible to set the variable to the new value. For a fulldescription of this function, see section 6.2.3.The ExtraArgument can be used to write generic functions. Consider two read-only variables for a device, ipAdr and name with object identi�ers 1.1.23.4 and1.1.7. To access these variables, one could implement the two Erlang functions,ip_access and name_access, which will be in the MIB. The functions could bespeci�ed in a text �le as follows:ipAdr = {my_module, ip_access, []}.-- (comment) Or using the object identifier syntax for `name':1.1.7 = {my_module, name_access, []}.Here, the ExtraArgument-parameter is the empty list. For example, whenthe agent receives a get-request for the ipAdr variable, a call will be made toip_access(get, []). The value returned by this function is the answer to theget-request.If ip_access and name_access are implemented similar, we could write ageneric_access function using the ExtraArgument:ipAdr = {my_module, generic_access, 'IPADR'}.-- Using the mnemonic `name' is more convenient than 1.1.7name = {my_module, generic_access, 'NAME'}.When the agent receives the same get-request as above, a call will be made togeneric_access(get, 'IPADR').Yet another possibility, closer to the hardware, could be:ipAdr = {my_module, generic_access, 16#2543}.name = {my_module, generic_access, 16#A2B3}.29

If there is a managed object, scalar variable or table, in the MIB, which does nothave a function associated with it, we provide a default function for that object.This default function will store a value for the object in a local database, or if theobject is a table, store all data in the table in the database. The object can thenbe used in all SNMP operations, including the next operation for tables. It isalso possible for other Erlang functions to access this database; for an exampleof how this can be used, see section 6.2.4. This mechanism is useful for MIBtesting and rapid prototyping, as it is not necessary to write all instrumentationfunctions for the MIB in order to test it with a manager.6.2.3 Atomic SetIn SNMP, the set operation is atomic. This means that either all variables speci-�ed in a set operation are changed, or none. To implement this, the set operationis divided into two phases. The �rst phase will check that the values suppliedfor all variables is of the correct type, and within ranges etc. The second phasewill then set the values. This approach does not take care of the case when thevalue supplied is of the right type and within ranges, but still cannot be set atthis time, because some other resource depends on this value, or the variabledepends on another resource. For example, if a row in a table represents a phys-ical connection, it should not be possible to delete this row if the connection isin use. To be able to handle these cases, it is possible for the user to de�ne anis_set_ok-function, which will be called during phase one. Phase two will onlybe run if all is_set_ok-functions returned true.Still, there could be situations (though rare), where this is not su�cient either,for example, if there are complex relations between many variables, and it won'tbe su�cient to check each value sequentially. Suppose that we have the variablesmonth and day. A set request containing both these variables must not allowthe combination `February' and `31'. For these situations, it is possible to de�nea consistency-check function, which will be called with all variable-bindings inthe operation. (Actually, the is_set_ok-phase described above, is taken care ofby a default consistency check function, which will be called if the user doesn'tspecify his own. So if there is a consistency check function, the is_set_ok-phasewill not be run, unless the user explicitly calls the default_consistency_checkfunction, or the is_set_ok functions.)6.2.4 Default Instrumentation FunctionsSometimes it is useful to store management information in a database. We pro-vide a simple mechanism that can be used for this. For example, suppose a MIBhas an integer valued counter, which should be incremented by one each timesome external event occurs. If no instrumentation function is provided for thiscounter, we will use a default instrumentation function, which can handle allrequests. The default functions are part of a library with generic functions for30

accessing the database. The user can then write a function, which when the ex-ternal event occurs, reads the variable using the default instrumentation function,increments the value, and use the same function to store the new value. This isall that is needed to make the counter available for the managers. The generalsituation is shown in �gure 11.
Manager Agent

Database
User functions

Communicates with

Network
Instrumentation

functions

Generic access
functions

Figure 11: Communication with local databaseLet us look at a more useful example on how to use the default functions. Supposethat there is a table of cards in a MIB for a rack, where each card is a row in thetable. We want to mirror the rack in a database table. The row consists of thefollowing �elds:� index, which is used to identify the cards. This corresponds to the slot inthe rack where the card resides.� rowStatus. This variable reects whether the card is active or out ofservice. It is not possible for a manager to create or delete rows in thistable.� possibly more �elds.Further, suppose that there is some Erlang process which receives messagesfrom the rack when a card is taken away or placed in the rack. The table should31

contain those cards that are actually placed in the rack. In order to change acard's con�guration, it must �rst be taken out of service. This is done by settingthe rowStatus �eld to notInService. When the manager wishes to put a cardinto service again, the rowStatus variable is set to active.In this situation, it is not possible to use the default functions as is, because anis_set_ok function must be written, to check that an active row is not modi�ed.The solution is to write an instrumentation function (and put it in the MIB),which communicates with the generic database access functions. When this in-strumentation function is called with the is_set_ok parameter, is checks thenecessary status and variables. Whenever it is called with the next parameter,it just passes the arguments to the default function.When a card is placed in the rack, an Erlang process notices this as describedabove. This process creates a row in the database, using the library functions.Similarly, when a card is taken away from the rack, the Erlang process noticesthis, and deletes the row from the database, using the library functions.The only necessary steps here are to write functions that actually communicatewith the hardware. The library functions will take care of the tedious next-operator.Other important usages of the library and the default functions are when makingprototypes of large MIBs. It is possible to make a prototype of a MIB withoutimplementing all the instrumentation functions. With the default functions, pro-totyping can be accomplished in the following way. Firstly, the MIB is written,but no instrumentation functions are implemented. The default functions willbe used for all variables and tables. In order to be able to test the agent fromthe manager, the manager needs useful data. This data could be added with thelibrary functions at the agent. Secondly, instrumentation function are writtenand tested for one table or variable at a time.In summary, the mechanism with default and generic library functions provides:� E�ective retrieval of the data.� Safe storage of the data. This is actually not yet implemented in ourframework.� Functions to create and delete rows in the tables.� A function that handles next.� A function that could handle get and/or set. (As long as it is not requiredto communicate with the resource to implement this.)32

6.2.5 TrapsRecall that a trap in SNMP is de�ned by an OBJECT IDENTIFIER, and that whenthe agent decides that a trap is to be sent, the managers that will receive thetrap are deduced from the party MIB. This means that deciding which managersto send a trap to is a con�guration issue, but which traps that will be sent is aMIB design issue.We provide an Erlang server, called the trap server, that takes care of thedistribution of the traps. The user must write some Erlang code that detectsthat a trap should be sent, and then calls a function that sends a message to thetrap server, for examplesnmp_trap:send_trap(TrapOid)will distribute the trap TrapOid to all managers that are currently con�gured toreceive this trap.6.2.6 Default Con�gurationTo be able to get a running agent, the party MIB must be initialized. The userhave to specify the initial party information in four con�guration �les, one foreach table in the party MIB. To change the party MIB after initialization, atleast one manager must have rights to write in the party MIB.6.2.7 Fault-toleranceOur program gets input from three di�erent sources; UDP packets from thenetwork, return values from the user-de�ned instrumentation functions and theMIB in ASN.1 syntax. The �rst two are fault-tolerant, but the MIB compileris not. It can handle syntactical errors, but not all semantical. This meansthat there are some incorrect inputs that the MIB compiler will treat as correct,and this will make the agent process behave strangely. If the MIB compileris presented with a semantically correct MIB, the agent process is input fault-tolerant. By this we mean that the agent will not crash even if the user de�nedinstrumentation functions crashes or return erroneous values.33

6.3 Future ExtensionsBefore using our implementation of the framework in a real product, there are afew things that should be improved:� The party data store is entirely in memory. This means that the infor-mation in the agent does not survive crashes. It should be backed up ondisc.� Authentication (and maybe encryption) should be implemented.� The MIB compiler should have better error-handling.� Some parts of the agent are quite ine�ciently implemented, for examplePDU encoding and looking up variables in the MIB.� The de�nition of SNMPv2 is not yet �nished. When SNMPv2 becomes afull standard, there are probably a few minor changes that will have to bedone.

34

7 High Level ToolsWe believe that our framework serves as a good basis for building higher leveltools. Such tools are necessary when implementing management systems forlarge and complex networks. In this chapter, di�erent ideas of tools that can beconstructed on top of our framework, will be presented.The framework does not give any help in structuring the design of a new MIB.It simply assumes that there exists a MIB in ASN.1 format. As described inchapter 4, it is convenient if there is some means of abstraction, for examplewhen designing a MIB it is helpful if the tool makes structuring and reuse easier.This could be achieved by de�ning a better MIB speci�cation language or agraphical tool.A tool that is built upon our framework, must generate the MIBs in ASN.1format, as well as the Erlang instrumentation functions. The latter is notan easy task, because there can be complex relations11 between tables, and theinstrumentation functions must keep the data in the tables consistent. The MIBdescription will most likely be read by the manager application builder, so it isimportant that the ASN.1 �le is understandable. Particularly, the description�elds of each object must be informative.7.1 Entity RelationshipOne example of a higher lever model is the ER-diagram. This technique is oftenused to model relational databases, so it is probably also suitable for designingMIBs for SNMP. Here we will present a strategy for translating ER to a MIB.This could be implemented as a tool, or the ER technique could be used onlyduring the design phase, and then translated \by hand" into ASN.1. It shouldalso be possible to generate instrumentation functions for a MIB prototype fromthe ER-diagram.To exemplify the following arguments, consider the situation in �gure 12. Theentity Modem can exist in multiple instances, which implies that entity Owner alsowill do that. Each entity has one key, the property marked with an asterisk, aswell as one other property. Each entity will be translated to a managed object,either a group of scalar variables if the entity exists only in one copy, or a tableif it is possible to have multiple instances of the entity. Each 1{1 containmentrelation is modeled as an extra �eld in the table or group, which is either aVariablePointer or a RowPointer12 that refers directly to the other entity. Butif it is a 1{N relation, the contained entities are rows in a table. It is not possibleto reference all these rows in one �eld, so one solution is to de�ne another table,indexed by the container entity's unique key and a RowPointer which points to11For example, a row in one table may not be deleted because of information in anothertable.12These types are TEXTUAL CONVENTIONs which resolve to OBJECT IDENTIFIERs. Theyare used to reference other managed objects.35

1

N

1 1

Key value

Modem
index*

Telnos
number*
name

Owner
number*
name

Contains

*

speed

Figure 12: Example Entity-Relationship diagramthe contained entity. This means that there will be one row per contained entityin the table. The use of a RowPointer (instead of the explicit keys) makes itpossible to change the de�nition of the contained entity without changing thecontainer entity. The resulting MIB is shown in �gure 13. The Modem-Telnotable is used as the extra table for the 1{N relationship between Modem and Telno.A manager that wishes to get all contained entities from a container entity, canissue a request to get all rows in the extra table, with the �rst key equal tothe container entity's key. In our example, if a manager wishes to retrieve allinformation about the Telno entities contained in the Modem entity with index2, it would issue a request to get all �elds TelnoP in the Modem-Telno tablewith index equal to 2. For each such value, it can issue a request to retrieve thecorresponding row in the Telno-table.7.2 Object-OrientationWe will briey consider object-orientation. The reason for wanting OO duringdesign is primarily the support for reuse, encapsulation and the method conceptto perform actions on objects. During runtime, polymorphism is an importantconcept.These design concepts are possible to translate into an SNMP MIB. A class wouldbe translated into an object group or a table, just as an entity in ER. If a subclassinherits a superclass, all attributes from the superclass would be copied into thesubclass. Relations to other classes would be handled as in the ER case describedabove. Encapsulation comes for free with a table or an object group. Methodswould be translated into scalar variables, but as usual, there are problems withparameter passing (see section 3.4.2). Polymorphism is not possible to achieve.36

Refers to

index*

speed

OwnerP

index* number*

name

number*

name

Modem
table table

Modem−Telno
table
Telno

table
Owner

Modem
MIB

Key value*

TelnoP*Figure 13: The MIB corresponding to �gure 12We do not think that it is a good idea to use OO on top of SNMP, simply becausethe semantic gap between SNMP and OO is too big.7.3 Syntactic ExtensionsAnother useful approach to MIB de�nition, might be to de�ne syntactic shortcutsfor the ASN.1 macros. For example, instead of having to care about how to specifytables in SNMP, it would be nice with a macro create-table, which generates thenecessary ASN.1 constructs. It might also be nice to provide means of syntacticreuse, in order to lighten the burden of the MIB writer.
37

38

8 ConclusionsSNMP's capability of managing large, complex networks such as Telecom net-works, depends on how easy is it so divide the problem into subtasks.13 Thefollowing two aspects are important: the degree to which management can be dis-tributed and the support for design of MIBs. In SNMPv2, the inform-requestis for interchanging information between managers, consequently SNMP ful�llsthe �rst aspect. As far as we know, there are no design tools for MIBs today,but our framework is a step in that direction. Since SNMP is based on tables,modeling techniques for relational databases could be adopted. Implementingthe framework in Erlang made it possible to raise the level of abstraction, sothat such tools can be implemented.Moving focus towards design does not imply that implementation experienceshould be forgotten, but that details should be hidden as long as possible whenconstructing an agent. Apart from SNMP speci�c details, the instrumentationfunctions should be removed during early stages of MIB design. The agent im-plementor should be able to write them incrementally during prototyping. Thiswill allow the application on the manager side to be developed and tested simul-taneously with the agent. The framework implemented can, given only a MIB inASN.1, generate instrumentation functions for variables as well as tables. Con-sequently, you get a running prototype agent that can handle set, get, next andtable operations without any programming.It is trivial for a program to generate instrumentation functions for get or set ofscalar variables, but it is non-trivial to generate functions for tables. In additionto information available in the MIB (indexes for tables etc.), the program mustbe given information about relations between the tables. This could be achievedby using Entity Relationship diagrams from which instrumentation functions fora prototype agent are generated. Another possibility is a higher level MIB spec-i�cation language, where you explicitly specify the tables and their relations.The framework provides not only prototyping functionality, but also a userfriendly environment when implementing a real product. Details, such as type-checking, access rights, PDU encoding/decoding and trap distribution are takencare of by our framework. Left to the agent implementor is the writing of theinstrumentation functions, and this can not be avoided. The tedious get-nextfunction only has to be implemented for tables and not every variable in the globalnaming tree. Actually, when mirroring tables in the resource into the softwaretables of the agent, the get-next is handled automatically too.We succeeded in keeping our source code short. The framework consists of about7000 lines of Erlang code. This includes the agent, MIB-compiler, SNMPv2Party MIB, library functions for handling table operations and �nally a simplemanager.13Security is another important aspect. This is not discussed here but taken care of inSNMPv2. 39

Future work is to implement a high level tool for MIB design on top of ourframework. In addition, the performance must probably be increased beforeusing it a real product.

40

9 AbbreviationsASN.1 Abstract Syntax Notation OneAn internationally standardized language for de�ning syntaxes.BER Basic Encoding RulesAn internationally standardized mapping of ASN.1 to bits.CMIP Common Management Information ProtocolAn OSI application layer protocol designed to support management.CMIS Common Management Information ServiceThe services implemented by CMIP.ER Entity RelationshipA common technique for information modeling.GDMO Guidelines for De�nitions of Managed ObjectsMIB speci�cation language in OSI management.GSM Global System for Mobile communicationsIP Internet ProtocolISDN Integrated Services Digital NetworksISO International Standardization OrganizationMIB Management Information BaseThe conceptual repository for management information.OO Object-orientationA paradigm for information modeling as well as programming.OSI Open Systems InterconnectionPDU Protocol Data UnitSMF System Management FunctionsSNMPv1 Simple Network Management Protocol version 1SNMPv2 Simple Network Management Protocol version 2TCP Transmission Control ProtocolA reliable, ow-controlled, in order, two-way transmission of data. Layeredabove IP.UDP User Datagram ProtocolA simple, unreliable datagram protocol layered directly above IP.41

42

References[ARMS] Armstrong J., Virding R., Williams M. 1993. Concurrent pro-gramming in Erlang. Prentice Hall.[BERK] Berkhout V. 1994. SNMPv2 Simple or Sophisticated? Universityof Twente (see [SWEB]).[EWEB] Erlang WWW-page. http://www-cslab.ericsson.se:5000/[HEGE] Hegering H-G, Abeck S. 1994. Integrated Network and SystemManagement. Addison-Wesley.[PSCG] The PSC Group. 1993.OSI Management: Managed Object Mod-elling & De�nition. 2430 Don Reid Drive, Ottawa, Ontario, K1H8P5.[RFC1157] Case, J., M. Fedor, M. Scho�stall, and J. Davin. 1990. TheSimple Network Management Protocol, RFC 1157. Universityof Tennessee at Knoxville, Performance Systems International,Performance Systems International, and the MIT Laboratoryfor Computer Science.[RFC1442] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S. 1993.Structure of Management Information for version 2 of theSimple Network Management Protocol (SNMPv2). RFC 1442.SNMP Research, Inc., Hughes LAN Systems, Dover Beach Con-sulting, Inc., Carnegie Mellon University.[RFC1443] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S. 1993.Textual Conventions for version 2 of the the Simple NetworkManagement Protocol (SNMPv2). RFC 1443. SNMP Research,Inc., Hughes LAN Systems, Dover Beach Consulting, Inc.,Carnegie Mellon University.[RFC1444] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S. 1993.Conformance Statements for version 2 of the the Simple Net-work Management Protocol (SNMPv2). RFC 1444. SNMP Re-search, Inc., Hughes LAN Systems, Dover Beach Consulting,Inc., Carnegie Mellon University.[RFC1445] Galvin, J., and McCloghrie, K. 1993. Administrative Model forversion 2 of the Simple Network Management Protocol (SN-MPv2). RFC 1445. Trusted Information Systems, Hughes LANSystems.[RFC1446] Galvin, J., and McCloghrie, K. 1993. Security Protocols for ver-sion 2 of the Simple Network Management Protocol (SNMPv2).RFC 1446. Trusted Information Systems, Hughes LAN Systems.43

[RFC1447] McCloghrie, K., and Galvin, J. 1993. Party MIB for version 2of the Simple Network Management Protocol (SNMPv2). RFC1447. Hughes LAN Systems, Trusted Information Systems.[RFC1448] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S. 1993.Protocol Operations for version 2 of the Simple Network Man-agement Protocol (SNMPv2). RFC 1448. SNMP Research, Inc.,Hughes LAN Systems, Dover Beach Consulting, Inc., CarnegieMellon University.[RFC1449] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S. 1993.Transport Mappings for version 2 of the Simple Network Man-agement Protocol (SNMPv2). RFC 1449. SNMP Research, Inc.,Hughes LAN Systems, Dover Beach Consulting, Inc., CarnegieMellon University.[RFC1450] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S. 1993.Management Information Base for version 2 of the Simple Net-work Management Protocol (SNMPv2). RFC 1450. SNMP Re-search, Inc., Hughes LAN Systems, Dover Beach Consulting,Inc., Carnegie Mellon University.[RFC1451] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.1993. Manager-to-Manager Management Information Base.RFC 1451. SNMP Research, Inc., Hughes LAN Systems, DoverBeach Consulting, Inc., Carnegie Mellon University.[RFC1452] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S. 1993.Coexistence between version 1 and version 2 of the Internet-standard Network Management Framework. RFC 1452. SNMPResearch, Inc., Hughes LAN Systems, Dover Beach Consulting,Inc., Carnegie Mellon University.[ROSE1] Rose, M.T. 1991. The Simple Book - An Introduction to InternetManagement, Prentice-Hall.[ROSE2] Rose, M.T. 1994. The Simple Book - An Introduction to InternetManagement, Prentice-Hall.[RUTT] Rutt, T. 1994. Comparison of the OSI management, OMGand Internet management Object Models. A report of theJoint XOpen/NM Forum Inter-Domain Management Task force.Email: t.rutt@att.com[SCHE] Schekkerman E.J. 1993. An Analysis of the Simple NetworkManagement Protocol version 2 M.Sc. Thesis (see [SWEB]).[SLOM] Sloman, M. 1994. Network and Distributed Systems Manage-ment. Addison-Wesley.44

[STAL] Stallings, W. 1993. Network Management. IEEE Computer So-ciety Press.[STEE] Steedman, D. 1990. Abstract Syntax Notation One (ASN.1):The Tutorial and Reference. Technology Appraisals.[SWEB] The Simple Web - snmp info site.http://snmp.cs.utwente.nl/[X208] Speci�cation of Abstract Syntax Notation One. 1987. CCITTrecommendation X.208. Geneva, Switzerland.[X209] Speci�cation of basic encoding rules (BER) for Abstract SyntaxNotation One. 1987. CCITT recommendation X.209. Geneva,Switzerland.

45

46

A Example MODEM-MIBIn this Appendix, we show a complete example of a MIB and its instrumentationfunctions written in Erlang. The MIB is the modem MIB shown in �gure 8 inchapter 4.For a detailed description of the instrumentation functions, see the user-manualfor our framework.A.1 The MIB in ASN.1MODEM-MIB DEFINITIONS ::= BEGINIMPORTSMODULE-IDENTITY, OBJECT-TYPE,snmpModules, UInteger32FROM SNMPv2-SMITEXTUAL-CONVENTION, RowStatus,DisplayString, TruthValueFROM SNMPv2-TC;modemMIB MODULE-IDENTITYLAST-UPDATED "9505040000Z"ORGANIZATION "SU"CONTACT-INFO"(d90-mbj,d90-ker)@nada.kth.se "DESCRIPTION"Example of modem-MIB."::= { iso 12 }-- textual conventions (that is, abstract datatypes)ModemSpeed ::= TEXTUAL-CONVENTIONSTATUS currentDESCRIPTION"300/1200/2400 or 9600 baud."SYNTAX INTEGERPhoneNbr ::= TEXTUAL-CONVENTIONSTATUS currentDESCRIPTION"A telephone number."SYNTAX OCTET STRINGmodemMibObjectsOBJECT IDENTIFIER ::= { modemMIB 1 }47

modemContact OBJECT-TYPESYNTAX DisplayStringMAX-ACCESS read-writeSTATUS currentDESCRIPTION"Contact info."::= {modemMibObjects 1}modemTable OBJECT-TYPESYNTAX SEQUENCE OF ModemEntryMAX-ACCESS not-accessibleSTATUS currentDESCRIPTION"Modem Table"::= { modemMibObjects 2 }modemEntry OBJECT-TYPESYNTAX ModemEntryMAX-ACCESS not-accessibleSTATUS currentDESCRIPTION"The entry in the table"INDEX { modemPort }::= { modemTable 1 }-- The modemTable consists of the following columnsModemEntry ::=SEQUENCE {modemPort INTEGER,modemOnline TruthValue,modemSpeed ModemSpeed,modemStatus RowStatus}modemPort OBJECT-TYPESYNTAX INTEGERMAX-ACCESS not-accessibleSTATUS currentDESCRIPTION"The physical port where the modem hangs."::= { modemEntry 1 }modemOnline OBJECT-TYPESYNTAX TruthValueMAX-ACCESS read-write 48

STATUS currentDESCRIPTION"true = online, false = offline."DEFVAL { true }::= { modemEntry 2 }modemSpeed OBJECT-TYPESYNTAX ModemSpeedMAX-ACCESS read-writeSTATUS currentDESCRIPTION"The speed of this modem."::= { modemEntry 3 }modemStatus OBJECT-TYPESYNTAX RowStatusMAX-ACCESS read-createSTATUS currentDESCRIPTION"The special variable to emulate tableoperations, createRow, deleteRow, ..."::= { modemEntry 4 }-- The Modem-Telno-Table:modemTelnoTable OBJECT-TYPESYNTAX SEQUENCE OF ModemTelnoEntryMAX-ACCESS not-accessibleSTATUS currentDESCRIPTION"Modem-Telno Table."::= { modemMibObjects 3 }modemTelnoEntry OBJECT-TYPESYNTAX ModemTelnoEntryMAX-ACCESS not-accessibleSTATUS currentDESCRIPTION"The entry in the table"INDEX { modemTelnoModemPort,modemTelnoPhoneNbr }::= { modemTelnoTable 1 }ModemTelnoEntry ::=SEQUENCE { 49

modemTelnoModemPort INTEGER,modemTelnoPhoneNbr PhoneNbr,modemTelnoPhoneName DisplayString,modemTelnoStatus RowStatus}modemTelnoModemPort OBJECT-TYPESYNTAX INTEGERMAX-ACCESS not-accessibleSTATUS currentDESCRIPTION"The modem port uniquely defining a modem."::= { modemTelnoEntry 1 }modemTelnoPhoneNbr OBJECT-TYPESYNTAX PhoneNbrMAX-ACCESS not-accessibleSTATUS currentDESCRIPTION"A phoneNbr in the phonebook forthis modem."::= { modemTelnoEntry 2 }modemTelnoPhoneName OBJECT-TYPESYNTAX DisplayStringMAX-ACCESS read-writeSTATUS currentDESCRIPTION"The name of the phone number."::= { modemTelnoEntry 3 }modemTelnoStatus OBJECT-TYPESYNTAX RowStatusMAX-ACCESS read-createSTATUS currentDESCRIPTION"Only operations 'createAndGo' and 'destroy'are implemented. The only valid readable valueis 'active'."::= { modemTelnoEntry 4 }END 50

A.2 MIB implementationHere we present instrumentation functions for the modem MIB. These functionsuse the generic library functions in module snmp_gfsd to implement the tablesin agent software. The module modem contains functions for communicating withthe modems.A.2.1 Prototype implementationFirst, we present a prototype implementation of the MIB, that is, all data en-tirely exists in software, and there is no connection at all to the hardware (thephysical modems). We cannot use the default functions directly, because thereare relations between the two tables that must be maintained.When a manager tries to add a row in the modem table, the default functionsnmp_gfsd:table_func(is_set_ok,...) will check that the row does not al-ready exist. If the manager tries to delete a row, we must make sure that it doesnot exist any telephone numbers in the modemTelno table. If the is_set_ok-phase succeeded, the default function snmp_gfsd:table_func(set,...) willchange the software table.When a manager tries to add a row in the modemTelno table, we must checkthat the modem exists.-module(modemmib).-author('(d90-mbj,d90-ker)@nada.kth.se').-export([init/0,modem_table/4, modem_table/3,modem_telno_table/4, modem_telno_table/3,try_change_modem_status/4,try_change_modem_telno_status/4]).-include("snmp_party.h").%%%--%%% This file contains the instrumentation functions%%% for the modemmib.%%% PROTOTYPE implementation.%%%--%% Defines useful columns.-define(modem_port_col, 1).-define(modem_status_col, 4).-define(modem_telno_modem_port_col, 1).-define(modem_telno_status_col, 4).init() ->snmp_gfsd:table_create(modemTelnoTable),snmp_gfsd:table_create(modemTable).51

%%--%% The modem_table%%--modem_table(get, [], RowIndex, Col) ->snmp_gfsd:table_func(get, modemTable, RowIndex, Col);modem_table(is_set_ok, [], RowIndex, Cols) ->snmp_gfsd:table_try_row(modemTable,{modemmib, try_change_modem_status},RowIndex, Cols);modem_table(set, [], RowIndex, Cols) ->snmp_gfsd:table_set_row(modemTable, nofunc, nofunc, RowIndex, Cols).modem_table(next, [], RestOid) ->snmp_gfsd:table_func(next, modemTable, RestOid).%%--%% Called by is_set_ok if RowStatus is changed.%%--%% If status is 'destroy', we must check to see%% that there don't exist any any telnos.%% Cols is a list of {ColumnNumber, NewValue}%%--try_change_modem_status(_, ?destroy, [ModemPort], _Cols) ->case snmp_gfsd:table_find(modemTelnoTable,?modem_telno_modem_port_col,ModemPort) offalse -> {noError, 0};_FoundRow -> {inconsistentValue, ?modem_status_col}end;try_change_modem_status(_,_,_,_) -> {noError, 0}.%%--%% The modem_telno_table.%%--modem_telno_table(get, [], RowIndex, Col) ->snmp_gfsd:table_func(get, modemTelnoTable, RowIndex, Col);modem_telno_table(is_set_ok, [], RowIndex, Cols) ->snmp_gfsd:table_try_row(modemTelnoTable,{modemmib, try_change_modem_telno_status},RowIndex, Cols); 52

modem_telno_table(set, [], RowIndex, Cols) ->snmp_gfsd:table_set_row(modemTelnoTable, nofunc, nofunc, RowIndex, Cols).modem_telno_table(next, [], RestOid) ->snmp_gfsd:table_func(next, modemTelnoTable, RestOid).%%--%% Called by is_set_ok if RowStatus is changed.%%--%% If status is 'createAndGo', we must check to see%% that the modem exists.%%--try_change_modem_telno_status(_,?createAndGo,[ModemPort | PhoneNbr],_Cols) ->case snmp_gfsd:table_find(modemTable, ?modem_port_col, ModemPort) offalse -> {inconsistentValue, ?modem_telno_status_col};_FoundRow -> {noError, 0}end;try_change_modem_telno_status(_,_,_,_) -> {noError, 0}.A.2.2 Real implementationWhen we have implemented and tested the prototype, we can start to implementthe \real" instrumentation functions. We will show two di�erent ways of doingthis, one for each table. The modem table will be a software table which mirrorsthe actual hardware, but the modemTelno (which probably will contain moredata) is not mirrored, and will only exist in the modems.When a manager tries to add a row in the modem table, we use the de-fault function snmp_gfsd:table_func(is_set_ok,...) to check that the rowdoes not already exist. Also, we check that there is a modem connected tothe speci�ed port. If the is_set_ok-phase succeeded, the default functionsnmp_gfsd:table_func(set,...) is used to change the software table. When arow is added to the modem table, the modem must be initialized, and when it isdeleted, it must be shut down.As the modemTelno table does not exist in software, we cannot use the defaultfunctions as with the modem table. However, there are useful library functionsfor other purposes, and we will use one of these which handles the list of columnssent to the is_set_ok- and set-functions.When a manager tries to add a row in the modemTelno table, we must check thatthe modem exists. If the is_set_ok-phase succeeded, we must tell the modemof the new number, and if a number is deleted, we must inform the modem.53

-module(modemmib).-author('(d90-mbj,d90-ker)@nada.kth.se').-export([init/0,modem_contact/2, modem_contact/3,modem_table/4, modem_table/3,modem_telno_table/4, modem_telno_table/3,try_change_modem_status/4,set_modem_attributes/2,changed_modem_status/4]).-include("snmp_party.h").%%%--%%% This file contains the instrumentation functions%%% for the modemmib.%%%--%% Defines useful columns.-define(modem_port_col, 1).-define(modem_online_col, 2).-define(modem_speed_col, 3).-define(modem_status_col, 4).-define(modem_telno_modem_port_col, 1).-define(modem_telno_name_col, 3).-define(modem_telno_status_col, 4).init() ->snmp_gfsd:table_create(modemTable).%%--%% The modemContact variable.%%--modem_contact(get, []) ->modem:get_contact().modem_contact(set, [], NewVal) ->modem:set_contact(NewVal).%%--%% The modem_table%%--modem_table(get, [], RowIndex, Col) ->snmp_gfsd:table_func(get, modemTable, RowIndex, Col);modem_table(is_set_ok, [], RowIndex, Cols) ->snmp_gfsd:table_try_row(modemTable,{modemmib, try_change_modem_status},RowIndex, Cols); 54

modem_table(set, [], RowIndex, Cols) ->case snmp_gfsd:table_set_row(modemTable,{modemmib, changed_modem_status},{snmp_gfsd, table_try_make_consistent},RowIndex, Cols) of{noError, 0} ->set_modem_attributes(RowIndex, Cols);Error -> Errorend.modem_table(next, [], RestOid) ->snmp_gfsd:table_func(next, modemTable, RestOid).%%--%% Called by is_set_ok if RowStatus is changed.%%--%% If status is 'destroy', we must check to see%% that there don't exist any telnos.%% Cols is a list of {ColumnNumber, NewValue}%%--try_change_modem_status(_, ?destroy, [ModemPort], _Cols) ->case modem:get_all_numbers(ModemPort) of[] -> {noError, 0};_FoundRow -> {inconsistentValue, ?modem_status_col}end;%%--%% If status is 'createAndGo' we must check that%% there is a modem connected to the specified port.%%--try_change_modem_status(_, ?createAndGo, [ModemPort], _Cols) ->case modem:is_modem_connected(ModemPort) oftrue -> {noError, 0};false -> {inconsistentValue, ?modem_status_col}end;try_change_modem_status(_,_,_,_) -> {noError, 0}.%%--%% Called by set if RowStatus is changed.%%--changed_modem_status(_, ?destroy, [ModemPort], _Cols) ->modem:shut_down_modem(ModemPort),{noError, 0}; 55

changed_modem_status(_, ?createAndGo, [ModemPort], _Cols) ->modem:initiate_modem(ModemPort),{noError, 0};changed_modem_status(_, _,_,_) -> {noError, 0}.%%--%% Called when all values are set.%% We must 'write through' to the modems, if the%% attributes (Online, Speed) are changed.%%--set_modem_attributes([ModemPort], Cols) ->case snmp_gfsd:find_col(?modem_telno_status_col, Cols) of{value, ?destroy} -> {noError, 0};Else ->{value, Online} =modem_table(get, [], [ModemPort], ?modem_online_col),{value, Speed} =modem_table(get, [], [ModemPort], ?modem_speed_col),modem:set_attribute(online, ModemPort, Online),modem:set_attribute(speed, ModemPort, Speed),{noError, 0}end.%%--%% The modem_telno_table.%%--%% A get on the status col returns 'active' if the%% row exists.%%--modem_telno_table(get, [], [ModemPort | PhoneNbr], Col) ->case modem:is_modem_connected(ModemPort) offalse -> {noValue, noSuchInstance};true ->case modem:get_phone_nbr_entry(ModemPort, PhoneNbr) of{value, Entry} when Col == ?modem_telno_status_col ->{value, ?active};{value, Entry} -> {value, element(Col, Entry)};Error -> {noValue, Error}endend;%%--%% If status is 'createAndGo' or 'destroy', we must%% check that the modem is connected to the port, and%% that the number doesn't resp. does exist.56

%% We only implement 'createAndGo' and 'destroy'.%%--modem_telno_table(is_set_ok, [], [ModemPort|PhoneNbr], Cols) ->case snmp_gfsd:find_col(?modem_telno_status_col, Cols) of{value, ?createAndGo} -> nbr_not_exists(ModemPort, PhoneNbr);{value, ?destroy} -> nbr_exists(ModemPort, PhoneNbr);{value, _Val} -> {inconsistentValue, ?modem_telno_status_col};_Else -> {noError, 0}end;%%--%% If status is 'createAndGo', we must add the number%% to the modem. If it is 'destroy', we must delete%% the number.%% If status is not modified, the name must be changed,%% as it is the only accesible column, except for status.%%--modem_telno_table(set, [], [ModemPort | PhoneNbr], Cols) ->case snmp_gfsd:find_col(?modem_telno_status_col, Cols) of{value, ?createAndGo} ->{value, NewName} =snmp_gfsd:find_col(?modem_telno_name_col, Cols),modem:add_number(ModemPort, PhoneNbr, NewName);{value, ?destroy} ->modem:delete_number(ModemPort, PhoneNbr);Else ->change_name(Cols, ModemPort, PhoneNbr),{noError, 0}end.%%--%% Rather naive implementation of next.%% modem:get_all_numbers() returns a sorted list of%% tuples {ModemPort, PhoneNbr, Name}.%%--modem_telno_table(next, [], []) ->modem_telno_table(next, [], [?modem_telno_name_col]);modem_telno_table(next, [], [Col | Index]) ->Nums = modem:get_all_numbers(),find_next(Nums, Col, Index).find_next([], _Col, _Index) -> endOfTable;find_next(Nums, Col, Index) ->case find_next_number(Nums, Index) ofendOfList when Col == ?modem_telno_status_col ->57

endOfTable;endOfList ->{FirstModemPort, FirstPhoneNbr, _Name} = hd(Nums),FirstCol = max(Col+1, ?modem_telno_name_col),[FirstCol, FirstModemPort | FirstPhoneNbr];{ModemPort, PhoneNbr} -> [Col, ModemPort | PhoneNbr]end.find_next_number([], _Index) -> endOfList;find_next_number([{Port, PhoneNbr, _Name} | Nums], Index)when [Port | PhoneNbr] > Index ->{Port, PhoneNbr};find_next_number([_Num | Nums], Index) ->find_next_number(Nums, Index).change_name([{?modem_telno_name_col, NewName}],ModemPort, PhoneNbr) ->modem:change_phone_nbr_entry(ModemPort, PhoneNbr, name, NewName).%% noError if row does not exist.nbr_not_exists(ModemPort, PhoneNbr) ->case modem:is_modem_connected(ModemPort) offalse -> {inconsistentValue, ?modem_telno_status_col};true ->case modem:get_phone_nbr_entry(ModemPort, PhoneNbr) of{value, Entry} -> {inconsistentValue, ?modem_telno_status_col};Error -> {noError, 0}endend.%% noError if row does exist.nbr_exists(ModemPort, PhoneNbr) ->case modem:is_modem_connected(ModemPort) offalse -> {inconsistentValue, ?modem_telno_status_col};true ->case modem:get_phone_nbr_entry(ModemPort, PhoneNbr) of{value, Entry} -> {noError, 0};Error -> {inconsistentValue, ?modem_telno_status_col}endend.max(X,Y) when X > Y -> X;max(X,Y) -> Y. 58

A.3 Association �leThis is the association �le for the prototype implementation:-- Defines instrumentation functions for the tables-- in the MODEM-MIB.modemTable = {modemmib, modem_table,[]}.modemTelnoTable = {modemmib, modem_telno_table,[]}.This is for the real implementation:-- Defines instrumentation functions for the tables-- in the MODEM-MIB.modemTable = {modemmib, modem_table,[]}.modemTelnoTable = {modemmib, modem_telno_table,[]}.modemContact = {modemmib, modem_contact, []}.

59

