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Abstract

The Simple Network Management Protocol (SNMP) has mainly been
used for managing IP (Internet Protocol) networks. Until recently,
OSI (Open Systems Interconnection) management has been the
choice for managing non-I1P-networks as well as larger systems where
management by delegation is necessary. With version 2, SNMP be-
came more suitable for these systems.

One of the drawbacks of SNMP has been that it focuses more on
implementation than on design. When implementing large network
management systems, the design phase is essential. This report
presents a framework for SNMPv2 where iterations in the design
phase have a low turn-around time. Prototyping of MIBs (Manage-
ment Information Bases) is simplified by automated implementation
of instrumentation functions for scalar variables as well as tables.

The purpose of the framework is to facilitate MIB design and agent
implementation by providing a user-friendly environment. For this,
the ERLANG programming language has shown to be an appropriate
choice.

The report also discusses design tools that could be built on top of
the framework.

Keywords: Network Management, SNMP, MIB, OSI, ERLANG.
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Ett programmeringsverktyg
for
SNMPv2 1 ERLANG

Referat

Tidigare har "The Simple Network Management Protocol” (SNMP)
forst och framst anvants for att 6vervaka IP-ndtverk (Internet Pro-
tocol), men i och med version 2 har SNMP blivit mer lampat dven
for andra natverk. For storre system har OSI (Open Systems In-

terconnection) management varit det naturliga valet, men nu boérjar
SNMP bli ett realistiskt alternativ.

SNMP har kritiserats for att det &r mer inriktat pa implementations-
fasen &n designfasen. Om det skall vara mojligt att bygga storre nat-
verksovervakningssystem med SNMP, behovs hjalpmedel for design
och prototypning. I denna rapport beskrivs ett programmeringsverk-
tyg i ERLANG som &r ett forsta steg i denna riktning.

Med hjilp av verktyget dr det enkelt att implementera en prototyp
for en SNMP-agent, d.v.s. en agent dir MIB:en (Management Infor-
mation Base) inte har nagon koppling till den faktiska enheten som
den skall styra. Agenten kan besvara forfragningar genom att sjilv
lagra tabeller och variabler i en databas. Verktyget underldttar ocksa
vid implementation av en riktig agent.

Irapporten behandlas dessutom natverksévervakning i allmidnhet och
SNMP i synnerhet. Férslag och skisser pa annu kraftfullare MIB-
utvecklingsverktyg presenteras ocksa.
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1 Introduction

In the open network management world, two main approaches are taken. We will
refer to these as OSI management and Simple Network Management Protocol

(SNMP).

Since the need for open network management protocols arose, the telecommu-
nications community has favored the OSI network management protocol and
specification language. Recently, interest of SNMP has aroused. One purpose
of this project was to analyze SNMP’s scalability properties, to investigate how
SNMP can be used in larger systems, such as telecommunications software. An-
other purpose was to design and implement a framework for SNMP agents in
ERLANG.

SNMP was developed in the Internet world, for managing [P-networks. It is not
obvious that SNMP is suitable for more general purposes. In fact, version 1 is not
suitable for anything else than managing IP-networks. The protocol definition
[RFC1157] only considers certain IP related tables and explicitly states how to
handle these. This problem is taken care of in SNMP version 2. Consequently
we have only considered SNMPv2 in our work. We will use the term SNMP for
SNMPv2 throughout this report.

Both SNMP and OSI management are described since the latter has been the
natural choice for large networks. We present an architectural model and describe
the approaches according to it.

We are not comparing SNMP to OSI management. Such comparisons have been
done before ([HEGE], [SLOM] and [RUTT]). OSI management is based on an
object-oriented approach, whereas SNMP is based on a hierarchy containing
simple variables and tables. Therefore a comparison can not evaluate ‘SNMP
object-oriented features’” [SLOM]. Most comparisons have evaluated SNMPvl,
which means that they are out of date, as SNMP has undergone major enhance-
ments. Some people claim that ‘S’ in SNMP now stands for Sophisticated rather
than Simple [BERK].

Even though this report is not a comparison, it can be read simultaneously to
one. In this way you will get a fair picture of SNMP’s profits and limitations. It
is important to bear in mind that the two management approaches are suited for
different problems. Hopefully, this report in combination with existing literature
will give you a clue of which approach to use.

1.1 Design Goals

The design goals for our SNMP framework implementation are:

o Fase of use. The user should have to specify as little as possible to get a
running agent. All details of SNMP interaction should be hidden from the
user and automatically taken care of. The programming interface should
to be simple, in order to support for rapid prototyping.



o Flexibility of functionality. It must be possible for the user to override the
default behavior whenever necessary. As well as making prototypes and
perform testing, constructing a real product should be possible.

o Flexibility of code. Our code should be designed to facilitate the construc-
tion of any SNMP program, for example an SNMP manager.

e Fxtensible. It should be possible for our environment to serve as a basis
for implementing other tools, such as tools for MIB design, simulation and
testing.

o Compactness. Our source code should be small and easy to understand.

1.2 Intended Audience

This document is intended for readers interested in network management in gen-
eral and SNMP in particular. We have focused on the agent side of SNMP, so we
hope MIB designers and implementors will find this report interesting. We pro-
pose a simple way of setting up an SNMP-agent. Those with experience of other
network management tools will hopefully notice the difference in complexity.

We assume that our readers are familiar with some basic concepts of networking,
protocols, data modeling and concurrent programming.

1.3 Outline of this Report

Our work has been divided into two phases. Firstly, we wanted to gain experience
with SNMP and networking are. To do this we implemented an SNMP-agent in
the ERLANG programming language [ARMS]. Secondly, we studied the theoretical
aspects of networking, mainly design of MIBs for SNMP.

The first part of the report concerns the theoretical aspects of our work. The
most technical aspects, our implementation, is in the second half. For a more
detailed description of the framework, please consult the User’s Manual.

Chapter 2 concerns network management in general.

Chapter 3 introduces an architectural model for network management frame-
works, and describes SNMP and OSI management according to this model.
Chapter 4 gives an introduction to MIB design, and contains guidelines for struc-
turing management information.

Chapter 5 introduces the technical basics of SNMP.

Chapter 6 describes our generic SNMP agent framework and how it is used.
Chapter 7 gives some examples on how it is possible to use the design principles
from chapter 4 to build higher levels tools upon our framework.



2 This is Network Management

2.1 The need for Network Management

Network management could be defined as all procedures and products for plan-
ning, configuring, controlling and monitoring computer networks. The intention
is to ensure efficient use of all resources. From the user’s point of view, the best
network is the invisible network where you can communicate without bothering
about what is in between. To achieve this, it is important to understand why
network management is a complex problem.

Networks of today are populated by a large and increasing number of resources
from different suppliers. Common components are hosts, routers and printers but
as new services are being added, they are becoming even more varied. All these
heterogeneous components should be managed in some standardized manner.

Most networks of any considerable size have a network control center to control
and monitor the computer communications. The computer dedicated to this task
is called the management station. It is responsible for handling the enormous
amount of information from all network components.

When a fault occurs in the network, the challenge for the network operator is often
not how to correct the error, but to find out where the fault occurred. Therefore
the management station must help the operator to efficiently sieve information
from the components. Sieving should be so efficient that the management sta-
tion is completely quiet most of the time. If a small fault occurs in a resource
somewhere, this is automatically reported by the resource to the management
station which is to take appropriate action. Since most faults come from erro-
neous configuration, they can be corrected easily or even automatically by the
system itself. The vision is a computer network which is quiet until something
goes wrong, then it sends a message to the operator describing the error and how
to correct it. The situation today is far from this ideal.

2.2 Enterprise Management

Network management could be divided into three sub-areas. These are shown
in figure 1. Even the most primitive computer systems of today can monitor
connectivity, usually with a command similar to the Unix command ping to find
out whether or not computer A is connected to computer B. In addition to pure
connectivity monitoring, larger systems collect statistics such as response times,
throughput, loading, error rates and availability. Either this is done manually or
automated, that is, the management station polls selected components for inter-
esting information. The third sub-area of network management slowly gaining
ground is configuration management. In our experience, only a very few and
simple configuration tasks can normally be performed remotely today.

These three sub-areas capture what is commonly meant by network management.
The aim is to keep the network running smoothly. In a larger perspective, every
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Figure 1: The Pyramid of Enterprise Management

enterprise has a global goal. Thus, networks should be managed with that goal in
mind. When taking on this more holistic perspective, we are talking of enterprise
management. This concept is pictured in the pyramid in figure 1.

When management has become so mature that configuration can be done fully
remote, we are ready to begin managing the system as a whole. This is called
system management. At this stage, applications important for the goal of the
enterprise can be monitored and controlled. One scenario is a heavy batch pro-
cess running at night, perhaps a backup procedure. If this is not finished until
morning, the ordinary work will be negatively affected. The management station
should detect this, and signal an alarm Operator: Backup not finished in time.

On top of this is the layer termed ‘Artificial Intelligence’. This is a management
system taking own initiatives. If the enterprise gets a large order, the management
system would be able to predict that the existing computer resources is not
enough, and send an order for more computing power.

Today, the network management world is entering the system management level,
where we are able to manage the system as a whole. This is necessary since
it would be inconvenient trying to manage large systems “by hand”, in other
words, staying at level 2-3 in the pyramid. As networks become larger and more
complex, even more must be automated, hence we have to continue to higher
levels in the pyramid.



2.3 Management in Telecom

Apart from managing true computer networks, there is also a need to manage
telecommunications networks. This is essentially the same problem as in com-
puter networks. The aim of management in Telecom is to achieve interconnection
among the operating systems and telecommunications systems that must ex-
change management information to assure the smooth and continuous operation
of the telecommunications services. Telephone networks, mobile radio networks
and data networks should be managed in a uniform way. These networks consists
of more complex components than an ordinary computer network, furthermore
the number of components is large.

Management in Telecom is meaningful first when entering the system manage-
ment level. Configuration, that is, subscribing new customers, changing telephone
numbers etc. is the business concept. Therefore this level must be completely de-
veloped before management of these networks can succeed.

Telephones GSM ISDN

Management of
Telecommunications networ

Figure 2: Management of Telecommunications Networks






3 Network Management Concepts

This chapter describes the fundamental concepts of network management. The
concepts are essential to understand the various aspects of networking. To find
out what is needed for design of complex network management systems, the
scalability properties of the system have to be investigated. If the system grows,
what parts will be affected and how?

The network management world is divided into two competing halves, at least
when considering open systems. Within the Internet world the Simple Network
Management Protocol (SNMP) evolved and in parallel ISO developed OSI man-
agement. Today SNMP is market leader.

SNMP was designed with the two most important philosophies of the Internet
community in mind: the importance of implementation experience, and the im-
portance of lean design with absence of extraneous features and misfeatures. It
focuses more on implementation and test phases, than on specification and design
phases. This allows the MIB-designer to do ‘quick and dirty’ implementations,
although structured MIB-design is indeed possible.

For larger systems, OSI management has been the natural choice. OSI man-
agement was designed with a completely different approach: it should be “the
ultimate solution” to all network management problems.

3.1 Architectural Model

To deal with a heterogeneous network management environment we need a gen-
eral framework, an architectural model. Within this framework, specific manage-
ment systems are implemented.

The system requirements come from different sources. First, the user should be
guaranteed good service and maximal availability. Second, the system manager
wants a user-friendly application where it is easy to monitor the network as
a whole. Third, it should be simple enough for network element providers to
implement. Finally, the architecture should be scalable in order to accomplish
enterprise management.

The fundamental network management system consists of:
e several managed nodes (for example, a bridge, modem, router or host),
each containing an agent.

e at least one manager, human or automated, that can perform management
activities.
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Figure 3: The Manager-Agent model

The Manager-Agent model is based on the client-server principle, see figure 3.
One difference from the ordinary client-server model is that there is one client
(manager) and many servers (agents).

To be able to clearly identify differences and similarities between SNMP and OSI
management, we have chosen to describe the two architectures according to four
submodels from [HEGE]. They are also helpful when identifying aspects affected
by a growing system. The four submodels are:

¢ Information model. ‘How is management information modeled?’

Organizational model. ‘Who are the participants in the management sys-
tem and what are their roles?’

e Communication model. ‘How does the protocol work?’

Functional model. ‘What functionality is provided?’

In the following subsections these submodels are presented in detail.

3.1.1 Information Model

There is a lot of information in the resources that should be managed and there
are several theories of how to model the information. Well known models are
the relational database model, the hierarchical model (used in for example file
systems) and the object-oriented (OO) model.

The conceptual repository for management information is called the Management
Information Base (MIB). It is conceptual since it does not hold any data, merely



a definition of what data which can be accessed. The MIB is a fundamental
concept in network management because it defines the interface between a re-
source and the management system. More specific, a resource is represented by a
managed object residing in the MIB which describes how to manage, monitor and
control the resource. A description of a MIB is simply a description of a collec-
tion of managed objects. A managed object typically has at least the following
properties:

o What it is (type).
e Who it is (name).
e How it is assembled (attributes, what data it carries).

e How it can be manipulated (methods).
For example, a modem could be represented as:

type: Modem

name: "IBM modem 12"

data: {speed: Integer, off-hook: Boolean}

methods: {hang-up(), reset(), set-speed(Integer),
get-speed ()}

Managed objects have different complexity in different network architectures. A
managed object can be described as a class in OO, as a plain variable or as a
table.

It is important to note that the managed object is a logical object, that is, it
does not necessarily have to correspond to an object in the physical world. From
the manager’s point of view, it is not important if a value is physically stored
in memory or needs to be computed, to answer a manager request. From the
outside, it is the same logical object.

The normal procedure when constructing an agent, is to define the MIB in a spec-
ification language, along with the implementation of managed object methods,
sometimes called the instrumentation functions. A well-designed specification
language is concise and helpful for the information structuring process. In addi-
tion, it should be flexible and easy to revise, since the underlying resource often
is in a process of change. Consequently, the language should support information
encapsulation.

What makes the MIB concept so useful is that it defines a standardized interface
for managing a resource. It is then up to each provider of network components
to implement the MIB. Assume that we have a modem MIB. Then every modem
manufacturer must implement the managed objects in the MIB. For example,
they must implement the hangup() method for their particular modem.

In the design phase of large network management systems, the information model
is extremely important. Chapter 4 is devoted to this.



3.1.2 Organizational Model

The organizational model defines the participants in the network architecture,
their roles and how to distribute the management work. The simplest and most
straightforward model is the Manager-Agent model, presented in the beginning
of this chapter. In practice, this model is often too naive, simply because of the
size of the network being managed. Instead of having a flat organization with
only one or a few managers and many agents, larger systems could be built using
‘management by delegation’. This means that middle-managers are introduced
to be responsible for interaction with a subset of all agents. The middle-manager
plays a dual role as an agent for some higher level manager and as a manager
of a subordinate agent. Suppose that a company has many agents for managing
modems from different manufacturers, then a middle-manager can keep count of
the total online time.

Manager
Y
Agent Agent Agent
Manager Manager Manager
Y Y \
Agent Agent Agent

— Communicates with

Figure 4: A hierarchy of agents and managers

We get a hierarchy (figure 4) of abstraction which has the property of being
scalable when the network grows and enterprise management is getting closer.

3.1.3 Communication Model

The communication model describes the schemes for exchanging information be-
tween the actors within the network management system. It specifies the actors
and what kind of messages they can process. The messages can be of different
nature. For example, a modem pool which suddenly gets a malfunction may
send a trap message to the manager station, simply saying ‘Replace modem 14
immediately due to serious malfunction’. Other types of messages are sent from
the manager to a agent in managed resource, such as: ‘Give me your uptime’ (a
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status query), or ‘Your new IP-address is 1.2.3.4" (an action). It should also be
defined in the communication model whether these messages are synchronous or
asynchronous.

Apart from the semantics of the messages, the syntax must be defined. The
syntax describes how to put the message into a protocol data unit (PDU), and
uniquely encode it into the bits which are to be transmitted over the network.

Another important aspect is to know what is required from the underlying proto-
col. Is an unreliable protocol such as UDP (User Datagram Protocol) sufficient,
or do we need a protocol which is both reliable and connection-oriented (TCP)?
Few requirements will make protocol embedding an easy task. A flexible network
management protocol should be able to run on top of anything, no matter if it is

UDP, TCP/IP or Appletalk.

3.1.4 Functional Model

The functional model divides management activities into various functional areas.
Examples of functional areas are:

o Configuration management. Detecting and controlling the state of the net-
work.

o Performance management. Controlling, analyzing and logging of through-
put and error rate.

o Fault management. Detecting, isolating and controlling abnormal behavior,
such as excessive line outages.

o Accounting management. Collecting and processing data related to re-
source consumption.

o Security management. Controlling access to network resources.

The reason for specifying distinct functional areas, is that the management station
needs a generic way to handle management within an area. An area defines
these generic mechanisms and it is up to every resource to follow them. For
example, collecting statistical data, such as sysUpTime, should be done in a
uniform way on different resources. The aim is to be able to manage the network
as a whole. Hopefully it will also help the MIB-designer to structure information
in the resource.

There are two schools of thought on how to implement a functional model. One
is to include functional area definitions directly in the network architecture. The
other is to use the information model to build generic MIBs for various functional
areas.

11



3.2 Concepts of SNMP

“Perfection is not achieved when there is nothing left to add, but when there is
nothing left to take away.”
— Antoine de St. Fxupéry (pilot and writer)

This section introduces the most fundamental and most important concepts of
SNMP. In chapter 5, a more detailed description is given.

3.2.1 Information Model

In an SNMP MIB, the managed objects are either scalar variables (single valued,
not multi valued as vectors or structures) which have only one instance, or tables
that can grow dynamically. Every managed object is given a globally unique name
using a universal naming tree. A node could for example be named 1.12.4.9.2.3.
For convenience, mnemonic names such as sysUpTime exist for each object.

Tables are two-dimensional, that is, all elements in a table must be scalar vari-
ables. Every column has to be accessed separately, hence the only processable
unit in SNMP is a scalar variable. This means that there is no protocol sup-
port for handling entire rows in a table, although the SNMP framework defines
conventions for this. Actually, there is no support at all in the protocol for ta-
ble operations. All table operations (foe example, looking up a row with a key
or deleting a row) are emulated by simple variables, using a trick in the global
naming tree (see section 5.3.1). Hereafter the term variable will be used both for
ordinary scalar variables and for elements in a table.

The MIB specification language is a subset of the ASN.1 language [X208]. ASN.1
stands for Abstract Syntax Notation One and is an internationally standardized
language for defining syntaxes, more on this in section 5.3. A specific MIB is
described by all its variables and tables along with their global names. For
example, a definition of the managed object sysLocation looks like this in ASN.1
(there is no need to understand the details):

-- (comment) Example of how the managed object ‘sysLocation’
-- is defined in ASN.1.

sysLocation OBJECT-TYPE

SYNTAX DisplayString (SIZE (0..255)) -- its data type
MAX-ACCESS read-write

STATUS current

DESCRIPTION

"The physical location of this node (e.g.,
‘telephone closet, 3rd floor’)."
::= { system 6 } -- sysLocation’s global name is defined
-- as the 6th node under the system subtree.

12



In SNMP, managed objects do not have methods. The only operations avail-
able are set variable value and get variable value. The implementation of these
operations is called the instrumentation functions.

It is important to note that the variables are conceptual variables, that is, it is not
required that a variable has a one-to-one correspondence to a real resource. This
approach obviates the need for imperative commands, because any command can
be realized by setting a variable which has been specially defined for this purpose.
For example, to implement a command to reboot a device, one could provide an
integer valued variable rebootDevice, which when set to 1 by a manager reboots
the device.

Since the only way to represent information dynamically is in two-dimensional ta-
bles, information modeling in SNMP is essentially the same as relational database
modeling.

3.2.2 Organizational Model

SNMP’s organizational model is based on the Manager-Agent model. Scalability
is achieved by forming hierarchies.

In addition to the manager and agent roles, there is a third role, called prozy
agent. An agent which has to communicate with another remote agent in order
to access the management information, is called a proxy agent (see figure 5). The
benefit is that the manager only knows about the proxy agent, which in turn can
distribute its work freely.

reg]uest. reg]uest.
Proxy
Manager agent |- Agent
response response

Figure 5: A Proxy Agent

There are several reasons for using a proxy relationship, for example, when the
remote device does not support the transport protocol, or when can be useful
to let the proxy agent take care of the administration in order not to burden an
already busy device.

3.2.3 Communication Model

The principle for exchanging information in SNMP is by getting or setting vari-
ables in the MIB. This is the only way a manager can control the agent. There is
also a way to retrieve large quantities of data, for example, a subset of the data
in the global naming tree or large parts of a table. This is done by traversing the
tree in depth-first order with the get-bulk or get-next request. This is a very

13



simple but powerful method. The get-next operation is fundamental in SNMP
and is often referred to as the powerful get-next.

The complete listing of messages that can be sent in an SNMP PDU:

o Set-request. Setting a variable.
o (let-request. Getting a variable.

o (let-next-request. Given a variable, find next instance in the global naming
tree and return its name and value.

o (Get-bulk-request. Retrieve large amounts of data by depth-first search in
tree until a given amount of data is collected. Get-bulk was introduced in
SNMPv2 in order to minimize network traffic.

o Response. Responds to the requests above.

o Inform-request. For sending messages between managers. This request
was also introduced in SNMPv2 making it possible to build hierarchies of
agent /managers.

o Trap. The only way for an agent to initiate a communication. If some
extraordinary event occurs in the resource, this is signaled to the manager
with a trap.

One PDU can contain multiple requests of the same kind, but different requests
must be sent in distinct PDUs.

SNMP has no requirements on the underlying protocol. Usually it runs on top of
UDP, but TCP/IP, Appletalk or even the OSI stack is indeed possible. It is up to
the SNMP entities to make sure that all messages sent reaches the destination.
A deficiency is that traps have 'maybe’-semantics, there is no guarantee that
it reaches the manager. This could be solved by using TCP/IP (which is both
reliable and connection-oriented) or a specially designed MIB for handling this.

3.2.4 Functional Model

SNMP uses the approach of defining special MIBs for each functional area. For
example, one notable deficiency in SNMP was previously the difficulty of monitor-
ing networks as a whole, as opposed to nodes on networks. A quite substantial
functional enhancement was achieved by the definition of RMON, the Remote
Network Monitoring MIB, which consists of a set of standardized managed ob-
jects for collecting different kinds of information from the resources.
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3.3 Concepts of OSI management

The alternative framework is a set of standards being developed for use in envi-
ronments based on Open Systems Interconnection (OSI), known as OSI Systems
Management. OSI environments consist of the 7 layer protocol stack.! Our de-
scription of OSI management is based on the [PSCG] presentation; more detailed
descriptions can be found in [HEGE], [SLOM] or [STALJ.

3.3.1 Information Model

The information model uses an object-oriented approach to model the resources
relevant to management. Hence the managed objects can inherit from each other
unlike SNMP’s simple objects. Along with the object-oriented model comes sup-
port for reuse and information encapsulation as well as the method concept to
perform actions on objects.

The managed objects are defined in the object-oriented MIB specification lan-
guage called Guidelines for Definitions of Managed Objects (GDMO). This lan-
guage has all conventional object-oriented constructs plus a concept called pack-
ages. Packages are a collection of characteristics (that is, attributes, attribute
groups, notifications, actions and behavior) and are similar to uninstantiated
object classes but cannot participate in inheritance relationships. Furthermore,
packages can be conditional, that is, a package is only present in a particular
class if certain conditions are met.

3.3.2 Organizational Model

The Manager-Agent model is applicable to OSI management too, but here the
roles may be assigned dynamically, in other words, they could in principle change
during runtime. As in SNMP, a participant could take on both roles simultane-
ously.

The organizational model of OSI management has a concept called domain (al-
though it is not yet specified in detail). A domain is defined as a grouping of
resources formed for executive or structural organizational reasons. For example,
a collection of resources may be responsible for the security domain. Normally
domains are formed after the functional grouping (see section 3.1.4). If a re-
source handles functionality from different groups, it will be a member of several
domains at the same time.

IPhysical, link, network, transport, session, presentation and application layer.
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3.3.3 Communication Model

In addition to the object methods, there is a higher level service to perform
meta-operations on multiple objects. This is called the Common Management
Information Service (CMIS). CMIS defines operations to create or delete man-
aged object instances, retrieve or modify attributes on managed object instances
and mechanisms for scoping and filtering. CMIS is a connection-oriented service
implemented by the Common Management Information Protocol (CMIP) in OSI
layer 7.

Scoping selects a set of managed object instances on which operations are per-
formed. It is done by specifying a base object or all sub-trees beneath it in the
managed object containment tree. This allows many operations to be requested
in one CMIP transfer, as means of improving protocol efficiency.

In combination with scoping, filtering can be used. Filtering permits testing of
attribute values for =, <, >, substring or presence and can be combined with
logical operators (and, or, not). If an object matches the filter criteria, some
operation will be performed on it.

3.3.4 Functional Model

The functional areas identified in OSI management are the same five as men-
tioned in section 3.1.4 namely: fault, performance, configuration, accounting and
security management. These areas are implemented by 15 System Management
Functions (SMF?). One example from the Configuration Management area is
the State management function. This SMF provides general operations for state
management of managed objects; in other words, a general state model is speci-
fied and a set of operations for controlling the state transitions is defined. Some
of the SMF are quite complex functions, which are mostly defined generically for

high flexibility [HEGE].

3.4 Discussion
3.4.1 The four Models

In our opinion, this subdivision into four models is adequate since it provides
a clear way of describing distinct parts of a network architecture. The division
within the submodels can sometimes be questioned, especially for the functional
model. Farlier we have described why networks of today are of such heterogeneous
shape. This implies that it is almost impossible to find all aspects of network
management and group them in a concise and logical way.

One problem is the fact that many interactions between the functional areas are
conceivable, and therefore exact delimitation is not always possible. The need for
interfaces between the functional areas arises, for example when the manager gets

ZSMF actually refers to functionality area.
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an error report from the fault management area, and wants to do a configuration
to automatically correct it. We see a risk that these interfaces grow too complex,
indicating an erroneous functional grouping.

Another pitfall is object-oriented modeling, which can lead to unnecessarily com-
plex solutions if you use inheritance when it is not appropriate. Inheritance
should be used to simplify problems, but sometimes a generic base class only
makes complicated problems even more complicated. This always happens when
the similarities are too small.

In OSI management there is a functional area for configuration management
consisting of for example the State management functions (figure 6, from [HEGE]
page 124). It consists of a set of functions and a model of how to use them.
We think that this model is suspectly complicated. Configuration can be this
complicated but mostly it is not. It looks like the model was designed with
the following thought in mind ‘What state model can handle all configuration
problems?’. Perhaps this is a too general formulation. This state model might be
good if we have a huge switchboard to configure, but for most problems it seems
too complex. The use of inheritance or generalization should have stopped at an
earlier stage.
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Figure 6: State Model of OSI Configuration Management
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3.4.2 Requirements on the Information Model

In section 3.1.1 we explained what is required from an information model. When
designing a MIB you need help with structuring the information. We must
say that OO is more powerful than SNMP’s MIB specification language based
on ASN.1 macros. An important feature missing in SNMP is the function (or
method) concept. Executing a function in SNMP is emulated by setting a vari-
able. This is sufficient if no parameters are needed, but if they are, there is
no well-defined solution. One approach would be to define scalar variables that
represent the parameters, and let the manager set these first, and then set an
‘execute variable’. This introduces the problem of mutual exclusion.?

A clear example where the lack of a function concept leads to spaghetti con-
ventions, is SNMP’s handling of tables. Of course this is a trade-off between
simplicity and functionality. In the implementation phase you want simplicity,
but in the design phase you might need a little more than tables and simple vari-
ables. It would be nice if the MIB specification language was closer to the MIB
design language.*

3.4.3 The Future

The two architectures of OSI management and SNMP are designed with com-
pletely different approaches. The intention of OSI management is to design a
complete solution in a longer perspective, whereas SNMP leans on simplicity.
For providers of simple network components SNMP is definitely more attractive,
since it is easy to get a low-cost product finished fast. A reason for this is that
SNMP’s information model with tables and simple variables is closer to hardware
than the more complex, object-oriented model of OSI management. Today SNMP
forms the basis for the majority of manufacturer-independent solutions, but as
networks become larger and OSI more mature, many people ([ROSE1], [HEGE])
think that the network management world will turn to OSI. The reasons for this
is its “infinite” scalability and structured support for enterprise management. We
ourself, believe that SNMP will gradually evolve as network management grows
in complexity (upwards in the pyramid of figure 1). This solution might not be
quite as well-structured as OSI management, but it will be the solution to the
correct problem. Today we do not yet know what problems management will face
in the future.

3This can also be solved in SNMP. It is trivial to implement a variable with atomic
‘test and set’ semantics on a single set-request.
*Any kind of data modeling technique.
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4 MIB design

There are two common approaches to MIB design, bottom-up and top-down.
The bottom-up approach primarily answers the question “what information is
available?”. The top-down approach answers the question “what information is
needed?”. A provider of computer network components usually uses bottom-up
MIB design. He simply has some new hardware and maps a managed object
to each hardware element, and does not have to worry about the manager ap-
plication. The top-down approach on the other hand, takes into account how
the information in the MIB should be used from within a manager application.
The different approaches are appropriate in different situations. For example, if
a network whose functionality often is extended or changed,® all of the hardware
must be available to the manager. This could be accomplished by specifying in
the MIB what resources actually are available. In the case of added functionality,
only the management application needs to be rewritten, whereas in the case of a
top-down designed MIB, the MIB probably would have to be redesigned.

When designing a MIB, it is possible to use the standard modeling techniques
such as object-orientation or entity-relationship diagrams (ER-diagrams). Such
a model is always possible to translate into a MIB, although the work needed
depends on the model used and the MIB specification language. For example,
an 00-model fits easily into OSI management, as GDMO is object-oriented, and
an ER-diagram fits quite easily into SNMP, as SNMP essentially is a relation
database. We will only consider MIB design in SNMP here, but it is worth men-
tioning that given a description of a MIB in GDMO, there exists an automated
procedure to translate it into an SNMP MIB [RFC1442]. Today there are no
commercially available high level SNMP MIB design tools.

4.1 Design Example

The support for reuse is important during MIB design. There are three reuse
aspects to consider. First, reuse of semantics from previously designed MIBs.
SNMP supports this with a construct® that allows a user to define new types
that maps to one of the simple types, as well as describing the semantics of the
new type. The second aspect is direct reuse of managed objects. The support
for this is quite limited in SNMP. Mainly this is achieved by using tables. New
tables can of course index into old ones. It is also possible to define extensions to
a table in SNMP7 without changing the table being extended. The third aspect
is reuse of instrumentation. This has to be taken care of by the programmer.

We will now look at how a MIB is modeled and described directly in SNMP’s
information model, not using a higher level design technique, although when
designing large complicated systems, this would be appropriate.

>for example, services in a telecommunications network.
5The ASN.1 macro TEXTUAL CONVENTION.
“The ASN.1 macro AUGMENTS allows this.
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Let us look at a simple example of how to model a specific situation in SNMP.
The example is to enlighten the reuse aspects of MIB design. A well-designed
MIB can easily be reused, whereas an improper design rules out all chances of
reuse.

Consider a standardized MIB for modems. To keep things simple, suppose the
modem has two single-valued attributes, online and speed, and a table of the
phone numbers it knows of. The straightforward solution would be to define the
MIB as shown in figure 7.

Figure 7: Simple MIB for modems

With a MIB like this, we can have an SNMP agent for each modem, and a
manager can manage all of them in the same way, by connecting to a specific
agent, and everything works fine.

Suppose now that we want to collect many modems in racks, and that we want
to have one agent for each rack. Of course we want to reuse the standard MIB
for modems shown above. We now have to design a MIB for the rack. In the
same way as before, we would say that a rack has one single-valued attribute,
location, and a table of modems. So each entry in the modem table should
have a reference to one modem. But the modem MIB will not allow this, because
there can only exist one instance of each scalar variable in the system, as the
MIB is static and only can represent one modem. In the example above this was
handled by letting one agent control one modem, but now we want one agent to
control many modems. So the modem MIB in figure 7 is not appropriate for this
situation. The problem resides in the design of the modem MIB. When designing
a MIB, you must consider if there possibly could exist multiple instances of the
MIB in one agent (normally this is the case). If so, the MIB must be designed for
this, using tables, as the only way to dynamically create management information
in SNMP is by adding rows to tables®. We redesign the modem MIB to provide

8The object-oriented approach to this is to allow multiple instances of each managed
object class. In this example, the modem would be a managed object class, of which 1t
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a table of modems, instead of just one single modem. The result is shown in
figure 8. (In this figure and the following, there is a table within another table.
This is not possible to achieve in SNMP directly, but will be implemented as two
separate tables, with the first table containing an index into the second table.) In
the figure, we have added a field mdmIndex. This is used to uniquely identify each
modem. We will not consider how the values for the index actually is computed.

mdmMIB

Figure 8: Improved MIB for modems

Now we can design our rack MIB, using the standard modem MIB given in
figure 8. First, we realize that there could probably exist more than one rack in
each system controlled by an agent, so we should make our MIB as a table of
racks. Then, each rack has a rackIndex (used to identify the rack), a location
variable, and a table of indexes into the modem table. The rack MIB is shown
in figure 9.

With these MIBs, an SNMP manager can control the modems in a rack by first
looking in the modem table of the rack, and then using the indexes found to
retrieve entries from the modem MIB. This is a flexible solution, because even
if there exists only one rack right now, the situation could change, without us
having to redesign our MIB.

Another advantage of specifying the MIB as a table, is that it is possible to extend
a table in SNMP, without changing the original table. This makes it possible to
define a standard MIB for modems, and later define MIBs for enterprise specific
modems as extensions to the standard MIB. For example, IBM could define a
MIB for their modems, simply saying that an IBM modem is a standard modem,

1s possible to create many instances.
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rackMIB

rackTable

Figure 9: Simple MIB for racks

plus some additional features. A manager who is aware of the standard MIB only,
could still be able to manage IBM-modems. It is not possible, however, for one

agent to implement both the standard modem MIB and more than one extension
to it.
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5 Description of SNMPv2

This section is intended as a brief introduction to SNMPv2, needed to understand
our agent prototype. For total documentation, see [ROSE2].

SNMP is designed to be small and simple, so it can be implemented on simple
managed nodes. The protocol only supports basic operations; it is up to the
manager application (or the agent) to provide intelligence. Every design decision
that seems restrictive falls back on this principle.

5.1 Organizational Model

An SNMP entity can act in two distinct roles; a manager role and an agent role.
This makes it is possible to build hierarchical relations between entities. For
example, one could have a system with many local networks, each controlled by
a manager which reports to a central manager. This central manager will then
have a view of the important aspects of the whole system.

There are three central concepts in SNMP. The first one is the party concept.
This refers to entities communicating via a management protocol and a transport
service using authentication and encryption facilities. The second concept is the
context concept. This refers to a subset of management information. The last
concept is the access policy concept, which determines the operations that may
be performed when one party asks another party to perform some operation on
objects in a specific context. All this SNMP-related information is in the party
MIB defined in [RFC1447], in the form of tables, which each SNMP entity has
to implement. This means that SNMP is configured and administrated within

SNMP.

5.1.1 Party Concept

All communication in SNMP takes place between two parties. An SNMP party
is a logical process in an SNMP entity. Each entity can contain various parties.
Each party is associated with three kinds of attributes: transport attributes, which
define the transport service and transport address being used, authentication
attributes, which define the authentication protocol and the corresponding data
being used, and privacy attributes, which define the encryption protocol and the
corresponding data being used. The entity must keep information of all local and
remote parties known toit, in order to process SNMP messages. This information
is held in the party table in the party MIB.
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5.1.2 Context Concept

An SNMP context is a collection of management information accessible by a
party, held in the context table. A context can either be local or remote. If
the context is local, it refers to a MIB view. Each MIB view is a collection of
subtrees of the MIB, defined in the view table. If it is remote, it defines a proxy
relationship. Consequently the party has to communicate with a remote party
in order to access the management information connected to this context (see
section 3.2.2).

5.1.3 Access Policy Concept

An SNMP access policy defines the operations that are allowed on a context,
when a party communicates with another party. This information is held in the
acl table.

5.1.4 Operations Example

To understand how the party MIB is used, let us look at an example. When
a manager wishes to perform some operation (for example, get or set) on some
objects, it searches its party table for a party at the agent which meets its re-
quirements of authentication and encryption. This party is called the destination
party. When found, it determines in which context the objects are visible. Given
this, it sends to the agent a possibly encrypted message containing the names of
the manager party and the destination party,? the context and the objects. When
the agent gets this message, it searches the party table for the destination party,
and determines if encryption and/or authentication is in use. Next, it consults
the access table to find out which operations the manager party is allowed to
perform when talking to the destination party, requesting objects in the current
context.

5.2 Traps

When an extraordinary event occurs, the agent takes initiative and sends traps to
one or more managers to make them aware of the event. When a trap is defined,
it is decided which variables in the MIB that will be sent in the trap PDU to the
managers. The managers use these variables to diagnose the event. Each trap is
given a unique identifier, which is an ASN.1 0BJECT IDENTIFIER, see section 5.3.
In this way, the trap is viewed as a member of the MIB, so it can be contained
within a MIB view.

When the agent decides to send a trap, it looks for a local context that refers to
a MIB view which contains the trap. Then it searches the acl table to find the

9The destination party is not encrypted, in order for the agent to be able to determine
whether to use decryption or not.
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entries for this context allowing traps to be sent from a local party to another
party. The agent will send traps to all these parties. The agent will then lookup
each value for the variables included in the trap definition, and include those
values in the trap message being sent.

5.3 ASN.1

SNMP uses ASN.1 for two different purposes: defining the format of the messages
being sent, and defining the management information. SNMP uses the Basic
FEncoding Rules (BER) [X209] for a well-defined encoding of the defined types
into a stream of bits, in a machine-independent way.

SNMP uses a subset of ASN.1, for example it uses only the four simple types
INTEGER, OCTET STRING, BIT STRING and OBJECT IDENTIFIER, along with the
two constructed types SEQUENCE, which is like a “record” or a “structure” in a
conventional programming language, and SEQUENCE OF, which is a list of another
ASN.1 type. OBJECT IDENTIFIER is an important type, which has to be under-
stood. An OBJECT IDENTIFIER is a sequence of non-negative integers, resulting
from traversing a global tree. Each node in the tree has an integer valued label,
as well as a symbolic label.

a(0) b)) ¢

d(1) e(2)

f1)y  g() h©@ i)

i) k(2)

Figure 10:  Naming tree

For example, in figure 10, the object g has OBJECT IDENTIFIER 2.2.1. It is also
possible to use the symbolic names in the 0BJECT IDENTIFIER, or to mix symbolic
names and integers, for example, g could also be named as 2.e.g. An OBJECT
IDENTIFIER is used to give a unique name to an object. The object can have
any semantics, for example, it could be a document, a managed object or a trap.
SNMP uses OBJECT IDENTIFIERs to identify variables.
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5.3.1 Instance Identification

Recall that there can only be one instance of each scalar variable in SNMP.
To identify the instance of a variable, for example, in a get operation, a zero is
appended to the OBJECT IDENTIFIER defining the variable. For example, suppose
the object g in figure 10 is a scalar variable, and that we want to refer to the one
and only instance of this variable. The OBJECT IDENTIFIER 2.2.1.0 identifies
this instance.

A table has one or more columns as keys, or indexes. This means that given
values for the keys in a table, the row is uniquely identified. As SNMP only
allows manipulation per object (column) in a row, the following trick is used to
identify a column in a specific row: First, to the 0BJECT IDENTIFIER identifying
the table, the column number is appended. Second, the values of the keys are
appended in order. Consider the following situation. Suppose £ in figure 10 is a
table entry, and that each row in the table consists of the INTEGER valued columns
j and k, indexed by j. To identify the column k in the row in which j has value
4, we would specify the OBJECT IDENTIFIER 2.1.1.2.4, as the table is 2.1.1,
we want column 2, and the index of the row is 4.

SNMP imposes a lexicographic ordering over all object instances (that is, over the
OBJECT IDENTIFIERSs identifying them). With this ordering, it is possible to get
all values in a table without knowing the keys for each row. This is taken care
of by the get-next operator. Given an OBJECT IDENTIFIER, get-next returns
the next (in the lexicographic ordering) object instance, as well as its value. So
to retrieve the first column in the first row in the table above, we would issue
a get-next command, with the OBJECT IDENTIFIER 2.1.1. If the row specified
above is the only row in the table, we would get 2.1.1.2.4 along with the value
of k in this row.
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6 Our Framework

6.1 General

Our framework provides an environment which supports rapid prototyping of
MIBs and testing of MIBs which lacks instrumentation functions (that is, func-
tions for get or set of specific variables). It is also possible to implement a com-
plete SNMP agent. Further, the framework could serve as a basis for building
high level tools.

In order to use our program, it is necessary to understand the basics of SNMP,
its operations and their semantics, and how MIBs are defined using ASN.1.

To verify that our agent really understands SNMPv2, we have tested it using
CMU’s SNMPv2 manager.1®

6.2 Description of the Program

Given a MIB description in ASN.1, and names of instrumentation functions writ-
ten in ERLANG for the managed objects, our program sets up a running SNMP
agent.

A complete example of a MIB in ASN.1 and the corresponding instrumentation
functions is given in Appendix A.

6.2.1 MIB Description

For our program to run, the user must create a MIB in ASN.1 format in a text
file, and run it through our MIB compiler. The MIB compiler checks the syntax,
and produces a file with the MIB in an internal format. This compiled file is read
by the agent on startup.

Given a compiled MIB, it is possible to load it into a running agent without
restarting the agent. It is also possible to unload a MIB from a running agent.

107t can be found at Carnegie-Mellon University, ftp://lancaster.andrew.cmu.edu/
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6.2.2 Instrumentation Functions

To actually attach the managed objects with real resources, a user-defined instru-
mentation function for each variable is needed. This function will be called by the
agent on a get or set operation. Such a function could for example read a register
on some hardware, do some calculation, or whatever is necessary to implement
the semantics associated with the conceptual variable. These functions must be
written both for scalar variables and for tables. They are specified in a text
file where the OBJECT IDENTIFIER for each managed object is associated with
an ERLANG tuple {Module, Function, ExtraArgument}. When a managed ob-
ject is referenced in an SNMP operation, the associated {Module, Function,
ExtraArgument} is looked up, and the function will be applied to some standard
arguments (for example, the operation type), and the extra argument supplied
by the user.

In order to understand how this works, let us look at how the instrumentation
functions should be defined in ERLANG for the different operations. In the fol-
lowing, RowIndex is a list of key values for this table, and Column is a column
number.

Get operation
For scalar variables:
variable_access(get, ExtraArg)
For tables:
table_access(get, ExtraArg, RowIndex, Column)
These functions must return the current value of the associated variable.

Set operation
For scalar variables:
variable_access(set, ExtraArg, NewValue)
For tables:
table_access(set, ExtraArg, RowlIndex, <columns>)
where <columns> is a list of tuples {Column, NewValue}.
These functions returns noError if the assignment was successful, otherwise
an error code.

Next operation
This should only be defined for tables.
table_access(next, ExtraArg, Rest0f0id)
Rest0f0id is a (possibly empty) list of integers. It is a list representation
of the OBJECT IDENTIFIER specified, minus the 0BJECT IDENTIFIER for the
table itself. So if the list is non-empty, the first integer is the column, and
the rest is values for the keys. This function should return the lexicograph-
ically next instance of a managed object in the table, in the same format
as Rest0f0id (that is, as a list with the first element being the column
number, and the rest being the keys for the row).
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Note: normally the functions described above behave exactly like this, but they
are free to do anything else too. For example, a get-request may have side effects
such as setting some other variable, perhaps a global lastAccessed variable.

The first two functions, get and set, have a one to one correspondence to SNMP
requests, but the third has not. If the agent gets a get-next-request, it will first
call the next function and then the get function. It would be inconvenient for
the programmer to have to implement a get-next operation when get is already
implemented. Further, with the choice of these three basic operations, the agent
will be able to handle the get-bulk-request as well.

In addition to these functions, it is possible to specify a test function, which has
the same syntax as the set operation above, except that the first argument is
is_set_ok instead of set. This function will be called before the variable is set,
to ensure that it is permissible to set the variable to the new value. For a full
description of this function, see section 6.2.3.

The ExtraArgument can be used to write generic functions. Consider two read-
only variables for a device, ipAdr and name with object identifiers 1.1.23.4 and
1.1.7. To access these variables, one could implement the two ERLANG functions,
ip_access and name_access, which will be in the MIB. The functions could be
specified in a text file as follows:

ipAdr = {my_module, ip_access, []}.
-- (comment) Or using the object identifier syntax for ‘name’:
1.1.7 = {my_module, name_access, []}.

Here, the ExtraArgument-parameter is the empty list. For example, when
the agent receives a get-request for the ipAdr variable, a call will be made to
ip_access(get, [1). The value returned by this function is the answer to the
get-request.

If ip_access and name_access are implemented similar, we could write a
generic_access function using the ExtraArgument:

ipAdr = {my_module, generic_access, ’IPADR’}.
-- Using the mnemonic ‘name’ is more convenient than 1.1.7
name = {my_module, generic_access, ’NAME’}.

When the agent receives the same get-request as above, a call will be made to
generic_access(get, ’IPADR’).

Yet another possibility, closer to the hardware, could be:

ipAdr = {my_module, generic_access, 16#2543}.
name = {my_module, generic_access, 16#A2B3}.
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If there is a managed object, scalar variable or table, in the MIB, which does not
have a function associated with it, we provide a default function for that object.
This default function will store a value for the object in a local database, or if the
object is a table, store all data in the table in the database. The object can then
be used in all SNMP operations, including the next operation for tables. It is
also possible for other ERLANG functions to access this database; for an example
of how this can be used, see section 6.2.4. This mechanism is useful for MIB
testing and rapid prototyping, as it is not necessary to write all instrumentation
functions for the MIB in order to test it with a manager.

6.2.3 Atomic Set

In SNMP, the set operation is atomic. This means that either all variables speci-
fied in a set operation are changed, or none. To implement this, the set operation
is divided into two phases. The first phase will check that the values supplied
for all variables is of the correct type, and within ranges etc. The second phase
will then set the values. This approach does not take care of the case when the
value supplied is of the right type and within ranges, but still cannot be set at
this time, because some other resource depends on this value, or the variable
depends on another resource. For example, if a row in a table represents a phys-
ical connection, it should not be possible to delete this row if the connection is
in use. To be able to handle these cases, it is possible for the user to define an
is_set_ok-function, which will be called during phase one. Phase two will only
be run if all is_set_ok-functions returned true.

Still, there could be situations (though rare), where this is not sufficient either,
for example, if there are complex relations between many variables, and it won’t
be sufficient to check each value sequentially. Suppose that we have the variables
month and day. A set request containing both these variables must not allow
the combination ‘February’ and ‘31’. For these situations, it is possible to define
a consistency-check function, which will be called with all variable-bindings in
the operation. (Actually, the is_set_ok-phase described above, is taken care of
by a default consistency check function, which will be called if the user doesn’t
specify his own. So if there is a consistency check function, the is_set_ok-phase
will not be run, unless the user explicitly calls the default_consistency_check
function, or the is_set_ok functions.)

6.2.4 Default Instrumentation Functions

Sometimes it is useful to store management information in a database. We pro-
vide a simple mechanism that can be used for this. For example, suppose a MIB
has an integer valued counter, which should be incremented by one each time
some external event occurs. If no instrumentation function is provided for this
counter, we will use a default instrumentation function, which can handle all
requests. The default functions are part of a library with generic functions for
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accessing the database. The user can then write a function, which when the ex-
ternal event occurs, reads the variable using the default instrumentation function,
increments the value, and use the same function to store the new value. This is
all that is needed to make the counter available for the managers. The general

situation is shown in figure 11.
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Let us look at a more useful example on how to use the default functions. Suppose
that there is a table of cards in a MIB for a rack, where each card is a row in the
table. We want to mirror the rack in a database table. The row consists of the

following fields:

e index, which is used to identify the cards. This corresponds to the slot in
the rack where the card resides.

e rowStatus. This variable reflects whether the card is active or out of
service. It is not possible for a manager to create or delete rows in this

table.

e possibly more fields.

Further, suppose that there is some ERLANG process which receives messages
from the rack when a card is taken away or placed in the rack. The table should
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contain those cards that are actually placed in the rack. In order to change a
card’s configuration, it must first be taken out of service. This is done by setting
the rowStatus field to notInService. When the manager wishes to put a card
into service again, the rowStatus variable is set to active.

In this situation, it is not possible to use the default functions as is, because an
is_set_ok function must be written, to check that an active row is not modified.
The solution is to write an instrumentation function (and put it in the MIB),
which communicates with the generic database access functions. When this in-
strumentation function is called with the is_set_ok parameter, is checks the
necessary status and variables. Whenever it is called with the next parameter,
it just passes the arguments to the default function.

When a card is placed in the rack, an ERLANG process notices this as described
above. This process creates a row in the database, using the library functions.
Similarly, when a card is taken away from the rack, the ERLANG process notices
this, and deletes the row from the database, using the library functions.

The only necessary steps here are to write functions that actually communicate
with the hardware. The library functions will take care of the tedious next-
operator.

Other important usages of the library and the default functions are when making
prototypes of large MIBs. It is possible to make a prototype of a MIB without
implementing all the instrumentation functions. With the default functions, pro-
totyping can be accomplished in the following way. Firstly, the MIB is written,
but no instrumentation functions are implemented. The default functions will
be used for all variables and tables. In order to be able to test the agent from
the manager, the manager needs useful data. This data could be added with the
library functions at the agent. Secondly, instrumentation function are written
and tested for one table or variable at a time.

In summary, the mechanism with default and generic library functions provides:

o FEffective retrieval of the data.

e Safe storage of the data. This is actually not yet implemented in our
framework.

Functions to create and delete rows in the tables.

A function that handles next.

A function that could handle get and/or set. (As long as it is not required
to communicate with the resource to implement this.)
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6.2.5 Traps

Recall that a trap in SNMP is defined by an OBJECT IDENTIFIER, and that when
the agent decides that a trap is to be sent, the managers that will receive the
trap are deduced from the party MIB. This means that deciding which managers
to send a trap to is a configuration issue, but which traps that will be sent is a
MIB design issue.

We provide an ERLANG server, called the trap server, that takes care of the
distribution of the traps. The user must write some ERLANG code that detects
that a trap should be sent, and then calls a function that sends a message to the
trap server, for example

snmp_trap:send_trap(Trap0id)

will distribute the trap Trap0id to all managers that are currently configured to
receive this trap.

6.2.6 Default Configuration

To be able to get a running agent, the party MIB must be initialized. The user
have to specify the initial party information in four configuration files, one for
each table in the party MIB. To change the party MIB after initialization, at
least one manager must have rights to write in the party MIB.

6.2.7 Fault-tolerance

Our program gets input from three different sources; UDP packets from the
network, return values from the user-defined instrumentation functions and the
MIB in ASN.1 syntax. The first two are fault-tolerant, but the MIB compiler
is not. It can handle syntactical errors, but not all semantical. This means
that there are some incorrect inputs that the MIB compiler will treat as correct,
and this will make the agent process behave strangely. If the MIB compiler
is presented with a semantically correct MIB, the agent process is input fault-
tolerant. By this we mean that the agent will not crash even if the user defined
instrumentation functions crashes or return erroneous values.
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6.3 Future Extensions

Before using our implementation of the framework in a real product, there are a
few things that should be improved:

e The party data store is entirely in memory. This means that the infor-
mation in the agent does not survive crashes. It should be backed up on
disc.

e Authentication (and maybe encryption) should be implemented.
e The MIB compiler should have better error-handling.

e Some parts of the agent are quite inefficiently implemented, for example
PDU encoding and looking up variables in the MIB.

o The definition of SNMPv2 is not yet finished. When SNMPv2 becomes a
full standard, there are probably a few minor changes that will have to be
done.
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7 High Level Tools

We believe that our framework serves as a good basis for building higher level
tools. Such tools are necessary when implementing management systems for
large and complex networks. In this chapter, different ideas of tools that can be
constructed on top of our framework, will be presented.

The framework does not give any help in structuring the design of a new MIB.
It simply assumes that there exists a MIB in ASN.1 format. As described in
chapter 4, it is convenient if there is some means of abstraction, for example
when designing a MIB it is helpful if the tool makes structuring and reuse easier.
This could be achieved by defining a better MIB specification language or a
graphical tool.

A tool that is built upon our framework, must generate the MIBs in ASN.1
format, as well as the ERLANG instrumentation functions. The latter is not
an easy task, because there can be complex relations'' between tables, and the
instrumentation functions must keep the data in the tables consistent. The MIB
description will most likely be read by the manager application builder, so it is
important that the ASN.1 file is understandable. Particularly, the description
fields of each object must be informative.

7.1 Entity Relationship

One example of a higher lever model is the ER-diagram. This technique is often
used to model relational databases, so it is probably also suitable for designing
MIBs for SNMP. Here we will present a strategy for translating ER to a MIB.
This could be implemented as a tool, or the ER technique could be used only
during the design phase, and then translated “by hand” into ASN.1. It should
also be possible to generate instrumentation functions for a MIB prototype from
the ER-diagram.

To exemplify the following arguments, consider the situation in figure 12. The
entity Modem can exist in multiple instances, which implies that entity Owner also
will do that. Each entity has one key, the property marked with an asterisk, as
well as one other property. Each entity will be translated to a managed object,
either a group of scalar variables if the entity exists only in one copy, or a table
if it is possible to have multiple instances of the entity. Each 1-1 containment
relation is modeled as an extra field in the table or group, which is either a
VariablePointer or a RowPointer!'? that refers directly to the other entity. But
if it is a 1-N relation, the contained entities are rows in a table. It is not possible
to reference all these rows in one field, so one solution is to define another table,
indexed by the container entity’s unique key and a RowPointer which points to

HFor example, a row in one table may not be deleted because of information in another
table.

I2These types are TEXTUAL CONVENTIONs which resolve to OBJECT IDENTIFIERs. They
are used to reference other managed objects.
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Figure 12: Frample Entity-Relationship diagram

the contained entity. This means that there will be one row per contained entity
in the table. The use of a RowPointer (instead of the explicit keys) makes it
possible to change the definition of the contained entity without changing the
container entity. The resulting MIB is shown in figure 13. The Modem-Telno
table is used as the extra table for the 1-N relationship between Modem and Telno.
A manager that wishes to get all contained entities from a container entity, can
issue a request to get all rows in the extra table, with the first key equal to
the container entity’s key. In our example, if a manager wishes to retrieve all
information about the Telno entities contained in the Modem entity with index
2, it would issue a request to get all fields TelnoP in the Modem-Telno table
with index equal to 2. For each such value, it can issue a request to retrieve the
corresponding row in the Telno-table.

7.2 Object-Orientation

We will briefly consider object-orientation. The reason for wanting OO during
design is primarily the support for reuse, encapsulation and the method concept
to perform actions on objects. During runtime, polymorphism is an important
concept.

These design concepts are possible to translate into an SNMP MIB. A class would
be translated into an object group or a table, just as an entity in ER. If a subclass
inherits a superclass, all attributes from the superclass would be copied into the
subclass. Relations to other classes would be handled as in the ER case described
above. Encapsulation comes for free with a table or an object group. Methods
would be translated into scalar variables, but as usual, there are problems with
parameter passing (see section 3.4.2). Polymorphism is not possible to achieve.
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We do not think that it is a good idea to use OO on top of SNMP, simply because
the semantic gap between SNMP and OO is too big.

7.3 Syntactic Extensions

Another useful approach to MIB definition, might be to define syntactic shortcuts
for the ASN.1 macros. For example, instead of having to care about how to specify
tables in SNMP, it would be nice with a macro create-table, which generates the
necessary ASN.1 constructs. It might also be nice to provide means of syntactic
reuse, in order to lighten the burden of the MIB writer.
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& Conclusions

SNMP’s capability of managing large, complex networks such as Telecom net-
works, depends on how easy is it so divide the problem into subtasks.'® The
following two aspects are important: the degree to which management can be dis-
tributed and the support for design of MIBs. In SNMPv2, the inform-request
is for interchanging information between managers, consequently SNMP fulfills
the first aspect. As far as we know, there are no design tools for MIBs today,
but our framework is a step in that direction. Since SNMP is based on tables,
modeling techniques for relational databases could be adopted. Implementing
the framework in ERLANG made it possible to raise the level of abstraction, so
that such tools can be implemented.

Moving focus towards design does not imply that implementation experience
should be forgotten, but that details should be hidden as long as possible when
constructing an agent. Apart from SNMP specific details, the instrumentation
functions should be removed during early stages of MIB design. The agent im-
plementor should be able to write them incrementally during prototyping. This
will allow the application on the manager side to be developed and tested simul-
taneously with the agent. The framework implemented can, given only a MIB in
ASN.1, generate instrumentation functions for variables as well as tables. Con-
sequently, you get a running prototype agent that can handle set, get, next and
table operations without any programming.

It is trivial for a program to generate instrumentation functions for get or set of
scalar variables, but it is non-trivial to generate functions for tables. In addition
to information available in the MIB (indexes for tables etc.), the program must
be given information about relations between the tables. This could be achieved
by using Entity Relationship diagrams from which instrumentation functions for
a prototype agent are generated. Another possibility is a higher level MIB spec-
ification language, where you explicitly specify the tables and their relations.

The framework provides not only prototyping functionality, but also a user
friendly environment when implementing a real product. Details, such as type-
checking, access rights, PDU encoding/decoding and trap distribution are taken
care of by our framework. Left to the agent implementor is the writing of the
instrumentation functions, and this can not be avoided. The tedious get-next
function only has to be implemented for tables and not every variable in the global
naming tree. Actually, when mirroring tables in the resource into the software
tables of the agent, the get-next is handled automatically too.

We succeeded in keeping our source code short. The framework consists of about
7000 lines of ERLANG code. This includes the agent, MIB-compiler, SNMPv2
Party MIB, library functions for handling table operations and finally a simple
manager.

13Qecurity is another important aspect. This is not discussed here but taken care of in

SNMPv2.

39



Future work is to implement a high level tool for MIB design on top of our
framework. In addition, the performance must probably be increased before
using it a real product.
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9 Abbreviations

ASN.1 Abstract Syntax Notation One
An internationally standardized language for defining syntaxes.

BER Basic Encoding Rules
An internationally standardized mapping of ASN.1 to bits.

CMIP Common Management Information Protocol
An OSI application layer protocol designed to support management.

CMIS Common Management Information Service
The services implemented by CMIP.

ER Entity Relationship
A common technique for information modeling.

GDMO Guidelines for Definitions of Managed Objects
MIB specification language in OSI management.

GSM Global System for Mobile communications
IP Internet Protocol

ISDN Integrated Services Digital Networks
ISO International Standardization Organization

MIB Management Information Base
The conceptual repository for management information.

OO Object-orientation
A paradigm for information modeling as well as programming.

OSI Open Systems Interconnection

PDU Protocol Data Unit

SMF System Management Functions

SNMPv1 Simple Network Management Protocol version 1
SNMPv2 Simple Network Management Protocol version 2

TCP Transmission Control Protocol
A reliable, flow-controlled, in order, two-way transmission of data. Layered
above IP.

UDP User Datagram Protocol
A simple, unreliable datagram protocol layered directly above IP.
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A Example MODEM-MIB

In this Appendix, we show a complete example of a MIB and its instrumentation
functions written in ERLANG. The MIB is the modem MIB shown in figure 8 in
chapter 4.

For a detailed description of the instrumentation functions, see the user-manual
for our framework.

A.1 The MIB in ASN.1

MODEM-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,
snmpModules, Ulnteger32
FROM SNMPv2-SMI
TEXTUAL-CONVENTION, RowStatus,
DisplayString, TruthValue
FROM SNMPv2-TC;

modemMIB MODULE-IDENTITY
LAST-UPDATED "9505040000Z"
ORGANIZATION "3U"
CONTACT-INFO
"(d90-mbj,d90-ker)@nada.kth.se "
DESCRIPTION
"Example of modem-MIB."
i:= { iso 12 }

-- textual conventions (that is, abstract datatypes)

ModemSpeed ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"300/1200/2400 or 9600 baud."
SYNTAX INTEGER
PhonelNbr ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"A telephone number."
SYNTAX OCTET STRING
modemMibObjects
OBJECT IDENTIFIER ::= { modemMIB 1 }
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modemContact OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"Contact info."
::= {modemMibObjects 1}

modemTable OBJECT-TYPE
SYNTAX SEQUENCE OF ModemEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Modem Table"
::= { modemMibObjects 2 }

modemEntry OBJECT-TYPE
SYNTAX ModemEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The entry in the table"

INDEX { modemPort }
::= { modemTable 1 }

-- The modemTable consists of the following columns

ModemEntry ::=
SEQUENCE {
modemPort INTEGER,
modemOnline TruthValue,
modemSpeed ModemSpeed,
modemStatus RowStatus
}
modemPort O0BJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The physical port where the modem hangs."
::= { modemEntry 1 }

modemOnline OBJECT-TYPE

SYNTAX TruthValue
MAX-ACCESS read-write
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STATUS current

DESCRIPTION
"true = online, false = offline."
DEFVAL { true }

::= { modemEntry 2 }

modemSpeed OBJECT-TYPE
SYNTAX ModemSpeed
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The speed of this modem."
::= { modemEntry 3 }

modemStatus O0BJECT-TYPE

SYNTAX RowStatus

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"The special variable to emulate table
operations, createRow, deleteRow, M

::= { modemEntry 4 }

-- The Modem-Telno-Table:

modemTelnoTable 0BJECT-TYPE
SYNTAX SEQUENCE O0F ModemTelnoEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Modem-Telno Table."
::= { modemMibObjects 3 }

modemTelnoEntry O0BJECT-TYPE
SYNTAX ModemTelnoEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The entry in the table"

INDEX { modemTelnoModemPort,

modemTelnoPhoneNbr }
::= { modemTelnoTable 1 }

ModemTelnoEntry ::=
SEQUENCE {
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modemTelnoModemPort INTEGER,
modemTelnoPhonelNbr PhonelNbr,
modemTelnoPhoneName DisplayString,
modemTelnoStatus RowStatus

modemTelnoModemPort OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The modem port uniquely defining a modem."
::= { modemTelnoEntry 1 }

modemTelnoPhoneNbr O0BJECT-TYPE

SYNTAX PhonelNbr

MAX-ACCESS not-accessible

STATUS current

DESCRIPTION
"A phonellbr in the phonebook for
this modem."

::= { modemTelnoEntry 2 }

modemTelnoPhoneName OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"The name of the phone number."
::= { modemTelnoEntry 3 }

modemTelnoStatus O0BJECT-TYPE

SYNTAX RowStatus

MAX-ACCESS read-create

STATUS current

DESCRIPTION
"Only operations ’createAndGo’ and ’destroy’
are implemented. The only valid readable value
is ’active’."

::= { modemTelnoEntry 4 }

END
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A.2 MIB implementation

Here we present instrumentation functions for the modem MIB. These functions
use the generic library functions in module snmp_gfsd to implement the tables
in agent software. The module modem contains functions for communicating with
the modems.

A.2.1 Prototype implementation

First, we present a prototype implementation of the MIB, that is, all data en-
tirely exists in software, and there is no connection at all to the hardware (the
physical modems). We cannot use the default functions directly, because there
are relations between the two tables that must be maintained.

When a manager tries to add a row in the modem table, the default function
snmp_gfsd:table_func(is_set_ok,...) will check that the row does not al-
ready exist. If the manager tries to delete a row, we must make sure that it does
not exist any telephone numbers in the modemTelno table. If the is_set_ok-
phase succeeded, the default function snmp_gfsd:table_func(set,...) will
change the software table.

When a manager tries to add a row in the modemTelno table, we must check
that the modem exists.

-module (modemmib) .
-author(’ (d90-mbj,d90-ker)@nada.kth.se’).
-export([init/0,
modem_table/4, modem_table/3,
modem_telno_table/4, modem_telno_table/3,
try_change_modem_status/4,
try_change_modem_telno_status/4]).
-include('snmp_party.h").

hhfh= === m e o
%hh This file contains the instrumentation functions
W%%h for the modemmib.

4% PROTOTYPE implementation.

hhfh= === m e o
%h Defines useful columns.

-define(modem_port_col, 1).

-define(modem_status_col, 4).
-define(modem_telno_modem_port_col, 1).
-define(modem_telno_status_col, 4).

init() ->

snmp_gfsd:table_create(modemTelnoTable),
snmp_gfsd:table_create(modemTable) .
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modem_table(get, [], RowIndex, Col) ->
snmp_gfsd:table_func(get, modemTable, RowIndex, Col);

modem_table(is_set_ok, [], RowIndex, Cols) ->
snmp_gfsd:table_try_row(modemTable,
{modemmib, try_change_modem_status},
RowIndex, Cols);

modem_table(set, [], RowIndex, Cols) ->
snmp_gfsd:table_set_row(modemTable, nofunc, nofunc, RowIndex, Cols).

modem_table(next, [], Rest0id) ->
snmp_gfsd:table_func(next, modemTable, Rest0id).

== === =
W4 Called by is_set_ok if RowStatus is changed.
B
%% If status is ’destroy’, we must check to see
4% that there don’t exist any any telnos.
%% Cols is a list of {ColumnNumber, NewValue}
== === = e
try_change_modem_status(_, 7destroy, [ModemPort], _Cols) ->
case snmp_gfsd:table_find(modemTelnoTable,
?modem_telno_modem_port_col,
ModemPort) of
false -> {noError, 0};
_FoundRow -> {inconsistentValue, 7modem_status_col}
end;

try_change_modem_status(_,_,_,_) -> {noError, O}.

modem_telno_table(get, [], RowIndex, Col) ->
snmp_gfsd:table_func(get, modemTelnoTable, RowIndex, Col);

modem_telno_table(is_set_ok, [], RowIndex, Cols) ->
snmp_gfsd:table_try_row(modemTelnoTable,
{modemmib, try_change_modem_telno_status},
RowIndex, Cols);
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modem_telno_table(set, [], RowIndex, Cols) ->
snmp_gfsd:table_set_row(modemTelnoTable, nofunc, nofunc, RowIndex, Cols).

modem_telno_table(next, [], Rest0id) ->
snmp_gfsd:table_func(next, modemTelnoTable, Rest0id).

hh== === m e

W% Called by is_set_ok if RowStatus is changed.

hh== === m e

%% If status is ’createAndGo’, we must check to see

%%h that the modem exists.

hh== === m e

try_change_modem_telno_status(_,?createAndGo,
[ModemPort | PhonelNbr],

_Cols) ->
case snmp_gfsd:table_find(modemTable, 7modem_port_col, ModemPort) of
false -> {inconsistentValue, ?modem_telno_status_col};

_FoundRow -> {noError, 0}
end;

try_change_modem_telno_status(_,_,_,_) -> {noError, O}.

A.2.2 Real implementation

When we have implemented and tested the prototype, we can start to implement
the “real” instrumentation functions. We will show two different ways of doing
this, one for each table. The modem table will be a software table which mirrors
the actual hardware, but the modemTelno (which probably will contain more
data) is not mirrored, and will only exist in the modems.

When a manager tries to add a row in the modem table, we use the de-
fault function snmp_gfsd:table_func(is_set_ok,...) to check that the row
does not already exist. Also, we check that there is a modem connected to
the specified port. If the is_set_ok-phase succeeded, the default function
snmp_gfsd:table_func(set,...) is used to change the software table. When a
row is added to the modem table, the modem must be initialized, and when it is
deleted, it must be shut down.

As the modemTelno table does not exist in software, we cannot use the default
functions as with the modem table. However, there are useful library functions
for other purposes, and we will use one of these which handles the list of columns
sent to the is_set_ok- and set-functions.

When a manager tries to add a row in the modemTelno table, we must check that
the modem exists. If the is_set_ok-phase succeeded, we must tell the modem
of the new number, and if a number is deleted, we must inform the modem.
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-module (modemmib) .
-author(’ (d90-mbj,d90-ker)@nada.kth.se’).
-export([init/0,
modem_contact/2, modem_contact/3,
modem_table/4, modem_table/3,
modem_telno_table/4, modem_telno_table/3,
try_change_modem_status/4,
set_modem_attributes/2,
changed_modem_status/4]).
-include('snmp_party.h").

hthh======mmmmmm e -
%hh This file contains the instrumentation functions
4% for the modemmib.

hthh======mmmmmm e -
%h Defines useful columns.

-define(modem_port_col, 1).

-define(modem_online_col, 2).
-define(modem_speed_col, 3).
-define(modem_status_col, 4).
-define(modem_telno_modem_port_col, 1).
-define(modem_telno_name_col, 3).
-define(modem_telno_status_col, 4).

init() ->
snmp_gfsd:table_create(modemTable).

modem_contact(get, [1) ->
modem:get_contact().

modem_contact(set, [], NewVal) ->
modem:set_contact(NewVal).

modem_table(get, [], RowIndex, Col) ->
snmp_gfsd:table_func(get, modemTable, RowIndex, Col);

modem_table(is_set_ok, [], RowIndex, Cols) ->
snmp_gfsd:table_try_row(modemTable,
{modemmib, try_change_modem_status},
RowIndex, Cols);
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modem_table(set, [], RowIndex, Cols) ->
case snmp_gfsd:table_set_row(modemTable,
{modemmib, changed_modem_status},
{snmp_gfsd, table_try_make_consistent},
RowIndex, Cols) of

{noError, 0} ->
set_modem_attributes(RowIndex, Cols);

Error -> Error
end.

modem_table(next, [], Rest0id) ->
snmp_gfsd:table_func(next, modemTable, Rest0id).

hh== === m e
W% Called by is_set_ok if RowStatus is changed.
hh== === m e
%% If status is ’destroy’, we must check to see
%/ that there don’t exist any telnos.
%% Cols is a list of {ColumnNumber, NewValue}
hh== === m e
try_change_modem_status(_, 7destroy, [ModemPort], _Cols) ->
case modem:get_all_numbers(ModemPort) of
o -> {noError, 0};
_FoundRow -> {inconsistentValue, 7modem_status_col}
end;

=== ==
Wh If status is ’createAndGo’ we must check that
4/ there is a modem connected to the specified port.
=== === =
try_change_modem_status(_, 7createAndGo, [ModemPort], _Cols) ->
case modem:is_modem_connected(ModemPort) of
true -> {noError, 0};
false -> {inconsistentValue, ?modem_status_col}
end;

try_change_modem_status(_,_,_,_) -> {noError, O}.

changed_modem_status(_, 7destroy, [ModemPort], _Cols) ->
modem:shut_down_modem(ModemPort) ,
{noError, 0};
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changed_modem_status(_, 7createAndGo, [ModemPort], _Cols) ->
modem:initiate_modem(ModemPort),
{noError, 0};

changed_modem_status(_, _,_,_) -> {noError, O}.

=== mmmm e

%h Called when all values are set.

4% We must ’write through’ to the modems, if the

W/ attributes (Online, Speed) are changed.

=== mmmm e

set_modem_attributes([ModemPort], Cols) ->
case snmp_gfsd:find_col(?modem_telno_status_col, Cols) of

{value, 7destroy} -> {noError, O};

Else ->
{value, Online} =

modem_table(get, [], [ModemPort], 7modem_online_col),
{value, Speed} =

modem_table(get, [], [ModemPort], ?modem_speed_col),
modem:set_attribute(online, ModemPort, Online),
modem:set_attribute(speed, ModemPort, Speed),
{noError, 0}

end.
=== == m oo
%% The modem_telno_table.
=== == m oo

W% A get on the status col returns ’active’ if the
W% row exists.
== === =
modem_telno_table(get, [], [ModemPort | PhoneNbr], Col) ->
case modem:is_modem_connected(ModemPort) of
false -> {noValue, noSuchlInstance};
true ->
case modem:get_phone_nbr_entry(ModemPort, PhoneNbr) of
{value, Entry} when Col == ?modem_telno_status_col ->
{value, 7activel};
{value, Entry} -> {value, element(Col, Entry)};
Error -> {noValue, Error}
end

=== == m oo
(X

W4 If status is ’createAndGo’ or ’destroy’, we must
4% check that the modem is connected to the port, and
%/ that the number doesn’t resp. does exist.
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h% We only implement ’createAndGo’ and ’destroy’.

modem_telno_table(is_set_ok, [], [ModemPort|PhoneNbr], Cols) ->
case snmp_gfsd:find_col(?modem_telno_status_col, Cols) of
{value, 7createAndGo} -> nbr_not_exists(ModemPort, PhonelNbr);
{value, 7destroy} -> nbr_exists(ModemPort, PhonelNbr);
{value, _Val} -> {inconsistentValue, 7modem_telno_status_col};
_Else -> {noError, 0O}
end;

i === =

%% If status is ’createAndGo’, we must add the number
4% to the modem. If it is ’destroy’, we must delete
%% the number.
h% If status is not modified, the name must be changed,
%% as it is the only accesible column, except for status.
hh===—mm—mm -
modem_telno_table(set, [], [ModemPort | PhonelNbr], Cols) ->
case snmp_gfsd:find_col(?modem_telno_status_col, Cols) of
{value, ?createAndGo} ->
{value, NewName} =
snmp_gfsd:find_col(?modem_telno_name_col, Cols),
modem:add_number (ModemPort, PhoneNbr, NewName);
{value, ?destroy} ->
modem:delete_number (ModemPort, PhonelNbr);
Else ->
change_name(Cols, ModemPort, PhonelNbr),
{noError, 0}

hh==mmmmm o

%4/ Rather naive implementation of next.

4/ modem:get_all_numbers() returns a sorted list of

4% tuples {ModemPort, PhoneNbr, Name}.

hh==mmmmm o

modem_telno_table(next, [1, [1) ->
modem_telno_table(next, [], [7modem_telno_name_col]);

modem_telno_table(next, [], [Col | Index]) ->
Nums = modem:get_all_numbers(),
find_next(Nums, Col, Index).

find_next([], _Col, _Index) -> endOfTable;
find_next(Nums, Col, Index) ->
case find_next_number (Nums, Index) of
end0fList when Col == ?modem_telno_status_col ->
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end0fTable;
end0fList ->
{FirstModemPort, FirstPhoneNbr, _Name} = hd(Nums),
FirstCol = max(Col+1l, 7modem_telno_name_col),
[FirstCol, FirstModemPort | FirstPhonelbr];
{ModemPort, Phonellbr} -> [Col, ModemPort | PhonelNbr]
end.

find_next_number([], _Index) -> endOflList;
find_next_number([{Port, PhoneNbr, _Name} | Nums], Index)
when [Port | PhoneNbr] > Index ->
{Port, PhonelNbr};
find_next_number([_Num | Nums], Index) ->
find_next_number(Nums, Index).

change_name([{?modem_telno_name_col, NewName}],
ModemPort, Phonellbr) ->
modem:change_phone_nbr_entry(ModemPort, PhoneNbr, name, NewName).

%h noError if row does not exist.
nbr_not_exists(ModemPort, PhoneNbr) ->
case modem:is_modem_connected(ModemPort) of
false -> {inconsistentValue, ?modem_telno_status_col};
true ->
case modem:get_phone_nbr_entry(ModemPort, PhoneNbr) of
{value, Entry} -> {inconsistentValue, 7modem_telno_status_col};
Error -> {noError, 0}
end
end.

Wh noError if row does exist.
nbr_exists(ModemPort, Phonellbr) ->
case modem:is_modem_connected(ModemPort) of
false -> {inconsistentValue, ?modem_telno_status_col};
true ->
case modem:get_phone_nbr_entry(ModemPort, PhoneNbr) of
{value, Entry} -> {noError, 0};
Error -> {inconsistentValue, ?modem_telno_status_col}
end
end.

max(X,Y) when X > Y -> X;
max(X,Y) -> Y.
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A.3 Association file

This is the association file for the prototype implementation:

-- Defines instrumentation functions for the tables
-- in the MODEM-MIB.

modemTable
modemTelnoTable

{modemmib, modem_table,[]1}.
{modemmib, modem_telno_table,[]1}.

This is for the real implementation:

-- Defines instrumentation functions for the tables
-- in the MODEM-MIB.

modemTable {modemmib, modem_table,[]1}.
modemTelnoTable = {modemmib, modem_telno_table,[]1}.
{modemmib, modem_contact, []}.

modemContact
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