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ABSTRACT
Monitoring, anomaly detection and forensics are essential
tasks that must be carried out routinely for every computer
network. The sheer volume of data generated by conven-
tional anomaly detection tools such as Snort often makes it
difficult to explain the nature of an attack and track down
its source. In this paper we present TVi, a tool that com-
bines multiple visual representations of network traces care-
fully designed and tightly coupled to support different levels
of visual-based querying and reasoning required for mak-
ing sense of complex traffic data. TVi allows analysts to
visualize data starting at a high level, providing informa-
tion related to the entire network, and easily move all the
way down to a very low level, providing detailed informa-
tion about selected hosts, anomalies and attack paths. We
designed TVi with scalability and extensibility in mind: its
DBMS foundations make it scalable with virtually no lim-
itations, and other state-of-the-art IDS, like Snort or Bro,
can be easily integrated in our tool. We demonstrate with
two case studies, a synthetic dataset (DARPA 1999) and a
real one (University of Brescia, UniBS, 2009), how TVi can
enhance a network administrator’s ability to reveal hidden
patterns in network traces and link their key information so
as to easily reveal details that by merely observing Snort’s
output would go unnoticed. We make TVi’s source code
available to the community under an Open Source license.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network
Monitoring
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1. INTRODUCTION
Since the beginning of the Internet, network monitoring

and anomaly detection have become two of the most cru-
cial tasks of modern network management, for which many
tools have been developed. The main goal of these tools is
to provide an accurate evaluation of the network status over
time. One of the most popular NIDS (Network Intrusion
Detection System) is Snort [8]. By parsing the content of
every packet, Snort looks for fingerprints of known attacks.
Its output is text–based and analysing the resulting data
can be daunting, especially for large–scale networks. For
example, during the second week of the DARPA 1999 chal-
lenge dataset [27] the Snort output (running in text logging
mode) is more than 18,000 entries long, and for the 30 hours
dataset collected in 2009 of the Engineering building of the
University of Brescia (UniBS 2009), the size grows to more
than 200,000. An exhaustive analysis of such an amount
of information cannot be done by hand, but becomes easier
with the help of a visualization tool. Even so, the huge log
file is not completely useful, because the logging method is
per–packet, i.e., for one IP scan many entries are created.

Many visualization tools have been proposed in recent
years [29]. Every tool has a well–defined goal, with some
advantages and some disadvantages. The most common lim-
itations are related to the scalability of the tool, the covered
features, and its dynamic properties. In fact, some well-
know tools can only manage small–size networks, some can
detect only a few categories of anomalies, and some others
are able to visualize only a few particular aspects of the net-
work, e.g., throughput, rates or protocols. Another problem
comes from the input data: by using a logfile as input of
the process, the system is hardly scalable and some opera-
tions related to the data filtering are very difficult and time–
consuming. For instance, if we only want to see the connec-
tions on TCP port 80 with a visualization system based on
logfiles, the process can be done in one of two ways. In the
first one, the program would parse the entire file and keep
only the interesting lines; the second method is to load the
entire file in memory and then query it. In the first case, we
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Figure 1: TVi deployment: an example

lose interaction, as for every query a complete scan of the
file must be done, while in the second case the program is
not scalable because of memory occupancy.

We designed TVi (Trace Visualizer) with the stated goal
of solving these issues. Its main contributions to traffic vi-
sualization, which we will describe in the rest of the paper,
are the following.

Integration of visual representation and machine learning
data-processing tools: Principal Component Analysis (PCA)
transforms and analysis based on data entropy are at the
base of the data which is visualized by the end user, allowing
them to see only relevant data to a particular analysis goal,
e.g., anomaly detection, as opposed to scanning huge logfiles.

Very high scalability: TVi uses relational databases to
store its data. By leveraging the distributed features of mod-
ern DBMS, it can easily scale to cover a small LAN with a
single point of data capture to operational backbones with
tens of traffic probes. Figure 1 shows an example deploy-
ment scenario.

Multiple, optimized visualization tools: TVi’s user inter-
face combines many 2D visualization methods (multi–view):
histograms, timelines, graphs, geo–clustered graphs and ma-
trices. All the views are linked together; therefore, the same
feature can be shown in different ways in order to investi-
gate different aspects of an anomaly. Its integration with
other NIDS such as Snort makes it then easier to pinpoint
the sources of anomalies.

We make TVi’s code available to the community under an
Open Source license at [10].

The rest of this paper is organized as follows: Section 2
describes related works. Section 3 and Section 4 explain the
architecture of TVi and its main implementation criteria.
Section 5 details a step-by-step use of the system through
two case studies. We discuss the preliminary results we ob-
tained running TVi, and advocate for the community to test
it in Section 6. Finally, Section 7 concludes the paper.

2. RELATED WORK
Many solutions have been proposed in the literature, and

an ample collection of them is described in [29]. Most of the
mature tools, such as NVisionIP [25], Rumint [14], Time-
Searcher [13], and TNV [9] are not scalable and use a non
query–able input format; they load all the input data and
process it internally. By using them it is also impossible to

update the data, because the only way to do so is to clear the
memory, reload and reprocess the input. Some tools, such
as Rumint, TimeSearcher and TNV visualize many aspects
of the data in the same window. They split the window
in multiple sub–windows; each of them is specialized in a
graphical representation. They can visualize in the subwin-
dows either high–level (aggregated statistics) or low–level
information of the network (such as IP connections), but
the partition makes difficult to analyse and understand net-
works composed by hundreds of nodes or more. Some pro-
grams narrow their focus to just one feature of the network.
PortVis [31], for instance, only analyses traffic patterns with
respect to aggregate TCP port usage.

In order to present more parameters through the visual-
ization screen, The Spinning Cube of Potential Doom [26]
and [39] use a different approach, proposing a 3D visual-
ization tool. Each axis represents a different feature of the
network; therefore, a point in this three–dimensional space
is the map of a connection. This type of visualization is
pretty hard to understand, even in presence of a few nodes
because of typical problems with 3D visualization, such as
occlusion.

More similar to our contribution, FloVis [38] with the
plugin [16] allows the creation of many different visualiza-
tion environments for observing and monitoring the network
from many points of view. However, this tool works only on
TCP traffic at the flow level, and it requires an accurate
tuning of the parameters and the hierarchy in the observed
network. In contrast, TVi does not require any a–priori
knowledge of the network architecture, it works with mul-
tiple protocols and it can analyse the network at different
levels (raw traces, flow level, node level, geolocalization level,
etc).

Finally, very few visualization tools integrate machine learn-
ing algorithms for anomaly detection; in most cases they rely
solely on the users perception, as in [18]. Here, the authors
propose a visual system for inspecting the network, by us-
ing several intertwined visualization tools that operate on
an SQL database for storage. This makes the system scal-
able and reliable even with large datasets. Even though
the visual system is complete, there is no automatic or even
semi-automatic mechanism to alert the user about potential
anomalies. TVi instead combines in a stand alone applica-
tion an automatic anomaly detection system tightly coupled
with a network visualizer.

3. TVI ARCHITECTURE: ANOMALY DE-
TECTION

3.1 Feature Extraction
Most state-of-art algorithms for network anomaly detec-

tion capture many features of packet traces. All of them
are combined and they serve as input to a machine learning
engine, which processes the data to produce details about
anomalies.

Patcha and Park in [34] provide an overview of the dif-
ferent methods used in the literature for discovering anoma-
lous behavior in network traces. Techniques can be based
on: statistical, machine learning (system call, Bayesian net-
works, principal component analysis, Markov models), data–
mining (identification/classification, fuzzy logic, genetic, neu-
ral associative) and hybrid methods. Principal Component



Analysis (PCA) is one of the most widely used algorithms to
make complex datasets more manageable. Through dimen-
sionality reduction, PCA reduces both the time and com-
plexity needed to process the data. Additionally, entropy
vectors of the input features (a technique derived from in-
formation theory) are used in conjunction to space reduc-
tion: [33] and [24] show how entropy is a good metric for
anomaly detection: it is computationally scalable, pretty
accurate, and it can be efficiently used even in presence of
sub-sampled network data, for example using opportunistic
sampling as shown in [12].

PCA applied to entropy vectors is at the base of TVi’s
data processing engine, which we describe in the following.

3.1.1 Entropy
Let X be a discrete random variable representing a feature

(in our case a network feature such as a port number, an IP
address, or an application protocol) and xi, with i ∈ [1, N ]
the possible values of the feature X during the observations.
The entropy of the random variable X, denoted as H(X), is
defined as:

H(X) = −
N∑
i=1

p(xi) · log2 p(xi)

where p(xi) is the probability that the variable X takes the
value xi during the observation set; that is the ratio between
the number of observations where X is xi and the total
number of observations.

Entropy is a measure of the data’s randomness. If the
data is concentrated in one point, i.e., all observations have
the same value, its entropy is zero. Conversely, data spread
out among many values will generate higher entropy. For ex-
ample, during a portscan attack an intruder tries to connect
to many ports (scan) of the target host (one IP address).
In such situation, the histogram of the ports distribution of
the destination host has a larger support than during reg-
ular operation, and the entropy of this histogram will be
higher. During this attack, the histogram of the destination
IP addresses has, instead, a high bin (the target IP of the
portscan attack) and other normal–size bins. Therefore, its
entropy will be quite low.

3.1.2 Features and database
The features used in the anomaly detection process are

easy to retrieve and can be quickly obtained with standard
protocols. The monitored features are related to the most
common protocols (TCP, UDP and ICMP) and are flow-
oriented (for TCP) or session-oriented (for ICMP and UDP),
i.e. one observation for each flow/session1. The extracted
feature vector dimensions are the source/destination IP ad-
dress and the source/destination port (except for ICMP),
because they are strictly correlated with network attacks
(see for example [24] and [23]). We also save the number of
packets and the quantity of bytes in the flow for use in the
visualization matrix (see Section 4.4).

The features can be retrieved even at the border router,
because the information is located in the packet headers
at levels 3 and 4 of the TCP/IP stack. Cisco NetFlow [1]
or SNMP are two standard protocols available on common
routers which can be used for aggregating the needed fea-

1UDP session = UDP packets exchanged between two nodes
without more than 1 minute of silence. ICMP session =
ICMP packet and it eventual answer (e.g. ping echo and its
reply).

Table 1: Raw features – Columns of the SQL table
1. timestamp, seconds since Epoch (ts);
2. source IP address (sip);
3. destination IP address (dip);
4. source port, if possible (sport);
5. destination port, if possible (dport);
6. protocol number (proto);
7. bytes into the flow (byf );
8. packets into the flow (pkf );

Table 2: Features whose entropy is fed as input to
the PCA-based anomaly detector, computed every
timeslice T .
1. Source IP - TCP protocol;
2. Source IP - UDP protocol;
3. Source IP - ICMP protocol;
4. Destination IP - TCP protocol;
5. Destination IP - UDP protocol;
6. Destination IP - ICMP protocol;
7. Source TCP port;
8. Source UDP port;
9. Destination TCP port;
10. Destination UDP port;

tures. The raw traces, e.g. Tcpdump output, can also be
used for flow extraction. Once extracted, the flows are in-
serted in a DBMS table with the columns shown in Table 1.

By using a DBMS, MySQL in our case, it turns out that
data retrieval is fast enough to support near real-time visual-
ization of the processed data. Even though general-purpose
DBMS’ transfer data slowly through the query interface, by
opportunely tuning the parameter of the tables, i.e., creating
indexes, keys and stored procedures, we were able to achieve
a fast interaction between visual system and database. In
order to give an idea of the timing, on an Apple Power
Mac equipped with a 4-core Xeon @2.66GHz with 3GB
of RAM and MySQL5.5, TVi can build the histogram of
a feature in 115ms (without involving the cache), using a
table composed by more than 13 million entries (UniBS09
dataset). The query in this case contains both where clauses
and grouping.2

The scalability of the DBMS could be increased by using
a distributed DBMS, such as a MySQL cluster, because in
this case the workload would be split between the cluster
nodes. Although this is still to be tested experimentally with
TVi, it has been demonstrated [6] that MySQL clusters can
effectively scale to the processing of virtually unlimited data
size.

3.1.3 Anomaly Detection Algorithm
TVi uses a PCA-based technique for anomaly detection.

The motivation is twofold: PCA is fast and achieves good
results in terms of hit–rates [35, 33]. It is computationally
efficient since it is based on matrix multiplication. Further-
more, PCA analysis could also be implemented in the DBMS
itself, with a list of SQL queries [32], leveraging even further
the design choice of basing our architecture on a database.

Starting from the database table, which contains all the

2SELECT timestamp, proto, sip, count(0) FROM <table>
WHERE timestamp=<T> GROUP BY proto, sip
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Figure 2: Initial screen layout

feature vector entries, timestamps of length T are selected:
T should be high enough to capture the interesting be-
haviour for each temporal slice, and as low as possible for
a precise detection of the network attack. By manual in-
spection of the detected anomalies using different timeslice
duration T (starting from T = 60 to T = 600 with a 60s
step), we found that a 5–minutes (T = 300s) slice is a good
trade–off. With that slice size, anomalies in the dataset
are well temporally localized and the detection rate is max-
imized. After slicing the data into timestamps, the entropy
vectors are computed. According to statistical theory, the
feature vectors can be seen as a statistical process that gen-
erates a 10–dimensional vectors of random variables for each
timestamp, as shown in Table 2. Then, in order to detect
the principal orthogonal components of the discrete input
signal, the Karhunen–Loeve Transform (KLT) is applied to
the realization matrix, and eigenvectors and eigenvalues of
the input data are obtained. The complexity of this process
using the PCA shown in [37] is O(d2) (where d is the num-
ber of time slices), and the eigenvectors can be incrementally
updated [15].

By using a subset of the eigenvectors for the reconstruc-
tion step it is possible to create a least square approxima-
tion of the original vector (through a dimensional reduc-
tion). Let B = {ϕ1, ϕ1, . . . , ϕ10} be the complete orthonor-
mal base where the vectors are sorted according with their
respectively eigenvalue in descending magnitude order, and
Bk = {ϕ1, ϕ1, . . . , ϕk} be the reduced one. Then a generic
observation vector v can be approximated using only k basis
as:

ṽk =

k∑
i=0

< v, ϕi > ·ϕi =

k∑
i=0

( 10∑
j=1

v[j] · ϕi[j]
)
· ϕi

where < v, ϕi > is the analysis coefficient related to the
i–th base.

In order to detect an anomalous behaviour, a metric (mea-
sure of distance) is requested. We used the Euclidean norm
of the difference vector as an anomaly indicator:

A = ||v − ṽk||2 =
∑
c

(
v(c)− ṽk(c)

)2
By using k components in the analysis base, it is possible

to detect anomalies by looking at the A value. If A is small,
the reduced base can approximate the input signal well, be-
cause the approximated vector is very close to the original
one. Conversely, when A is large the approximated vector
is substantially different from the original one, which could
indicate a network problem (intrusion, virus, etc.).

4. TVI ARCHITECTURE: VISUALIZATION
ENGINE

The overall layout of the TVi user interface is shown in
Figure 2. On the top (labelled “1” in the image) the time-
line of the entropies for every network feature is shown. On
the left side there is a checkbox panel, which lets the user
select which features to show in the timeline graph on the
right. There is also a checkbox for displaying the anomaly
value (computed as in Sec. 3.1.3), and a selector for setting
the dimensionality of the vectors of the reduced base used
in the anomaly detection step. By selecting the anomaly
checkbox, an anomaly list is shown in the bottom–left side
of the screen. The user can also select all or none of the
features. The feature colours were chosen from an existing
color map [2] such that they are easy to differentiate when
they appear in a nicely ordered sequence (such as a legend).
In the timeline, it is possible to select a period of time (win-



dow), and the low–level details of the network status during
the selected times are shown in the bottom area (region“2”).
It is also possible to shift the observing window of one or
more ticks, forward or backward, using the two buttons on
the right side of the layout. On the left of the screen a tab
selector with the settings of the visualization plane is placed.
It contains 3 tabs: a histogram viewer, a graph viewer and a
matrix viewer. According to the tab the user selects, more
controls become available. The bottom–right side contains
the selected visualization.

4.1 Anomalies
When the anomaly checkbox is set, the anomaly list is

populated with time periods where the anomaly value is
greater than zero, so the user can quickly navigate to periods
of suspicious activity. By selecting an item on this list, the
anomalous time range is automatically highlighted in the
visualization timeline, as shown in Figure 3. If the database
contains also the output of another IDS, like Snort or Bro,
the user can choose to display it, so as to be able to correlate
data from different sources.

4.2 Histograms Visualization
The histogram of a feature presents information about

the traffic probability distribution of the selected variable
along the selected timestamps. Histograms are actively used
in many anomaly detection techniques, as shown in [23]
and [24], because they are scalable and effective for visu-
alization. In our system, a histogram is presented for each
selected feature. In the histogram, the x–axis contains the
unique values of the distribution (discrete events), and along
the y–axis the hit rate (i.e. the stochastic probability of that
event). The histogram is sorted in reverse height, i.e., the
first bin is the one that contains the most hits and the last
one contains the least. Empty bins are not shown: for ex-
ample an unused port is not shown in the x–axis. A check-
box lets the user toggle between a linear scale and a log–log
scale (both x–axis and y–axis use a logarithm scale) which
is useful for displaying or comparing high–value bins or wide
histograms.

To the right of these histograms is another representation
of the same information. This representation is different if
the selected feature is a port or an IP address. In the former
case there is a histogram sorted by port number. Along the
x–axis all the ports have a bin, including empty columns.
Since there are 64K ports, the x–axis is scaled logarithmi-
cally, because low–value ports have greater relevance than
high–value ones, especially in the range (1, 1024). In the
latter case, when an IP feature is selected, a Hilbert map is
shown. The Hilbert transform maps an IP address to a point
in a 2–dimensional space. The benefits of this approach are
discussed in [36], but the key feature is about localization:
similar IP addresses (e.g., addresses of the same subnet) are
mapped nearby in the 2D space.

When more than one timestamp is selected in the timeline,
the normal histogram views are not shown. Instead, the
histograms for each timestamp are visualized in a 3D space,
where the third axis (z–axis) represents the time. However,
this 3D space is projected orthogonally, such that the x and
y axes are kept horizontal and vertical, respectively, and no
distortion is incurred due to depth effects. All these graphs
are interactive: by clicking on one bin or on one line of an
histogram, more specific information is displayed.

4.3 Graphs Visualization
In order to investigate details of anomalous activity, we

employ a graph representation. Graphs offer a very intu-
itive visualization mean. The user can directly see the con-
nections between each node in the network, and thus easily
identify anomalous actors and their behaviour. The goal
of the graph visualization is to show the interactions among
hosts. Each node in the graph corresponds to a distinct IP in
the network, and an edge represents the connection between
the two hosts. Colour is used to show directionality: the red
side of the link is the source; the green side is instead the
destination. In the literature “Traffic Dispersion/Activity
Graphs” (TDG or TAG) (as shown in [20], [22] and [21])
are actively used for visually monitoring application flows,
for classifying applications and protocols and for detecting
attacks, intrusions or anomalous behaviours.

We use the “Fast Multipole Multilevel Method” (or FM3)
for graph layout [19]. It is a relatively fast algorithm, with
a worst case running time of O(|V | log |V |+ |E|) (where |V |
and |E| are respectively the vertex set and the edge set car-
dinality) and with a GPU implementation this method can
run 20 time faster than a normal CPU implementation [17].
Furthermore, it clearly visualizes the structures of the data.

Combined with this classical graph visualization, we also
use a geolocalized map. It arranges IPs based on their lati-
tude and longitude. TVi uses for this purpose the hostip [5]
database, which we replicated on our local SQL tables. We
use the Mollweide projection to place the IPs on the world
map.

This visualization window is also highly interactive: se-
lecting a point or a link makes TVi display information
about it, exclude the background, enlarge the most popu-
lated point (points with more than 1 IP address), and filter
the edges. In such ways the interactive map can be very
useful for analysing anomalies.

4.4 Matrix Visualization
If the graph becomes too dense to be interpreted, TVi also

features matrix visualization. With a matrix it is possible to
correlate two features of the network even when it is densely
populated. In TVi the user can select a protocol, filter the
ports (if applicable, i.e., with TCP and UDP) and decide
which network features will be represented on the two axes.
The axes can be set to source IP address, destination IP ad-
dress, source port, or destination port (if applicable). The
value contained in each cell of the matrix can be a binary
value (1 for a connection between row and column, 0 oth-
erwise), or the number of bytes among the row value and
the column value, or the connection flows cardinality. In
order to visualize the value a colormap is used, which the
user can select from some included colormaps or customize
as desired. To reorder the matrix, for better visualization
of the patterns, we use the Sugiyama [28] algorithm. By re-
ordering the rows/columns of the matrix, patterns contained
inside the matrix can be more readily identified (IP sweep,
portscan, DoS, etc.).

4.5 External Detail Tools
When TVi is fed pcap traces as input, it is also capable

of interacting with external packet–level visualization tools.
Through its the visual interface, the user can export and
load the selected trace in Wireshark [11] or Etherape [4].
With these programs active on selected timestamps of the



Figure 3: Steps needed to select an anomaly from the list and its histogram visualization

trace the user can investigate specific timing information as
desired. This is the zero–level layer (i.e., without abstrac-
tion) of TVi.

5. CASE STUDIES
In order to demonstrate the effectiveness of TVi, we have

applied it to two datasets: one is old but includes a ground
truth of the attacks contained (DARPA), while the other is
new and does not contain any ground truth, as it is based
on real Internet traffic.

5.1 Datasets
The first dataset used in the case study is the (in!)famous

DARPA dataset, provided by DARPA-MIT in 1999 [3]. It
is a synthetic database, because it was recorded in a simu-
lated network with traffic generators and no connection to
the Internet. Because of this and other shortcomings, it has
collected much criticism [30]. Despite this, to this day it re-
mains the only publicly available dataset with ground truth.
For this case study we used the second week of data, which
contains labelled attacks.

The second dataset was taken from the edge router of the
Faculty of Engineering of the University of Brescia. It is a
30 hour trace that contains only the headers of the traffic
packets - about 60 GB in total. It was captured between
March 17 2009 13:56:35 (Tuesday) to March 18 2009 16:47:35
(Wednesday). The edge router forms the border between the
internal network and the rest of the Internet, so all incoming
and outgoing traffic passes through it. There are several
thousand users on the campus network every given work
day.

5.2 Case Study - DARPA 1999 Dataset
Using TVi to detect and analyse anomalous activity re-

quires following a few steps, as depicted in Figure 3. Ini-

tially the screen is empty, i.e., no features are selected. The
user can now add or remove the feature timelines, by se-
lecting or un-selecting the checkboxes. Here, we select the
TCP source and destination ports as well as the anomaly
metric. Then, by selecting an anomaly from the list tab,
the related timestamps are highlighted in the timeline, and
multiple histograms are shown. These histograms represent
the statistical distribution of the feature during the selected
timesteps. In this example, we can see that the histograms
in the central point of the highlighted windows have a larger
support. This means that more distinct values of the fea-
tures have been used in the temporal window. We can thus
hypothesize that it is a portscan attack, where one or more
host tried to connect to many destination ports of the target
host over TCP.

By looking at central histogram, we can then see that
many source and destination ports have been used (see Fig.
4(a)). After this, we consider the graph of the connections
(Figure 4(b)) where we note that the thickest connection
in the graph is between two hosts, identified by the IP ad-
dresses 172.16.112.50 and 209.167.99.71 (the former is the
destination, the latter the source). At this point we can
argue that this could be a portscan, where 209.167.99.71 is
the attacker, and 172.16.112.50 is the destination host. Fig-
ure 4(e) also shows that the attacker is located in Ontario,
Canada and the target is an inside host, as its IP belongs to
the private address space of the home network.

Another representation of this event can be seen using
the matrix representation of the attack. From Figures 4(c)
and 4(d), we can easily recognize that a portscan event is
in progress. From Figure 4(c) we can detect that the high-
est value of the matrix is the connection between the IP
172.16.112.50 and 209.167.99.71, and from the Figure 4(d)
we can see that a portscan is done on the second target. At
this point we can be sure that we have detected a portscan



(a) Histogram distribution of the source ports, TCP, during
the detected anomaly. As it can be seen, high ports have
been contacted sequentially one or more times (the peak
value is 3). The histogram of the destination ports is similar.

(b) Graph during the observed attack. White points are the
hosts, links are the connections among hosts (red is source;
green the destination).

(c) Matrix representation during the observed attack: on the
x axis the destination IPs are shown and on the y axis the
source IPs

(d) Matrix representation during the attack: in this case on
the x axis there are the ports. We can easily see the scan
made by one host.

(e) World–graph during the observed attack. Each IP is geolocalized using the GeoIP database. The yellow point
is the home network, and the blue ones the internal hosts

Figure 4: Steps for anomaly detection in DARPA 1999 dataset

attack, that 172.16.112.50 is the destination IP, and the ini-
tial timestamp is Friday 03/12/1999 14.10.00. According to
the ground truth information in DARPA’s database, we can
easily confirm our hypothesis: On 03/12/1999, at 14.13.10
the IP 172.16.112.50 was the destination of a portscan at-
tack.

5.3 Case Study - UniBS 2009 Dataset
In the anomaly list an entry is selected, as highlighted

in Figure 5(a). We note that it is correlated with activity
in the TCP-related features, so we activate all four of them.
During this time window we note some facts in the histogram
visualization (see Figures 5(b) and 5(c)):

1. The source IP histogram has the first two bins higher
than normal (the previous histograms). The IP ad-
dresses are 222.45.X.Y and 122.227.Z.K (last two bytes
anonymized for privacy reasons).

2. The source port histogram has a high first bin. Its
port is 6000.

3. The destination IP histogram is wider than normal.

4. The first and the second bins of the destination port
histogram are higher than the normality (ports 2967
and 1433).

From this we can guess that the attack is an intruder from
two IP addresses who tries to scan multiple IP addresses us-
ing the same source and destination ports. With the help
of the graph representation we can confirm our idea. By
using a filter on the port 6000 and then on the port 1433
we disco ver that both attackers use the source port 6000
(ref. Figure 5(d) and 5(e)). In these views we can see that
the IP address 222.45.X.Y scans the port 2967 and the at-
tacker 122.227.Z.K the port 1433. So the attack is from
two scanners that are trying to connect to the same port on



(a) Timeline of the UniBS09 dataset showing TCP features, the anomaly values and the selected window

(b) Histogram distribution during the anomaly peak (c) Histogram distribution in the middle of the anomaly

(d) Graph of the network filtered on port 2967. The point
in the centre represent the IP 222.45.X.Y

(e) Graph of the network filtered on port 6000. The central
points are the IPs 222.45.X.Y and 122.227.Z.K

(f) World graph of the network filtered on port 6000. The
left point represents the attacked point (multiple public IP
addresses of the University of Brescia), and the two points
on the right the two attacker, from China

(g) World graph of the network filtered on port 6000. We
can easily see that the two hosts are trying to contact mul-
tiple IPs of the same geo–located network. In this image the
yellow dot is the University of Brescia’s network, and the
blue dots are the hosts inside its campus

Figure 5: Steps for anomaly detection in UniBS 2009 dataset

multiple target machines. Using the world map layout we
can see that the two attackers (see 5(f), and 5(g)) originate
in China and are trying to scan public IPs in the University
of Brescia’s network.

Finally, we search for this attack in Snort’s output and
notice that only two entries in the Snort alert file are re-
lated to the attack: one alert is a TCP portscan to one IP
(with priority 3, the least value) and one alert is a “TCP/IP
message flooding” directed to another IP. Neither of these
alerts accurately describes the pattern of the entire attack
and both would likely be ignored by analysis of the Snort log.

Hence, by relying on the Snort log we would have the wrong
idea about the IPsweep attack that occurred on the net-
work, but our system accurately detected and visualized the
attack. After further analysis on specialized IDS forums, we
determined that the detected attack is called a DoS HGOD
SynKiller Flood.

6. EXPERIMENTAL RESULTS AND AVAIL-
ABILITY OF TVI

TVi is written in C++ using OpenGL, QT, OGDF [7] and



MySQL. The time needed for detecting and understanding
typical anomalies, as the two explained in the previous sec-
tion, in the network is less than one minute for trained users.
New users might take some more time to get acquainted to
TVi.

Our results show that both on a synthetic trace with
ground truth and a recent trace coming from a production
network TVi is capable of significantly reducing the time and
effort required to detect anomalies, especially the ones such
as scans that are the first step towards an actual attack.

Unfortunately, neither the DARPA trace nor the UniBS
one contains actual, dangerous attacks. Therefore, even
though we are confident that the TVi architecture would be
able to show its advantages over existing mechanisms even
in those cases, the unavailability of public traces with ac-
tual attacks makes it virtually impossible to test these cases
fully.

In order to solve this issue, and to contribute to the com-
munity, we released TVi [10] with an open source license
(GPL). We want to encourage practitioners and academics
to put it at use, and report back to a (public) database on
TVi’s webpage about its capabilities of making the detection
of actual attacks easier.

7. CONCLUSIONS
This paper introduces TVi, a visual, interactive tool for

network monitoring and anomaly detection. The efficient
and novel anomaly detection metric based on the K-L trans-
form allows the system to rapidly direct users to time pe-
riods of anomalous activities. The integrated visual repre-
sentations provide an intuitive mean for detailed analysis of
such activities. At that point, the integration with Snort and
other monitoring utilities allows users to pinpoint with great
precision the sources and behavior of anomalous activities.

Furthermore, being based on modern DBMS infrastruc-
tures, TVi has the potential to scale to very large network
monitoring tasks. The combination of these features allow
for a much shorter response time to attacks than either a tra-
ditional NIDS such as Snort or standalone forensic analysis
visualizations.

The effectiveness of TVi has been preliminary proven on
two heterogeneous datasets, although certainly further work
is in order to fully assess its capabilities. One important
step in this direction is the release of TVi [10] under an
open source license, which allows the community to test it
on their network, without resorting to experimenting with
public anonymized traces.
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