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An Inner/Outer Loop Controller for 
Rigid-Flexible Manipulators1 

In this paper, vibration control of flexible-link manipulators is considered. A non
linear partial differential equation describing the dynamics of a two-link planar 
manipulator with a flexible forearm is derived. Thereafter, utilizing the eigenfunc-
tions corresponding to the boundary value problem at hand, a finite-dimensional 
approximation of the model is given. The controller design strategy is based upon 
an inner-loop controller which corresponds to the rigid body motion of the manip
ulator taking into consideration the vibrations of the manipulator and an outer-
loop controller for further vibration damping and robustness enhancement of the 
closed-loop dynamics to parameter variations in the system. The measurement used 
in the outer-loop controller is obtained through an accelerometer mounted on the 
flexible forearm which can be easily attained in an experimental setup. The control 
methodology advocated in this paper are applicable to the multi-link flexible ma
nipulators. 

I Introduction 
Due to earth-based and space-based applications, much at

tention has been given to modeling and control of flexible-link 
manipulators. The use of lightweight manipulators stems from 
their lower mass, higher mobility, reduced energy consump
tion, smaller actuators, etc. One example is the RMS that has 
been designed for assembling tasks of the space station. Fur
thermore, studies on articulated elastic multi-body systems also 
enhance the knowledge in Control/Structure Interaction of 
large space structures. 

The literature is voluminous of research on modeling of 
flexible-link manipulators. Different approaches such as finite 
element method, Hamiltonian, and Newtonian have been uti
lized to model manipulators with non-rigid links [1-5]. Many 
models with different degrees of complexity have been intro
duced in the literature, i.e., some or all terms corresponding 
to Coriolis, shear, torsion, axial displacement, gravity, and 
centrifugal stiffening have been neglected. 

The complication in controller synthesis for multi-link flex
ible manipulators is due to the fact that the input/state map 
of flexible-link manipulators is not externally feedback li-
nearizable [6-8]. In addition, the dynamics of flexible-link 
manipulators are much more complicated than the correspond
ing rigid-link manipulators. Not only the distributed parameter 
nature of the dynamics is a complication, but also the moving 
boundary conditions at the tip of the flexible links connected 
to the next link is a major difficulty. 

Several experimental results have been presented in the lit-
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erature for single-link flexible manipulators [9-13], Recently, 
experimental results on two-link flexible manipulators have 
been reported [14-17]. At this point, most of the experimental 
work has been focused on a rigid-flex manipulator (i.e., first 
link rigid and second link flexible). Furthermore, almost all 
the controller designs have been based upon finite-dimensional 
approximations of the dynamics. 

Perturbation methods have been shown to be promising in 
dealing with flexible manipulators. Khorasani and Spong [18, 
19] have decomposed the dynamic of a manipulator with flex
ibility at joints into two subsystems, slow and fast. The slow 
subsystem corresponded to the rigid body movement and the 
fast subsystem was comprised of the elastic forces at joints. 
Siciliano et al. [20] have pursued a singular perturbation ap
proach for flexible-link arms. In that work, the dynamics of 
the manipulator have been taken as a finite set of ordinary 
differential equations. Khorrami et al. [21, 5] performed an 
asymptotic expansion on the integro-partial differential equa
tions describing the dynamics of multi-link flexible manipu
lators. This approach will be briefly outlined in the sequel. 

In this paper, an inner-loop nonlinear feedback controller 
is designed first. At the second stage, an outer-loop controller 
is applied for suppression of vibration due to the rigid body 
motion and also to enhance the robustness of the controller 
to parameter variations in the system. The inner-loop controller 
is based on the asymptotic expansion techniques reported ear
lier [21, 5]. In the inner-loop design, the 0(1) terms in the 
dynamics are feedback linearized and also the vibrations in
duced on the links by this controller are taken into consider
ation. The outer-loop design is an output feedback linear 
quadratic design which reduces to a nonconvex optimization 
problem. In the next sections, the dynamics of the flexible-
link manipulators are derived and a finite dimensional ap
proximation for the outer-loop design is given. 
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II Modeling of Open Kinematic Chain Flexible-Link 
Robot Manipulators 

In this section, a detailed derivation of the dynamics for 
open chain kinematic flexible manipulators is presented. The 
approach advocated is the extended Hamilton principle. Var
ious effects such as axial displacement, shear, torsion, cen
trifugal stiffening, Coriolis, and gravity are explained and 
considered. The dynamical equations for a two-link planar 
manipulator with a flexible forearm (a hybrid manipulator) 
are given. As mentioned previously, different approaches with 
different assumptions have been reported in modeling of flex
ible-link manipulators [1-5]. 

The following are the parameters of the manipulator and 
the notation used hereafter: 

Figure 1 depicts a two-link flexible manipulator. The no
tation used below is also demonstrated in Fig. 1. 

The extended Hamiltonian is given by 

H=T+W (1) 
where T and W are the kinetic energy and work function of 
the arm respectively. 

The dynamical equations of multi link flexible manipulators 
are obtained by the principle of least action in the following 
manner: 

J'o 
dt\ = 0 (2) 

where <5(-) represents the first variation of (•)• 
In the next subsections, the kinetic and potential (work) 

energies are formulated. 

A. Kinetic Energy. The kinetic energy of the flexible ma
nipulator is composed of the following terms: 

kinetic energy due to hub 

1 . A. 

kinetic energy due to link i 

\ 

2 J * R,- drrij 

M..I 

0, 0. 
Fig. 1 A two-link flexible manipulator 

kinetic energy due to mass M-, at O, 

-M,R e . -R e . 
2 ' • 

kinetic energy due to M,- inertia 

Therefore, the total kinetic energy of the system is (3) 

To evaluate the terms appearing in Eq. (3), the position 
vector R, needs to be evaluated. Consider <*,•(/,•, i) which rep
resents the deflection of the link from its rigid shape in the 
coordinate frame 0,Jf, Y,. The vector position R, in the z'th frame 
is given as 

Ri = /,<?*.+ «,(/,-, t)eyi={Ei}
T [ ' 

W 
where {-)T denotes transpose of (•), eXj and eyi are the unit 
vectors in frame i. 

To write RJ in the inertial frame, consider 

N o m e n c l a t u r e 

hub inertia 
length of link / 
Young's modulus of link i 
mass density of link i 
area moment of inertia of link i 
mass of link i 
cross sectional area of link / 
the spatial variable for link i 

a,(/„ t) = the deviation of the link from X\ at position 

inertial coordinate frame 
moving coordinate frame with origin at the 
hub of link /; Xj is tangent to link / at O, 
moving coordinate frame with origin at the 
tip of link / X0j is the tangent to the tip at 
link / 
mass at O,-
inertia of mass at O,- with respect to its cen
ter of mass 
payload mass (MP = M„) 

Pi 
It 

m 
A 

I 

OXQY0 

OiXY, 

h 

Mn = 

{Ei) 

{E0} 

Ip = payload inertia with respect to its center of 
mass (IP = I„) 
the unit vector for coordinate frame [ O,-
X,Y,\ 
the unit vector in the inertial coordinate 
frame 

Tj = the coordinate transform from zth coordi
nate to the inertial frame 

h-, = axial displacement for link *' 
13j = the angle of distortion due to shear for link / 
\pi = the angle of rotation due to bending for link 

i 
R, = position vector for link i 

Rei = position vector corresponding to the end 
point of link i 

dj = the angle between X{ and X,_\ 
<Pt+1 = the angle between Xoi and Xl+1\ <p\ = d\ 

g = gravitational constant 
Uj = the input torque at joint i 
G, = shear modulus of link /' 

K'i = a constant depending on the shape of the ith 
link cross-section 
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R, = Re,. + Ti 

Re, = R, 

I, 
»' = 2 n, 

/ = ! , . . .,n 

(4) 

Therefore, R, in the inertial coordinate frame is given by 

R,= [EO]T\TI.1 ( • L " 1 ) + T i ( ' ) } . (5) 

The above analysis yields the kinetic energy for n-link open 
kinematic chain flexible manipulators. The dynamics of two-
link manipulators with a flexible forearm are given in a later 
section. 

B. The Work Function. The total work function is 

W= Wc+ Wnc 

where Wc and Wnc are the conservative and nonconservative 
work functions. 

The conservative forces in a system are derivable from a 
potential function. However, the non-conservative forces 
change the energy of a particle. These forces such as external 
forces and friction are energy dissipating. 

The conservative work is comprised of 

• strain energy, 
• shear energy, 
• tension-compression energy, 
• centrifugal stiffening. 

The strain energy of an elastic material is analogous to the 
energy stored in a spring and the potential energy arising from 
strain energy is 

1 • - - • • (6) 

X,. X01 

Fig. 2 A hybrid manipulator 

In the following analysis, we only consider the rigid body 
and the transverse motion dynamics, i.e., we assume that the 
shear and the axial displacements are negligible. However, 
nonlinearities that arise from centripetal forces, Coriolis, and 
gravity will be accounted for. 

Il l Dynamics of a Hybrid Manipulator 

In this section, a two-link manipulator with a flexible 
forearm (a hybrid manipulator) is considered (Fig. 2). Utilizing 
the expressions for the energy terms derived in the previous 
section and the Hamiltonian principle, the dynamics are ob
tained. The details of the derivation are omitted here. 

The dynamical equations in this case are as follows: 
The first link rigid body motion {dy): 

2 j 'EJitfjfU,. 

The potential energy due to sheer is 

1 r 3 , „ T2T , 1 . r 3 , _ r r 2 h + ^P\L\ + p2LlL2 + ~p2L2 + p2LxL2 cos 02 

»t2 

and for tension 

\ \ 'xiGiAtfdli, 

compression, energy is 

i rL/ 

- EiAitijdh. 
L J0 

Finally, the potential energy 
has the form 

y w-

(7) 

(8) 

from the centrifugal stiffening 

-iheblM. (9) 

,.^2 ("-2 
- 2p2Llsin62 \ a2dl2 + p2 I a2dl2 

Jo Jo 
rL2 1 f 

P2^2 + -p2LiL2cose2 - p2Li sin 62 a2dl2 I J0 

f 2 - f 2 

Pi a2 dl2 d2 + p2\ (l2 + Li cos 62)(X2dl2 = «i 
Jo J Jo 

[(/2si 
Jo 

+ PiL sin 02 + a2cos d2Xd2 + 26ie2)]dl2 

eh. 
+ 2p2Li(6i+e2) sin d2 \ a2dl2-2p2 (8{ + 62)\ a2a2dl; 

The nonconservative work done by the external torques at 
the joints is 

wm=Yiu\e> 
da.j-

3//-i 

pL2 
r [L 

Jo 

Jo 

+ Uidi 

+ P2g [Li cos 6», +12 cos(6>, + 62) + a2 sin (fii + 62)]dl2 (11) 
Jo 

The second link rigid body motion (62): 

P2 

=2 "i*>i + " i¥>l - (10) 

U , 1 i ?h rh 
-L\ + -LXL\ COS d2-Ll sin d2 oc2dl2+ \ a2dl2 5 2 J0 J0 

From the above discussion, one can form the total work 
function (W= Wc+ W„c= - V+ Wnc, where Fis the potential 
energy). Many of the above terms have been neglected in almost 
all previous studies especially for controller designer purposes. 
The most important and dominating term in the potential 
energy is the strain energy; however, depending on the nature 
of the application and problem at hand, the rest of the terms 
may be neglected. The generalized coordinates for the rigid 
body may be taken either as 0,- or <fj. 

-p2L2 + p2\ a2dl2 r 
Jo 

92 + P2\ ha2dl2 Jo 

= --p2L1L26
2
l sin 02 

I h _ _ ph 

a2dl2 - 2p2( 61 + 6 2) \ a2a2dl2 
o Jo rh 

+ Pig Ui cos (6>, + 62) + a2 sin (0, + 62)]dl2 + u2 (12) 
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The transverse motion (flexure) of the second link (a2): 

p2l2(Q\ + 62) + p2a2 + PiLidi cos 02= ~E2I2a2,i2i2i2i2 

-p2(Lx $,md2-a2)b\ + p2a18
1
2 + 2p1blb2u1 

+ P2£COs(0i + 02) (13) 

with the following boundary conditions 

a2(0, 0 = 0 (14a) 

- a 2 ( 0 , 0 = 0 

dl' 
a2(L, 0 = 0 

—ia2(L,t) = 0 

and initial conditions 

a2(/,0) = «„(/) ,/e[0,L] 

- a 2 ( / , 0 ) =ao(0 ,/€[0,L] 

0(0) = 90 

0(0)=e0 

(145) 

(14c) 

(14d) 

(15a) 

(15ft) 

(15c) 

(15d) 

Remark 1: (14c) and (14a*) are due to the absence of bend
ing moment and shearing forces respectively at the tip of the 
link. Addition of a payload mass and inertia will change these 
boundary conditions [3]. For brevity, the payload effects are 
neglected; although, they are included in the simulations stud-

IV Finite-Dimensional Approximation 
The flexible-link manipulators are distributed parameter 

(continuous) systems. If the models are to be used in simulation 
studies and controller design, due to actuator/sensor band
width limits it is rather reasonable to retain a truncated model 
representing the system at the lower frequencies. To this end, 
the system needs to be approximated by a finite-dimensional 
model which ignores the high-frequency modes. 

There exist different techniques to discretize a continuous 
system. The basic idea is to approximate the distributed pa
rameter by a finite set of trial functions. In our case, the flexure 
variable, a2 (l2, 0 . is to be approximated as follows: 

«2(/2,o=lJ^o*/(a (16) 
j=\ 

The choice of functions <bj{l2) is rather crucial. The best way 
to choose this set of functions is to use the eigenfunctions that 
arise from the linearized problem at hand. If the eigenfunctions 
are used, the expansion (16) is known as the unconstrained 
mode expansion. However, for all practical purposes solving 
the eigenvalue problem for the system at hand may not be 
easy, even impossible. Therefore, to pursue discretization of 
the system, a set of functions need to be chosen. The approx
imation known as the Ritz-Kantorovich method employs a 
"complete set of functions." This technique is also known as 
the "assumed mode" method or constrained mode expansion. 

The trial functions in this case are obtained by fixing the 
rigid body motion and setting the external inputs to zero. 
Therefore, the dynamics given in (13) reduces to the dynamics 
of an Euler-Bernoulli beam, i.e., 

EI 
a,,-- -Aa (17) 

where A is a linear operator, i.e, A = d4/dx4. 
In this case, the following eigenvalue problem needs to be 

solved 

/ 1 * = X*, (18) 

subject to 

$(0) = *(1>(0) = $<2) (Z,)=$(3)(Z) = 0 

where (•)(,) denotes the /th derivative of (•)• 
It is well-known [22] that the solution of the above eigenvalue 

problem is 

$,(/) = cosh (y,l) - cos (7,0 - £,• [sinh (7;/) - sin (y,[)] (19a) 

where 

cosh (Y;L) + COS (y/L) 
£/ = - sinh(7;L) + sin(y/Z,) 

and 7,'s satisfy 

cos {yjL) cosh (y,/,) = - 1. 

(196) 

(19c) 

Remark 2: The eigenfunctions given by (19a) are pairwise 
orthogonal, i.e., < * , - , $ * > = L5ik where 5 is the dirac delta 
and < •, • > denotes the inner product. 

Choosing the first p eigenfunctions (mode-shapes) given by 
(19a) as the assumed modes for the discretization process, the 
following lumped representation of the system is obtained2: 

<XLX+KX=F(X,X) + G(X)+Bu (20) 

where X=[6t 02ITH rj2 ... i)/7]r, 3TC, K, F, G, and B are the 
inertia, stiffness, vector of nonlinearities due to Coriolis and 
centripetal forces, gravity, and input matrix, respectively, and 
are given in the Appendix. We consider the motion in the 
horizontal plane; therefore, g = 0 (i.e., no gravity terms). 

V Controller Design 
The controller advocated in this paper is based upon an 

inner-loop/outer-loop design. The inner-loop controller is a 
nonlinear feedback law derived from the asymptotic expansion 
analysis performed on the distributed parameter dynamics of 
the hybrid manipulator. The outer-loop is a linear output feed
back designed according to a quadratic cost criterion. The 
output feedback problem is solved through a nonlinear opti
mization approach. In the next subsections, the inner-loop and 
outer-loop controllers are presented. 

A. Inner-Loop Controller. A multi-parameter asymp
totic expansion analysis of the dynamics of the multi-link flex
ible manipulators has been given [5, 21, 23]. Utilizing this 
approach, an inner-loop controller is established. For com
pleteness, a brief derivation of the terms in the asymptotic 
expansion is given here. For brevity, we will ignore the gravity 
terms.3 

Consider the following nondimensional parameters 

y-f. *=f (2D 
L2 L2 

1 
«1 = 

«2 = 

PiL\ 

1 

PiL\L 
2 "2 

/ = - + 
PlL2 , P2-^2 

3 P\LX p\Li 3p\Li 

(22) 

(23) 

(24) 

2Other sets of functions that satisfy the geometric boundary conditions may 
also be utilized, i.e., the mode-shapes corresponding to the clamped-mass bound
ary conditions or functions approximating the static deformations of the beam. 

inclusion of the gravity term can be handled similarly by modification of the 
perturbation parameter as shown in [21] and it does not change the scope of 
the problem at hand. 
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Pl T L2 

Pi L\-
(25) 

Using the above parameters, the dynamics may be rewritten 
as follows: 
The first link rigid body motion (6i): 

J+pL2 cos 02-2pL2 sin 82 \ ydx + pL3 \ y2dx 

1 
• pV + - pL2 cos 82 -pL2 sin 62 \ ydx+pL5 \ yl dx ydx+pL3 \} 

1 
Jo 

+ pi} \ (Lx + cos 02)a2dx = U\ 

'I + pL2\ [(x sin 62+y cos d2)(62 +26:62)]dx 

,\ 
+ 2pL2(d\ + d2) sin 6»2 f ydx-2pL3(d\ + 82) \ yydx (26) 

7Yie second link rigid body motion (02): 

1 1 f1 f1 

-L + - cos 62 - sin 02 | .ydx+Z, \ >>2djc 

1 , i 

L + L\ y2dx 

Jo 

Jo 

U-
02 + Z. I ^>>«&f=tf2-rfli sin 02 

I 
Jo 

0, cos 02 ydx-2L(0x + 02) yydx (27) 
Jo 

The transverse motion (flexure) of the second link (a2): 

. . . . . 1 .. , 
x(6i + 62)+y + Y6i cos 02 = - &>; yxxxx 

smd2-y\ B]+y e22 + 2dxe2y (28) 

where 

2 E2I2 

Pl^l 
(29) 

A perturbation parameter, namely e, may be embedded in 
the dynamics through the term oj?. Choosing this quantity as 
0(l/e) implies that as the link becomes shorter or as the bending 
stiffness of the link becomes larger, the perturbation parameter 
becomes smaller. In turn, this corresponds to the fact that as 
this parameter vanishes the manipulator behaves as if it were 
rigid. It was shown [5, 21] that the flexure variable was of 
order e. 

Utilizing the invariant manifold theory and expanding the 
variables as follows 

y = h = eh0 + e2h1 + Q(e3) 

u = u0 + eUi + Q{e2), 

(30) 

(3D 

we obtain the following approximations to the manifold from 
(28): 

1 1 
0(1): hotXm= -xtfi + 02)-- 0! cos 0 2 - - sin 020f (32) 

G(ek): hk,xxxx=-hk-l+(dl + e2)
2 hk.y k>l. (33) 

Equations (32)-(33) yield analytical solutions for the flexure 
variable up to any order of e. This analytical representation 
of the vibration can be utilized in the controller design. Having 
obtained the approximations to the manifold, the approxi
mations to the rigid body dynamics are attained by substituting 
the manifold solution in (26)-(27). The 0(1) approximation to 
the rigid body dynamics is as follows: 

The first link rigid body motion (0i): 

7 j . „ J 2 ,v.c a. O.J. -pl} + -pl} cos 02 J+pL2 cos 02 0i + 

= ipL 2 s in02(0 i + 20,02) + !?i (34) 

The second link rigid body motion (62): 

-L + - cos 02 3 2 
J i + k » 2 = - ^ i s i n 0 2 + ^ (35) 

The 0(1) rigid body dynamics can be linearized via the fol
lowing nonlinear feedback control law: 

J+ pL2 cos 02 -pL3 + - pL2 cos 02 

1 1 1 
- L + - c o S 0 2 -L 

-pL2 sin e2(e
2
2 + 2d\d2) 

-6\ sin 02 

= D(6)v + h(0, 0). (36) 

where u,-s are the new inputs and may be chosen as the linear 
feedbacks of the form 

t>,= -Aii(0/-fltof) -KB ( 0 , - 0/r=f) +0,ref, /= l, 2. (37) 

The choice of feedback gains affects the speed of the ma
neuver and importantly the magnitude of vibrations on the 
links and the tip of the manipulator. The induced vibrations 
on the links by the rigid body motion can be estimated from 
the approximations to the manifold given by (32)-(33). This 
analytical representation of the vibrations may be utilized to 
choose the feedback gains. The control laws given by (36)-
(37) are the so called inner-loop controller. The outer-loop 
controller will be added to y,s. 

B. Outer-Loop Controller. Implementation of the inner-
loop controller described in the previous section only requires 
the measurements of position and angular velocities of each 
link which are easy to measure (e.g., using optical encoders 
and DC tachometers). This controller will have satisfactory 
performance as long as the links are reasonably stiff and short. 
However, appreciable degradation in the performance of the 
inner loop controller occurs when the stiffness of the manip
ulator decreases and especially when the lengths of the flexible 
links increase. This can be seen from the perturbation param
eter introduced earlier. The manipulator softens proportional 
to the cube of the length of the link and linearly with its 
stiffness. 

To further enhance the performance and/or robustness of 
the system to parameter variations and payload changes, some 
measurements of the vibrations are necessary. To this end, we 
assume that the end-effector velocity (or acceleration) is avail
able. This measurement can be implemented by mounting an 
accelerometer at the tip of the manipulator. There are also 
other available techniques to measure tip position and velocity 
of the arm such as: 1) a camera system, 2) ultrasonic ranging 
systems, 3) strain gages, and 4) laser position measuring sys
tems. Furthermore, one may elect to use the accelerometer 
output signal directly. Thereafter, an output feedback based 
upon a quadratic performance is designed. As will be noticed 
in the simulations, this additional feedback enhances the per
formance and robustness of the closed-loop system. 

The relative tip velocity in the local frame is given by 
a(L2,t). In terms of our finite-dimensional approximation of 
the system, this output measurement may be rewritten as 

yl = CiZ=[0. . . 0I0 0*,(L2). . .$p(L£\z (38) 

where z=[xT xT]T and x= [0i - 0 i / 02-^if Vi V2 • • • VpV a n d 
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Joint angle I - Solid-> PD on!y,Dashed-> Inverse Dynamics 

1.5 2 2.5 

time (seconds) 

Fig. 3(a) The first joint angle, 0, 

Joint angle II :Solid-> PD only, Dashed-> Inverse Dynamics 

.5 1 1.5 2 2.5 3 3.5 

time (seconds) 

Fig. 3(b) The second joint angle, 92 

Tip Vibrations:SoIid-> PD only, Dashed-> Inverse Dynamics 

1.5 2 2.5 

time (seconds) 

Fig. 3(c) Tip deflection, a2 (L2, r) 

0 / 

-M-l[K+BD(Xe)Ki] -M~\BD (Xe)K2] 

fl=l ° 
\M~1[BD(Xe)] 

(41) 

(42) 

Ki=dmg(Kli,K2,),i=i,2, (43) 

and C is the output matrix comprised of Q and possibly the 
joint positions and velocities and Xe= [0y d2f0. . . 0 ] r . 

The output linear quadratic design is to minimize 

1 l"* $ \ (Z
TQZ+W

TR w)dt (44) 

constraint to the following control structure: 

w = Ky. (45) 

It can be shown that the necessary conditions for minimizing 
§i given by (44) with the controller structure (45) imply the 
solution of the following system of nonlinear algebraic equa
tions: 

and 

where 

AjP + PAc + Q = 0 
)ArL+LAl+Xa = 0 

VKJ=BTPLCT+RKCLCT=0 

(46a) 

(46b) 

AC=A+BKC 

Q=<2 + CTKTRKC 

X0 = z(0)zT(0). 

(41a) 

(41b) 

(41c) 

A large software package part of which solves the above 
non-convex optimization problem has been developed. The 
algorithm used to solve the output feedback problem is a gra
dient technique with a Fibonacci linear search for determi
nation of the optimal step size. It is well known that the selection 
of the weights in the optimization procedure is not necessarily 
straightforward. Here, we tried to penalize the states corre
sponding to the vibration more than the rest of the states. 
Furthermore, the weight on the second input is smaller than 
the first input since the second motor has more authority in 
damping the vibrations out. The weighing matrices used in the 
cost function are 

Q = diag (0.1/2x2, /2x2» 0.1/2x2, /2X2) 

£ = diag(0.01, 0.0001). 

The optimal solution over the linear output feedbacks is 
found through the optimization software and is given by 

-0.0652" 
-9.4429 y\- (48) 

Fig. 3 Response of the arm under the PD and the inner-loop controller 

0,y (1= 1,2) are the final (steady-state) values of the joint po
sitions. 

The outer-loop controller is designed based on a linear quad
ratic design. Therefore, the dynamics of the closed-loop system 
(i.e., including the inner-loop controller) is linearized around 
Z = 0. The linearized dynamics are denoted as 

z=Az+Bw 

y = Cz 

(39) 

(40) 

where 

VI Simulation Results 

A general purpose software for two-link planar manipulators 
with any number of modes was developed. The simulation 
studies to follow are for a two-mode model of a hybrid ma
nipulator. The parameters of the models were chosen according 
to the experimental setup being developed at Control/Robotics 
Research Laboratory at Polytechnic University. We chose a 
larger length and a very flexible link not only to have a longer 
flexible arm (as the application motivates), but also to lower 
the vibrational frequencies and soften the link accordingly. 
The parameters of the manipulator are 
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The simulation results corresponding to the behavior of the 
manipulator under the inner-loop control action is depicted in 
Fig. 3. The simulations are for a fast large angle maneuver 
(i.e., thirty degree maneuver for each link in one second). The 
desired trajectories for the joint positions are generated by 
fifth degree polynomials. Although the vibrations are damped 
out at the end of the maneuver, the tracking performance 
during the whole interval is not satisfactory. The vibrations 
are even larger when the parameters are not exactly known by 
the controller. To contrast and compare the advocated inner-
loop design to a simple joint-based controller, an independent 
joint PD control was applied. The gains of the PD controllers 
were chosen as Kn = W0 and Ki2 = 20 for both joints in all 
cases. The response of the system (i.e., joint angles and tip 
vibration) is depicted in the same figure (Fig. 3) for this PD 
controller. As can be observed, the vibrations are not only 
smaller for the nonlinear-based strategy, but also die out more 
quickly. To have a fair comparison, the gains were chosen to 
achieve the same speed of response. 

Next, the tip velocity feedback was added as the outer-loop 
controller. In this case, the vibrations are much smaller as 
depicted in Fig. 4. In numerous simulations with different 
values for lengths and masses of the links in the controller we 
noticed a much better performance with the outer-loop in our 
feedback configuration. To verify the robustness of the ad
vocated controller, the system is simulated with a payload 
mass. However, the same controller that was designed for the 
system with no payload was utilized. The payload mass chosen 
is 10 percent of the second-link mass. The simulation results 
are given in Fig. 4. Obviously, the vibrations are damped as 
before. 

VII Conclusion 

A complete description for modelling flexible-link manip
ulators was given. Furthermore, the distributed parameter 
model of a hybrid manipulator was derived. An inner-loop 
controller to feedback linearize the leading order term in the 
asymptotic expansion of the dynamics was employed. The 
gains in the inner-loop controller were chosen based upon the 
analytical expression derived for the vibration of the links 
through the asymptotic expansions. 

Only inner Joop controller 

With tip velocity feedback 

. Tip velocity feedback with tip mass 

1.5 2 2.5 

Time (seconds) 

Fig. 4(c) Tip deflection, a2 (L2, f) 

Fig. 4 Response of the arm under the inner/outer-loop controller 

To further enhance the performance of the system and to 
enjoy robustness against parameter variations and unmodelled 
dynamics, an outer-loop controller was established through a 
linear quadratic design. The output required for the imple
mentation of the outer-loop controllers can be obtained by 
accelerometers. It was shown that addition of the outer-loop 
improved the performance of the system considerably. It should 
be pointed out that the advocated technique is applicable to 
the multi-link flexible manipulators since the asymptotic ex
pansions were derived for the multi-link case and the outer-
loop controller is based upon a nonlinear non-convex opti
mization problem. The only difference in the multi-link case 
is the fact that a larger dimensional optimization problem need 
to be solved. This statement is not to minimize the difficulties 
one encounters in the experimental arena when the number of 
flexible links increase, but to establish a basis for theoretical 
tools available to approach the problem. The control meth
odology presented in the paper will go through if additional 
effects (e.g., axial displacement, torsion, etc.) are included in 
the dynamics of the manipulator. To further improve the re
sponse of the system, dynamic outer-loop compensators should 
be utilized. The aforementioned control algorithms will be 
implemented on our experimental setup in the future. 

A P P E N D I X 
A Finite-Dimensional Approximation of the Dynamics of 

Hybrid Manipulator 
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