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We propose a mechanism for mesophase separation in a system of aggregating colloids. Conditions are outlined
under which colloids can form equilibrium clusters with very large sizes, i.e., aggregation numbers of a
thousand or more. The driving force for clustering is a short range attractive interaction which will be treated
within a capillarity approximation. The stabilizing mechanism is a small amount of charge per particle. Under
the appropriate conditions these charges will interact with unscreened Coulomb potentials and, consequently,
prevent large-scale phase separation.

1. Introduction

When colloids have attractive interactions of sufficient
strength, i.e., somekBT per particle, aggregation can be expected.
This aggregation can occur in a wide variety of shapes and time
scales, depending on the size of the colloids and the strength
of their interaction. Irreversible aggregation has been studied
in ref 1 where the clustering is described by Smoluchowski
kinetics. So-called reversible aggregation has been tackled within
the Russian school.2 The aggregation described in that work
takes into account that clustered particles can rearrange or
evaporate from the cluster. However, the final (equilibrium) state
always consists of an infinitely large aggregate, and thus, the
evaporation is an intermediate process. The kind of aggregation
that is the subject of this paper is such that the final state of
aggregation consists of equilibrium clusters. There is continuous
evaporation from and condensation onto clusters but there is
no growth into a single, infinite, cluster. To get this situation,
a stabilizing mechanism must be present. Molecular aggregation
into micelles is an example where large aggregates are stabilized
by entropy.3,4 The aggregating particles are in this case small
anisotropic molecules. In this paper, we will deal with the
situation where these are colloidal particles. This implies of
course longer equilibration times.

The stabilization mechanism in this paper is the effect of a
small amount of charge on each aggregating particle. To get
the most effective stabilization, electrostatic screening must be
minimized. We will therefore focus on apolar or weakly polar
solvents, because then the concentration of charges other than
the counterions from the particles is low. At the same time, the
degree of dissociation of the surface charges on the particles is
also small. We will see that under appropriate conditions this
charge, although small, is sufficient to stabilize clusters that
have extremely large aggregation numbers. We note that similar
ingredients are used in the classical liquid droplet model from
nuclear physics,5 though the emphasis there is more on dynamics
and fluctuations. In turn, many features of this model go back
to the analysis of Rayleigh.6 The same model is used in atomic
and molecular physics, see, e.g., ref 7. In colloidal aggregation,
the role of charges is particularly interesting as the charge on

the particle emerges from an association-dissociation equilib-
rium. Under the conditions used in this paper, the equilibrium
changes with the volume fraction of colloid and sometimes with
the degree of clustering (counterion condensation). This results
in a dependence of cluster-size upon volume fraction, which
will be one of the salient features presented in this paper.

The paper is organized as follows: In section 2, the charge
mechanism on the particle surface is modeled via a site-binding
model. Section 3 presents the general framework to describe
the equilibrium clustering. Here, the charging mechanism of
section 2 and the attractions between the particles are combined.
The next section, Section 4 treats the case where the particles
cluster into large spherical clusters. Then we discuss aggregation
into disk shaped clusters (section 5) and rod-shaped clusters
(section 6), respectively. In section 7, some experimental work
of what could be a manifestation of the mechanism proposed
in this paper is discussed. The last section is devoted to a
discussion of the approximations made.

2. Site-Binding Model

We will be dealing with the aggregation of colloidal particles
in apolar solvents. To stabilize large sized clusters, we require
a small amount of charge on each particle. The conditions under
which these charges emerge are outlined in this section.

To generate charges on colloids, one requires the presence
of ionic bonds. Usually these are located on the particle surface.
In Figure 1a, we show a schematic picture of this. If the distance
between the opposite charges isb, the energy required to
dissociate this ion pair is

We use unitskB T (T temperature andkB Boltzmann’s constant)
for ∆ε. Q is the Bjerrum length, given byQ ) e2/4πε0εrkBT,
wheree is the elementary charge,ε0 is the dielectric permittivity
of vacuum, andεr is the relative dielectric constant of the
solvent. At room-temperature we find

So in a solvent like benzene (εr ) 2.3) and a separationb of
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0.1 nm, we find a dissociation energy of 243kBT. This energy
is comparable to that of a strong covalent bond. Under these
circumstances, one expects no charge effects. We note however
that with a variety of special stabilizers significant amounts of
charge can be generated on colloidal surfaces even in benzene.
In somewhat less apolar solvents (say withεr ) 10) and with
slightly larger separations,b ) 0.2 nm,9 one finds significantly
lower dissociation energies, i.e., 28kBT. This is an intriguing
number in a colloidal context. As we shall see later, an energy
like this can give a 50 nm colloidal particle sufficient charge to
stabilize large clusters. The charge will be treated as an
additional degree of freedom. The long ranged nature of the
Coulomb interaction will cause interactions between all particles
in one cluster.

In any event, with dissociation energies such as this, we can
safely assume only a small fraction of the bonds to be
dissociated. In the model described below, entropy will give
the colloids their charge, and this means that we must have
sufficient dissociable sites or ionic bonds present at the surface
of the particle.

Consider a single spherical particle (radiusr) carrying a
chargez. The counterions are dispersed in the suspending fluid.

For a depiction of this situation, see Figure 1b. The counterions
are drawn as surfactants because this is often the case in apolar
media, see ref 8, but is not a necessary requirement here. Let
us write the number of dissociable sites on the surface byσs,
wheres is the total surface of the particle andσ is the areal
number density of sites. The free energy due to the charge is
written as a site-binding model:

In the above expression, the first terms on the right-hand side
is simply the energy to independently dissociatez sites, each
with an energy∆ε given by eq 1. The second term represents
the interaction between the charges on the particle. It is given
by simply adding the Coulomb interactions between the charges
on the surface. Note that by writing this term we have neglected
the effect of screening by the counterions in the solvent. In more
technical terms, we use the linearized Poisson-Boltzmann
equation and assume the effective screening-length to be much
larger than the linear size of the cluster. The third term represents
the combinatorial entropy of dissociatingzout ofσssites under
the assumption thatz , σs. The fourth term represents the gain
in translational entropy upon dissociation. Herenb is the number
density of counterions in the bulk.b is a confinement length,
the typical distance under which the ions are considered to be
a pair. For convenience, we choose this length to be equal to
the distance of closest approach. Equation 3 constitutes a rather
primitive version of Bjerrum’s theory of ionic dissociation10 in
combination with the more general site binding model,11 adapted
to this particular context.

If the particles cluster, we still expect them to carry charge
such as depicted in Figure 1a. The free energy due to a total
charge,Z, on a spherical cluster ofn such particles is quite
similar to eq 3. If we assume the charge to be homogeneously
distributed throughout the sphere, we get

Note the following differences: In the second term, we now
have the cluster radiusRn which is assumed to be significantly
larger than the radius of the individual particlesr. The prefactor
of this term is now3/4 instead of1/2. This stems from the fact
that the charge now also resides in the interior of the sphere
and not exclusively on the surface. In the third term, a trivial
increase in dissociable sites is taken into account.

3. General Clustering Model

We will now consider an ensemble of clusters characterized
by Fn(Z), which is the number density of clusters with an
aggregation numbern and a total chargeZ. We write the total
free energy per unit volume as follows:

The first term between the square brackets represents the entropy
associated with the distributionFn(Z). The magnitude of the
length scalel is subject to debate, and we have no intent to
dwell on it too long. Naturally we will take this length to be of
the order of the size of the primary particle, respecting, in this
way, Reiss et al.12 For convenience, we subtracted a constant

Figure 1. (a) Charging mechanism on a particle surface. For entropic
reasons, a small fraction of the ion pairs dissociate (see eq 3). On a
larger scale, particles are either in (b) a monomer state or (c) an
aggregated state. In the latter case, eq 44 constitutes a model that
predicts the charge on the cluster.

fcharge(z) ) z∆ε + 1
2

Q
r

z2 + z ln(z/σs) + z ln(nbb
3) (3)

fcharge(n, Z) ) Z∆ε + 3
4

Q
Rn

Z2 + Z ln(Z/nσs) + Z ln(nbb
3)

(4)

F

VkBT
) ∑

n,Z

Fn(Z)[ln(Fn(Z)l3) - 1 + fn(Z)] (5)
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equal to one from the logarithm; it can be absorbed, if one
wishes, in the logarithm by redefiningl.

The free energy of a cluster is denoted byfn(Z) and is assumed
to be composed of a part that is due to dispersion attractions,
fdisp(n), and a part due to the charge on the cluster,fcharge(n, Z):

Note that we neglected direct interactions between clusters by
writing fn(Z) to be independent of the cluster distribution.

For the dispersion energy of the cluster, we use a simple
model. We assume that particles in the interior of the cluster
have an energy-ε and write the dispersion energy of the total
cluster as

The second term on the right-hand side represents the energy
that the particles on the surface are “missing” and is written as
the product of a surface tensionγ and the area of the cluster
An. Note thatγ can only be thought of in a macroscopic sense
when the charges are absent. What is meant here is the part of
the excess free energy that is due to the short-range dispersion
attractions only. The surface tensionγ is scaled bykBT just as
fn(Z) andε. Generally, we assume the attractions between the
particles to be short ranged. The term dispersion attraction is
actually too narrow, as any other short-range attraction will do.
For instance, polymer mediated depletion attractions or attrac-
tions between possible steric polymer layers. As long as it is
short-ranged, the description by eq 7 is accurate enough for
our purposes. By counting the number of contacts that a particle
misses at the surface, the following approximate relation can
be written forγ:

Heres is the total surface of the particle as in eq 3. Now, to
have a significant amount of aggregation even without charges,
one needs cohesive energies of, say,ε ) 5. This must be kept
in mind whenγ is estimated.

The charge-dependent part offn is given by eq 3. At this
point, we have to specify the value of the bulk densitynb of
counterions. In apolar solvents, the concentration of free charges
other than the counterions is very low because of the high
dissociation energies (see eq 2). We therefore assume the bulk
density nb to be solely determined by the ions that have
dissociated from the surface sites:

This equation constitutes a coupling between the degree of
dissociation and the density of particles. Naturally, the total
volume fractionφ of colloids in the system is fixed and must
be treated as a constraint:

whereV is the volume per particle.
To proceed further, we will make a substantial simplification.

The cluster distribution is assumed to be sharply peaked around
one single aggregation number. In other words, we assume the
system to be monodisperse. In the Appendix, it is shown that
under these conditions we can neglect the translational entropy
of the cluster. Also, the charge on the average cluster is assumed

to fluctuate little. Therefore, we will write

HereZ is the value for whichfcharge(n, Z) is minimal. See the
Appendix for a justification of eq 11. Also in the Appendix,
one can find the conditions for size and charge monodispersity.
In short, these are (1) large aggregation numbers,n . 1, and
(2) large total charge on a cluster,Z . 1. We further note that
if we find clusters of considerable size within this approach,
they will also be found when we include fluctuations. This is
due to the fact that entropy tends to stabilize large clusters, see
refs 3 and 4. Therefore, to analyze the approximation, eq 11 is
a good starting point to predict equilibrium clustering.

Instead of the total charge on a clusterZ, we now take the
charge per particlez (compare eqs 3 and 4):

In the approximation of monodisperse charge and size distribu-
tion, the bulk density of counterions is given bynb ) φz/V. The
charge dependent part of the free energy of a cluster is now

The prefactor of the Coulomb term, i.e.,3/4 for homogeneously
charged spheres, is generalized tog in order to apply this to
shapes other than spherical. The optimum charge per particle
can be found by minimization, with respect toz.13 We will
assume the last term on the right-hand side, the Coulomb
interaction term, to be small compared to the entropic terms:

Here z0 is the value that minimizes eq 13 forQ ) 0. The
correction due to the Coulomb interaction is denoted byδz.
Carrying out the minimization we find

We explicitly see here that the charge per particle depends
on volume fraction. This is caused by the increase in transla-
tional entropy of the dissociated ions upon diluting the system.
For the correctionδz, we find to linear order inQ/Rn:

This equation defines theú potential. If it is too high, the charge
per particle will depend on the aggregation number. In other
words, counterions will condense on the surfaces upon aggrega-
tion. If this condensation effect is too strong, simultaneous
aggregation and charge condensation will take place and large
aggregates might become unstable to further growth. Equiva-
lently, at highú potentials, the interaction between the coun-
terions and the surface charge can no longer be neglected. In
the following, we will be somewhat easy on the condition of
low ú potential and allow for potentials ofú ) 2. Other studies
on the linearization of the Poisson-Boltzmann equation support
to take this liberty.14 The error made by eqs 15 and 16 can be
circumvented by numerically minimizing eq 13. The counterion

fn(Z) ) fdisp(n) + fcharge(n, Z) (6)

fdisp(n) ) - εn + γAn (7)

γ =
ε

s
(8)

nb ) ∑
n,Z

ZFn(Z) (9)

φ ) ∑
n,Z

nVFn(Z) (10)

F
VkBT

=
φ

Vn
fn(Z) (11)

Z ) nz (12)

fcharge(n, nz) ) nz[∆ε + ln(z2
φb3

σsV ) + g
Qnz
Rn

] (13)

z ) z0 + δz (14)

z0
2 ) Vσs

b3e∆ε+2

1
φ

(15)

δz
z0

= -g
Q n z0

Rn
(16)

≡ - ú
2

(17)
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condensation is then taken into account implicitly in a somewhat
simplified way. This will be done in section 7.

The free energy of a cluster due to the charge in the
approximation of lowú potential can be written as

We have inserted the minimizing chargez, and therefore, the
only remaining dependence is on the aggregation numbern.
The optimum numbern can now be determined by minimizing
the total free energy per unit volume. If we can neglect the
translational entropy of a cluster, which we can if the clusters
are large enough, we may just as well minimize the free energy
per particle in a cluster,fn/n (see the Appendix).

The second term on the right-hand side of eq 18 represents
the counterion condensation and works stabilizing with respect
to fluctuations in volume fraction as will be shown in section
8. This term enters the free energy per particle as a constant
and will therefore not influence the average aggregation number.
Note that we can be sure that the stabilizing second term
dominates the first as long asú e 1, see eq 16.

4. Aggregation into Spherical Clusters

We now assume that particles of fairly general shape, each
having an effective volumeV, aggregate into large spherical
clusters of radiusR. The aggregation number is related to the
cluster size via

The charge dependent part of the free energy per cluster (for
low ú) is

see eq 13. The energy due to dispersion interactions, eq 7, is

Therefore the free energy per particle in a cluster written as a
function of cluster radiusR is

where we omitted constant terms. This can be minimized to
get the equilibrium aggregation numbern*:

Note the small prefactor whenn* is written as a function ofú
potential. The dependence on Bjerrum lengthQ suggests that
the clusters will be larger in more polar solvents. However, we
must bear in mind that in more polar solvents there is more
electrostatic screening due to ions other than the counterions.

This destabilizes large clusters to further growth. The depen-
dence on theú potential is strong so if we allow forú ) 2, we
can indeed find large equilibrium clusters.

Interestingly, we find a dependence on volume fraction
without invoking the translational entropy of the clusters.
Because the charge per particle depends on volume fraction,
see eq 15, we get the following dependence of size on volume
fraction:

Another quantity of interest is the free energy per particle
evaluated at optimum size and charge:

This enables us to compare with aggregation into shapes other
than spherical. The exact prefactor is given by (243π/4)1/3.
Because there are more terms in the free energy than surface
tension, the aggregation in a spherical shape is no longer
obvious. In fact, the sphere, though favorable for the dispersion
energy, is not so favorable for the coulomb energy because
charges are packed relatively close together. The next sections
are concerned with aggregation in disk-shaped and cylindrically
shaped clusters.

5. Aggregation in Disk-Shaped Clusters

Assume the particles aggregate into a disklike shape as
depicted in Figure 2. We will model this cluster as a disk with
radiusR and thicknessd. The free energy of a cluster, up to
linear terms inn, is

Here Z ) nz0 as we assumed theú potential to be low. The
prefactor of the Coulomb term is determined for high aspect
ratio and homogeneously charged disks by numerical integration;
it is approximately: g = 0.850. We may omit terms linear in
the aggregation number in eq 27, as these terms are irrelevant
in the determination of the optimum size.

The aggregation number is related to the dimensions of the
disk by

The free energy per particle (up to a constant) in a cluster in

fcharge(n) = g
z0

2n2

Rn
- 2nz0 (18)

n ) 4πR3

3V
(19)

fcharge) 3Qn2

4R
z0

2 - 2z0n (20)

fdisp ) - εn + 4πγR2 (21)

fn
n

)
πz0

2Q

V
R2 + 3γV

R
(22)

n* ) 2γV
Qz0

2
(23)

) 1

162π2

ú/

6

VQ3γ3
(24)

Figure 2. Particles may aggregate in a disk type shape such as the
one here.

R* ∼ φ
1/3 (25)

fn*

n*
+ ε - 2z0 ) 5.76(γVz0

2Q)1/3 (26)

fn ) g
QZ2

R
+ γ(πR2 + 2πRd) (27)

n ) πR2d
V

(28)
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terms ofd andR is

By minimization with respect toR and d, we find a constant
value ofR/d:

This corresponds to an aspect ration of 4. Note that this is not
very large so corrections due to finite aspect ratio are probably
important. The approximation of high aspect ratio overestimates
the Coulombic energy, so we expect the true aspect ratio to be
somewhat smaller than that in eq 30, and also the energy per
particle is expected to be smaller than the one given below in
eq 33. The minimizing aggregation number is

The similarity with the spherical case is large except for the
prefactors. This is related to the constancy of aspect ratio, i.e.,
no independent length scale enters the problem. The free energy
per particle in an optimum cluster is

The exact prefactor is given by (54πg)1/3. By comparing
prefactors in the free energy expressions for disk (eq 33) and
sphere (eq 26) we see that the disk is the preferred shape.

6. Aggregation in Cylindrical Clusters

Consider aggregation in cylindrical shape. It has a length,L,
which is assumed to be much larger than the diameterD. The
free energy of a cluster like this is written as

The first term on the right-hand side is the Coulomb energy of
a slender rod on which the charges are distributed homoge-
neously. Within the logarithm, there should be a constant of
order unity, which we will ignore. The error we make by doing
this is of the same order of the error we generate by the
approximations made in this section. Same as for the disks, we
ignore terms linear inn.

The aggregation number is related to the dimensions of the
cylinder:

The free energy per particle in a cluster in terms ofL andD is
(up to a constant)

Note the weak dependence of the Coulomb energy on the

cylinder length. Minimizing with respect toD gives the
following relation between the length and diameter:

In terms of theú potential, this is

with the ú potential given by

We see from eq 37 that the diameter is a very weak function of
the rod length. If, in addition, we minimize with respect toL,
no minimum can be found. To analyze the trend, we evaluate
the free energy of a cluster for values ofD andL satisfying eq
37. We can now write the free energy per particle in a way that
it only depends on the aspect ratio:

whereC depends weakly on the aspect ratioC(x) ) 1.46(3+
1/x) ln(x)1/3. It varies slowly; forL/D ) 2, we haveC ) 5.29,
and forL/D ) 8, C ) 6.28. We find thatC(x) has a minimum
around x ) 1. Therefore, aggregation into cylinders is not
favorable compared to aggregation into spheres.

A charming exception occurs if the aggregating particles
themselves are slender rods that form bundles with a diameter
smaller than the rod length. In this case,L should not be taken
as a variable but taken equal to the length of an individual rod.
Equation 37 for the diameter for the bunch can then readily be
used. For work on the aggregation of rods with purely attractive
forces, see ref 15.

7. Comparison with Experiment

From the clustering into spheres or disks, we find for the
equilibrium radius

The constantK has a different value for disks,K ) 2.23, and
for spheres,K ) 1.52. Buitenhuis et al.16 made a study of the
clustering of sterically stabilized Boehmite rods in the solvent
ortho-dichlorobenzene (εr ) 10.12), i.e., a Bjerrum length,Q,
of 5.1 nm. The rods have a diameter of 15 nm and a length of
75 nm, where we have included a steric layer of 2 nm. Light
scattering on this system revealed the presence of structures of
typically one µm in diameter. This points to very large
aggregation numbers. The main focus in ref 16 was character-
ization of these clusters, but no attempt was made in modeling
them. A frequent and often justified thought in systems such as
these is that these large clusters are not in equilibrium but that
their growth is kinetically hindered. However, the suspensions
were stable for weeks. On this time-scale, even the larger
clusters can collide, and therefore, a stabilizing mechanism must
be at play. This is very likely to be charge, especially because
the stabilizer used in ref 16 is anchored to the surface via ionic
bonds.8,17

fn
n

) g
πQz0

2

V
Rd+ γV(2R + 1

d) (29)

(Rd)*
) 2 (30)

n* ) 2γV
gz0

2Q
(31)

) 1

128π2g3

ú*
6

VQ3γ3
(32)

fn*

n*
+ ε - 2z0 ) 5.24(γVz0

2Q)1/3 (33)

fn ) QZ2

L
ln(L

D) + γ(π D2

4
+ πLD) (34)

n ) πD2L
4V

(35)

fn
n

)
πQz0

2

V
D2 ln(L/D) + γV(1L + 2

D) (36)

D3 ) V2γ
πQz0

2

1
ln(L/D)

(37)

D ) 1
πQγ ln(L/D)

ú2 (38)

ú )
πQz0D

2

V
ln(L/D) (39)

fn*

n*
+ ε - 2z0 ) C(L/D)(γVz0

2Q)1/3 (40)

R* = K(γVb3e∆ε

Qσs )1/3

φ
1/3 (41)
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Before applying the theory developed in this paper to the
findings in ref 16, we will discuss another alternative. This is
the classical picture that has emerged in the synthesis of
inorganic colloids. In this picture, a colloid is formed by
irreVersibleaggregation of small primary particles. At a certain
point, the charge of the aggregate is so high that a collision of
two such aggregates does not lead to a larger aggregate. This is
different from the mechanism suggested in this paper, which is
fully equilibrium. We note that in ref 16 the clusters are observed
to coexist with a substantial fraction of single rods (monomers)
being inconsistent with the alternative clustering scenario
described above.

Measurements of the Guinier radius in this system can be
fitted with

The raw data areφ ) 0.007 55 andRg ) 350 nm,φ ) 0.03
andRg ) 450 nm andφ ) 0.3 andRg ) 980 nm. So the number
of points is limited, but the variation in volume fraction is
considerable. We will see if these trends can be explained with
reasonable parameter values.

We will assume disklike aggregates. As stated, the diameter
δ ) 15 nm and the lengthl ) 75 nm. The surface tensionγ is
taken to beε/s, see eq 8, withε ) 7.5. Note that we cannot go
too much lower with this value because, in that case, the whole
driving force for aggregation, i.e., the dispersion interaction, is
too weak. We assume the stabilizer to be grafted with an areal
density of 0.15/nm2, so the number of dissociable sites per
particle is 675. We take for the confinement lengthb ) 0.18
nm. Inserting these values in eq 41 and comparing with the
experimental prefactor from eq 42, we can get a value for the
dissociation energy:∆ε ) 29. This corresponds to an effective
separation of 0.18 nm, see eq 1. This is a very reasonable value.
Furthermore, we do not get, within reasonable bounds, very
different values for the effective separation. Unfortunately, the
ú potentials we get with these parameters are too high; we get
ú = 11.3φ1/6. So it varies between 5 for the most dilute sample
and 9 forφ ) 0.3. This is way beyond the limit of what we can
reasonably accept being a lowú potential, and thus, the
approximation of constant charge per particle is not valid. This
approximation has been used to derive eq 41, so we must solve
the problem without it. This is most conveniently done numeri-
cally and is outlined in the following.

At high ú potentials, the effect of counterion condensation
must be included. A way to deal with this is to solve the
Poisson-Boltzmann equation in a cell model.14 Here we do not
consider the full spatial problem; the effect of counterion
condensation is taken into account by numerically minimizing
eq 13 with respect to the charge per particlez. We no longer
assume the Coulomb term to be small. What we find is
qualitatively the same trends as described by eq 41, yet the
prefactors are modified. The charge per particle is now
depending on the aggregation number. A further minimization
of eq 6 with respect to the aggregation number gives the cluster
radius. This can be repeated for different volume fractions, and
an example that fits the Buitenhuis data can be found in Figure
3a. The parameters that we used were the same as above, except
the effective separation between paired ions,b, was taken to be
0.134 nm to fit the data. This corresponds to dissociation
energies of 37kBT, which is significantly higher than the value
without counterion condensation (ε ) 29). The result of the
minimization is very sensitive to the effective separation,b. The
other unknowns, i.e., the surface tension and number of
chargeable groupsσs, have a very limited impact.

8. Discussion

This paper has been focused on the calculation of equilibrium
clusters. The cluster size and charge per particle were found to
depend on volume fraction. The free energy depends on the
volume fraction via these quantities, and one may ask what the
stability with respect to variations in overall volume fraction
is. To do this, we combine eqs 11, 18, 23, and 15 to get

The prefactors are neglected here. From the discussion below
eq 18, we recall that the first term on the right-hand side in eq
43, which is destabilizing, is smaller than the stabilizing second
term as long as theú potential is smaller than one. However,
eq 18, and thus eq 43 also, is derived under the same condition
of low ú. In fact, as soon as counterion condensation becomes
important (ú = 1), the destabilizing term is suppressed and
stability is ensured longer than expected when the counterion
condensation is neglected.

The effect of counterion condensation was treated in a rather
nonsophisticated way. Minimizing the full eq 13 captures the
essence of the counterion condensation without invoking too
much complexity, yet we are aware that doing this gives some
error. Calculation of the correct ionic density profiles outside
and inside the cluster is expected to alter the distanceb by a
factor comparable to the one that was seen in section 7, i.e.,
betweenb ) 1.8 (without counterion condensation) andb )
1.34 (with condensation).

R* = 1.4φ1/3µm (42)

Figure 3. (a) Data from ref 16 are plotted. The line is the result of a
numerical minimization eq 11. (b) The number of elementary charges
per particle and cluster. Note the low value of the former.

F
VkBT

∼ φ
2/3 - φ

-1/2 (43)
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The Buitenhuis data could be fitted with a surface tensionγ
) 0.001 67 nm-2 which corresponds to values of the aggregation
energy per particleε ) 7.5 by eq 8. The corresponding volume
fraction of monomers is then approximatelyφmonomer = exp-
(-ε + 2). We subtracted 2 from the cohesive energy to account
for the orientational degrees of freedom that are lost upon
aggregation. For our choice ofε, we getφmonomer) 0.0041. So,
as long as we have volume fractions higher than this, we can
assume that all of the particles are contained in the clusters.
Experimentally, half the fraction of the sample with total volume
fraction 0.755% has been observed to consist of monomers.

The monodispersity is easily checked with the aid of eq A.9
from the Appendix. With the value for the surface tension and
the aggregation numbers involved, we find thatδn2 , n*

2. The
neglect of charge fluctuations can be justified by looking at
Figure 3b where we plotted both the charge per particle and
the total charge on the cluster as a function of volume fraction.
We see that the amount of charge per particle is very small,
i.e., about one thousandth of an elementary charge;18 therefore,
at first sight, it is expected that fluctuations will play a
considerable role. However, the number of particles in the
aggregate is so large that the total charge on the cluster is much
larger than unity. From eq A.9, we then see that the fluctuations
in total charge on the cluster is relatively small.

Although the combination of electrostatic repulsion and
dispersion attraction is classical in colloid science, we feel that
we have added something new here, mainly because the focus
was on equilibrium clustering of very large aggregates. For this,
one needs long screening lengths, which can be realized in
solvents with a low dielectric constant. In that case, electrolyte
concentrations are low. However, if the dielectric constant is
too low, the colloids themselves cannot attain significant charge
to stabilize clusters. Intermediate dielectric constants of about
10 are suitable, as we have seen from the example. The number
of charges per particle is then low enough to let the clusters
grow sufficiently but large enough to prevent large scale phase
separation. In ref 19, we see another example of the effect of
charge in apolar solvents. In this work, the influence on the
conductivity of inverse micellar solutions due to charge fluctua-
tions on the micelles is investigated.

Somewhat peculiar is that the disk shaped aggregate (section
5) is more stable than both the rod-shape (section 6) and the
sphere (section 4). If we compare different shapes with equal
volumes, we have the dispersion energy: rod> disk > sphere.
The coulomb energy though follows the opposite sequence:
sphere> disk> rod. Therefore, the disk-shape is a compromise
between coulomb and dispersion energy. In this light it seems
plausible that this structure turns out to be the most favorable.
We hope for some experimental evidence that shows the
existence of these disk-shaped aggregates. However, the dif-
ference in prefactor of the free energy per particle in a disk-
shaped and spherical cluster is only small.
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Appendix

Charge and Number Fluctuations.Minimizing eq 5 with
respect to the cluster distributionFn(Z) subject to the constraint
eq 10 gives

Here, µ is the chemical potential (scaled bykBT) fixing the
overall volume fraction. The corresponding grand canonical free
energy,Ω ) F - kBTµφV/V, is given by

The chargeZn that maximizes the exponent in eq A.2 for each
n satisfies

We can replace the sum overZ in the free energy eq A.2 by
the largest term given by eq A.3. The remaining sum overn
can also be approximated by finding the largest term. Then
corresponding to the largest term is denoted byn* and is given
by

Within this approximation of negligible fluctuation in both
charge and aggregation number, we get for the constraint from
eq 10

Suppose the cluster energyfn* is large compared to the
translational entropy of the cluster; that is

Now combining eqs A.4, A.5, and A.6 gives

In other words, if fluctuations in aggregation number can be
neglected, minimizing the total free energy is equivalent to
minimizing the cluster energy per particle. Let us now estimate
the size of the fluctuations in charge and aggregation number
by expanding the exponent in eq A.2 around the optimum values
up to quadratic order

Here we defined∆fn(Z) ) fn(Z) - fn*(Zn*), δn ) n - n*, and
δZ ) Z - Zn*. Note that in this expression we left out the

Fn(Z) ) l-3e-fn(Z)+µn (A.1)

Ω

VkBT
) -l-3∑

Z,n

e-fn(Z)+µn (A.2)

∂fn(Z)

∂Z
|Z)Zn

) 0 fn ≡ fn(Zn) (A.3)

∂fn
∂n

|n)n*
) µ (A.4)

µn* = fn*
+ ln(φV/n* l

3) (A.5)

|µn*| . |ln(φV/n* l
3)| (A.6)

∂(fn/n)

∂n
|n)n*

= 0 (A.7)

∆fn(Z) ) [34 Q
Rn

+ 1
Z] δZ2 - [2n + QZ

2Rn] δZ δn +

[23 QZ2

Rnn
2

+ Z

n2
+

γRn
2

n2 ] δn2 (A.8)
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suffixes of Z and n for aesthetic reasons. The fluctuations in
both charge and aggregation number can be shown to remain
within the bounds indicated below:
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