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Robust Relay Beamforming for Two-Way Relay Networks
Meixia Tao, Senior Member, IEEE, and Rui Wang

Abstract—We study the design of robust relay beamforming for
two-way relay networks by considering channel feedback errors.
Our objective is to maximize the minimum worst-case signal-
to-noise ratios (SNRs) of two sources subject to a total relay
power budget. We first decompose this non-convex problem into
a series of relay power minimization problems under minimum
SNR constraints by using bisection search. Then the relay power
minimization problem is recast to a semidefinite programming
relaxation (SDR) problem. A suboptimal but efficient solution is
finally obtained for the original design. A necessary condition for
the power minimization problem to be feasible is also given. For
the special case with perfect channel state information, an alter-
native algorithm is introduced to find the optimal beamformer,
which has lower complexity than the existing method.

Index Terms—Two-way relaying, beamforming, channel un-
certainty, robust optimization.

I. INTRODUCTION

RECENTLY proposed two-way relaying appears as a new
transmission paradigm to achieve high spectral efficiency

in wireless networks. The main idea of two-way relaying is
to apply physical layer network coding at the relay to assist
two source nodes to exchange information with each other.
Compared to one-way relaying, half of channel usages can be
saved to complete one round of information exchange.

To realize more reliable transmission in two-way relay sys-
tems, multi-antenna based relay beamforming can be exploited
to achieve spatial diversity [1]. Employing multiple antennas
at the relay node, however, may not be feasible in certain
resource-constrained networks, such as sensor network, due
to hardware size limitation. An alternative way to increase
the diversity is using multiple single-antenna relay nodes to
collaboratively form a virtual beam as in [2], [3]. In particular,
in [2], the authors consider the joint power allocation and
beamforming design. In [3], the authors study the achievable
rate region through beamforming.

In general, perfect and global channel state information
(CSI) is needed for collaborative relay beamforming in two-
way relay networks (TWRNs). This can be done by first
estimating the channel coefficient at each receiving node with
the help of training sequence or pilot symbols and then feeding
back to a central processor via a feedback channel. In practice,
the CSI information collected at the central processor may
not be perfect. One reason is due to the feedback error. In
specific, due to the limited capacity of feedback channel, the
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Fig. 1. Illustration of the two-way relay system.

channel coefficients need to be quantized before sending to the
central processor and, moreover, the feedback may be delayed,
thereby, causing quantization error and delay error. Another
reason is that channel estimation at each node is not accurate
due to insufficient training or low signal-to-noise ratio (SNR).

The design of robust relay beamforming in two-way relay
networks by taking CSI uncertainty into account is crucial
from the practical perspective. This is by no means an
easy task compared with that in point-to-point multiple-input
multiple-output (MIMO) channel (e.g., [4]) or one-way MIMO
relay channel (e.g., [5]–[8]). In this letter, we only consider the
CSI uncertainty due to channel feedback errors in TWRN and
investigate the design of robust beamforming. Our objective
is to maximize the minimum worst-case SNRs of the two
destinations subject to a total relay power budget. To solve
this non-convex problem, we first decompose it into a series of
robust relay power minimization problems by using bisection
search. Then, after applying S-procedure, rank relaxation and
some other transformations, the robust relay power minimiza-
tion problem is further recast into a semidefinite programming
relaxation (SDR) problem, for which a suboptimal but efficient
solution of original problem is finally obtained. The feasibility
of the robust power minimization problem is also analyzed.
For the special case where the channel feedback is ideal, we
introduce an alternative method to find the optimal relay beam-
forming. This method has lower complexity than the existing
method [1], [3] and is easier for practical implementation.

Notations: � denotes the Hadamard product. Tr(A) is the
trace of A. Diag(a) denotes a diagonal matrix with a being
its diagonal entries. Superscripts (·)T , (·)∗ and (·)H denote
transpose, conjugate and conjugate transpose, respectively. ‖ ·
‖22 denotes the squared Euclidean norm. The distribution of a
circular symmetric complex Gaussian vector with mean vector
x and covariance matrix Σ is denoted by CN (x,Σ).

II. SYSTEM MODEL

Consider a TWRN where two source nodes, denoted as S1
and S2, intend to exchange information via K relay nodes,
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denoted as Rk, k = 1, 2, · · · ,K , as shown in Fig. 1. Each node
is equipped with single antenna and subject to half-duplex
constraint. The bidirectional communications take two time
slots. In the first times slot, also called multiple access (MAC)
phase, both S1 and S2 transmit their signals to relay nodes
simultaneously. The received signals at all the relay nodes
can be written in vector form as

yR = h1s1 + h2s2 + nR,

where si, for i = 1, 2, is the transmit signal from Si with
E(|si|2) = Pi, nR = [n1, n2, · · · , nK ]T with nk denoting
the additive noise at Rk, and modeled as CN (0, σ2

R), yR =
[yR,1, yR,2, · · · , yR,K ]T with yR,k being the received signal at
Rk, hi = [hi,1, hi,2, · · · , hi,K ]T with hi,k being the complex-
valued channel coefficient from Si to Rk. Upon receiving the
superimposed signal, each Rk multiplies it with a complex
scalar wk to change its magnitude and phase. Let xR,k denote
the resulting transmit signal from Rk. The transmit signals
from the relay nodes can be written in vector form as

xR = w � yR = w � h1s1 +w � h2s2 +w � nR,

where xR = [xR,1, xR,2, · · · , xR,K ]T and w is the relay
beamformer, given by w = [w1, w2, · · · , wK ]T . Here we as-
sume that the relay nodes are in close proximity to each other
such that they can form a cluster and share the power. Then
the total consumed power at the relay nodes is constrained as

Tr
{
P1H1wwHHH

1 + P2H2wwHHH
2 + σ2

RwwH
} ≤ PR,

(1)
where H1 = Diag(h1) and PR denotes the total relay power
budget.

During the second time slot, also called broadcast (BC)
phase, the received signal at each destination is denoted as

ȳi = gT
i (w�hī)sī+gT

i (w�hi)si+gT
i (w�nR)+ni, (2)

where ī = 2 if i = 1 and ī = 1 if i = 2, gi =
[gi,1, gi,2, · · · , gi,K ]T with gi,k being the complex-valued
channel coefficient from Rk to Si. Unlike [2], we do not
assume reciprocal channels so that the BC phase channel gi,k
is independent from hi,k in the MAC phase.

Now, let us introduce the following assumptions on the
knowledge of CSI:

A1) Each receiving node can estimate the local receive CSI
perfectly. This assumption is valid when the SNR during
training is high enough. Thus, each relay node Rk, for
k = 1, 2, · · · ,K , can get perfect h1,k and h2,k in the
MAC phase, and Si, for i = 1, 2, can acquire perfect gi

in the BC phase. Moreover, each source node Si can also
obtain the perfect combined channel and beamformer
coefficients gT

i (w � hī) and gT
i (w � hi).

A2) There is a central processor that collects all the CSI
{hi,k, gi,k}, ∀i, k, and conducts the beamforming de-
sign. This central processor can be either embedded in
one of the relay nodes or be placed near the relay cluster.

A3) The information about gi, for i = 1, 2, collected at the
central processor is not perfect, due to the feedback
errors from each source node. Specifically, each Si
quantizes the channel vector gi and then sends the
quantized version to the central processor through a

feedback channel with limited capacity. In addition, the
feedback may not be timely compared with the channel
time variation. Therefore, both quantization error and
delay error can occur.

A4) The central processor is aware of the perfect h1,k and
h2,k for all k through high rate auxiliary channels or
wired backhauls. This assumption can be justified since
the central processor is very close to the relay cluster or
is one of the nodes in the cluster as assumed in A2) .

Based on assumption A1), the self-interference can be
completely subtracted from (2), which yields

yi = gT
i (w � hī)sī + gT

i (w � nR) + ni. (3)

Then, the received SNR at Si is denoted as

SNRi =
Pī|gT

i (w � hī)|2
σ2
R||gi �w||22 + σ2

i

. (4)

Based on assumption A3), we model the uncertainty in gi as

gi = ĝi +�gi, i = 1, 2 (5)

where ĝi denotes the observed channel vector and the error
vector �gi is bounded, given by �gi ∈ Si with Si ={
a ∈ CK : ||a||22 ≤ ρi

}
. Note that such bounded error model

has been widely adopted in the literature [7]–[9].

III. ROBUST BEAMFORMING DESIGN

Our design objective of the beamformer is to maximize the
minimum worst-case SNRs of the two destinations in order
to ensure user fairness. Based on (4) and (5), the worst-case
based max-min optimization can be formulated as

max
w

min
i=1,2

min
�gi∈Si,i=1,2

{SNR1, SNR2} (6a)

s.t. Tr
{
A0wwH

} ≤ PR (6b)

where the power constraint in (6b) is rewritten from (1)
with A0 = P1H

H
1 H1 + P2H

H
2 H2 + σ2

RIK . By introducing
an auxiliary variable t, the max-min problem in (6) can be
equivalently written as:

max
w,t

t (7)

s.t. Tr{A0wwH} ≤ PR

min
�gi∈Si

SNRi ≥ t, i = 1, 2

The problem (7) can be decomposed into a series of solvable
subproblems by using bisection search. More specifically, for
a given t, we define the following relay power minimization
problem subject to a minimum SNR threshold

P ∗(t) =min
w

Tr
{
A0wwH

}
(8a)

s.t. min
�gi∈Si

SNRi ≥ t, i = 1, 2 (8b)

If the optimal P ∗(t) in (8) for the given t is larger than PR,
we need to reduce t, otherwise, the system can support higher
t. Therefore, solving the max-min problem (6) finally turns to
solving the relay power minimization problem (8). As a result,
we focus on solving problem (8) in the following.
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According to (4), the constraint (8b) can be rewritten as

min
�gi∈Si

Pīg
T
i (w � hī)(w � hī)

Hg∗
i

σ2
RTr {(gi �w)(gi �w)H}+ σ2

i

≥ t, (9)

with gi = ĝi + �gi for i = 1, 2. For notation convenience,
we denote ḡi = g∗

i . Since Tr
{
(gi �w)(gi �w)H

}
=

Tr
{
(ḡi �w)(ḡi �w)H

}
, the constraint (9) is equivalent to

min
�ḡi∈Si

Pīḡ
H
i (w � hī)(w � hī)

H ḡi

σ2
RTr {(ḡi �w)(ḡi �w)H}+ σ2

i

≥ t, (10)

with ḡi = ˆ̄gi + �ḡi for i = 1, 2. Then, by using
the rule (a� b) (a� b)

H
=

(
aaH

) � (
bbH

)
, we have

ḡH
i (w � hī)(w � hī)

H ḡi = ḡH
i

[
(hīh

H
ī
)� (wwH)

]
ḡi

and Tr
{
(ḡi �w)(ḡi �w)H

}
= Tr

{
(ḡiḡ

H
i )� (wwH)

}
=

Tr
{
(ḡiḡ

H
i )(IK �wwH)

}
= ḡH

i (IK � wwH)ḡi. Thus, the
constraint (9) can be reexpressed as

min
�ḡi∈Si

ḡH
i [(Pīhīh

H
ī − tσ2

RIK)� (wwH)]ḡi ≥ tσ2
i . (11)

Since �ḡi is continuous over Si, there are infinite realiza-
tions of �ḡi which make the problem unsolvable. To proceed,
we transform (8) into the following form by applying the S-
procedure on (11) as in [7], [9]

min
W,s1,s2

Tr {A0W} (12)

s.t.

(
ˆ̄gH
i Qi ˆ̄gi − tσ2

i − siρi ˆ̄gH
i Qi

Qi ˆ̄gi Qi + siIK

)
≥ 0, i = 1, 2

Rank(W) = 1, W � 0, s1 ≥ 0, s2 ≥ 0

where Qi = (Pīhīh
H
ī
− tσ2

RIK)�W.
Proposition 1: A necessary condition for the optimiza-

tion problem (12) to be feasible is P1||h1||22 > tσ2
R and

P2||h2||22 > tσ2
R.

Proof: Based on lemma 1 in Appendix A, we find that if
Pī||hī||2 ≤ tσ2

R, the term Pīhīh
H
ī
− tσ2

RIK must be negative
semidefinite, which also makes the matrix Qi = (Pīhīh

H
ī
−

tσ2
RIK)�W negative semidefinite. Then we have ˆ̄gH

i Qi ˆ̄gi ≤
0, which further leads to ˆ̄gH

i Qi ˆ̄gi − tσ2
i − siρi < 0. Thus

the problem (12) is infeasible and hence the Proposition 1 is
proved.

Due to the rank-one constraint, the optimal solution of (12)
is not easily tractable. We therefore resort to relaxing it by
deleting the rank-one constraint, namely,

min
W�0,s1≥0,s2≥0

Tr {A0W} (13)

s.t.

(
ˆ̄gH
i Qi ˆ̄gi − tσ2

i − siρi ˆ̄gH
i Qi

Qi ˆ̄gi Qi + siIK

)
≥ 0, i = 1, 2

We can verify that (13) is an semidefinite programming (SDP)
problem and the optimal solution can be easily obtained.

After termination of bisection search, if the optimal solution
of (13), W̄, is rank-one, then the optimal solution of (6) can
be obtained by using eigenvalue decomposition. Otherwise,
some other ways, for example, randomization and eigenvector
approximation [10], should be used to find a suitable solution.
Although the randomization method can obtain a near-optimal
solution if the number of generated samples is large enough
[10], it also results in high computational complexity. In this
work, we apply the eigenvector approximation to obtain a
suboptimal but practical solution, given as w̃ =

√
λq, where λ

is the maximum eigenvalue of W̄ and q is the corresponding
eigenvector. Then the final solution of (6) is obtained as
w = αw̃ where α is a scaling parameter to ensure that w
consumes all the relay power.

In the rest of this section, we discuss the nonrobust beam-
forming design by considering the limiting case �gi = 0, i =
1, 2. The power minimization problem (8) reduces to

min
w

Tr
{
A0wwH

}
(14a)

s.t.
wHAi,1w

σ2
Rw

HAi,2w + σ2
i

≥ t, i = 1, 2 (14b)

where Ai,1 = PīH
H
ī
g∗
i g

T
i Hī and Ai,2 = GH

i Gi with
Gi = Diag(gi). To obtain the constraint (14b), the circular
property of trace operator has been used for SNR expression
(4). Clearly, problem (14) can also be converted into a re-
laxed SDP problem as follows by introducing a new matrix
W = wwH as in (12)

minW�0 Tr {A0W} (15)

s.t. Tr {AiW} ≥ σ2
i t, i = 1, 2

where Ai = Ai,1 − tσ2
RAi,2.

In fact, the nonrobust beamforming design for total relay
power minimization based on perfect CSI has been considered
in [3], wherein the optimal beamformer is obtained by using
the method proposed in [1]. In this work, we introduce an
alternative approach to obtain the optimal beamformer of (14)
if the optimal solution of (15) is not rank-one.

Theorem 1: If the rank of the optimal solution W̄ of prob-
lem (15) , denoted as r, is higher than one, the optimal solution
of (14) can be obtained using the following procedures.

• Repeat
– Decompose W̄ as W̄ = VVH with V ∈ CK×r ;
– Find the nonzero r×r Hermitian matrix M to satisfy the following

linear equations

Tr
(
VHAiVM

)
= 0, i = 0, 1, 2. (16)

– Evaluate the eigenvalues �1, �2, · · · , �R of M and set |�| =
max{|�i|,∀i};

– Generate a new matrix as W̄′ = V (IR − (1/�)M)VH and set
W̄ = W̄′;

• Until the rank r = Rank(W̄) is equal to 1.

Proof: The proof is similar to [11]. Since M has r2

real elements, if r2 > 3, we can always find a nonzero M
to satisfy (16), which further leads to that the rank of W̄′

reduces at least one compared to the original W̄. Besides
that, we have Tr(AiW̄

′) = Tr(AiW̄ − 1
�AiVMVH) =

Tr(AiW̄), i = 1, 2, which means that the new matrix W̄′

is also a feasible point of (15). We can also verify that
Tr(A0W̄

′) = Tr(A0W̄), i.e., W̄′ achieves the same value of
objective function as W̄. In other wards, W̄′ is also optimal
for problem (15) but with lower rank. Repeating the above
procedures, we can finally obtain the rank-one solution of (15)
which is also the optimal solution of (14).

Remark: Note that in [1], [3], the authors proposed to
extract the optimal rank-one solution from the SDP problem
(15) by using a special matrix decomposition and solving a
linear programming problem. In Theorem 1, we introduce an
alternative way to obtain the rank-one solution by only solving
some linear equations. Thus, the introduced method has lower
complexity and is easier for practical implementation.
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Fig. 2. Output worst-case SNR versus relay power.

IV. SIMULATION RESULTS

The channels are set to be Rayleigh fading with all the chan-
nel coefficients {hi,k, gi,k}, ∀i, k independent and following
CN (0, 1). The CSI error �gi, for i = 1, 2, is obtained as
follows: we first generate a random vector following complex
Gaussian distribution CN (0, I). If this vector is out of the
bounded region, we then normalize it with the error bound.
The number of relay nodes is K = 4. We assume that
the noise power at all receive nodes are the same, i.e.,
σ2
R = σ2

1 = σ2
2 = σ2. Let γi,R = Pi/σ

2 denote the average
SNR from Si to R.

In Fig 2, we illustrate the achieved average worst-cast SNR
as the function of PR by setting γ1,R = γ2,R = 10dB. Two
error bounds ρ1 = ρ2 = 0.01 and ρ1 = ρ2 = 0.07 are
considered. The ideal case with perfect CSI is also simulated
as a benchmark. For the nonrobust design, the observed ĝi is
treated as the perfect CSI. For comparison, we also simulate
the upper bound of obtained worst-case SNR by only solving
the relay power minimization (13) without extracting the rank-
one solution. It is observed that the proposed robust design
outperforms the non-robust scheme by a reasonable margin.
Moreover, for the small error bound, the proposed design
almost attains the upper bound. This indicates that the solution
of (13) is rank-one in most cases for small error bounds.

V. CONCLUSIONS

In this letter, we proposed the robust relay beamforming
for TWRN using worst-case optimization. We also introduced
an alternative method to obtain the optimal relay beamforming
with ideal channel knowledge, which has lower computational
complexity than the prior work. This work only serves as the
first step towards the global robust beamforming in two-way

relay networks as only channel uncertainty at the broadcast
phase is taken into account. Future work can consider channel
errors in both multiple access phase and broadcast phase.

APPENDIX A

Lemma 1: If two n × n matrices A and B are positive
semidefinite and negative semidefinite, respectively, then the

matrix A�B is negative semidefinite.
Proof: We first apply eigenvalue decomposition to de-

compose A and B as A =
∑p

i=1 λA,iuA,iu
H
A,i and B =

−∑q
i=1 λB,iuB,iu

H
B,i where p and q are the rank of A and

B, respectively. λA,i and −λB,i are the eigenvalues. Let
vi =

√
λA,iuA,i and wi =

√
λB,iuB,i, we have

A�B = −
p∑

i=1

q∑

j=1

(viv
H
i )� (wjw

H
j )

= −
p∑

i=1

q∑

j=1

(vi �wj)(vi �wj)
H .

We thus derive that the A�B is negative semidefinite.
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