STABLE EQUIVALENCE AND GENERIC MODULES

HENNING KRAUSE AND GRZEGORZ ZWARA

Abstract

Let Λ and Γ be finite dimensional algebras. It is shown that any stable equivalence $f: \overline{\text{mod}} \Lambda \to \overline{\text{mod}} \Gamma$ between the categories of finitely generated modules induces a bijection $M \mapsto M_f$ between the sets of isomorphism classes of generic modules over Λ and Γ such that the endolength of M_f is bounded by the endolength of M up to a scalar which depends only on f. Using Crawley-Boevey's characterization of tame representation type in terms of generic modules, one obtains as a consequence a new proof for the fact that a stable equivalence preserves tameness. This proof also shows that polynomial growth is preserved.

Generic modules were introduced by Crawley-Boevey in order to give a conceptual description of the representation type of a finite dimensional algebra [1]. In this note we study the relation between the generic modules over two finite dimensional algebras Λ and Γ under the assumption that there exists an equivalence $\overline{\text{mod}} \Lambda \to \overline{\text{mod}} \Gamma$ between the stable categories of finitely generated modules.

Recall that a Λ -module is *generic* if it is indecomposable and endofinite but not of finite length over Λ . A Λ -module M is *endofinite* if the *endolength* endol(M), which is the length of M over its endomorphism ring End $_{\Lambda}(M)$, is finite.

The endolength of a module is *not* a categorical invariant. In other words, a Morita equivalence $F : \text{Mod }\Lambda \to \text{Mod }\Gamma$ between two module categories does not necessarily preserve the endolength. However, it is not hard to see that there exists a constant c_F such that

$endol(FM) \leq c_F \cdot endol(M)$

for every Λ -module M. The purpose of this paper is to show that this fact remains true for a stable equivalence.

Using Crawley-Boevey's characterization of tame representation type in terms of generic modules, we obtain in this way a simple proof for the fact that a stable equivalence preserves tame representation type [2]. In fact, we improve the results obtained in [2], and show that a stable equivalence preserves polynomial growth.

In [2], it was shown that an equivalence $f : \overline{\text{mod}} \Lambda \to \overline{\text{mod}} \Gamma$ extends to an equivalence $F : \overline{\text{Pinj}} \Lambda \to \overline{\text{Pinj}} \Gamma$ between the full subcategories of (not necessarily finitely generated) pure-injective modules in $\overline{\text{Mod}} \Lambda$ and $\overline{\text{Mod}} \Gamma$. Any endofinite module is pure-injective, and our main result states that the functor F controls the endolength, as follows.

Received 11 March 1999.

²⁰⁰⁰ Mathematics Subject Classification 16G60, 16D90.

The results in this paper evolved during a visit of the first author to Toruń. The second author gratefully acknowledges support from Polish Scientific Grant KBN No. 2 PO3A 012 14.

Bull. London Math. Soc. 32 (2000) 615-618

THEOREM. Let Λ and Γ be artin algebras, and suppose that $f : \operatorname{mod} \Lambda \to \operatorname{mod} \Gamma$ is an equivalence. Denote by $F : \overline{\operatorname{Pinj}} \Lambda \to \overline{\operatorname{Pinj}} \Gamma$ the equivalence between the full subcategories of pure-injective modules in $\overline{\operatorname{Mod}} \Lambda$ and $\overline{\operatorname{Mod}} \Gamma$ which extends f (see [2]). Then there exists a constant $c_f \in \mathbb{N}$ such that

$$endol(FM) \leq c_f \cdot endol(M)$$

for every endofinite non-zero Λ -module M.

COROLLARY 1. An equivalence $f : \overline{\text{mod }} \Lambda \to \overline{\text{mod }} \Gamma$ induces a bijection $M \mapsto M_f$ between the sets of isomorphism classes of indecomposable endofinite and non-injective modules over Λ and Γ such that $\text{endol}(M_f) \leq c_f \cdot \text{endol}(M)$ for all M.

Before we can give the proof of the main theorem, we need some preparation. Let us start with some notation. We fix an artin algebra Λ , and denote by Mod Λ the category of all Λ -modules. The full subcategory of finitely generated modules is denoted by mod Λ . The *stable category* $\overline{\text{Mod}} \Lambda$ has the same objects as Mod Λ , but $\overline{\text{Hom}}_{\Lambda}(M, N)$ is the group $\text{Hom}_{\Lambda}(M, N)$ of Λ -maps modulo the subgroup of maps which factor through some injective module. The stable category $\overline{\text{mod}} \Lambda$ of finitely generated modules and the stable category $\overline{\text{Pinj}} \Lambda$ of pure-injective modules are defined analogously.

We denote by S_1, \ldots, S_p a representative set of simple Λ -modules, and denote by $\underline{T_1, \ldots, T_q}$ a representative set of simple Γ -modules. Keeping the equivalence $f: \underline{\text{mod}} \Lambda \to \overline{\text{mod}} \Gamma$ fixed, we choose Λ -modules U_1, \ldots, U_q such that $f(U_j) \cong T_j$ in $\overline{\text{mod}} \Gamma$ for all j. Now let M and X be Λ -modules, and suppose that X has finite length. We denote by [X, M] the length of $\text{Hom}_{\Lambda}(X, M)$ as an $\text{End}_{\Lambda}(M)$ -module, and [X, M] denotes the length of $\overline{\text{Hom}}_{\Lambda}(X, M)$ as an $\overline{\text{End}}_{\Lambda}(M)$ -module. The multiplicity of S_i in a composition series of X is denoted by $m_i(X)$. We note the following elementary fact.

LEMMA 1. Let M and X be Λ -modules, and suppose that X has finite length. Then

$$\llbracket X, M \rrbracket \leqslant \llbracket X, M \rrbracket \leqslant \sum_{i=1}^{p} m_i(X) \llbracket S_i, M \rrbracket$$

Proof. The first inequality follows from the fact that the length of $\overline{\text{Hom}}_{\Lambda}(X, M)$ as an $\overline{\text{End}}_{\Lambda}(M)$ -module equals its length as an $\text{End}_{\Lambda}(M)$ -module. In order to prove the second inequality, observe that any exact sequence $0 \to X' \to X \to X'' \to 0$ of Λ -modules gives an exact sequence

 $0 \longrightarrow \operatorname{Hom}_{\Lambda}(X'', M) \longrightarrow \operatorname{Hom}_{\Lambda}(X, M) \longrightarrow \operatorname{Hom}_{\Lambda}(X', M),$

so $[X, M] \leq [X', M] + [X'', M]$. By induction on the length of X, we obtain the second inequality.

The next lemma is simple but extremely useful.

LEMMA 2. Let M be a Λ -module with no non-zero injective submodules, and let S be a simple Λ -module. Then Hom_{Λ}(S, M) = $\overline{\text{Hom}}_{\Lambda}(S, M)$, and therefore [S, M] = [S, M].

Proof. Any non-zero map $S \to M$ which factors through some injective module also factors through the injective envelope E(S) of S, and therefore induces a monomorphism $E(S) \to M$. This is impossible by our assumption on M. Thus $\operatorname{Hom}_{\Lambda}(S, M) = \overline{\operatorname{Hom}}_{\Lambda}(S, M)$.

Proof of the Theorem. Let M be an endofinite non-zero Λ -module, and let N = FM. We denote by I_N a maximal injective submodule of N, which exists by Zorn's lemma since direct limits of injective modules are injective. This gives a direct decomposition $N = N_I \coprod I_N$. Using the preceding lemmas, we obtain the following bound for the endolengh of N_I :

$$\operatorname{endol}(N_{I}) = [\Gamma, N_{I}] \leqslant \sum_{j=1}^{q} m_{j}(\Gamma)[T_{j}, N_{I}]$$
$$= \sum_{j=1}^{q} m_{j}(\Gamma)[[T_{j}, N_{I}]] = \sum_{j=1}^{q} m_{j}(\Gamma)[[U_{j}, M]]$$
$$\leqslant \sum_{j=1}^{q} m_{j}(\Gamma)[U_{j}, M] \leqslant \sum_{j=1}^{q} m_{j}(\Gamma) \left(\sum_{i=1}^{p} m_{i}(U_{j})[S_{i}, M]\right)$$
$$= \sum_{i=1}^{p} \left(\sum_{j=1}^{q} m_{j}(\Gamma)m_{i}(U_{j})\right)[S_{i}, M] \leqslant n_{f} \sum_{i=1}^{p} [S_{i}, M]$$
$$\leqslant n_{f} [\Lambda/\operatorname{rad} \Lambda, M] \leqslant n_{f} [\Lambda, M] = n_{f} \cdot \operatorname{endol}(M),$$

where $n_f = \max\{\sum_{j=1}^q m_j(\Gamma) m_i(U_j) \mid 1 \le i \le p\}$. The endolength of any injective Γ -module *I* is bounded by the composition length $\ell(\Gamma)$ of Γ , since *I* is isomorphic to a direct factor of a product of copies of the injective cogenerator $D\Gamma$ (where *D* denotes the usual duality between mod Γ and mod Γ^{op}), and

endol
$$\left(\prod_{\kappa} D\Gamma\right)$$
 = endol $(D\Gamma)$ = endol (Γ) = $\ell(\Gamma)$

for any cardinal $\kappa > 0$. Defining $c_f = n_f + \ell(\Gamma)$, we obtain

$$\operatorname{endol}(FM) = \operatorname{endol}(N_I) + \operatorname{endol}(I_N) \leq n_f \cdot \operatorname{endol}(M) + \ell(\Gamma) \leq c_f \cdot \operatorname{endol}(M).$$

This finishes the proof of the Theorem.

We are now in a position to prove that a stable equivalence preserves the representation type. To this end, for an algebra Λ , denote by $g_{\Lambda}(n)$ the number of isomorphism classes of generic Λ -modules of endolength n, and put $\gamma_{\Lambda}(n) = \sum_{i=1}^{n} g_{\Lambda}(i)$.

COROLLARY 2. Let $\overline{\text{mod }}\Lambda \to \overline{\text{mod }}\Gamma$ be an equivalence. Then there exists a constant $c \in \mathbb{N}$ such that $\gamma_{\Lambda}(n) \leq \gamma_{\Gamma}(cn)$ for all $n \geq 1$. In particular, the following hold.

- (1) If Γ is generically tame, that is, $g_{\Gamma}(n) < \infty$ for all $n \ge 1$, then Λ is generically tame.
- (2) If Γ is generically of polynomial growth, that is, there exist $k \ge 1$ and $d \ge 1$ such that $g_{\Gamma}(n) \le dn^k$ for all $n \ge 1$, then Λ is generically of polynomial growth.
- (3) If Γ is generically domestic, that is, there exist only finitely many isomorphism classes of generic modules, then Λ is generically domestic.

Proof. The formula $\gamma_{\Lambda}(n) \leq \gamma_{\Gamma}(cn)$ is an immediate consequence of Corollary 1. Observe that in the definition of generically tame algebras, one can replace $g_{\Lambda}(n)$ by $\gamma_{\Lambda}(n)$. Hence (1) follows from the formula $\gamma_{\Lambda}(n) \leq \gamma_{\Gamma}(cn)$.

Now assume that $g_{\Gamma}(n) \leq dn^k$ for some $k \geq 1$, $d \geq 1$, and all $n \geq 1$. Then

$$g_{\Lambda}(n) \leqslant \gamma_{\Lambda}(n) \leqslant \gamma_{\Gamma}(cn) = \sum_{i=1}^{cn} g_{\Gamma}(i) \leqslant \sum_{i=1}^{cn} di^k \leqslant (cn)d(cn)^k = (c^{k+1}d)n^{k+1},$$

for all $n \ge 1$. This implies (2).

An algebra Γ is generically domestic if and only if there exists $N \in \mathbb{N}$ such that $\gamma_{\Gamma}(n) \leq N$ for all $n \geq 1$. Hence (3) is also a consequence of the formula $\gamma_{\Lambda}(n) \leq \gamma_{\Gamma}(cn)$.

Suppose that Λ is a finite dimensional algebra over an algebraically closed field, and denote by $\mu_{\Lambda}(n)$ the minimal number of continuous one-parameter families which are needed to parametrize all but finitely many indecomposable Λ -modules of dimension *n*. In [1, Theorems 4.4 and 5.6], Crawley-Boevey has shown that $\mu_{\Lambda}(n)$ is finite for all $n \ge 1$ if and only if Λ is generically tame; moreover, in this case, $\mu_{\Lambda}(n) = \sum_{i|n} g_{\Lambda}(i)$. Therefore the 'generical' definition of the representation type coincides with the 'classical' one. More precisely, we have the following.

- (i) Λ is of tame representation type (that is, $\mu_{\Lambda}(n) < \infty$ for all $n \ge 1$) if and only if Λ is generically tame.
- (ii) Λ is of polynomial growth (that is, there exist $k \ge 1$ and $d \ge 1$ such that $\mu_{\Lambda}(n) \le dn^k$ for all $n \ge 1$) if and only if Λ is generically of polynomial growth. Indeed, the inequality $g_{\Lambda}(n) \le \mu_{\Lambda}(n)$ shows that polynomial growth implies 'generical' polynomial growth. On the other hand, if $g_{\Lambda}(n) \le dn^k$ for some $k \ge 1$, $d \ge 1$, and all $n \ge 1$, then

$$\mu_{\Lambda}(n) \leqslant \sum_{i=1}^{n} g_{\Lambda}(i) \leqslant \sum_{i=1}^{n} di^{k} \leqslant n dn^{k} = dn^{k+1}.$$

(iii) Λ is of domestic representation type (that is, there exists $N \in \mathbb{N}$ such that $\mu_{\Lambda}(n) \leq N$ for all $n \geq 1$) if and only if Λ is generically domestic.

References

- 1. W. W. CRAWLEY-BOEVEY, 'Tame algebras and generic modules', Proc. London Math. Soc. 63 (1991) 241–264.
- H. KRAUSE, 'Stable equivalence preserves representation type', Comment. Math. Helv. 72 (1997) 266– 284.

Fakultät für Mathematik Universität Bielefeld 33501 Bielefeld Germany e-mail: henning@mathematik.uni-bielefeld.de Faculty of Mathematics and Informatics Nicholas Copernicus University Chopina 12/18, 87-100 Toruń Poland e-mail: gzwara@mat.uni.torun.pl

618