
Applied Intelligence 14, 9–32, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Conversational Case-Based Reasoning

DAVID W. AHA AND LEONARD A. BRESLOW
Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Code 5510,

4555 Overlook Ave, SW, Washington, DC 20375-5337, USA
aha@aic.nrl.navy.mil

breslow@aic.nrl.navy.mil

HÉCTOR MUÑOZ-AVILA
Department of Computer Science, University of Maryland, College Park, MD 20742-3255, USA

munoz@cs.umd.edu

Abstract. Conversational case-based reasoning (CCBR) was the first widespread commercially successful form
of case-based reasoning. Historically, commercial CCBR tools conducted constrained human-user dialogues and
targeted customer support tasks. Due to their simple implementation of CBR technology, these tools were almost
ignored by the research community (until recently), even though their use introduced many interesting applied
research issues. We detail our progress on addressing three of these issues: simplifying case authoring, dialogue
inferencing, and interactive planning. We describe evaluations of our approaches on these issues in the context of
NaCoDAE and HICAP, our CCBR tools. In summary, we highlight important CCBR problems, evaluate approaches
for solving them, and suggest alternatives to be considered for future research.

Keywords: conversational case-based reasoning, case library revision, dialogue inferencing, plan authoring,
ModSAF

1. Introduction

A gap exists between research and applications of
case-based reasoning (CBR). In most research systems,
users input acompleteproblem description. In contrast,
most commercial CBR systems (e.g., Inference Corpo-
ration’s k-Commerce) elicit queries via an interactive
questioning process. Low research interest inConver-
sationalCBR (CCBR) may reflect the implicit assump-
tion that CCBR offers a simple usability enhancement,
but poses no new research challenges relative to nonin-
teractive CBR. The following anecdote casts doubt on
this assumption.

In 1996 members of the Vertical Launching System
Engineering Division (VLSED) of the Naval Surface
Warfare Center at Pt. Hueneme, California were strug-
gling with issues on how to assist maintenance per-
sonnel with fault diagnosis tasks. VLSED was trying
to deliver an application to the Navy’s Fleet Techni-

cal Support Centers (FTSCs) that would allow experts
to remotely diagnose and solve (at least some) faults
for MK 41 Vertical Launching Systems, which were
used on-board some AEGIS cruisers. If this worked,
remote problem solving could reduce the number of
costly flights required for FTSC personnel to perform
at sea, which would also save time and perhaps reduce
FTSC manpower needs.

VLSED developed their application using Inference
Corporation’s CBR product line, then known as CBR2.
This choice was well motivated; CBR2 was a highly
successful commercial tool for solving interactive di-
agnosis tasks, arguably because its basis is CCBR.
Although targeted for supporting help-desk person-
nel, CBR2’s application to weapons systems diagnosis
seemed straightforward.

Unfortunately, although several successful CCBR
applications have been deployed, VLSED and some
other organizations found that creating a successful

10 Aha, Breslow and Mũnoz-Avila

CCBR application requires expertise in case library
authoring. VLSED’s prototype application was moder-
ately successful, but its library was not designed using
standard guidelines for creating CCBR applications,
and it required substantial effort to enhance and main-
tain. Accordingly, when VLSED was awarded addi-
tional funds to pursue this approach, they were re-
quired to upgrade the FTSC application rather than take
the next step—place it in the fleet. The FTSC applica-
tion was enhanced via a long-term consulting contract,
but was later abandoned because there was no funding
nor Navy infrastructure to ensure its maintenance. The
VLSED group responsible for creating this application
dispersed and valuable Navy knowledge on creating
CCBR applications was lost.

Thus, commercial CBR tools are confronted with
research challenges that affect their usefulness and ac-
ceptance by corporate and government clients. Three
challenges that we have focused on in our research are:

1. Case authoring: As illustrated in the above anec-
dote, the task of creating a CCBR case library is a
knowledge engineering task that requires substan-
tial expertise.

2. Dialog inferencing: The quality of the human-
computer dialog in CCBR applications suffers from
the lack of intelligent methods for dynamically
computing inferences from user input.

3. Expanded applicability: CCBR tools were limited
to case retrieval, and were not applicable to more
elaborate decision support tasks (i.e., of interest to
the Navy).

We addressed these challenges by creating our own
CCBR tool, NaCoDAE, to serve as a testbed [1].1 First,
we developed a machine learning approach for simpli-
fying the case authoring task by enforcing some author-
ing guidelines [2]. Second, we integrated NaCoDAE
with a model-based reasoning component and a query
retrieval tool to automatically answer some questions
during a conversation, thereby reducing interactive
elicitation needs [3]. Finally, we extended NaCoDAE
to address knowledge-intensive planning tasks, which
required an integration with a hierarchical task editor;
the resulting system is named HICAP [4].

The following sections detail our progress. We begin
by defining CCBR (Section 2), and then detail each ap-
proach and its evaluation (Sections 3 to 5). We summa-
rize related research and outline suggestions for future
research efforts in Section 6.

2. Conversational Case-Based Reasoning

This section introduces CCBR (Section 2.1) and our
NaCoDAE implementation (Section 2.2).

2.1. Introduction

In most CBR research systems, the user is expected
to input their entire problem description (query) at the
outset; this requires the user to determine the problem-
solving relevance of each feature and to have detailed
domain knowledge, which users often lack in prac-
tice. In contrast, CCBR systems require the user to
initially input only a brief free-text description of their
problem. The system then supports interactive problem
assessment to construct a query (i.e., a problem spec-
ification). During this conversation, the system pro-
gressively ranks and displays the top-matching cases’
solutions (and the displayed questions). Thus, the user
need only answer posed questions; a priori knowledge
concerning their relevance is not needed.

CCBR was pioneered by Inference Corporation in
their CBR product line, now known ask-Commerce.
These types of tools have grabbed a large share of the
customer support tool market niche. Their popularity
stems, in part, from their ability to incrementally and
interactively acquire queries describing customer prob-
lems while imposing few restrictions on the query’s
information content and internal sequencing.

System users (i.e., usually2 call center personnel)
need only guide customers through a dynamically de-
termined set of questions, but do not need extensive
domain expertise. This approach allows potential solu-
tions, stored in cases whose problem descriptions are
highly similar to the user’s query, to be available at any
time during a conversation.

Prior to problem solving, acase authorcreates a set
of cases, called acase library, for the CCBR system.
In its most generic form, acase Cin a CCBR system
is represented as follows:

1. Problem Cp = Cd + Cqa: Encodes the problem
solved byCs.

(a) Description Cd: Free text that partially describes
C’s problem.

(b) Specification Cqa: A set of 〈question,answer〉
pairs.

2. Solution Cs = {Ca1,Ca2, . . .}: A sequence of ac-
tionsCai for responding toCp.

Conversational Case-Based Reasoning 11

Figure 1. The generic CCBR problem solving process.

Actions can be free text, hyperlinks, or other objects.
A case’s problem description and specification serve as
its index. Questions in case specifications can be inter-
nally disjunctive (i.e., have multiple answers). Cases
are “positive” examples: applyingCs to Cp is assumed
to be successful.C serves as a prototype for solv-
ing queries whose problem specifications are similar
to C’s; queries that closely match a case’s problem
are expected, with high probability, to benefit from its
solution. An example case for a printer troubleshoot-
ing application might include questions referring to the
printer’s display panel or the status of the paper tray,
while an action might be to fill the tray, clear a jam, or
to phone technical support.

Users interact with CCBR systems by submitting a
query Qin a conversation, which begins when a user
inputs a text descriptionQd of a problem. The sys-
tem then computes the similarity s(Q,C) of Qd to the
problem descriptionCd of each stored caseC, which
yields an initial case similarity ranking. The solutions
of these top-ranking cases are displayed according to
decreasing similarity in a solution displayDs. Cur-
rently unanswered questions in these cases are ranked
by importance (detailed in Section 2.2), and the top-
ranking questions are listed in a second ranked dis-
play Dq. The user can then select a questionq∈ Dq

to answer or a solutions∈ Ds, thereby terminating the
conversation. If the user selects a question, they then
input its answera. The CCBR system adds〈q,a〉 to
the query’s problem specificationQqa, recomputes all
case similarities, and updates the displaysDs andDq.
As more questions are answered, the similarity com-
putations and resulting case rankings should become

more accurate. Users can delete or alter their previous
answers to questions at any time. Problem solving ter-
minates successfully when the user is satisfied with a
selected solution or the top-ranking case’s similarity
exceeds a threshold. It terminates unsuccessfully when
the system cannot find a good match or further rele-
vant questions to ask. Figure 1 visually summarizes
this process.

Figure 2 summarizes the generic CCBR algorithm
for conducting a conversation. This description does
not define how case similarity scores are computed,

Figure 2. Generic algorithm for a CCBR conversation.

12 Aha, Breslow and Mũnoz-Avila

how questions are ranked, or how input text is pro-
cessed. These and other details vary among CCBR
systems. We describe our definitions for them in the
context of NaCoDAE in Section 2.2.

2.2. NaCoDAE

We originally developed NaCoDAE [1] to test our strat-
egy for simplifying case authoring [2]. More recently,
we evaluated its extensions for dialogue inferencing [3]
and conversational case-based planning [4]. Sections 3
through 5 detail these studies.

NaCoDAE (Navy Conversational Decision Aids
Environment) embodies the generic CCBR tool de-
scription of Fig. 1 and incorporates some simple ad-
ditional design decisions.

Text Processing: Case problem descriptions and user in-
put text are canonicalized. Brill’s [5] part-of-speech
tagger is used to identify noun phrases and stem the
cases’ descriptions. Synonyms and stopwords are in-
put by the case author. Given query textQd, Na-
CoDAE computes the similarity score for all stored
cases, where s(Q,C) is defined as the percentage of
roots and noun phrases inCd that are also inQd. Na-
CoDAE uses this score to identify and rank the most
similar cases, whose solutions are displayed inDs.

Question Ranking: Questions inDq are ranked accord-
ing to their frequency in specifications of the cases
whose solutions are displayed inDs. We also experi-
mented with ranking strategies based on information
gain and their ordering within a case (in addition to
frequency), but found that frequency is sufficient for
our needs.

Case Ranking: After the user selects and answers some
questions fromDq, yielding a partial query specifi-
cationQqa, NaCoDAE scores s(Q,C) for each case
C using a simple function:

score(Q,C) = same(Qqa,Cqa)− diff(Qqa,Cqa)

|Cqa| ,

(1)

where same(Qqa,Cqa) (diff(Qqa,Cqa)) is their
number of shared (conflicting)〈q,a〉 pairs. An op-
tional procedure can be used to control for a bias
towards cases containing fewer questions [6].

3. Simplifying Case Authoring

CCBR cases are typicallyheterogeneous: there is of-
ten little overlap in the sets of questions used to de-

fine each case’s problem specification. This flexibility
allows cases to be small in size and retrieved by an-
swering few questions, but complicates the case en-
gineering task; heterogeneity complicates the problem
of deciding which questions and cases to present to the
user at each point during a conversation. Poor choices
for questions will prevent useful further diagnosis of
the customer’s problem, while poor choices for cases
will prevent a good solution from being retrieved. In
this section we describe a standard approach to this
case authoringtask, explain why it is problematic, in-
troduce our novel tree induction technique for revising
case libraries (implemented inClire), and empirically
evaluate whether/why it can improve the performance
(i.e., precision and efficiency) of conversational case
libraries.

3.1. Design Guidelines

Case authoring is the art of designing good libraries.
Inference [7] lists 46 guidelines for building CCBR
libraries, including:

1. reuse questions when possible,
2. ordercontextbeforedetailquestions,
3. eliminate questions that do not distinguish cases,
4. ask for only one thing in a question, and
5. use a similar, small number of questions in cases.

When analyzed separately, each guideline appears
sensible, and contributes to good CCBR performance.
For example, Guideline 1 encourages similar cases to
be distinguished by asharedquestion. Guideline 2 en-
courages case authors to group cases into topics dis-
tinguishable by a few keycontextquestions, which can
quickly isolate a potentially relevant case library subset
without eliminating relevant cases. Eliminating unnec-
essary questions from cases (Guideline 3) can increase
conversational efficiency(i.e., reduce the number of
questions that must be asked of users before a good
solution can be retrieved) and, perhaps, retrieval preci-
sion [8].

Although these guidelines are individually reason-
able, their use is problematic for two reasons. First, they
can conflict, and it is unclear to most novices how to
resolve these conflicts (e.g., while reusing questions is
important (Guideline 1), cases should not be described
by many unnecessary questions (Guideline 5), since
they tend to reduce retrieval efficiency and precision).
Second, because they are large in number, mastering

Conversational Case-Based Reasoning 13

them requires a long learning curve. These problems
are exacerbated when case libraries are large, when
novice users are allowed to edit cases, or when several
users jointly perform library maintenance.

Novice users can consult costly experts for help. We
instead advocate using software tools to assist novices
with the case authoring process.

3.2. Revising Conversational Case Libraries

Figure 3 summarizes the three phases of our approach,
which we have implemented inClire. The first phase
creates a tree-structured representation of the library,
which simplifies library assessment and revision. Revi-
sions are performed in the second phase, according to
design guidelines. The final phase extracts the revised
cases from this representation. This revision process is
transparent to users; they interact with the revised li-
brary only, and not with its intermediate representation.

Figure 3. The case library revision process.

Figure 4. Clire’s pseudocode for tree induction.

Clire uses a simple top-down decision tree induc-
tion algorithm (TDIDT) (e.g., [9, 10]) in the first phase.
TDIDT algorithms recursively apply a selection crite-
rion to choose an index question to partition a node’s
cases.Clire attempts to generate a separate leaf per
case.

Traditionally, most TDIDT selection criteria assume
that cases arehomogeneous(i.e., defined by the same
set of questions), although several methods exist for
tolerating missing values [11]. They also assume that
cases have been clustered (e.g., by class). These as-
sumptions are violated in our context, where cases are
heterogeneous(i.e., a CCBR library typically does not
have any one question answered in all of its cases) and
cases are not labeled by class (i.e., each case’s solution,
or action sequence, can be unique). Therefore, we used
an alternative selection criterion that chooses the most
frequently answered question among a node’s cases.
Cases that do not contain an answer for the selected
question are grouped into a separate node and recur-
sively partitioned.

Figure 4 summarizesClire’s tree induction algo-
rithm. It inputs two sets of cases,ActivesandInactives,
and a listQ of used questions. If none of the questions
answered in Actives can distinguish them from each
other or from the Inactives, then a leaf is returned with
these cases. Otherwise (Steps 3–8), a questionq 6∈ Q
is selected for recursive partitioning, and a subtree is

14 Aha, Breslow and Mũnoz-Avila

generated for each answera of q that appears in at least
one of the Actives. The recursive call constrains the
Actives and Inactives to casesC where〈q,a〉 ∈ Cqa,
addsq to Q, and notes thatq was used to partition
N. Steps 9–14 generate a subtree forN containing its
casesC whereq is not answered inCqa. If some Ac-
tives have no answer forq, then Inactives? is set to
the cases atN that still must be distinguished from
Actives? (i.e., because the〈q,a〉 pairs on the path to
Actives? are a proper subset of the pairs to Inactives?).
Whenever possible, this algorithm recurses until the
active and inactive cases are distinguishable.

After creating the indexing tree (phase 1), cases are
edited (phase 2) using case-specific feature selection,
which removes, from a caseC, all 〈q,a〉 pairs from
Cqa that do not appear on any path from the root to
leaves containingC. We’re assuming that the deleted
〈q,a〉 pairs are irrelevant because they do not logically
distinguish their case. Finally, during case extraction
(phase 3),Clire records, in order, the〈q,a〉 pairs that
appear on paths to each caseC, thus reordering the
pairs inCqa (i.e.,C’s problem specification).

This implementation ofClire addresses the first
three guidelines listed in Section 3.1: reuse questions,
order context before detail questions, and eliminate
non-distinguishing questions. Extracting cases from a
tree reuses answered questions on overlapping multi-
ple paths, thus encouraging question reuse. Frequently
answered questions are assumed to be context ques-
tions, and are identified as those on the higher nodes
of paths. This question ordering is preserved in the re-
vised cases. Non-distinguishing questions are removed
during the case-editing phase.

3.3. Empirical Evaluation

3.3.1. Performance Measures.We selected two mea-
sures to evaluate the performance of a CCBR library for
solving a set of queries. The first isprecision, defined
as whether the retrieved case’s actions solve a user’s
query. The second isefficiency, defined as the number

Table 1. Case libraries used in the experiments.

Original AfterClire revision

Name #Cases #Actions #Questions #Answers #Questions #Answers

Printing 25 28 27 70 16 55
VLS 114 227 597 710 83 395
ACDEV 3334 1670 2011 28200 1266 26827

of questions asked before retrieval occurs (i.e., lower
values correspond to higher efficiency). Good CCBR
libraries permit both high precision and efficiency.

3.3.2. Methodology. The best way to run experiments
with NaCoDAE is with human subjects. Unfortunately,
sufficient numbers of subjects were unavailable for our
evaluation. Therefore, we introduced a simple method-
ology that simulates a human user using a variant of
leave-one-out cross validation that we callleave-one-in
(LOICV). LOICV cycles through a library’s cases, each
time selecting atargetcaseC, with replacement. The
query is initially empty. During conversations, LOICV
ignores questions in displayDq that are not answered in
Cqa. Retrieval success occurs when the retrieved case’s
solution is identical toCs. In each iteration of a conver-
sation, LOICV either selects the top-ranking question
in Dq that is also inCqa (with probability pq) or ter-
minates the conversation by selecting the top-ranking
case inDs. (This case is also selected when no ques-
tion in Cqa is in Dq, or if its similarity score exceeds a
threshold.) Because ranking ties in these lists are ran-
domly broken, all reported results are averages from
ten runs.

3.3.3. Libraries. We experimented with the three case
libraries summarized in Table 1.Printing, a simple ex-
ample library provided with Inference’s products, is
used to diagnose and recommend solutions for printer
failures. VLS, obtained from the VLSED, provides
technical assistance for maintaining a vertical missile
launch system. ACDEV, from Circuit City’s Answer
City product, was designed to support branch store per-
sonnel. The first library is fairly well designed, while
the latter two are known to be problematic. ACDEV’s
size prevented us from using all cases as queries. In-
stead, we randomly selected 100 cases for querying
according to a uniform distribution with replacement.

Table 1 shows thatClire reduced the total num-
ber of questions by between 37% and 86%, and the
total number of answers in cases by between 5% and

Conversational Case-Based Reasoning 15

Figure 5. Clire improves CCBR performance in a baseline study.

44%. It is plausible that this should increase NaCo-
DAE’s retrieval efficiency on these libraries. However,
it is not clear whetherClire simultaneously sacrifices
precision.

3.3.4. Experiments. Parameterk (n) is the size of
the displayDs (Dq). In our initial experiment, we fixed
k = 4 and variedn. Figure 5 summarizes the results for
these three case libraries.3 As shown,Clire slightly
increased precision and efficiency for these libraries
across the conditions tested. Similar relative results also
occurred when we variedk.

However, modifyingpq, the probability that LOICV
continues to ask unanswered questions from the target
case instead of selecting a case, does affect relative
performance. We observed this by settingk = 4, n =
unlimited (i.e., all unanswered questions among the
top-rankingk cases were included inDq), and varying
pq in {70%, 80%, 90%, 100%}. For VLS and ACDEV,
performance benefits with theClire-revised libraries

Table 2. Clire ablation study results (k = 4, n = 6, pq = 100).

Libraries

Printing VMLS ACDEV

Revision operations Precision Efficiency Precision Efficiency Precision Efficiency

Neither 78.8% 2.4 59.3% 4.1 80.5% 7.6

Question reordering only 75.6% 2.4 68.7% 5.0 83.7% 7.6

Question selection only 82.8% 2.0 72.5% 3.2 85.8% 7.4

Both 82.8% 1.8 72.1% 3.1 85.8% 7.4

did not occur for smaller settings ofpq. Thus,Clire’s
benefits accrue primarily when conversations are not
terminated prematurely.

Although our initial experiments establish that re-
vision by Clire can improve CCBR performance
for these libraries, it is not clear why. Therefore, we
performed an ablation study with variants ofClire
that (1) applied only case-specific question selection,
(2) applied only question reordering (within each case),
(3) did both, or (4) did neither. Thus, this study iso-
lates the effects ofClire’s two case-editing modifi-
cations. Question selection is eliminated by reinstating
the “deleted”〈q,a〉 pairs of each caseC, placing them
after theClire-selected pairs inCqa’s ordering. Ques-
tion re-ordering is eliminated by retaining each revised
case’s original question ordering, but without deleted
questions.

Table 2 summarizes some typical results we found
in this ablation study. Invariably,Clire’s power em-
anated primarily from its question selection capability.

16 Aha, Breslow and Mũnoz-Avila

Figure 6. Example of the dialogue inferencing problem during a CCBR conversation.

Using only question selection yields behavior simi-
lar to using both revision operators, while using only
question reordering yields smaller gains, and some-
times even reduces performance. This occurred in-
dependently of NaCoDAE’s parameter settings and
the question-ranking strategy used. (However, order-
ing questions remains a good case authoring guideline;
a consistent ordering simplifies locating similar cases
and encourages question reuse.)

3.4. Discussion

Designing high-performance CCBR libraries will in-
terest any organization who wants to deploy this tech-
nology. Although commercial vendors supply guide-
lines for designing cases to ensure good CCBR
performance, they are difficult to implement for com-
plex libraries. Software assistants for case authoring
can potentially meet this challenge.

Three topics are of particular interest for future re-
search. First, our evaluation should be more realistic.
Question ordering in cases should affect question se-
lection in conversations, and LOICV should be permit-
ted to select questions not answered in the target case
and to answer questions incorrectly (i.e., simulating
noise). This requires domain models for noise and for
answering questions not inCqa. Second,Clire should
exploit domain knowledge. For example, although it
deletes questions from cases because they are not se-
lected in the tree, these may be important questions.
More generally, we assume domain experts are un-
available, althoughClire could be modified to incor-
porate domain-specific information. Finally,Clire’s
approach is post-hoc; the case library must first exist
before it can be edited. This approach could be mod-
ified so that case authoring guidelines are enforced as
cases are created.

4. Enhancing Dialogue Inferencing

Even when case libraries are well-designed, CCBR
conversations can be inefficient because the user may

be prompted with questions that could be automati-
cally answered (e.g., through inferencing). Therefore,
CCBR tools should automatically infer problem de-
scription details (i.e., answers to questions) from the
user’s inputs whenever possible during a conversation.

Figure 6 demonstrates an example of this problem
for the Printing case library. Although the first two
displayed questions were implicitly answered in the
query’s problem descriptionQd, NaCoDAE cannot au-
tomatically infer these answers (i.e., “Black Streaks”
and “Yes,” respectively). Case retrieval efficiency can
be increased by automatically deriving these answers.

Some commercial CCBR tools employ rule-based
reasoning to automatically derive inferences. For ex-
ample, suppose that, for the printer troubleshooting
task, the user enters the description “black streaks on
paper” and the system has the following rule:

IF text includes “black streaks” and “paper”,
THEN assign “Yes” as the answer to Q24.

Then the second question in Fig. 6 could automati-
cally be answered “Yes.” However, this solution to the
dialogue inferencingtask requires the case author to
provide a complete and correct set of independent in-
ferencing rules that (1) relate text to all possible〈q,a〉
pairs that it implies (text implication rules) and (2) re-
late〈q,a〉 pairs inferentially to one another (chaining
implication rules). Also, existing tools do not guarantee
rule correctness or domain completeness, and signifi-
cant knowledge engineering challenges ensue:

1. Input Size: Rule sets are often large (e.g., Print-
ing, which contains only 25 cases and 27 questions,
yields over 100 rules). Manually eliciting them is
tedious and error-prone.

2. Comprehensibility: Large sets of unrelated rules can
be difficult to examine.

3. Maintenance: Maintaining large rule sets can be dif-
ficult, if not impossible, for case libraries that re-
quire updating.

Conversational Case-Based Reasoning 17

Figure 7. Model-based support for dialogue inferencing in CCBR conversations.

Therefore, some CCBR case authors avoid using rules,
either because an incomplete rule set will decrease case
retrieval performance for their applications, or because
the maintenance issues are daunting.

We devised a dialogue inferencing approach that
uses model-based reasoning to generate implication
rules. To search these rules, we integrated NaCoDAE
with Parka-DB [12], a fast query-retrieval tool. Our
integration, summarized in Fig. 7, automatically in-
fers answers implicit in partially-specified queries. This
section details our approach and its evaluation.

4.1. Model-Based Dialogue Inferencing

Our approach interactively elicits a case library’sobject
model (relating domain objects) andquestionmodel
(relating questions to these objects) from the case
author. Because these models, represented as semantic
networks, are usually more compact than the corre-
sponding rule set, they will usually increase com-
prehensibility and simplify maintenance. Given these
models, theimplication rule generatorderives a rule
set. Given this set and the query, Parka-DB will retrieve
all answers implied by the user’s text and/or previously
answered questions, and add them toQqa.

Library models will be created by the library author
using an interactive editor; this is the only module that
we have not yet implemented. Parsing techniques will
assist in identifying objects and their relationships. For
example, when the user enters the questionCan your
printer print a self test?, “printer” and “self test” will

Figure 8. Partial object model for the printer troubleshooting
library.

be identified as (possibly previously identified) objects
connected by the relationship “print.” Users will be
queried to confirm all tentative identifications.

Figure 8 shows part of the object model for Print-
ing. It represents a printer, its printout, and possible
print qualities, with boxes denoting objects, diamonds
denoting domain attributes, and ellipses denoting at-
tribute values and value categories.

Figure 9 displays a partial question model that relates
two questions to the object model. Each question’sin-
terpretationis used to determine how to derive an an-
swer. Interpretations for boolean questions (e.g., Q24)
test for subgraph existence using existentially quanti-
fied variables. Interpretations for list questions (e.q.,
Q21) instead search for specific variable bindings dur-
ing subgraph matching.

18 Aha, Breslow and Mũnoz-Avila

Figure 9. Partial question model for the printer troubleshooting library.

Textual inferences depend on triggering phrases as-
sociated with nodes in the question model. Synonym
lists maintained by the system allow less literal matches
to be made.

Deriving chaining rules requires relating the inter-
pretations of two questions in the question model. For
example, given an answer to Q21 (“What does the print
quality look like?”) we can derive an answer for Q24
(“Is there a print quality problem?”). Relating these in-
terpretations requires matching subgraphs, where un-
bound variables of the target subgraph are bound in
the source graph. The two chaining rules that relate the
interpretations shown in Fig. 9 are shown in Fig. 10.
The first rule states that〈Q21,“Black Streaks”〉 im-
plies 〈Q24,“Yes”〉. The second rule is similar, but for
“Faded” print quality.

Parka-DB infers chaining rules from the model and
generates text rules from the wording of the questions
in the case library, where all knowledge is represented
as binary assertions. For example, the text rule “IfQd

contains ‘some black streaks’ and Q21 is not yet an-
swered, then answer Q21 with ‘Black Streaks’” could
be represented as:

(Triggering text Q21Black Streaks
“some black streaks”)

(QA question Q21Black Streaks Q21)
(Answer Q21 “unknown”)
(QA answer Q21Black Streaks “Black Streaks”)

Figure 10. Two chaining implication rules for the printer trou-
bleshooting library.

SupposeQd contains this phrase and Parka-DB is
given these assertions along with the query shown in
Fig. 11. Then the following bindings could be found
for (text implies “some black streaks” ?QA) to derive
the answer “Black Streaks” for Q21:

{ ?Userphrase/“some black streaks”,
?QA/Q21Black Streaks,
?Phrase/“some black streaks”,
?Q/Q21,?A/“Black Streaks”}.

Conversational Case-Based Reasoning 19

Figure 11. Parka-DB query for retrieving implied answers from text rules.

The assertions corresponding to the two chaining
rules shown in Fig. 10 are:

(QA question Q21Black Streaks Q21)
(QA answer Q21Black Streaks “Black Streaks”)
(QA question Q24Yes Q24)
(QA answer Q24Yes “Yes”)
(chainingimplies Q21Black Streaks Q24Yes)
(QA question Q21Faded Q21)
(QA answer Q21Faded “Faded”)
(chainingimplies Q21Faded Q24Yes)

If the problem description currently contains only
one answered question, namely (answer Q21 “Black
Streaks”), then these rules can be queried as shown in
Fig. 12, and Parka-DB will find the following bindings:

{ ?QAx/Q21Black Streaks,
?Q1/Q21, ?A1/“Black Streaks”,
?QAy/Q24Yes, ?Q2/Q24, ?A2/“Yes”}.

In sum, if the user inputs “some black streaks”, the sys-
tem will infer Q21Black Streaks by text inferencing
and Q24Yes using a chaining rule. Additional chaining
inferences may then be derived from these inferences
or question answers provided by the user later in the
conversation.

4.2. Evaluation

We hypothesized that dialogue inferencing should in-
crease NaCoDAE’s retrieval efficiency without impact-

Figure 12. Query for retrieving implied answers from chaining implication rules.

ing its retrieval precision. We tested this hypothesis on
Printing, after constructing a model of it from which
63 text and 43 chaining rules were extracted.

We conducted an ablation study to identify whether
these two types of rules can increase conversational re-
trieval efficiency. In our LOICV experiments we fixed
s= 4 andq= 6; other values for the display sizes gave
similar results. The ablations for the set of inferencing
rules used were none, text (only), chaining (only), or
both. Text rules were applied to the text description,
influencing the initial case ranking. Chaining rules,
whenever used, were applied immediately after ques-
tions were answered and were always recursively ap-
plied until no new answers were derived.

Table 3 summarizes results for Printing, including
the average number of text and chaining rule infer-
ences. Both types of rules increase efficiency, and their
effects were synergistic (i.e., their combination yields
a 13.7% to 20.9% reduction in the number of questions
answered by the simulated user). Retrieval precision
was unaffected.

Table 3. Dialogue inferencing ablation study results (precision,
efficiency, and number of inference) for the printing case library.

Num inferences

Rule sets used Precision Efficiency Text Chaining

None 95% 2.78 – –

Text 96% 2.48 0.29 –

Chaining 94% 2.40 – 0.35

Both 96% 2.20 0.27 0.36

20 Aha, Breslow and Mũnoz-Avila

Table 4. Dialogue inferencing ablation study results (precision,
efficiency, and number of inferences) for the subset of ACDEV.

Num inferences

Rule sets used Precision Efficiency Text Chaining

None 86% 7.72 – –

Text 91% 7.46 0.57 –

Chaining 87% 5.58 – 1.94

Both 88% 5.37 0.68 2.05

Printing is not a good library for demonstrating the
efficiency gains of our dialogue inferencing approach
because its problem specifications are small (i.e., only
2.84〈q,a〉 pairs on average) and few of its〈q,a〉 pairs
can be inferred from others. Therefore, we tested Na-
CoDAE on ACDEV, whose characteristics are better
suited for this demonstration, and from which we could
develop a reasonable case library model.

ACDEV’s cases can be clustered according to trou-
bleshooting topic (e.g., problems with TV remotes), but
not their solutions. We selected three clusters, totaling
20 cases, 33 questions, and 19 actions. These cases are
less sparse (26.1%) than the printer library (10.5%), the
average size of their specifications is much higher (8.6
vs 2.84), and more of the〈q,a〉 pairs in them are logi-
cally related (e.g., ifWhat is the general nature of the
video problem? has any answer, thenWhat is the gen-
eral nature of the problem? has answer “Video”). We
extracted a model containing 121 text and 105 chaining
rules.

ACDEV’s results are shown in Table 4. The increase
in efficiency was 30.4%, substantially higher than for
Printing. For some cases, the limited question display
size (i.e.,q) reduced retrieval precision when inferenc-
ing was not used. For these cases, dialogue inferencing
succeeded in retrieving a correct case because answers
to questions that were not displayed were automatically
inferred.

We also tested our integrated approach on a subset of
a third case library, DC220, obtained from Xerox Cor-
poration. We again selected one cluster of 20 cases (on
printer copy quality problems), whose problem specifi-
cations contain an average of 5.6〈q,a〉pairs and whose
cases have only 12 distinct solutions. We generated 70
text and 113 chaining rules from this subset. The results
were similar to our previous results: dialogue inferenc-
ing increased efficiency by 32.9%, reducing the average
number of questions answered from 5.56 to 3.73 per
conversation, while precision remained 100%. How-

ever, text inferencing was ineffective because the case’s
problem descriptions, which should mimic a user’s text,
had few words in common with the questions’ text.

4.3. Discussion

We hypothesize that, in the context of our model-
based approach for dialogue inferencing, text infer-
ences should be beneficial when case descriptions
overlap with question text. Also, chaining rules should
benefit case libraries whose case specifications are long
and contain logically or causally related〈q,a〉 pairs.
Importantly, rule completeness and accuracy should
impact retrieval performance. For example, when we
randomly deleted half of ACDEV’s chaining rules, ef-
ficiency was reduced (i.e., 0.5 more questions were an-
swered, on average, by the “user”), and when we added
noise to half of ACDEV’s chaining rules, retrieval pre-
cision dropped by 15%.

5. Conversational Case-Based Planning

Although CCBR systems have been successfully used
in case retrieval applications, they have not been ap-
plied to synthesis tasks (e.g., planning, design). Yet
CCBR should prove useful for decomposable synthe-
sis tasks that require intensive user interaction. In par-
ticular, CCBR could be used to iteratively elaborate
an initial solution, which would allow users to tailor a
solution to their needs and, thus, enhance their confi-
dence in the resulting solution. We developed HICAP,
an integrated extension of NaCoDAE for use in plan-
ning tasks. This section describes this integration and
its application to a complex military task.

5.1. Plan Authoring Task

HICAP (Hierarchical Interactive Case-based Architec-
ture for Planning) is a general-purpose plan author-
ing tool that we are applying to support noncombat-
ant evacuation operations (NEOs). NEOs are military
operations, directed by the USA Department of State,
for evacuating noncombatants, nonessential military
personnel, and selected host-nation citizens and third
country nationals whose lives are in danger to an ap-
propriate safe haven. They usually involve a swift in-
sertion of a force, temporary occupation of an objective
(e.g., a USA Embassy), and a planned withdrawal af-
ter mission completion. NEOs are usually planned and
conducted by a joint task force (JTF), and are under

Conversational Case-Based Reasoning 21

an Ambassador’s authority. Force sizes can range into
the hundreds with all branches of armed services in-
volved, while the evacuees can number into the thou-
sands. At least ten NEOs were conducted within the
past decade [13]. Unclassified publications describe
NEO doctrine [14], case studies [13, 15], and more
general analyses [16, 17].4

Formulating a NEO plan is complex because it re-
quires considering a wide range of factors (e.g., mili-
tary resources, meteorological predictions), uncertain-
ties (e.g., hostility levels and locations), and hundreds
of subtasks (e.g., evacuee processing). NEOs are chal-
lenging to plan, and flawed plans could be disastrous.
For example, Siegel [15] reported that evacuees in Op-
eration Eastern Exit were not inspected prior to trans-
port, and one of the evacuees produced his weapon
during a helicopter evacuation flight. Although it was
immediately confiscated, this oversight could have
been tragic.

NEO are planned with the help of published mil-
itary doctrine, which provides a framework for de-
signing strategic and operational plans [14]. However,
doctrine cannot address most tactical issues, which are
operation-specific. Thus, the JTF commander (CJTF)
must always adapt doctrine to the specific needs of a
NEO in two ways. First, the CJTF must modify doctrine
by eliminating irrelevant planning tasks and adding
others (e.g., depending on resource availabilities). Sec-
ond, the CJTF must employ experiences from previous
NEOs, which complement doctrine by suggesting tac-
tical refinements that are suitable for the current oper-
ation. For example, past experiences could help iden-
tify whether evacuees for a specific operation should
be concentrated at an embassy or grouped at multiple
evacuation sites.

After analyzing NEO doctrine, reviewing case stud-
ies, and consulting with NEO experts, we concluded
that a NEO plan authoring assistant must have (at least)
the following capabilities:

• Doctrine-driven: Use a doctrine task analysis to
guide plan formulation.
• Interactive: Support interactive plan editing.
• Provide Case Access: Index plan segments from pre-

vious NEOs, and retrieve them for users if warranted
by the current operational environment.
• Perform Bookkeeping: Record and maintain infor-

mation on tasks, their completion status, and re-
lations between task responsibilities and joint task
force (JTF) elements.

Although incomplete, this list provides a useful initial
specification for HICAP. Although several other sys-
tems have been proposed for NEO planning, the only
deployed tool is limited because it cannot reason from
previous experiences.

5.2. HICAP: An Interactive Case-Based Planner

HICAP integrates a task decomposition editor, HTE
[18], with NaCoDAE/HTN, an extension of NaCo-
DAE suitable for working with simple hierarchical task
networks (HTNs). HTE allows users to edit doctrine
and select operational5 tasks for refinement into tacti-
cal actions. NaCoDAE/HTN is used to help users se-
lect which refinements to implement. (We ignore high-
level strategic planning issues because they involve
political concerns that are challenging to model and
simulate.) Figure 13 summarizes HICAP’s integrated
architecture.

HICAP’s plans are represented using a variant of
HTNs [19], a particularly expressive plan representa-
tion. We define a HTN as a set of tasks and their or-
dering relations, denoted asN = 〈{T1, . . . , Tm},≺〉
(m≥ 0). The relation≺ has the formTi ≺ Tj (i 6= j),
and expresses temporal restrictions between tasks.
Problem solving is performed by applyingmethodsto
decompose tasks into subtasks. Each method has the
form M = 〈l , T, N, P〉, wherel is a label,T is a task,
N is a HTN, andP = 〈p1, . . . , pk〉 is a set of precon-
ditions for applyingM . WhenP is satisfied,M can be
applied toT , yielding N.

Three task types exist. First,non-decomposable
tasks are tactical actions; they can occur only at leaves
of the network. Second,uniquely decomposabletasks
are specified by doctrine and are unconditional (i.e.,
P = ∅). Finally, multiply decomposabletasks can be
subdivided in multiple ways according to the specific
problem-solving context.

HICAP inputs a HTN describing the doctrine for
an application, a second HTN for the command hier-
archy, a mapping from tasks to command elements,
and one set of cases for each subtask that can be de-
composed in multiple ways. Under user control, HI-
CAP outputs an edited HTN whose leaves are tactical
actions.

Plans and tasks in HICAP are managed by HTE (Hi-
erarchical Task Editor), which serves as a bookkeep-
ing tool and visualizes the task hierarchy HTN, the
command hierarchy, the assignment of tasks to com-
mand elements, and task orderings [18]. HTE can be

22 Aha, Breslow and Mũnoz-Avila

Figure 13. The HICAP architecture.

Figure 14. HTE snapshot displaying the task (left) and command hierarchies (right); arrows denote ordering constraints.

used to:

1. browse and edit the given HTNs and links,
2. select tasks for further decomposition,
3. edit assignments of military personnel to tasks,

and
4. record the completion status of tasks.

For NEO plan formulation, we elicited a HTN to
capture critical planning knowledge corresponding to
NEO doctrine [14]. This substantial manual knowledge

acquisition effort yielded more than 200 tasks and their
ordering relations. We also elicited the JTF command
hierarchy that is commonly used in NEO operations.
Finally, we assigned default JTF elements responsi-
ble for each task. Figure 14 displays (left) some tasks
that, according to doctrine, must be performed during
a NEO and (right) the elements in the JTF responsible
for them. (Also shown are some task orderings for the
task agenda and a task/command mapping; the FCE is
responsible for selecting evacuation assembly areas.)
HTE can be used to edit the HTN (i.e., doctrine), task

Conversational Case-Based Reasoning 23

ordering relations, the command hierarchy, and task-
command mappings. Thus, military commanders can
use HTE to tailor its knowledge to the current NEO’s
needs.

HICAP represents decomposition methods, for mul-
tiply decomposable tasks, as case solutions. Method
preconditions are represented by a case’s problem spec-
ification (i.e., its〈q,a〉 pairs). Cases denote standard
operational procedures (SOP), obtainable from opera-
tional manuals, or task decompositions used in previous
NEO exercises or operations. Users can direct HTE to
solve/decompose one of these tasksT , at which point
HICAP initiates a NaCoDAE/HTN conversation that
accesses all cases for decomposingT (i.e., usingT as
an index for case retrieval). If all the preconditions of a
SOP case are met, then it is used to decomposeT . Oth-
erwise, the cases are (incrementally) ranked by their
conditions’ similarities with the current planning sce-
nario, and the user can select any of their task decompo-
sitions to apply. For example, standard procedures call
for the Department of State to concentrate evacuees in
the embassy prior to troop deployment. This is not al-
ways possible; escorted transports were organized after
the JTF was deployed in Eastern Exit [15] and the evac-
uees of Sharp Edge [20] were concentrated in several
places, which forced multiple separate evacuations.

NaCoDAE/HTN can be used to recursively refine
selected operational-level tasks into tactical subtasks.
It operates similarly to NaCoDAE except for three dif-
ferences. First, all plan scenario information obtained
earlier in a conversation is available for computing case
similarities. Second, the user-selected solution is ap-
plied to decompose the current task into subtasks (i.e.,
solutions are task decompositions rather than action se-
quences). All expansions are immediately displayed by
HTE. Non-decomposable tasks corresponding to tacti-
cal actions will eventually be reached through the task
expansion process. Finally, SOP cases require com-
plete matching, and cannot be selected otherwise. In
contrast, cases based on previous NEOs support partial
matching: they can be selected even if some of their
questions have not been answered, or if the user’s an-
swers differ from the case’s.

In summary, HICAP integrates HTE with NaCo-
DAE/HTN to formulate plans that are in accordance
with both doctrine and stored cases. In doing so, it
satisfies the requirements stated in Section 5.1 for a
NEO plan authoring assistant. The following section
describes an example of its use, followed by an evalu-
ation with a simulator.

5.3. HICAP Example

During NEO planning, the user views the top level
tasks first, revising them or their assignments if neces-
sary. Any task can be selected and expanded. Figure 14
shows an intermediate stage during this process. The
user has selected the taskSelect assembly areas for
evacuation & ECC(Evacuation Control Center) sites,
which is highlighted together with its assigned com-
mand element.

Although SOPs dictate that the embassy is the ideal
assembly area for all evacuees, this is not always fea-
sible. A military planner can select this task to initi-
ate a NaCoDAE/HTN conversation (see Fig. 15 (left)),
which will allow them to assess and examine the al-
ternative task decompositions listed under “Ranked
Cases.”

Suppose the user answersAre there any hostiles be-
tween the embassy and the evacuees?with “uncertain.”
This yields a perfect match with the second displayed
case (Fig. 15 (left)), resulting in a revised case ranking
(Fig. 15 (right)). If the user selects it to decompose this
task, then Fig. 16 shows the decomposition contain-
ing two new subtasks (i.e., corresponding to this case’s
decomposition network). The first subtask,Send UAV
(Unmanned Air Vehicle) to. . . , is non-decomposable;
it corresponds to a tactical action. If the user tells
HICAP to decompose the second subtask,Determine
if hostiles are present, HICAP will initiate a new Na-
CoDAE/HTN dialogue (also in Fig. 16).

If the user next selectsThe UAV detects hostiles
method, theHandle hostile presencesubtask will be
added to the HTN (Fig. 17). If the user then decides to
decompose that task, a new NaCoDAE/HTN dialogue
begins. Suppose the user answersCan the hostile forces
. . . with “yes.” This matches the situation in Operation
Eastern Exit in which the evacuees were dispersed into
multiple locations in Mogadishu and escorted trans-
ports gathered all evacuees into the embassy. If the
user selects this case, then its two non-decomposable
subtasks,Assign dissuasive escortandEscort evacuees
to embassy, will be added to the HTN.

5.4. Evaluation

We tested HICAP’s ability to choose successful plans
for a specific NEO subtask. Two researchers performed
this experiment: one operated a military simulator
while the other operated HICAP. A strict blind was im-
posed to ensure that the HICAP user had no knowledge

24 Aha, Breslow and Mũnoz-Avila

Figure 15. NaCoDAE/HTN’s interface, before (left) and after (right) answering a question. The top window directs the user and lists the
possible answers. The lower windows display the ranked questions and cases.

Figure 16. HICAP’s interface after selecting theDetermine if hostiles are presenttask.

concerning the simulated hostile forces; this tests
HICAP’s utility for planning under realistic situations
where decision makers have uncertain information
about the world state. We hypothesized that HICAP
would allow users to choose a relatively successful plan
vs. three alternative methods for selecting plans:ran-
dom choice, heuristic choice, and choice by themost
frequently used planin past NEOs.

5.4.1. The ModSAF Simulator. We used Marine
Corps SAF (MCSF), a variant of ModSAF (Modular

Semi-Automated Forces), to evaluate the quality of
NEO plans elicited using HICAP. ModSAF, developed
by the US Army to inject simulated auxiliary forces
into training exercises, has been deployed to simulate
real-world military scenarios [21]. It is a finite state
simulation with modular components that represent in-
dividual entities and sub-entities. For example, a sim-
ulated tank’s physical components include its turret,
and its behavior components include move, attack, tar-
get, and react to fire. Certain 3D aspects are also rep-
resented (e.g., terrain elevation, tree and vegetation,

Conversational Case-Based Reasoning 25

Figure 17. Advising the user on how to handle a hostile presence.

Figure 18. A MCSF snapshot of the Camp Lejeune area.

rivers, oceans, atmospheric conditions), which can
affect sensory and movement behavior. Figure 18’s
MSCF snapshot displays a simulated USA Embassy,
a host country government compound, and some sim-

ulated objects (e.g., a transport helicopter is positioned
at the heliport within the Embassy site).

MCSF is a nondeterministic simulator that models
multiple sources of stochastic variation. Some events

26 Aha, Breslow and Mũnoz-Avila

are determined by a random number generator; oth-
ers are highly sensitive to the initial startup condi-
tions. MCSF simulates the behavior of military units
in context as they follow given tactical orders. There-
fore, MCSF can simulate simplified NEO subtasks in
which a single planning decision determines tactical
orders.

5.4.2. Empirical Methodology. We created a NEO
subtask for this evaluation concerning how to move 64
evacuees from a meeting site (i.e., a crossroads in an un-
inhabited area outside of a city) to a US embassy. Evac-
uees had to be transported (eight per vehicle) through
this undeveloped area, which had heavy tree cover, and
out through a city past a local government complex and
to the US embassy. This NEO context requires only a
single tactical plan decision with four distinct planning
solutions:

1. Land evacuation using 8 armored trucks
2. Land evacuation using 8 armored trucks with an 8

tank escort
3. Air evacuation using 8 transport helicopters
4. Air evacuation using 8 transport helicopters with an

8 attack helicopter escort

The military units used in this simulation are typi-
cal of those available to Marine Expeditionary Units
(MEUs) that frequently perform NEOs. A detailed ter-
rain database of Camp Lejeune (North Carolina, USA)
was chosen to simulate the environment, where some
MEUs train for NEOs.

Two scenarios were defined that were identical ex-
cept for the type of hostile forces. All hostiles were
two-person dismounted infantry teams. Hostile teams
in both scenarios were armed with two automatic rifles
and a portable missile launcher. However, the scenarios
were distinguished by the type of hostile missile: either
anti-tank or anti-air missiles, but not both. These hostile

Table 5. Summaries of casualties (mean and standard deviation) from 80 MCSF simulations.

Scenario 1 Scenario 2

Tactical plans Evacuees Friends Hostiles Evacuees Friends Hostiles

Land 6.4 5.1 0.8 0.6 5.5 1.3 0 0 4.2 0.8

Land/Escort 3.2 10.1 7.4 1.5 6.5 1.8 0 0 7.6 0.6

Air 56.0 9.2 7.0 1.2 0 64.0 0.0 8.0 0.0 0

Air/Escort 0 0.8 1.5 8.0 0.0 20.0 18.6 6.3 4.4 5.7 2.9

forces are typical of the kinds of hostile forces encoun-
tered in NEOs. The positions of the hostile teams were
the same for both scenarios and selected to ensure that
the opposing forces will meet.

All four plan options were simulated ten times per
scenario, resulting in 80(2× 4× 10) total MCSF sim-
ulations. As noted earlier, MCSF is nondeterministic.
For example, slight differences produced by MCSF’s
stochastic movement models resulted in very different
formations of friendly units when they first encountered
the hostile teams. These differences often lead to dras-
tically different simulated battle outcomes.

The HICAP user had no knowledge of the scenar-
ios being tested; scenario information was gradually
extracted through the questions prompted by NaCo-
DAE/HTN. That is, case-based planning was done with
incomplete information about the world. Furthermore,
the effects of actions were uncertain; the only way to
learn the effects of an action was to actually execute
it. This contrasts with the assumptions of traditional
planning approaches [22].

5.4.3. Results. Table 5 summarizes the casualty re-
sults for the 80 simulations, which each required ap-
proximately 15 minutes to run. The success measures
were taken from the US Navy’s Measures of Effective-
ness (MOEs) published in the Universal Naval Task
List. Recommended MOEs are specified for evaluat-
ing each kind of military operation. There are several
MOEs for the tactical aspects of NEOs; three were
chosen as most important for evaluating the results of
this experiment: (1) number of evacuees safely moved,
(2) number of casualties to friendly forces, and (3) num-
ber of casualties to hostile forces.

HICAP did not chose the same tactical plan for both
scenarios. For the first (anti-tank) scenario, it chose to
move the evacuees by helicopter with an attack he-
licopter escort.6 For the second (anti-air) scenario, it
chose to move evacuees by armored truck with a tank
escort.

Conversational Case-Based Reasoning 27

Figure 19. Comparison of plan selection methods using Navy MOEs for a NEO subtask.

HICAP’s results were compared with the plans cho-
sen by the other three plan selection methods.Ran-
dom choicesimply averages the results of all four
plans.Heuristic choicealways sent an escort, and its
results were the average of the two escort plans. The
most frequently usedplan for this subtask in recent
NEOs moved evacuees using escorted land vehicles.
Figure 19 compares the effectiveness of these four
selection methods. Overall, HICAP selected plans of
higher quality than the other methods because its plan
selection decisions are tailored to the characteristics of
each scenario.

5.5. Discussion

The HICAP plan authoring tool helps users to formu-
late a course of action for hierarchical tasks. It is the first
tool to combine a task guideline decomposition pro-
cess with CBR to support interactive plan formulation.
It yields plans that benefit from previous experiences
and are sound according to predefined guidelines. HI-
CAP also supports experience sharing, thus allowing
planners to exploit knowledge from other planning ex-
perts. These design characteristics enhance HICAP’s
acceptance by military planning personnel.

We are currently integrating HICAP with SHOP
[23], an HTN planner that can process numeric ex-
pressions. In addition, we are extending HICAP with
resource tracking capabilities to provide conflict man-
agement control for user edits.

6. Related and Future Research

6.1. Interactive CBR

Inference Corporation [7] introduced the first com-
mercial CCBR system, and several other companies

have since developed similar products [24]. Although
many successful CCBR applications have been pub-
lished (e.g., [25]), only three other research groups
have comprehensively addressed this topic. First, Shi-
mazu [26, 27] examined how multiple interface modes
can facilitate case retrieval and described the benefits
of indexing cases using multiple hierarchies and an en-
tropy question-ranking procedure. Supporting multiple
ways to retrieve cases could be useful in a distributed
military environment, in which users may differ in their
viewpoints. Shimazu [28] also showed howcue ques-
tions from recorded spoken dialogues can assist with
indexing cases using scripts inExpertGuide. Script
representations are particularly appropriate for plan-
ning tasks, and we intend to address this in our future
research.

Second, FindMe systems [29, 30] can be viewed as
CCBR tools that focus users on the top-ranking solution
and cases similar to it, where users direct the search pro-
cess by requesting different answers to some questions.
This simplifies conducting what-if analyses, which we
plan to investigate in the context of planning tasks.

Finally, Yang and his colleagues have continued
to developCaseAdvisor. For example, Racine and
Yang [31] described how to maintain conversational
case bases; we have incorporated some of their ideas
into NaCoDAE. Zhang and Yang [32] introduced a
question-weighting learning algorithm, inspired by er-
ror backpropagation, that requires the user to provide
feedback on their retrieval ranking preferences. Be-
cause their algorithm makes fewer assumptions than
the one developed by Trott and Leng [33], who struc-
tured the case authoring process using KADS, we
will consider using it in our future research on case-
based maintenance. Carrick et al. [34] described how
automated information gathering techniques could sup-
port planning tasks, which is of particular interest to

28 Aha, Breslow and Mũnoz-Avila

military applications in which sensor information must
be quickly fused in situation assessment tasks. Yang
and Wu [35] demonstrated how case-clustering tech-
niques and an entropy-driven question-selection strat-
egy can improve retrieval precision and efficiency. In
our context, cases are pre-clustered, and users proba-
bly would prefer question-ranking strategies that sup-
port more comprehensible explanations [36]. Finally,
Abi-Zeid et al.’s [37] application to search and res-
cue tasks highlighted CCBR’s use for situation assess-
ment (and report generation) in a time-critical con-
text is particularly pertinent to our future research
goals.

Alternative forms of interactive CBR prompt users
with questions suggested by decision trees. For exam-
ple, INRECA [38] uses a (global) decision tree induced
from the case library, defaulting to a traditional CBR
approach when the user cannot answer a given ques-
tion. In contrast, NODALCBR [39] retrieves a subset
M of matching cases using only zero-cost features,
and then dynamically induces a local (info-gain) de-
cision tree fromM , which is used to prompt users to
supply (non-zero cost) feature values. This is reminis-
cent of CS-IBL [40], which incrementally evaluates
features with non-zero evaluation cost and selects fea-
tures for evaluation that maximize the ratio of expected
match success to cost. Unlike CCBR, these question-
answering processes are not user-driven.

6.2. Case Library Authoring

Although few researchers have focussed on automated
support for case authoring, some have investigated
manual methods. For example, Heider et al. [41] de-
scribe problems due to poorly designed cases (i.e., in-
complete or noisy), and a methodology for improving
their quality by imposing more structure on the author-
ing process. Kitano et al. [42] also describe a general
methodology for building case bases. However, these
publications do not target CCBR systems.

Many CBR systems use decision trees to index and
retrieve cases. For example, this includesIBPRS [43],
which uses K-trees, and INRECA [44], which inte-
grates decision trees and k-d trees.Clire differs from
most of these approaches in that it uses trees to re-
vise, rather than index, case indices. One exception is
Cardie’s [45] TDIDT approach for feature selection,
althoughClire again differs in that it performscase-
specificfeature selection. Other case-specific feature
selection algorithms exist (e.g., [46]), but they assume

that cases are homogeneous (i.e, described by the same
questions), which is not true for most CCBR libraries.
Finally, unlike the others mentioned,Clire performs
in the context of a user-driven CCBR engine.

6.3. Model-Based CBR

There is a long history of model-based CBR frame-
works. For example, Vilain et al. [47] introduced a
representation language that supports a model-based
approach for increasing learning rates and reducing
the brittleness of induced generalizations for classifi-
cation tasks. CADET [48] uses index transformation
techniques to solve mechanical design tasks by rep-
resenting causal relations between problem variables.
Carma [49] uses a model-based adaptation compo-
nent to increase its predictive accuracy. However, to
our knowledge, no previous effort has focused on in-
tegrating model-based components to improve CCBR
performance.

6.4. Crisis Response Planning

Case-based planning (CBP) has been the subject of
extensive research [50]. Our work is closely related
to studies on hierarchical CBP [51–53].HICAP dif-
fers from these other approaches in that it includes the
user in its problem solving loop. This is particularly
important for applications like NEO planning, where
automated tools are unacceptable.

Currently, no intelligent NEO planning tool has been
deployed. Kostek [54] proposed a conceptual design
for predicting the force size and type required for a
NEO. Chavez and Henrion [55] described a decision-
theoretic approach for instantiating a general NEO plan
with specific parameters for locations, forces, and des-
tinations, and used it to assess alternative plans. Gil
et al. [56] presented a system for predicting manning
estimates for certain NEO tasks. None of these systems
formulate NEO plans, although desJardins et al. [57]
proposed a distributed hierarchical planning approach
for this task.

Although DARPA and other agencies have spon-
sored several projects related to NEO planning (e.g.,
ARPI [58]), HICAP is thefirst system to use acon-
versationalcase-based approach for plan formulation.
HICAP allows users to incrementally elaborate a plan-
ning scenario, provides a focus of attention that guides
this elaboration, and provides access to stored plan
fragments for use in new NEO plans.

Conversational Case-Based Reasoning 29

Some researchers have used case-based approaches
for HTN planning tasks on military domains. For ex-
ample, Mitchell’s [59] case-based planner selects tasks
for a Tactical Response Planner. However, NEO plan-
ning requires that each task be addressed—no choice
is involved—and we use CBP to instead choosehow
to perform a task. MI-CBP [60] uses rationale-directed
CBP to suggest plan modifications, but does not per-
form doctrine-driven task decomposition. HICAP’s in-
teractions instead focus on retrieval rather than plan
adaptation and learning. IFD4’s [61] plan formula-
tor automatically generates plans as guided by an ed-
itable objectives hierarchy. In contrast, HICAP’s ob-
jectives are fixed, and user interaction focuses on task
formulation.

Other researchers have developed related crisis re-
sponse systems. Ferguson and Allen [62] described an
interactive planner for military crisis response, but their
system does not use cases during plan formulation and
does not perform doctrine-driven task decomposition.
Likewise, Wolverton and desJardins’ [63] distributed
generative planner also does not use cases. Gervasio
et al. [64] described an interactive hierarchical case-
based scheduler for crisis response that does not per-
form interactive plan formulation. Avesani et al. [65]
described a CBP for fighting forest fires that supports
interactive plan adaptation, but does not use hierarchi-
cal guidelines to formulate plans asHICAP does. Fi-
nally, Leake et al. [66] described a CBP applied to dis-
aster response that focuses on learning case adaptation
knowledge, but it is not doctrine-driven and focuses in-
teraction on knowledge acquisition rather than problem
elicitation.

7. Conclusions

This paper summarizes our recent research on con-
versational case-based reasoning (CCBR), an interac-
tive form of case-based reasoning that supports mixed-
initiative case retrieval. We described our system Na-
CoDAE, its moduleClire for revising case libraries
to simplify the case authoring task, its integration with
Parka-DB to improve conversational retrieval effi-
ciency, and its extension in HICAP for plan authoring
tasks. We summarized evaluations for each extension
that demonstrate some confidence in their expected
performance.

CCBR research is becoming more popular, proba-
bly due both to its proven utility in commercial appli-
cations and its simplicity. Of particular interest to us

is integrating complementary technologies (e.g., ma-
chine learning, generative planning) with CCBR that
will extend it to synthesis and knowledge management
tasks, and, in doing so, prepare it for capturing addi-
tional market niches.

Acknowledgments

Many thanks to our NRL colleagues Tucker Maney,
Dan McFarlane, and Jim Ballas for their contribu-
tions, and to Dana Nau for our ongoing collabora-
tions. This research was generously supported by grants
from the Office of Naval Research and the Naval Re-
search Laboratory, and through a CRADA with Infer-
ence Corporation.

Notes

1. NaCoDAE, written in Java, is available upon request.
2. Although in some applications, the customer interacts with the

system directly (e.g., Nguyen et al., 1993).
3. Standard deviations for efficiency were very small throughout our

experiments, and were always below 5% for precision.
4. See www.aic.nrl.navy.mil/∼aha/neos for more information on

NEOs.
5. We use the term “operational” in the military sense, rather than the

sense common to AI (e.g., explanation-based reasoning). From
this perspective, tasks are ordered, from abstract to concrete, as
strategic, operationalandtactical.

6. HICAP’s highest ranked case was used to select its plan.

References

1. L. Breslow and D.W. Aha, “NaCoDAE: Navy Conversational
Decision Aids Environment,” Technical Report AIC-97-018,
NRL, NCARAI: Washington, DC, 1997a.

2. D.W. Aha and L.A. Breslow, “Refining conversational case li-
braries,” in Proceedings of the Second International Confer-
ence on Case-Based Reasoning, Springer: Providence, RI, 1997,
pp. 267–278.

3. D.W. Aha, T. Maney, and L.A. Breslow, “Supporting dialogue
inferencing in conversational case-based reasoning,” inFourth
European Workshop on Case-Based Reasoning, Springer:
Dublin, Ireland, 1998, pp. 262–273.

4. H. Muñoz-Avila, D. McFarlane, D.W. Aha, J. Ballas, L.A.
Breslow, and D. Nau, “Using guidelines to constrain interactive
case-based HTN planning,” inProceedings of the Third Interna-
tional Conference on Case-Based Reasoning, Springer: Seeon,
Germany, 1999, pp. 288–302.

5. E. Brill, “Transformation-based tagger,” V1.14. See www.cs.jhu.
edu/∼brill, 1995.

6. D.W. Aha and L.A. Breslow, “Correcting for length biasing
in conversational case scoring,” Technical Report AIC-98-007,
Naval Research Laboratory, Navy Center for Applied Research
in Artificial Intelligence, Washington, DC, 1998.

7. Inference Corporation, “CBR2: Designing CBR Express Case
Bases,” unpublished manuscript, 1995.

30 Aha, Breslow and Mũnoz-Avila

8. D. Wettschereck, D.W. Aha, and T. Mohri, “A review and com-
parative evaluation of feature weighting methods for lazy learn-
ing algorithms,”Artificial Intelligence Review, vol. 11, pp. 273–
314, 1997.

9. J. R. Quinlan, “Induction of decision trees,”Machine Learning,
vol. 1, pp. 81–106, 1986.

10. L. Breslow and D.W. Aha, “Simplifying decision trees: A
survey,” Knowledge Engineering Review, vol. 12, pp. 1–40,
1997b.

11. J.R. Quinlan, “Unknown attribute values in induction,” inPro-
ceedings of the Sixth International Workshop on Machine Learn-
ing, Morgan Kaufmann: Ithaca, NY, 1989, pp. 164–168.

12. J. Hendler, K. Stoffel, and M. Taylor, “Advances in high per-
formance knowledge representation,” Technical Report CS-TR-
3672, University of Maryland, Department of Computer Sci-
ence, College Park, MD, 1996.

13. A.B. Siegel, “Requirements for humanitarian assistance and
peace operations: Insights from seven case studies,” Technical
Report CRM 94-74, Center for Naval Analyses: Arlington, VA,
1995.

14. DoD, “Joint tactics, techniques and procedures for noncombat
evacuation operations, Joint Publication Report 3-07.51, second
draft, Department of Defense: Washington, DC, 1994.

15. A.B. Siegel, “Eastern Exit: The noncombatant evacuation opera-
tion (NEO) from Mogadishu, Somalia, in January 1991,” Techni-
cal Report CRM 91-221, Center for Naval Analyses: Arlington,
VA, 1991.

16. Stahl, T. David, “Noncombatant evacuation operations in sup-
port of the National Military Strategy,” Technical Report, United
States Army Command and General Staff College, School of
Advanced Military Studies, Fort Leavenworth, KA, 1992.

17. K.S. Lambert, “Noncombatant evacuation operations: Plan now
or pay later,” Technical Report, Naval War College: Newport,
RI, 1992.

18. H. Muñoz-Avila, L.A. Breslow, D.W. Aha, and D. Nau, “De-
scription and functionality of HTE (Version 2.90),” Technical
Report AIC-98-022, Washington, DC, Naval Research Labora-
tory, Navy Center for Applied Research in Artificial Intelligence,
1988.

19. K. Erol, D. Nau, and J. Hendler, “HTN planning: Complexity
and expressivity,” inProceedings of the Twelfth National Confer-
ence on Artificial Intelligence, AAAI Press: Seattle, WA, 1994,
pp. 1123–1128.

20. G.R. Sachtleben, “Operation Sharp Edge: The Corps MEU
(SOC) Program in action,”Marine Corps Gazette, vol. 11,
pp. 76–86, 1991.

21. A. Ceranowicz, “Modular semi-automated forces,” in Proceed-
ings of the Winter Simulation Conference of the ACM, IEEE:
New York, NY, 1994, pp. 755–761.

22. Fikes and Nilsson, “Strips: A new approach to the application
of theorem proving in problem solving,”Artificial Intelligence,
vol. 2, pp. 189–208, 1971.

23. D. Nau, Y. Cao, A. Lotem, and H. Mu˜noz-Avila, “SHOP: Simple
hierarchical ordered planner,” inProceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, AAAI
Press: Stockholm, 1999, pp. 968–973.

24. I. Watson, “Applying Case-Based Reasoning: Techniques for
Enterprise Systems,” Morgan Kaufmann: San Francisco, 1997.

25. T. Nguyen, M. Czerwinsksi, and D. Lee, “COMPAQ Quick-
Source: Providing the consumer with the power of artificial in-

telligence,” inProceedings of the Fifth Conference on Innovative
Applications of Artificial Intelligence, AAAI Press: Washington,
DC, 1993, pp. 142–150.

26. H. Shimazu, A. Shibata, and K. Nihei, “Case-based retrieval in-
terface adapted to customer-initiated dialogues in help desk op-
erations,” inProceedings of the Twelfth National Conference on
Artificial Intelligence, AAAI Press: Seattle, WA, 1994, pp. 513–
518.

27. H. Shimazu, A. Shibata, and K. Nihei, “ExpertGuide: A con-
versational case-based reasoning tool for developing mentors in
knowledge spaces,”Applied Intelligence, vol. 14, no. 1, pp. 33–
48, 2001.

28. H. Shimazu, “Translation of tacit knowledge into explicit knowl-
edge: Analyses of recorded conversations between customers
and human agents,” inExploring Synergies of Knowledge Man-
agement and Case-Based Reasoning: Papers from the AAAI
Workshop, edited by D.W. Aha, I. Becerra-Fernandez, F. Mau-
rer, and H. Mu˜noz-Avila, Technical Report WS-99-10, AAAI
Press: Menlo Park, CA, 1999.

29. R. Burke, K. Hammond, and B. Young, “The FindMe approach
to assisted browsing,”IEEE Expert, vol. 12, no. 4, pp. 32–40,
1997.

30. R. Burke, “The Wasabi Personal Shopper: A case-based rec-
ommender system,” inProceedings of the Sixteenth National
Conference on Artificial Intelligence, AAAI Press: Orlando, FL,
1999, pp. 844–849.

31. K. Racine and Q. Yang, “Maintaining unstructured case bases,”
in Proceedings of the Second International Conference on CBR,
Springer: Providence, RI, 1997, pp. 553–564.

32. Z. Zhang and Q. Yang, “Towards lifetime maintenance of case
base indexes for continual case based reasoning,” inProceed-
ings of the International Conference on Artificial Intelligence:
Methodology, Systems, Applications, Springer: Sozopol, Bul-
garia, 1998.

33. J.R. Trott and B. Leng, “An engineering approach for trou-
bleshooting case bases,” inProceedings of the Second Interna-
tional Conference on Case-Based Reasoning, Springer: Provi-
dence, RI, 1997, pp. 178–189.

34. C. Carrick, Q. Yang, I. Abi-Zeid, and L. Lamontagne, “Activat-
ing CBR systems through autonomous information gathering,”
in Proceedings of the Third International Conference on Case-
Based Reasoning, Springer: Seeon, Germany, 1999, pp. 74–88.

35. Q. Yang and J. Wu, “Enhancing the effectiveness of interac-
tive case-based reasoning with clustering and decision forests,”
Applied Intelligence, vol. 14, no. 1, pp. 49–64, 2001.

36. D. McSherry, “Interactive case-based reasoning in sequential
diagnosis,”Applied Intelligence, vol. 14, pp. 65–76, 2001.

37. I. Abi-Zeid, Q. Yang, and L. Lamontagne, “Is CBR applicable to
the coordination of search and rescue operations? A feasibility
study,” in Proceedings of the Third International Conference
on Case-Based Reasoning, Springer: Seeon, Germany, 1999,
pp. 358–371.

38. M. Manago, K.-D. Althoff, E. Auriol, R. Traphoner, S. Wess,
N. Conruyt, and F. Maurer, “Induction and reasoning from
cases,” inProceedings of the First European Workshop on Case-
Based Reasoning, Springer-Verlag: Kaiserslautern, Germany,
1993, pp. 313–318.

39. B. Smyth and P. Cunningham, “A comparison of incremental
CBR and inductive learning,” inWorking Papers of the Sec-
ond European Workshop on Case-Based Reasoning, edited by

Conversational Case-Based Reasoning 31

M. Keane, J.P. Haton, and M. Manago, Chantilly, France, un-
published, 1994.

40. M. Tan and J.C. Schlimmer, “Two case studies in cost-sensitive
concept acquisition,” inProceedings of the Eighth National Con-
ference on Artificial Intelligence, AAAI Press: Boston, MA,
1990, pp. 854–860.

41. R. Heider, E. Auriol, E. Tartarin, and M. Manago, “Improv-
ing the quality of case bases for building better decision support
systems,” inFifth German Workshop on CBR: Foundations, Sys-
tems, and Applications, edited by R. Bergmann and W. Wilke,
Technical Report LSA-97-01E, University of Kaiserslautern,
Department of Computer Science, 1997.

42. H. Kitano, H. Shimazu, and A. Shibata, “Case-method: A
methodology for building large-scale case-based systems,” in
Proceedings of the Eleventh National Conference on Artificial
Intelligence, AAAI Press: Washington, DC, 1993, pp. 303–308.

43. S. Ku and Y.-H. Suh, “An investigation of the K-tree search
algorithm for efficient case representation and retrieval,”Expert
Systems with Applications, vol. 11, pp. 571–581, 1996.

44. E. Auriol, S. Wess, M. Manago, K.-D. Althoff, and R. Traph¨oner,
“Inreca: A seamlessly integrated system based on inductive
inference and case-based reasoning,” inProceedings of the First
International Conference on Case-Based Reasoning, Springer:
Sesimbra, Portugal, 1995, pp. 371–380.

45. C. Cardie, “Using decision trees to improve case-based learn-
ing,” in Proceedings of the Tenth International Conference on
Machine Learning, Morgan Kaufmann: Amherst, MA, 1993,
pp. 25–32.

46. P. Domingos, “Context-sensitive feature selection for lazy learn-
ers,”Artificial Intelligence Review, vol. 11, pp. 227–253.

47. M. Vilain, P. Koton, and M.P. Chase, “On analytical and
similarity-based classification,” inProceedings of the Eighth
National Conference on Artificial Intelligence, AAAI Press:
Boston, MA, 1990, pp. 867–874.

48. D. Navinchandra, K. Sycara, and S. Narasimhan, “A transfor-
mational approach to case based synthesis,”AI in Engineering
Design and Manufacturing, vol. 5, 1991, pp. 31–45.

49. J.D. Hastings, L.K. Branting, and J.A. Lockwood, “Case adap-
tation using an incomplete causal model,” inProceedings of
the First International Conference on Case-Based Reasoning,
Springer-Verlag: Sesimbra, Portugal, 1995, pp. 181–192.

50. R. Bergmann, H. Mu˜noz-Avila, M. Veloso, and E. Melis, “Case-
based reasoning applied to planning tasks,” inCBR Technol-
ogy: From Foundations to Applications, edited by M. Lenz,
B. Bartsch-Spoerl, H.-D. Burkhard, and S. Wess, Springer:
Berlin, 1998.

51. S. Kambhampati, “Exploiting causal structure to control re-
trieval and refitting during plan reuse,”Computational Intelli-
gence, vol. 10, pp. 213–244, 1994.

52. R. Bergmann and W. Wilke, “Building and refining abstract plan-
ning cases by change of representation language,”Journal of AI
Research, vol.3, pp. 53–118, 1995.

53. L.K. Branting and D.W. Aha, “Stratified case-based reasoning:
Reusing hierarchical problem solving episodes,” inProceedings
of the Fourteenth International Joint Conference on AI, Morgan
Kaufmann: Montreal, Canada, 1995, pp. 384–390.

54. S.R. Kostek, “A User’s Design of a Decision Support System for
Noncombatant Evacuation Operations for United States Central

Command,” Master’s thesis, School of Engineering, Air Force
Institute of Technology, Dayton, Ohio, 1988.

55. T. Chavez and M. Henrion, “Focusing on what matters in plan
evaluation: Efficiently estimating the value of information,” in
Proceedings of the ARPA/Rome Laboratory Knowledge-Based
Planning and Scheduling Initiative, Morgan Kaufmann: Tuscon,
AR, 1994, pp. 387–399.

56. Y. Gil, M. Hoffman, and A. Tate, “Domain-specific criteria
to direct and evaluate planning systems,” inProceedings of
the ARPA/Rome Laboratory Knowledge-Based Planning and
Scheduling Initiative, Morgan Kaufmann: Tuscon, AR, 1994,
pp. 433–444.

57. M. desJardins, A. Francis, and M. Wolverton, “Hybrid plan-
ning: An approach to integrating generative and case-based
planning,” inCase-Based Reasoning Integrations: Papers from
the 1998 Workshop, edited by D.W. Aha and J.J. Daniels,
Technical Report WS-98-15, AAAI Press: Menlo Park, CA,
1998.

58. A. Tate, “Mixed initiative planning in O-Plan2,” inProceedings
of the ARPA/Rome Laboratory Knowledge-Based Planning and
Scheduling Initiative, Morgan Kaufmann: Tuscon, AR, 1994,
pp. 512–516.

59. S.W. Mitchell, “A hybrid architecture for real-time mixed-
initiative planning and control,” inProceedings of the Ninth
Conference on Innovative Applications of Artificial Intelligence,
AAAI Press: Providence, RI, 1997, pp. 1032–1037.

60. M. Veloso, A.M. Mulvehill, and M.T. Cox, “Rationale-supported
mixed-initiative case-based planning,” inProceedings of the
Ninth Conference on Innovative Applications of Artificial In-
telligence, AAAI Press: Providence, RI, 1997, pp. 1072–
1077.

61. M.A. Bienkowski and L.J. Hoebel, “Integrating AI components
for a military planning application,” inProceedings of the Fifth-
teenth National Conference on Artificial Intelligence, AAAI
Press: Madison, WI, 1998, pp. 561–566.

62. G. Ferguson and J.F. Allen, “TRIPS: An integrated intelligent
problem-solving assistant,” inProceedings of the Fifthteenth
National Conference on Artificial Intelligence, AAAI Press:
Madison, WI, 1998, pp. 567–572.

63. M. Wolverton and M. desJardins, “Controlling communica-
tion in distributed planning using irrelevance reasoning,” in
Proceedings of the Fifthteenth National Conference on Artifi-
cial Intelligence, AAAI Press: Madison, WI, 1998, pp. 868–
874.

64. M.T. Gervasio, W. Iba, and P. Langley, “Case-based seeding
for an interactive crisis response assistant,” inCase-Based Rea-
soning Integrations: Papers from the 1998 Workshop, edited by
D.W. Aha and J.J. Daniels, Technical Report WS-98-15, AAAI
Press: Menlo Park, CA, 1998.

65. P. Avesani, A. Perini, and F. Ricci, “The twofold integration
of CBR in decision support systems,” inCase-Based Reason-
ing Integrations: Papers from the 1998 Workshop, edited by
D.W. Aha and J.J. Daniels, Technical Report WS-98-15, AAAI
Press: Menlo Park, CA, 1998.

66. D.B. Leake, A. Kinley, and D. Wilson, “Acquiring case adap-
tation knowledge: A hybrid approach,” inProceedings of the
Thirteenth National Conference on Artificial Intelligence, AAAI
Press: Portland, OR, 1996, pp. 684–689.

32 Aha, Breslow and Mũnoz-Avila

David W. Aha (UCI, 1990) leads projects on planning, case-based
reasoning (CRB), and knowledge management. He has (co-) orga-
nized ten meetings related to these areas, including serving as Pro-
gram Co-Chair for ICCBR’01. He is an editor for Machine Learning
(ML), on the editorial board for Applied Intelligence, and edited
a special quintuple journal issue on Lazy Learning (AI Review,
1997). He is the Head of the Intelligent Decision Aids Group at
NRL/NCARAI, where he leads several projects related to mixed-
initiative planning and intelligent lessons learned systems.

Leonard A. Breslow received his BA from Yale University, a PhD
in Psychology from the University of California Berkeley, and an
MS in Computer Science from the University of Minnesota. He
worked as an Assistant Professor in the University of Minnesota,
a Human Factors Engineer at IBM, and currently is a Computer

Scientist at the Naval Research Laboratory. His areas of research
and interest include cognitive psychology/development/science and
artificial intelligence. Len is the primary software developer of Na-
CoDAE and HICAP.

Héctor Muñoz-Avila (U. Kaiserslautern, 1998) is currently work-
ing on projects related to mixed-initiative planning in dynamic,
real-world domains that require multi-model reasoning approaches.
While working with groups at the Naval Research Laboratory and
the University of Maryland, he has contributed significantly to the
design and development of the HICAP plan authoring tool suite and
the SHOP generative planner. Hector’s areas of expertise include
case-based reasoning, planning and machine learning, and he often
contributes publications to and serves as a reviewer for several con-
ferences and journals related to these areas.

