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Abstract

Recent advances in computing technology in
terms of speed, cost, as well as access to
tremendous amounts of computing power and
the ability to process huge amounts of data
in reasonable time has spurred increased in-
terest in data mining applications. Machine
learning has been one of the methods used in
most of these data mining applications. It is
widely acknowledged that about 80% of the re-
sources in a majority of data mining appli-
cations are spent on cleaning and preprocess-
ing the data. However, there have been rela-
tively few studies on preprocessing data used
as input in these data mining systems. In this
study, we present a feature selection method
based on the Hausdor� distance measure, and
evaluate its e�ectiveness in preprocessing in-
put data for inducing decision trees. The
Hausdor� distance measure has been used ex-
tensively in computer vision and graphics ap-
plications, to determine the similarity of pat-
terns. Two real-world �nancial credit scoring
data sets are used to illustrate performance of
the proposed method.

1 Introduction

It is widely recognized that around 80% of the resources
in data mining applications are spent on cleaning and
preprocessing the data. The actual mining or extrac-
tion of patterns from the data requires the data to be
clean since input data are the primary, if not the only,
source of knowledge in these systems. Cleaning and
preprocessing data involves a few or several steps in-
cluding procedures for handling incomplete, noisy, or
missing data; sampling of appropriate data; feature se-
lection; feature construction; and also formatting the
data as per the representational requirements of tech-
niques used to extract knowledge from these data.
Invariably, and unknowingly for the most part, ir-

relevant as well as redundant variables are introduced
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along with relevant variables to better represent the do-
main in these applications. A relevant variable is nei-
ther irrelevant nor redundant to the target concept of
interest (John, et al., 1994). Whereas an irrelevant fea-
ture does not a�ect describing the target concept in any
way, a redundant feature does not add anything new
to describing the target concept while possibly adding
more noise than useful information in concept learning.

Feature Selection is the problem of choosing a small
subset of features that ideally is necessary and su�cient
to describe the target concept (Kira and Rendell, 1992).
Feature selection is of paramount importance for any
learning algorithm which when poorly done (i.e., a poor
set of features is selected) may lead to problems asso-
ciated with incomplete information, noisy or irrelevant
features, not the best set/mix of features, among oth-
ers. The learning algorithm used is slowed down unnec-
essarily due to higher dimensions of the feature space,
while also experiencing lower prediction accuracies due
to learning irrelevant information. The ultimate ob-
jective of feature selection is to obtain a feature space
with (1) low dimensionality, (2) retention of su�cient
information, (3) enhancement of separability in feature
space for examples in di�erent categories by remov-
ing e�ects due to noisy features, and (4) comparability
of features among examples in same category (Meisel,
1972).

Feature selection method using the Hausdor� dis-
tance measure is presented and evaluated in this study.
The Hausdor� distance measure is widely used in com-
puter vision and graphics applications, due to its ex-
cellent properties. It has, however, not received much
attention in the feature selection literature.

This paper is organized as follows: Section 2 provides
a brief overview of recent developments in feature selec-
tion methods. The proposed feature selection method
using the Hausdor� method is presented in section 3.
This is followed by illustration of the proposed method
using two real-world �nancial credit scoring data sets
in section 4. Section 5 concludes the paper with a brief
discussion of this study.
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2 Recent Developments in Feature

Selection

Feature selection is the problem of choosing a small
subset of features that ideally is necessary and su�-
cient to describe the target concept (Kira and Rendell,
1992). A goal of feature selection is to avoid selecting
too many or too few features than is necessary. If too
few features are selected, there is a good chance that
the information content in this set of features is low.
On the other hand, if too many (irrelevant) features are
selected, the e�ects due to noise present in (most real-
world) data may overshadow the information present.
Hence, this is a tradeo� which must be addressed by
any feature selection method.

There exists a vast amount of literature on feature
selection. Researchers have attempted feature selec-
tion through varied means, such as statistical (e.g.,
Kittler, 1975), geometrical (e.g., Elomaa and Ukko-
nen, 1994), information-theoretic measures (e.g., Bat-
titi, 1994), mathematical programming (e.g., Bradley,
et al., 1998), among others.

In statistical analyses, forward and backward step-
wise multiple regression (SMR) are widely used to se-
lect features, with forward SMR being used more often
due to the lesser magnitude of calculations involved.
The output here is the smallest subset of features re-
sulting in an R2 (correlation coe�cient) value that ex-
plains a signi�cantly large amount of the variance. In
forward SMR, the analyses proceeds by adding features
to a subset until the addition of a new feature no longer
results in a signi�cant (usually at the 0.05 level) incre-
ment in explained variance (R2 value). In backward
SMR, the full set of features are used to start with,
while seeking to eliminate features with the smallest
contribution to R2.

Malki and Moghaddamjoo (1991) apply the K-L
transform on the training examples to obtain the ini-
tial training vectors. Training is started in the direction
of the major eigenvectors of the correlation matrix of
the training examples. The remaining components are
gradually included in their order of signi�cance. The
authors generated training examples from a synthetic
noisy image and compared the results obtained using
the proposed method to those of standard backprop-
agation algorithm. The proposed method converged
faster than standard backpropagation with compara-
ble classi�cation performance.

Siedlecki and Sklansky (1989) use genetic algorithms
for feature selection by encoding the initial set of n
features as n-element bit string with 1 and 0 repre-
senting the presence and absence respectively of fea-
tures in the set. They used classi�cation accuracy, as
the �tness function (for genetic algorithms while se-
lecting features) and obtained good neural network re-
sults compared to branch and bound and sequential
search (Stearns, 1976) algorithms. They used a syn-
thetic data as well as digitized infrared imagery of real
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scences, with classi�cation accuracy as the objective
function. Yang and Honavar (1997) report a similar
study. However, later Hopkins et al. (1994) show that
classi�cation accuracy may be a poor �tness function
measure when searching for reducing the dimension of
the feature set.
Using Rough Sets theory (Pawlak, 1982), PRESET

(Modrzejewski, 1993) determines the degree of depen-
dency () of sets of attributes for selecting binary fea-
tures. Features leading to a minimal preset decision
tree, which is the one with minimal length of all path
from root to leaves, are selected. Kohavi and Frasca
(1994) use best-�rst search, stopping after a predeter-
mined number of nonimproving node expansions. They
suggest that it may be bene�cial to use a feature subset
that is not a reduct, which has a property that a fea-
ture cannot be removed from it without changing the
independence property of features. A table-majority
inducer was used with good results.
The wrapper method (Kohavi, 1995) searches for a

good feature subset using the induction algorithm as
a black box. The feature selection algorithm exists as
a wrapper around the induction algorithm. The in-
duction algorithm is run on data sets with subsets of
features, and the subset of feature with the highest esti-
mated value of a performance criterion is chosen. The
induction algorithm is used to evaluate the data set
with the chosen features, on an independent test set.
Almuallim and Dietterich (1991) introduce MIN-

FEATURES (if two functions are consistent with the
training examples, prefer the function that involves
fewer input features) bias to select features in the FO-
CUS algorithm. They used synthetic data to study
the performance of the FOCUS, ID3, and FRINGE al-
gorithms using sample complexity, coverage, and clas-
si�cation accuracy as performance criteria. They in-
creased the number of irrelevant features and showed
that FOCUS performed consistently better.
The IDG algorithm (Elomaa and Ukkonen, 1994)

takes the positions of examples in the instance space
to select features for decision trees. They limit their
attention to boundaries separating examples belonging
to di�erent classes, while rewarding (penalizing) rules
that separate examples from di�erent (same) classes.
Eight data sets are used to compare the performance
(% accuracy, number of nodes in decision tree, time)
of decision trees constructed using the proposed algo-
rithm with ID3 (Quinlan, 1987). Decision trees gener-
ated using the proposed algorithm had better accuracy
whereas those with ID3 had fewer number of nodes and
took more than an order of magnitude less time.
Based on the positions of instances in instance space,

the Relief algorithm (Kira and Rendell, 1992) selects
features that are statistically relevant to target con-
cept, using a relevancy threshold that is selected by
the user. Relief is noise-tolerant and is una�ected by
feature interaction. The complexity of relief is O(pn),
where n and p are the number of instances and number
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of features respectively. Relief was studied using two
2-class problems with good results, compared to FO-
CUS (Almuallim and Dietterich, 1991) and heuristic
search (Devijver and Kittler, 1982), Kononenko (1994)
extended RELIEF to deal with noisy, incomplete, and
multi-class data sets.
Milne (1995) used neural networks to measure the

contribution of individual input features to the output
of the neural network. A new measure of input features'
contribution to output is proposed, and evaluated us-
ing data mapping species occurrence in a forest. Using
a scatter plot of contribution to output, subsets of fea-
tures were removed and the remaining feature sets were
used as input to neural networks. Setino and Liu (1997)
present a similar study using neural networks to select
features.
Battiti (1994) developed MIFS to use mutual infor-

mation for evaluating the information content of each
individual feature with respect to the output class. The
features thus selected were used as input in neural net-
works. The author shows that the proposed method is
better than those feature selection methods that use
linear dependence (e.g., correlations as in Principal
Components Analysis) measures. Koller and Sahami
(1996) use cross-entropy to minimize the amount of
predictive information lost during feature selection. Pi-
ramuthu and Shaw (1994) use C4.5 (Quinlan, 1990), to
select features used as input in neural networks. Their
results showed improvements, over just backpropaga-
tion, both in terms of classi�cation accuracy and time
taken by neural networks to converge.
The most popular feature selection methods in ma-

chine learning literature are variations of Sequential
Forward Search (SFS) and Sequential Backward Search
(SBS) as described in Devijver and Kittler (1982) and
its variants (e.g., Pudil et al., 1994). SFS (SBS) ob-
tains a chain of nested subsets of features by adding
(subtracting) the locally best (worst) feature in the set.
These methods are particular cases of the more general
`plus l - take away r' method (Stearns, 1976). Results
from previous studies indicate that the performance us-
ing forward and backward searches are comparable. In
terms of computing resources, forward search has the
advantage since fewer number of features are evaluated
at each iteration, compared to backward search where
the process begins using all the features.

3 Feature Selection & Hausdor�

Distance

In this section, the proposed method of feature selec-
tion using the Hausdor� (FSH) method is presented af-
ter a brief introduction to the Hausdor� distance mea-
sure.

3.1 Hausdor� Distance

The Hausdor� distance (e.g., Nadler, 1978) is a mea-
sure of the similarity, with respect to their position in
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metric space, of two non-empty compact sets A and
B. It measures the extent to which each point in a
set is located relative to those in another set. Let
X1 = fx11; x12; :::; x1mg and X2 = fx21; x22; :::; x2ng
be two �nite point sets and d a distance over this space.
Here, d can be any distance including the 1-norm1, the
Euclidean norm, as well as simple di�erence between
corresponding coordinates in each dimension, among
others. The Hausdor� distance is de�ned as follows:

8x1�X1; D(x1; X2) = minx2�X2
fd(x1; X2)g (1)

h(X1; X2) = maxx1�X1
fD(x1; X2)g (2)

H(X1; X2) = maxfh(X1; X2); h(X2; X1)g (3)

Here, h(X1; X2) is the directed Hausdor� distance
from X1 to X2. It identi�es the point x��X1 that is
farthest (using a pre-speci�ed norm) from any point
in X2 and measures the distance from x� to its near-
est neighbor in X2. Essentially, h(X1; X2) ranks each
point inX1 based on its distance from the nearest point
in X2 and then uses the largest ranked such point (x�,
the point in X1 farthest away from X2) as the dis-
tance. If h(X1; X2) = A, then each point in X1 has at
least one point in X2 in the neighborhood of radius A.
For smaller values of A, X1 is nearly included in X2.
Hence, h(X1; X2) is a measure of inclusion of X1 in X2.
The Hausdor� distance itself, H(X1; X2) is the maxi-
mum of the directed Hausdor� distances h(X1; X2) and
h(X2; X1). H(X1; X2) can be calculated in O(m,n) for
two point sets of size m and n respectively. Alt et al.
(1991) improve this to O((m+n)log(m+n)).
The Hausdor� distance H is a metric over the set

of all closed, bounded sets (Csaszar, 1978). Being a
true distance, it also obeys the properties of identity,
symmetry, and triangle inequality. In the context of
classi�cation, it follows that description of a concept
is identical only to its own description, the order of
comparing di�erent concepts does not matter, and the
descriptions of two di�erent concepts cannot be similar
to some third concept.

3.2 Feature Selection with Hausdor�

distance

The algorithm FSH assumes the data set to include
k variables. Step 1 calculates the Hausdor� distance
Hi(X1; X2) between examples belonging to classes 1
and 2 (assuming a binary concept learning problem),
individually for each of the k variables in the data set.
This is followed by sorting the Hi values, and the cor-
responding variables are noted (s1, .. , sk) in step
2. This is followed by evaluation of the feature set by

1The 1-norm between two points A(x1; y1) and B(x2; y2)
is de�ned as d(A;B) = jx1 � x2j+ jy1 � y2j.
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inducing decision tree. The trees are generated iter-
atively as more variables are added to the data set,
in ascending order, based on their corresponding Hi

values. The quality of the decision trees (e.g., classi-
�cation accuracy on heretofore unseen examples) thus
generated are evaluated. The algorithm stops when a
pre-speci�ed stopping criterion (e.g., classi�cation ac-
curacy) is reached, and the variables corresponding to
this decision tree are returned as the selected set.

Algorithm FSH (Feature Selection with Hausdor�
distance)

Variables in data: v1, v2, ... vk.
S = set of all input variables = �.

1. Set i=1; While i < k+1, do

(a) Calculate Hi(X1; X2) for vi.

(b) i=i+1.

(c) Go to 1(a).

2. Sort Hi(:; :), in ascending order, with the corre-
sponding features (s1, .. , sk).

3. Set j=k; Until stopping criterion is met, do

(a) S = S + sj
(b) Induce decision tree with input S.

(c) Evaluate quality of decision tree.

(d) j=j-1.

(e) go to 3(a).

4. Return �nal set of features.

4 Experimental Results

Using two �nancial credit scoring data sets with di�er-
ent characteristics - one on loan default prediction and
the other on bank failure prediction - we illustrate the
performance of the proposed feature selection method.
To facilitate comparison of results from previous stud-
ies using these data sets (e.g., Abdel-Khalik and El-
Sheshai, 1980; Piramuthu et al., 1998; Tam and Kiang,
1992), we follow the same split of training and testing
(holdout) samples in accordance with these previous
studies.

4.1 Loan Default Data

This data has been used in previous studies (e.g.,
Abdel-Khalik and El-Sheshai, 1980), to classify a set
of �rms into those that would default and those that
would not default on loan payments. The source of this
data is the Index of Corporate Events in the 1973-1975
issues of Disclosure Journal. Sixteen defaulted �rms
were matched with sixteen non-defaulted �rms to ob-
tain data for the study. Another set of sixteen exam-
ples, all belonging to the non-default case, were used
as the holdout set in line with previous studies using
0-7695-0001-3/99 $
Table 1: Results using loan default data

Feature Input tree Classi�cation Accur.

Selection Variables size of Decision Trees (%)

Method (for C4.5) (C4.5) Training Testing

none x1 .. x18 15 96.9 87.5

FSH x2, x5, x6, x7, x9,

x10, x13, x16, x17, x18 7 84.4 87.5

Nonlinear x1, x2, x3, x4, x5,

x6, x7, x8, x13, x15 5 78.1 81.2

this data set. There are 18 variables in this data: (1)
net income/total assets, (2) net income/sales, (3) total
debt/total assets, (4) cash ow/total debt, (5) long-
term debt/net worth, (6) current assets/current liabil-
ities, (7) quick assets/sales, (8) quick assets/current
liabilities, (9) working capital/sales, (10) cash at year-
end/total debt, (11) earnings trend, (12) sales trend,
(13) current ratio trend, (14) trend of L.T.D./N.W.,
(15) trend of W.C./sales, (16) trend of N.I./T.A., (17)
trend of N.I./sales, and (18) trend of cash ow/T.D.
For detailed description of this data, the reader is re-
ferred to (Abdel-Khalik and El-Sheshai, 1980).

In order to compare FSH with a comparable method,
the nonlinear sequential forward search method with
Parzen and hyperspheric kernel is used. The nonlinear
sequential forward search method with Parzen measure
using hyperspheric kernel has been shown in previous
studies (e.g, Piramuthu, 1998) to result in good per-
formance compared to several other inter-class as well
as probabilistic distance-based feature selection meth-
ods for induced decision trees. The number of vari-
ables chosen by the nonlinear method was guided by
the number of variables chosen by the FSH method,
for comparison purposes.

Table 1 provides results from decision trees gener-
ated after pre-processing input through the feature se-
lection methods. In Table 1, `none' corresponds to the
case where no pre-processing (here, feature selection)
was done. The classi�cation accuracy on heretofore
unseen testing (holdout) examples are of primary in-
terest, and the number of input variables as well as
the size of decision trees generated are also important
though to a lesser degree. The classi�cation accuracy
of the decision tree after pre-processing through FSH is
the same as that generated without any pre-processing.
However, the same accuracy was obtained with fewer
(10 compared to 18) features as well as a smaller (7
compared to 15) decision tree. Clearly, the ability to
learn to describe a concept with fewer features as well
as smaller decision tree is preferable in terms of the Oc-
cam's Razor principle as well the resources necessary to
gather, store, maintain, analyze, and interpret results.
Although the nonlinear method resulted in a smaller
tree, the classi�cation accuracy on holdout examples is
not as good as the other two methods.
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Table 2: Bank Failure Prediction Data
Feature Input tree Classi�cation Accuracy

Selection Variables size of Decision Trees (%)

Method (for C4.5) (C4.5) Training Testing

none x1 .. x19 29 99.2 79.5

FSH x1, x5, x6, x7,

x8, x9, x15 9 84.7 86.4

Nonlinear x1, x2, x3, x4,

x5, x10, x17 21 91.5 81.8

4.2 Bank Failure Prediction Data

This data set was used in the Tam and Kiang (1992)
study. Texas banks that failed during 1985-1987 were
the primary source of data. Data from a year prior
to their failure were used. Data from 59 failed banks
were matched with 59 non-failed banks, which were
comparable in terms of asset size, number of branches,
age and charter status. Tam and Kiang had also used
holdout samples. The 1 year prior case consists of 44
banks, 22 of which belongs to failed and the other 22
to nonfailed banks. The data describes each of these
banks in terms of 19 �nancial ratios. For a detailed
overview of the data set, the reader is referred to Tam
and Kiang (1992).
Table 2 provides results from decision trees generated

after pre-processing input through the feature selection
methods using bank failure prediction data. Unlike
with the loan default data set, the classi�cation accu-
racy of the decision tree after pre-processing through
FSH is slightly better than that with the nonlinear fea-
ture selection method as well as that generated without
any pre-processing. The size of the decision tree is also
signi�cantly smaller in the case of FSH compared to
the other two methods. This is a slightly larger data
set compared to the loan default data set, with more
examples (118 training and 44 holdout examples in the
bank failure prediction data, compared to 32 training
and 16 testing examples in the loan default data set).
The performance of the nonlinear method also is better
than that using no pre-processing at all, in terms of tree
size, using relatively fewer number of input variables.

5 Discussion

We developed and evaluated a feature selection method
based on the Hausdor� distance measure, as to its ef-
fects on selecting features for inducing decision trees.
This method was compared with a comparable sequen-
tial forward search algorithm as well as the case when
no feature selection was used at all. In terms of classi-
�cation accuracy on previously unseen examples, FSH
performed slightly better than the nonlinear method
with smaller decision trees.
The results also show that induced decision trees are

sensitive to the input data used. By selecting appropri-
ate features through pre-processing, the performance of
induced decision trees can be improved without much
e�ort since most of these pre-processing techniques are
not time/computing intensive. This is true for any
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learning algorithm, because the complexity of the data
used directly a�ects the learning algorithm's perfor-
mance. Feature selection, when used along with any
learning system, can help improve performance of these
systems even further with minimal additional e�ort.
By selecting useful features from the data set, we are

essentially reducing the number of features needed for
learning tasks. This in turn translates to reduction in
data gathering costs as well as storage and maintenance
costs associated with features that are not necessarily
useful for the decision problem of interest.
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