
1

 Test Session Oriented Built-in Self-testable Data Path Synthesis

Han Bin Kim1, Takeshi Takahashi2, and Dong Sam Ha1

1Bradley Dept. of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061-0111

2Advantest America R&D Center Inc.
3201 Scott Blvd

Santa Clara, CA 95054

Abstract

Existing high-level BIST synthesis methods focus
on one objective, minimizing either area overhead or test
time. Hence, those methods do not render exploration of
large design space, which may result in a local optimum.
In this paper, we present a method which aims to address
the problem. Our method tries to find an optimal register
assignment for each k-test session. Therefore, it offers a
range of designs to the designer with different figures of
merit in area and test time. Experimental results show that
our method performs better than or comparable to existing
BIST synthesis systems.

I. INTRODUCTION

The design process of a digital system usually
starts at a behavior level and descends to a structural level.
Test synthesis is to incorporate design-for-testability
features in the design process. Until the end of 80’s,
testability was usually inserted into a structural level
(mostly at the gate level) as a post processing of the logic
design. However, the approach often fails to yield a good
solution (in terms of hardware overhead, fault coverage
and testing time) due to an inappropriate choice of
hardware structure made in an earlier design stage.

In order to address the problem, researchers
investigated the incorporation of testability into the front-
end of the design process called high-level test synthesis
[1]-[27]. High-level synthesis is to transform a behavioral
description of a design into a structural implementation
comprised of data path logic and control logic [13]. High-
level test synthesis incorporates some testability feature(s)
during the high-level synthesis, and the resultant circuit is
easier to test than the original circuit in which testability is
not considered. An excellent survey for high-level test
synthesis is available in [14].

Depending on the testability schemes
incorporated, high-level test synthesis systems can be

classified into three groups. The first group of high-level
test synthesis systems aims to improve the controllability
and/or the observability of the circuit [1], [3], [6], [15],
[20]. The methods are ones such as insertion of test points,
minimization of cycles and/or sequential depth. The
second group of high-level test synthesis systems
incorporates the scan technique [16], [17], [19]-[23].
While incorporating the scan technique, the systems try to
minimize sequential depth and/or cycles, and maximize the
number of input and output registers. The third group of
high-level test synthesis systems employs built-in self-test
(BIST), specifically parallel BIST [7], [9]-[12], [26], [27].
Parallel BIST, which is based on random pattern testing,
employ test pattern generators and test data evaluators for
every module under test (which is usually a combinational
circuit). Parallel BIST often achieves relatively high fault
coverage compared with other BIST methods such as
circular BIST [28]. In this paper, we present a high-level
BIST synthesis method which employs the parallel BIST
structure.

One of the earliest high level BIST synthesis
methods based on the parallel BIST was proposed by
Papachristou et al. [7]. In their method, all operations and
variables are assigned to "testable functional block," which
consists of input multiplexers, an ALU, and output
registers. The objective of the assignment is to avoid self-
adjacent registers (through which an input and the output
of a module form a cycle) which are undesirable in BIST.
Their method was later refined to further reduce the area
overhead [26]. Avra proposed an elegant solution to avoid
self-adjacent registers based on register conflict graphs [1].
Two variables of a data flow graph conflict if they are the
input and output of the same module. The merger of the
two variables results in a self-adjacent register and,
therefore, should be avoided. Avra also suggested several
schemes to reduce multiplexers and interconnections. The
area overhead of Avra’s method is less than that of
Papachristou et al.’s earlier work [7] but more than that of
their later work [26].

Int’l Test Conf., Oct. ‘98

2

Parulkar et al. investigated a method which
maximizes the sharing of test registers to reduce the area
overhead [9]. During the register assignment phase, input
and output variables of a data flow graph are merged to
result in a maximal sharing of the registers and to avoid
self-adjacent registers. A reverse perfect vertex elimination
scheme is employed to obtain a maximal sharing of
registers. Parulkar et al.’s method performs better (in terms
of area overhead) than Avra’s method [1] and Papachristou
et al.’s later work [26].

All the above mentioned works focused on
minimization of area overhead in BIST synthesis. For
those methods, test time is not a concern in the design
process, and is determined from the synthesized circuit
through a post-process. In order to reduce test time in
BIST, Harris and Orailoglu examined conditions which
prevent concurrent testing of modules [4], [27]. They
identified two types of conflicts; namely hardware conflict
and software conflict. The synthesis process is guided to
avoid such conflicts for the synthesized circuit. They
reported that test time for example circuits is reduced
(presumably at the cost of higher area overhead) through
the proposed method [4], [27].

The existing high-level BIST synthesis methods
described above focus on one objective, minimizing either
the area overhead [1], [7], [9]-[12], [26] or the test time
[4], [27]. Hence, those methods do not render exploration
of large design space, which may result in a local
optimum. Another aspect which was overlooked in those
methods is that area overhead and test time are often
traded in BIST (as well as other design-for-testability
methods). Therefore, it is more desirable to offer various
design alternatives (with different area overhead and test
time) to the designer, and let the designer choose a proper
design for his/her needs. Our method intends to address
those two problems.

For a scheduled and module-assigned data flow
graph, our method allocates signature registers which
guarantee the circuit be tested in k-test session, where k is
1, 2, ..., N, and N is the number of modules. Our method
tries to find an optimal design (which incurs the smallest
area overhead) for each k-test session. Hence, it explores a
far larger design space compared with other methods. It
also allows designers to trade area and test time. A
designer whose concern is only area overhead can choose
the most area efficient design among N designs, while one
concerned with only test time chooses the design for k=1.

 This paper is organized in the following manner.
In Section 2, we briefly explain BIST synthesis and
describe necessary terms. In Section 3, we describe the
proposed method. Guidelines for the merger of variables
are explained step by step. Section 4 contains experimental
results for our method. The performance of our method is
compared with other BIST synthesis methods. Section 5
concludes the paper.

II. PRELIMINARIES

In this section, we explain high level BIST
synthesis using an example data flow graph and describe
necessary terms to understand our method. We also discuss
an issue regarding self-adjacent registers.

2.1 High-Level Synthesis and Data Flow Graph
High-level synthesis is a process of transforming

a behavioral description into a structural description
comprising data path logic and control logic [29]. First, a
behavioral description is converted into a control data flow
graph. Then operations are scheduled in clock cycles
(scheduling), a hardware module is assigned to each
operation (module assignment), and registers are assigned
to input and output variables (register assignment). Among
the three operations, register assignment has the major
impact on parallel BIST, and, hence, is the subject of this
paper.

A data flow graph in which scheduling and
module assignment have been completed is shown in Fig.
1(a). Shaded lines in the data flow graph denote clock
cycle boundaries. An input or output variable on a clock
boundary should be stored in a register. In other words, a
register should be assigned to each input or output
variable, which is called register assignment. If two
variables overlap at a clock boundary, the two variables
are incompatible, and two incompatible variables cannot
share the same register. The incompatibility graph of input
and output variables for the data flow graph is shown in
Fig. 1(b). A vertex of the graph is a variable, and an edge
exists between each pair of incompatible vertices. A
compatibility graph of variables is readily derived from an
incompatibility graph and is shown in Fig. 1(c). In this

(c) Compatibility graph of
 variables

(b) Incompatibility
graph of variables

a

b

c

e

d f g

h

b

c

d

e

f

g

h

a

Fig. 1. A data flow graph and its incompatibility and
compatibility graphs

(a) Data flow graph

+

+

/

*

a b c

d

e

f g

h

M1

M1 M2

M3

1

2

3

4

3

case, an edge between two vertices indicates that the two
vertices are compatible.

If a variable v is an input (output) of a module Mi,
the module is called the destination (source) module of
variable v. A destination module does not exist for a
primary output variable such as variable h in the data flow
graph in Fig. 1(a). Similarly, the source module does not
exist for a primary input variable. The source module of a
variable v is denoted as SM(v). For example, SM(f) for the
data flow graph is M1, and SM(a)=φ. A variable whose life
spans more than one clock boundary is called delayed
variable. Variable c for the data flow graph is a delayed
variable, as it spans two clock cycles. During the register
assignment, a delayed variable spanning n clock cycles is
often split into n variables to increase the flexibility of the
register assignment [1].

A complete graph is one such that every pair of
vertices has an edge. A clique of a graph is a complete
subgraph. The size of a clique is the number of vertices of
the clique. If a clique is not contained by any other clique,
it is called maximum. For the compatibility graph in Fig. 1
(c), the graph {a,d,f,h} is a clique of size 4 and is
maximum. A clique partition is to partition a graph into a
disjoint set of cliques. Maximum clique partition is a
clique partition with the smallest number of cliques. To
find a maximum clique partition is an NP-complete
problem [29].

A vertex v is called common neighbor of a
subgraph provided vertex v is not contained in the
subgraph and has an edge with every vertex of the
subgraph. If a vertex v is not a common neighbor of a
subgraph, but has an edge with at least one vertex of the
subgraph, the edge is called non-common edge. For
example, vertex h in the compatible graph in Fig. 1(c) is a
common neighbor of a subgraph {c,d,f}, but vertex g is
not. As g has an edge c-g with vertex c, the edge c-g is a
non-common edge for the subgraph.

2.2 Register Assignment
When ignoring testability of a synthesized circuit,

the goal of the register assignment is to assign the least
number of registers for a given scheduled and module-
assigned data flow graph. Optimal register assignment is a
maximum clique partition problem for the compatibility
graph of input and output variables. Suppose that a set of
variables {v1, v2, v3, ...} is assigned to register Ri. Register
Ri can be considered as a set whose elements are v1, v2, v3,
... , i.e., Ri={v1, v2, v3,...}. We define the following two
terms on register Ri.
Definition: The set of source modules for register Ri,
denoted as SM(Ri), is the collection of source modules of
the variables assigned to Ri, i.e., SM(Ri)={SM(v1), SM(v2),
SM(v3)...}. The number of source modules of Ri is
|SM(Ri)|, where |S| is the cardinality of a set S.

Definition: The set of destination modules for register Ri,
denoted as DM(Ri), is defined as {DM(v1), DM(v2),
DM(v3)...}. The number of destination modules for Ri is
DM(Ri) .

The terms are illustrated for the following register
assignments of the variables in Fig. 1(a). (Note that it is a
minimum clique partition.)

R1={a,d,h}, R2={b,e,g}, and R3={c,f}.
The resultant data path logic under the register assignment
is given in Fig. 2. For the register assignment of R2,
SM(R2)={SM(b), SM(e), SM(g)}={M1, M2}, and DM(R2)
={DM(b), DM(e), DM(g)}={M1, M1, M2, M3}={M1, M2,
M3}.

2.3 BIST Synthesis and Test Registers
Parallel BIST needs to construct a test structure in

which a test pattern generator and a signature register are
connected to each input port and each output port of a
module, respectively. All the test registers are reconfigured
from system registers. The objective of the BIST synthesis
considered in this paper is to allocate registers to incur the
least area overhead, while the circuit can be tested in k-
test session. After the allocation of registers, the parallel
BIST structure is constructed through reconfiguration of
registers into four different types of test registers to be
described next.

A system register may be converted into one of
four different types of test register: test pattern generator
(TPG), multiple input signature register (short for
signature register), built-in logic block observer (BILBO)
[30], and Concurrent BILBO (CBILBO) [31]. If a test
register behaves as a TPG in a test session and a signature
register (SR) in another session, the test register should be
reconfigured as BILBO. If a test register should be a TPG
and a SR in the same test session, it should be reconfigured
as a CBILBO. Reconfiguration of a register into CBILBO
requires double the number of flip-flops of the register.
Hence, it is expensive in hardware cost. CBILBOs are
often required for self-adjacent registers.

In general, a TPG can be shared between
modules, as long as each input of a module receives test
patterns from a different TPG. (So that test patterns of
different input ports are not correlated.) However, a SR
cannot be shared between modules tested in the same

Fig. 2. Data path logic under the register assignment

M1

h a d e b g f c

M2 M3

R1 R2 R3

4

session. One SR is necessary for each module tested in the
same session. This implies that the number of test sessions
is determined by the allocation of SRs, not by TPGs. Our
method, to be presented in the next section, is based on this
premise.

2.4 Self-adjacent Registers and Sharing of Signature
Registers

A register, through which a cycle is formed for a
module, is called self-adjacent. Assignment of input and
output variables of a module to the same register creates a
self-adjacent register, viz. register R2 in Fig. 2. The main
focus of early high-level BIST synthesis methods focused
on the avoidance of self-adjacent registers [1], [7].
However, self-adjacent registers do not necessarily require
CBILBOs. Consider part of a data flow graph given in Fig.
4(a). The data path logic under a register assignment,
R1={c,e}, R2={a,f}, and R3={b,d}, is shown in Fig. 4(b).
The necessary reconfiguration of registers to test module
M1 is also indicated in the figure. Note that Register R1 is
self-adjacent, but it is reconfigured to a SR, not a
CBILBO.

Parulkar et al.’s method aims to reduce the overall
area overhead by sharing registers in their maximum
capacity [9]. However, excessive sharing of signature
registers is unnecessary. In fact, it may result in higher
area overhead. Consider the cases given in Fig. 5.
Registers R1 and R2 are reconfigured into signature
registers during testing. The sharing of R1 with M3 in Fig.
5(a) is unnecessary with 2-test session as shown in Fig.
5(b), and it creates an unnecessary path to incur higher
area overhead. Hence, our method assigns one signature
register to each module to avoid such a waste. Note that
M2 in Fig. 5(a) has two available SRs.

III. PROPOSED k-TEST SESSION METHOD

In general, the area overhead and the test time are
traded in BIST. However, an approach which aims to
achieve one objective, either minimal area overhead or
shortest testing time, while ignoring the other one, may
direct the design toward one extreme. As a result, the
approach does not explore a wide range of design space to
yield a non-optimal design.

In this section, we present our method which is
intended to correct the problem. Our method is concerned
with register assignment to embed the parallel BIST

structure for a given data flow graph in which scheduling
and module assignment have been completed. To explore a
large design space, our method tries to find an optimal
register assignment for each k-test session, where k = 1, 2,
..., N. A register assignment for a k-test session guarantees
that the synthesized circuit can be tested in k-test session.
Therefore, our method offers a range of designs with
different figures of merit in area and test time, and it
enables a designer to select an appropriate design for
his/her needs.

3.1 Overall approach
The key idea of our approach is to explore a large

design space by considering all the possible test sessions.
The upper bound of the number of possible test sessions is
equal to the total number of modules, N, which is usually
small enough to make our method computationally
tractable. Our method tries to find an optimal register
assignment (which incurs the least area overhead) for each
test session k, where k=1,2, ..., N. To find an optimal
register assignment for each test session is computationally
intensive. As stated in Section 2.3, we explained that
allocation of signature registers, not test pattern generators,
determines the number of test sessions. Thus, we consider
the allocation of only signature registers in the first phase.
Our method merges output variables (which are candidates
of signature registers) to achieve a k-test session. In the
next phase, our method merges the remaining variables
(input variables and unallocated output variables) to
maximize sharing of the allocated signature registers with
other registers. After the entire signature registers are
allocated and possibly shared with other registers, our
method identifies candidate registers for test pattern

Fig. 3. Sharing of test pattern generators

M2 M3

SR

R2 R3
TPG TPG

(a) Excessive sharing (b) Proper sharing
Fig. 5. Allocation of signature registers

(a) Data flow graph (b) BIST configuration for M1

Fig. 4. Self-adjacent register and its reconfiguration
 to a SR

M1

R1 R2 R1 R2

M2 M3 M1 M2 M3

d

e

f g

h

M1 M2

a b

c
M1

1

2

3 M1

a dbf

c, e

R1 R2 R3

SR TPG TPG

5

generators and optimizes the design to reduce multiplexers
and interconnections.

Our approach, which allocates signature registers
first to achieve k-test session and then shares the signature
registers with other registers, makes the procedure
computationally simple, yet effective (as indicated by our
experimental results to be given Section IV).

3.2 Phase I: Allocation of Signature Registers
The given design for our method is a data flow

graph in which the process for scheduling and module
assignment has been finished. The task in Phase I is to
allocate signature registers to modules, so that all the
modules can be tested in k-test session. Let us suppose that
there are N modules, M1, M2, and MN, for the data flow
graph under consideration. Let SR be a set of signature
registers for the circuit. Necessary conditions for an
optimal assignment of signature registers to achieve k-test
session are given below.

(i) U
Ri S R

N21i }M...,M,M{)SM(R
∈

= .

(ii) I
Ri S R

i)SM(R
∈

∅= .

(iii) k)SM(R ,SR iRi ≤∈∀ .

The first condition specifies the coverage of all the
modules. The second one states only one signature register
be assigned to each module. (Assignment of multiple
signature registers to a module is not optimal.) All the
source modules of a signature register Ri, i.e., SM(Ri),
share the same signature register Ri. Hence, they should be
tested in different test sessions to necessitate the third
condition.

Allocation of signature registers is the process of
merging output variables and of assigning registers to
merged output variables, while meeting the three
conditions described above. The goal of the allocation is to
allocate the least number of signature registers with the
least number of output variables assigned for each register.
The intention of assigning the least number of output
variables to each register is to increase the number of the
unassigned output variables, which may be shared with
other variables in Phase II. Thus, two output variables with
the same source module should not be merged and
assigned to the same register in this phase. The condition is
specified in the following:

(iv) SM(v)SM(u) v,u if ,R vu, i ≠≠∈∀ .

We use the compatibility graphs of output
variables to identify candidate output variables for possible
mergers. A clique of an output compatibility graph
indicates that the variables of the clique can be merged. In
order to achieve k-test session, the clique size of each
clique should not exceed k. (Refer to condition (iii).) In
addition, a clique should not include any two variables

with an identical source module. (Refer to condition (iv).)
We illustrate the process using an example data flow
graph.

Consider the data flow graph given in Fig. 6(a).
The three operators, +, *, and /, are binded to M1, M2 and
M3, respectively. The incompatibility and compatibility
graphs of output variables and their associated source
modules are shown in Fig. 6(b) and Fig. 6(c), respectively.

From the compatibility graph of the output
variables in Fig. 6(c), we look for cliques with size k for a
k-test session, but any two vertices of a clique should not
have the same module (refer to condition (iv)). For k=1,
each vertex is a clique. Hence, there are four cliques, {d},
{e}, {f}, and {g}. For a 2-test session, i.e., k=2, there are
{d,e}, {d,f}, {e,g}, and {f,g}. When k is three, there is no
such clique. Note that the cliques {d,e,g} and {d,f,g} have
two vertices, d and g, whose source module is the same.
This means that a 3-test session is not optimal for the
circuit. This can readily be seen from the incompatibility
graph in Fig. 6(b). The maximum clique size of the graph
is two. Hence, there are at least two signature registers
available for the circuit. Clearly, testing three modules in
three test sessions is not optimal when two signature
registers are available.

If there are multiple candidate cliques for a k-test
session, we choose a clique. Then the chosen clique and all
the edges connected to the clique are removed from the
graph. All the vertices (i.e., nodes) whose source modules
have been covered by the selected clique and the
associated edges of the vertices are also removed. We
repeat the procedure for the resultant graph until all the
modules are covered. It should be noted that if a clique of
size k is not present for a resultant graph, a clique with the
next candidate clique should be chosen. This procedure is
illustrated in the following.

For the previous example with k=2, all four
cliques, {d,e}, {d,f}, {e,g}, and {f,g}, have the same
number (one) of common neighbors. Suppose we choose

Fig. 6. A data flow graph with module assignment

(a) Data flow graph

(b) Incompatibility graph of
the output variables

(c) Compatibility graph of the
output variables

M1 M2

M3 M1

d e

f g

+

+

/

a b

c d

e f

M1

M2 M3

M1

1

2

3

4

*

g

M1 M2 M3 M1

d e f g

6

clique {d,e}. The clique and all the associated edges, d-f,
d-g, and e-g, are removed. As module M1 is covered by
clique {d,e}, we also remove vertex g and its associated
edge, f-g. Thus, the resultant graph has only vertex f.
Vertex f is selected to cover M3 in the next process. All
possible mergers for the data graph are given in Table 1.

The output variables of a group1 (denoted as a
circle) in Table 1 are merged (possibly with other input
and output variables in Phase II) and assigned to a
signature register. The number of groups for a merger is
the number of signature registers to be allocated. For
example, a merger {d,e} and {f} for k=2 results in the
allocation of two signature registers. The source modules
of the variables in a group are tested sequentially using the
same register. However, they can be tested simultaneously
with source modules of the variables belonging to a
different group. For example, source module M1 of
variable d and M2 of variable e for Merger I under k=2 are
tested sequentially, but either M1 or M2 can be tested
simultaneously with module M3 of variable f.

3.3 Phase II: Sharing of Signature Registers with Other
Registers

In Phase II, we merge the output variables
identified in Phase I with the remaining compatibility
graph of input and output variables of the data flow graph.
Two steps are involved in Phase II. First, all output
variables of each group identified in Phase I are merged.
Next, the merged output variables are further merged with
other variables. When two compatible variables (i.e.,
vertices), X and Y, are merged, all the non-common edges
of the subgraph {X,Y} should be deleted. This is true for
mergers of more than two variables.

3.3.1 Merger of output variables
This process starts with merging all variables of

each group identified in Phase I. All non-common edges of
each group are deleted. In order to intact a signature
register assigned to each group, output variables of a group
should not be merged with the variables of another group.
It necessitates removal of all the edges between the groups.

We illustrate the process using the data flow
graph in Fig. 6(a). Suppose that we have chosen Merger I
for k=2 in Table 1. The groups of output vertices to be
merged are {d,e} and {f}. (In fact, group {f} has one

1 Group and clique are the same and are used interchangeably.

vertex and no need for merging.) The compatibility graph
of the data flow is shown in Fig. 7(a). Note that delayed
variable b is split into two variables, b0 and b1. As vertices
d and e are merged, three non-common edges, c-e, b1-e,
and f-d, are removed. Then all the edges between the two
groups {d,e} and {f} are deleted. Edge d-f is deleted (In
fact, it has already been deleted.). The resultant
compatibility graph of variables is shown in Fig. 7(b). The
filled circles in the figure denote variables assigned to
signature registers.

3.3.2 Merger of the remaining variables
After the output variables for a k-test session are

merged, all the remaining compatible vertices (i.e., input
and output variables) are to be merged. The goal of the
merger is to minimize the number of resultant vertices in
the graph, equivalently the number of allocated registers.
The process is minimum clique partition. A minimum
clique partition is NP-complete, and, hence, a heuristic is
necessary for the process. In our case, if there are multiple
minimum clique partitions, we need to select a partition
which is likely to incur the least area overhead. (Note that
all partitions require k-test session.) In the following, we
describe guidelines which aim to lead the process toward a
minimum clique partition and for the least area overhead.

Our method is to merge a pair of compatible
vertices iteratively until no further merger is possible. The
guidelines to choose a pair of compatible vertices to be
merged are given in order of descending priority. A
guideline i is applied only when its immediate guideline i-
1 (equivalently all the previous guidelines) is tied. The
guidelines are illustrated for the compatibility graph in Fig.
6(b). The first two guidelines aim to reduce the total
number of registers for the circuit by sharing as many

 Table 1. Possible optimal mergers for the data flow graph in Fig. 6(a)

k Merger I Merger II Merger III Merger IV

1 d e f e f g

2 d,e f d,f e e,g f f,g e

(a) Before the merger (b) After the merger

b0

c

d

b1

f

g

a

e

Fig. 7. Compatibility graphs before and after the merger

b0

c

de

f

g

a

b1

7

variables as possible. The rest of the guidelines are for the
reduction of test registers and/or associated hardware,
specifically multiplexers and interconnections.

Guideline 1: Choose a pair with the largest number of
common neighbors.

This guideline aims to merge a pair of vertices
which belong to a maximum clique of the graph. As an
illustration, the number of common neighbors for each
compatible pair for the compatibility graph Fig. 7(b) is
given in Table 2.

The largest number of common neighbors are
four for three pairs of vertices, {a,g}, {b0,g} and {f,g}. The
three pairs of vertices belong to maximum cliques,
{a,c,f,g}, {a,b1,f,g} and {b0,c,f,g} of the graph. As the
three pairs are tied, guideline 2 is used to break the tie.

Guideline 2: Choose a pair with the least number of non-
common edges.

When a pair of vertices are merged, all the non-
common edges of the pair of vertices are deleted.
Guideline 2 selects a pair whose merger deletes the least
number of edges from the graph. This means that the
merger of the two vertices minimally decreases the
chances for further mergers. In the example graph, the
merger of {a,g} deletes edge b0-g, the merger of {b0,g}
deletes edge a-g and the merger of {f,g} deletes edge g-de.
All three mergers delete only one vertex. Hence, guideline
3 is used to break the tie.

Guideline 3: Choose a pair which is split from the same
variable.

As described in Section 2.4, if a variable spans a
number of control steps, then it is split into each control
step to yield a more flexible register assignment at the cost
of additional multiplexers. At this stage, the split of a
variable is not useful. Hence, it is merged back to the same
variable. For the three candidate pairs, no two vertices of a
pair are split from the same variable.

Guideline 4: Choose a pair based on the number of
destination modules.

This guideline is concerned with test pattern
generators. First, choose a pair such that neither of its
vertices is assigned to a signature register. Among multiple
such pairs, choose a pair with the largest number of
destination modules. This guideline aims to reduce the
number of test pattern generators (TPGs) through the
sharing of a TPG with multiple modules.

Second, if a variable of every pair is assigned to a
signature register, choose a pair with the smallest number
of destination modules. This guideline tries to minimize
the likelihood of the register to be reconfigured as BILBO
or CBILBO.

In the previous example, only two pairs {a,g} and
{b0,g} include variables not assigned to a signature
register. Since the number of destination modules for each
pair is one, i.e., |DM(a,g)| = |DM(b0,g)| = 1, the next
guideline is applied.

Guideline 5: Choose a pair with the smallest number of
source modules.

Since a signature register is assigned to each
module in Phase I, there is no need for further sharing of
output registers at this stage. This guideline aims to reduce
the number of multiplexers by reducing the sharing of
output registers. In the previous example, both the pairs,
{a,g} and {b0,g}, have one source module, M3. Hence,
vertex pair {a,g} is chosen arbitrarily and merged. The
resultant graph is shown in Fig. 8. The above procedure
repeats for the resultant graph to merge the next pair of
vertices.

3.4 Post processing
After all the registers are assigned through Phase

I and Phase II, we identify TPGs. It is always possible to
allocate TPGs for each module by reconfiguring assigned
registers or by sharing existing TPGs between different
modules. (Note that a TPG is not shared between two
inputs of the same module to avoid low fault coverage.) A
signature register is converted into a BILBO if it should be
a TPG in a different test session, or into a CBILBO if it
should be a TPG in the same test session.

When all TPGs are allocated, we try to minimize
multiplexers and interconnections using the methods
suggested in [1] and [32]. The methods include exchanging
input ports and rearranging multiplexers.

Table 2: The number of common neighbors for the graph
in Fig. 7(b)

Compatible
vertex pair

Common
neighbors

No. of common
neighbors

{a,c} f, g 2
{a, de} g 1
{a,b1} f, g 2
{a,f} c, b1, g 3
{a,g} c, de, b1, f 4
{b0,g} c, de, b1, f 4

...
{f,g} a, b0, c, b1 4

...

Fig. 8. Merger of vertices a and g

b0

c

deb1

f

ag

8

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results on
the performance of our proposed method. We also
compare the performance of our method with two other
BIST synthesis methods, RALLOC [1] proposed by Avra
and BITS [9] proposed by Parulkar et al. We implemented
all three BIST synthesis methods (our method called
ADVAN, RALLOC, and BITS) in the C++ language. For
the implementation of RALLOC and BITS, we faithfully
followed the algorithms presented in [1] and [9].

4.1 Background
We measured the performance of the three BIST

synthesis systems for six data flow graphs. The data flow
graphs include the ones studied by Tseng and Siewiorek
[32] called tseng and by Paulin and Knight [33] called
paulin. The other four data flow graphs are a 6th order FIR
(finite impulse response) filter, a 3rd order IIR (infinite
impulse response) filter, a 4-point DCT (discrete cosine
transformation) circuit, and a 4-tap wavelet filter. We
adopted the scheduling and module assignment from [1]
for tseng and paulin. The other four data flow graphs were
synthesized using HYPER [34]. The width of the data path
logic is eight for all the circuits. A detailed description of
the circuits is available in [35].

In this paper, the area of a circuit is represented
by the transistor count of registers and multiplexers in the
circuit. Data path logic of a circuit is not considered in the
transistor count. The number of transistors in test registers
and multiplexers is based on the circuits of [30], [31] and
is given in Table 3. In the table, #Trs and #MuxIn denote
the number of transistors and the number of multiplexer
inputs, respectively.

The reference circuit of a data flow graph, which
was used to measure the area overhead of a BIST design,
was obtained as follows. We collected all the circuits
generated by HYPER and by the three BIST synthesis
systems (ADVAN, RALLOC, and BITS). After test
registers of BIST circuits were configured back to normal
registers, we measured the area of individual circuits and
chose the circuit with the least area as the reference circuit.

4.2. Experimental Results
The first experiment was to measure the

performance of the proposed method and to examine the
relationship between area and test time in high-level BIST
synthesis. In allocating signature registers for our method,
we considered all possible optimal mergers of the circuit
for each test session. (Refer to Section 3.2 for optimal
mergers.) Among all the mergers considered, we chose a
merger which incurs the least area overhead.

Experimental results on area and test time (in
terms of the number of test sessions) of synthesized BIST
circuits are given in Table 4. The first row for each circuit

entry is the reference circuit. Column headings for the
table are explained below.

R : the total number of registers
T : the total number of test pattern generators
S : the total number of signature registers
B : the total number of BILBOs
C : the total number of CBILBOs
M : the total number of inputs of multiplexers
Area : the number of transistors of the registers and the

multiplexers
OH : the area overhead of the BIST design (%)

From the table, the area overhead of ADVAN
ranges from 8 percent to 40 percent. The area overhead of
the last four circuits is less than 21 percent. ADVAN
incurs relatively high area overhead for tseng and paulin
due to the employment of CBILBOs and/or a large number
of multiplexer inputs. However, since the area overhead of
a circuit is computed without considering the area for the
data path logic modules, the actual area overhead will be
much lower than the ones presented in the table. For
example, the area overhead of paulin is 40.8 percent for
k=1. Circuit paulin contains two 8x8 multipliers, one 8-bit
adder and one 8-bit subtractor. If the adder and the
subtractor based on ripple carry propagation and array
multipliers are used to implement the circuit, the actual
area overhead would be reduced to about 18 percent.
Therefore, it can be said that the area overhead of ADVAN
is small to moderate for all the circuits tested.

The table shows that, in general, the area and test
time are traded in high-level BIST synthesis. An
illustrative example is fir6, in which the area overhead
reduces monotically with an increase in the number of test
sessions. When the number of test sessions, k, increases
from 1 to 2, there is a substantial reduction in the area
overhead for most circuits. However, an increase of k
beyond 2 is little help in reducing the area overhead. In
fact, the area overhead increases for some circuits.
Therefore, it is a good idea to avoid testing an entire circuit
in one test session if the area overhead is a major concern.

Next, we compare the performance of ADVAN
with two other BIST synthesis systems, RALLOC [1] and
BITS [9]. In order to make the comparison meaningful, the
six data flow graphs used in the experiment employed the
same scheduling and the same module assignment for all
three systems. The performance of the three high-level

Table 3. Number of transistors of 8-bit test registers and
multiplexers

a) Test registers
Type Reg. TPG SR BILBO CBILBO
#Trs 208 256 304 388 596

b) Multiplexers
#MuxIn 2 3 4 5 6 7

#Trs 80 176 208 300 320 350

9

BIST synthesis systems is presented in Table 5. The table
shows the case in which the number of test sessions is
maximal for a given circuit. The number of test sessions
for a circuit is given under the circuit name in the table.

From the table, ADVAN performs better than the
other two systems in area for all circuits except tseng. For
some circuits, area overhead of ADVAN is substantially
less than that for another method. For example, the area
overhead of ADVAN is 8 percent for wavelet4, while that
for RALLOC is 36 percent. It should be pointed out that
ADVAN does not add any additional registers. In other
words, a reference circuit and its BIST circuit by ADVAN
have the same number of registers. However, RALLOC
needs one additional register for fir6, iir3, and wavelet,
while BITS requires one additional register for dct4. The
addition of registers incurs large area overhead as can be
seen in Table 5. None of the three BIST synthesis systems
requires additional registers for tseng and paulin. This is
because that design space2 for the two circuits is smaller
than the other four circuits. Hence, there is not much
freedom in the BIST design for the two circuits.

Each system has a different emphasis in register
allocation to yield a different BIST design style. ADVAN
tries to avoid reconfiguration of signature registers into
TPGs. (Refer to Guideline 4 in Section 3.2.2.) As a result,
none of the SRs are reconfigured to a TPG for ADVAN as
shown in Table 5, and, hence, there is no BILBO or

2 The design space of a data flow graph may be represented as the ratio of
(the number of variables + the number of nodes in the data flow graph) to
(the number of modules + the number of registers in the data path logic).

CBILBO for ADVAN. However, the cost is a large
number of TPGs. The main focus of RALLOC is to avoid
self-adjacent registers, which often require CBILBOs. So
RALLOC does not have any CBILBOs, but many
BILBOs. BITS intends to maximize the sharing of test
resources, which leads to a small number of TPGs and SRs
combined, but has CBILBOs. Based on this observation, it
can be said that emphasis on one or a few strategies does
not lead to an optimal BIST design. Instead a careful
balance between different strategies is necessary for an
optimal design.

In summary, the area overhead of ADVAN is
moderate for the six circuits tested. ADVAN performs
better in area overhead for most circuits than the other two
BIST synthesis systems.

V. SUMMARY

Existing high-level BIST synthesis methods focus
on one objective, minimizing either the area overhead [1],
[9]-[11], [24] or the test time [4], [27]. Hence, those
methods do not render exploration of large design space,
which may result in a local optimum. Another aspect
which was overlooked in existing methods is the fact that
area overhead and test time are often traded in BIST.
Therefore, it is more desirable to offer various design
alternatives (with different area overhead and test time) to
the designer, and let the designer choose a proper design
for his/her needs.

In this paper, we presented a method which is
intended to correct the above two problems. To explore a

Table 4. Performance of ADVAN

Ckt k R T S B C M Area OH(%)
tseng 5 15 3324

1 5 2 2 0 1 21 4240 35.1
2 5 3 2 0 0 21 3944 26.8
3 5 2 1 0 0 23 3996 28.4

paulin 5 17 1776
1 5 1 2 0 2 21 3000 40.8
2 5 2 0 0 1 24 2580 31.2
3 5 2 1 0 1 21 2564 30.7
4 5 3 1 0 0 26 2588 31.4

fir6 7 24 2638
1 7 1 3 0 0 29 3372 21.8
2 7 2 1 1 0 25 3200 17.6
3 7 1 1 0 0 28 3072 14.1

iir3 6 27 2592
1 6 2 2 0 1 27 3268 20.7
2 6 1 2 0 0 30 3056 15.2
3 6 3 1 0 0 32 3136 17.3

dct4 6 34 2928
1 6 2 3 0 0 34 3312 11.6
2 6 2 2 0 0 36 3344 12.4
3 6 2 1 0 0 36 3200 8.5
4 6 3 1 0 0 35 3324 11.9

wave- 7 45 3324
let4 1 7 2 2 0 0 47 3720 10.6

2 7 1 1 1 0 45 3648 8.9
3 7 2 1 0 0 46 3612 8.0

Table 5. Performance of various high level BIST
synthesis systems

Ckt Method R T S B C M Area OH(%)
tseng Ref. 5 15 3324
(3) ADVAN 5 2 1 0 0 23 3996 28.4

RALLOC 5 1 0 3 0 14 3928 26.3
BITS 5 2 1 1 0 20 4064 30.4

paulin Ref. 5 17 1776
(4) ADVAN 5 3 1 0 0 26 2588 31.4

RALLOC 5 1 0 3 0 25 2796 36.5
BITS 5 2 0 0 1 27 2928 39.3

fir6 Ref. 7 24 2638
(3) ADVAN 7 1 1 0 0 28 3072 14.1

RALLOC 8 1 1 2 0 36 4180 36.9
BITS 7 1 0 0 1 24 3156 16.4

iir3 Ref. 6 27 2592
(3) ADVAN 6 3 1 0 0 32 3136 17.3

RALLOC 7 1 0 2 0 38 4120 37.1
BITS 6 2 0 2 0 29 3176 18.4

dct4 Ref. 6 34 2928
(4) ADVAN 6 3 1 0 0 35 3324 11.9

RALLOC 6 1 1 2 0 37 3716 21.2
BITS 7 1 1 0 1 38 4180 30.0

wave Ref. 7 45 3324
-let4 ADVAN 7 2 1 0 0 46 3612 8.0
(3) RALLOC 8 1 0 3 0 50 5186 35.9

BITS 7 1 0 2 0 40 3850 13.7

10

large design space, our method tries to find an optimal
register assignment for each k-test session, where k = 1, 2,
… N, and N is the number of modules. A register
assignment for a k-test session guarantees that the
synthesized circuit can be tested in k-test session.
Therefore, our method offers a range of designs with
different figures of merit in area and test time.

Our experimental results show that the area
overhead of our method called ADVAN is moderate for
the six circuits tested. ADVAN performs better in area
overhead for most circuits than two other BIST synthesis
systems, RALLOC [1] and BITS [9]. Overall, the distinct
advantage of ADVAN over other existing methods is that
our method offers various design alternatives to the
designer, so it enables a designer to select an appropriate
design for his/her needs.

REFERENCES

[1] L.J. Avra, "Allocation and Assignment in High-Level Synthesis
for Self-Testable Data Paths," Proc. Int. Test Conf., pp. 463-472,
Oct. 1991.

[2] C.-H. Chen, T. Karnik and D.G. Saab, "Structure and Behavioral
Synthesis for Testability Techniques," IEEE Trans. on
Computer-Aided Design, Vol. 13, No. 6, pp 777-785, June 1994.

[3] S. Chiu and C.A. Papachristou, "A Design for Testability Scheme
with Applications to Data Path Synthesis," Proc. 28th Design
Automation Conf., pp. 271-277, June 1991.

[4] I.G. Harris and A. Orailoglu, “Microarchitactural Synthesis of
VLSI Designs with High Test Concurrency,” Proc. 31st Design
Automation Conf., pp. 206-211, June 1994.

[5] F.F. Hsu, E.M. Rudnick and J.H. Patel, "Enhancing High-Level
Control-Flow for Improved Testability," Intl. Conf. on
Computer-Aided Design, Nov. 1996.

[6] A. Majumdar, R. Jain, and K. Saluja, “Incorporating Testability
Considerations in High-Level Synthesis,” J. Electronic Testing:
Theory & Applications, pp. 43-55, Feb. 1994.

[7] C.A. Papachristou, S. Chiu and H. Harmanani, "A Data Path
Synthesis Method for Self-Testable Designs, " Proc. 28rd Design
Automation Conf., pp. 378-384, June 1991.

[8] C.A. Papachristou and J. Carletta, "Test Synthesis in the
Behavioral Domain," Proc. Int’l. Test Conf., pp. 693-702, Oct.
1995.

[9] I. Parulkar, S. Gupta, and M.A. Breuer, “Data Path Allocation for
Synthesizing RTL Designs with Low BIST Area Overhead,”
Proc. 32nd Design Automation Conf., pp. 395-401, June 1995.

[10] I. Parulkar, S. Gupta, and M.A. Breuer, “Introducing Redundant
Computations in a Behavior for Reducing BIST Resources,”
Proc. 35th Design Automation Conf., pp. 548-553, June 1998.

[11] I. Parulkar, S. Gupta, and M.A. Breuer, “Scheduling and Module
Assignment for Reducing BIST Resources,” Proc. DATE, pp. 66-
73, Feb. 1998.

[12] I. Parulkar, S.K. Gupta and M.A. Breuer, "Lower Bounds on Test
Resources for Scheduled Data Flow Graphs," Proc. 33rd Design
Automation Conf., pp. 143-148, June 1996.

[13] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis:
Introduction to Chip and System Design, Kluwer Academic
Publishers, 1992.

[14] L.J. Avra and E.J. McCluskey, “High-Level Synthesis of
Testable Designs: an Overview of University Systems,” Proc.
Int’l. Test Conf., TS Paper 1.1, pp. 1-8, Oct. 1994.

[15] P. Vishakantaiah, J.A. Abraham, and M. Abadir, "Automatic Test

Knowledge Ext:raction from VHDL (ATKET)," Proc. 29th

Design Automation Conf., pp. 273-278, June 1992.
[16] P. Vishakantaiah, T. Thomas, J.A. Abraham, and M. Abadir,

"AMBIANT-Automatic Generation of Behavioral Modifications
for Testability," Intl. Conf. on Computer Design, pp. 63-66, Oct.
1993.

[17] C.-H. Chen and D.G. Saab, "A Novel Behavioral Testability
Measure," IEEE Trans. on Computer-Aided Design, Vol. 12, No.
12, pp. 1960-1970, Dec. 1993.

[18] T.-C. Lee, N.K. Jha, and W.H. Wolf, "Behavioral Synthesis for
Highly Testable Data Paths under the Non-Scan and Partial Scan
Environrnents," , Proc. 30th Design Automation Conf., pp.292-
297, June 1993.

[19] T.-C. Lee, N.K. Jha, and W.H. Wolf, "A Conditional Resource
Sharing Method for Behavioral Synthesis of Highly Testable
Data Paths," Proc. Int’l. Test Conf., pp.744-753, Oct. 1993.

[20] T. Kim, K.-S. Chung, and C.L. Liu, "A Stepwise Refinement
Data Path Synthesis Procedure for Easy Testability," European
Test Conf., pp.586-590, Mar. 1994.

[21] S. Bhatia and N.K. Jha, “Genesis: A Behavioral Synthesis
System for Hierarchical Testability,” European Test Conference,
pp.272-276, Mar. 1994.

[22] A. Majumdar, R. Jain, and K. Saluja, "Behavioral Synthesis of
Testable Designs," 24th Fault-Tolerant Computing Symposium,
pp.436-445, June 1994.

[23] S. Bhatia and N.K. Jha, “Behavioral Synthesis for Hierarchical
Testability of Controller/Data Path Circuits with Conditional
Branches,” Intl. Conf. on Computer Design, Oct. 1994.

[24] T.-C. Lee, W.H. WoIf, N.K. Jha and J.M. Acken, "Behavioral
Synthesis for Easy Testability in Data Path Allocation,” Intl.
Conf. on Computer Design, pp.29-32, Oct. 1992.

[25] T.-C. Lee, W.H. Wolf, and N.K. Jha, "Behavioral Synthesis for
Easy Testability in Data Path Scheduling," Intl. Conf. on
Computer-Aided Design, pp.616-619, Nov. 1992.

[26] H. Harmanani and C.A. Papachristou, "An Improved Method for
RTL Synthesis with Testability Tradeoff," Intl. Conf. on
Computer-Aided Design, pp. 30-35, Nov. 1993.

[27] A. Orailoglu and I.G. Harris, “Microarchitectural Synthesis for
Rapid BIST Testing,” IEEE Trans. Computer-Aided Design,
Vol.16, No. 6, pp. 573-586, June 1997.

[28] S. Pilarski, A. Krasniewski, and T. Kameda, “Estimating Testing
Effectiveness of the Circular Self-Test path Technique,” IEEE
Trans. on Computer-Aided Design, Vol. 11, No. 10, 1301-1316,
Oct. 1992.

[29] G. DeMichelli, Synthesis and Optimization of Digital Circuits,
McGraw Hill, 1994.

[30] Konemann, B.J. Mucha, and G. Zwiehoff, “Built-In Logic Block
Observation Techniques,” Proc. Int’l Test Conf., pp. 37-41, Oct.
1979.

[31] L.-T. Wang and E.J. McCluskey, “Concurrent Built-In Logic
Block Observer (CBILBO),” Int. Symp. On Circuits and Systems,
pp. 1054-1057, May 1986.

[32] C. Tseng and D.P. Siewiorek, “Automated Synthesis of Data
Paths in Digital Systems,” IEEE Trans. on Computer-Aided
Design, pp. 379-395, July 1986.

[33] P.G. Paulin and J.P. Knight, “Force-directed Scheduling for the
Behavioral Synthesis of ASICs,” IEEE Trans. on Computer-
Aided Design, Vol. 8, No. 6, pp. 661-679, June 1989.

[34] M. Potkonjak and J. Rabaey, “A Scheduling and Resource
Allocation Algorithm for Hierarchical Signal Folw Graphs,”
Proc. 36th Design Automation Conf., pp. 7-12, June 1989.

[35] T. Takahashi, H.B. Kim, and D.S. Ha, "BIST Synthesis - I,"
Technical Report, VISC-DSH-1-98, Department of Electrical and
Computer Engineering, Virginia Polytechnic Institute and State
University, July 1998.

