
Evolutionary Learning of Novel Grammarsfor Design ImprovementJohn S. Gero, Sushil J. Louis 1 and Sourav KunduKey Centre of Design ComputingDepartment of Architectural and Design ScienceUniversity of SydneyNSW 2006 Australia.john@archsci.arch.su.edu.auAbstractThis paper focusses on that form of learning which relates to explo-ration, rather than generalization. It uses the notion of exploration asthe modi�cation of state spaces within which search and decision makingoccur. It demonstrates that the genetic algorithm formalism provides acomputational construct to carry out this learning. The process is exem-pli�ed using a shape grammar for a beam section. A new shape grammaris learned which produces a new state space for the problem. This newstate space has improved characteristics.1 IntroductionDesign can be considered a purposeful, constrained, decision making, explo-ration and learning activity. Decision making implies a set of variables, thevalues of which have to be decided. Search is the common process used in de-cision making. Exploration here is akin to changing the problem spaces withinwhich decision making occurs. Learning implies a restructuring of knowledgeas opposed to restructuring of facts. Searching in design is concerned with re-structuring of facts while exploration is a learning process which restructuresthe knowledge used in searching. The designer operates within a context whichpartially depends on the designers perception of purposes, constraints and re-lated contexts. These perceptions change as the designer explores the emergingrelationships between putative designs and the context as the designer learnsmore about possible designs (Gero 1992).One useful framework for design uses the concept of design prototypes (Gero1987,1990). This divides a design state space into three subspaces correspondingto a space of structures, a space of behaviors associated with structures andfunctions and a space of functions associated with behaviors. Figure 1 shows themappings between these subspaces. Generating new designs can be representedas a process which changes one of the subspaces (usually the structure space ischanged). There are two interesting classes of change to state spaces: additionand substitution. Addition, which can be achieved by adding variables, resultsin a new state space, Sn, that subsumes the original space, S0, that is: S0 � Sn1On leave from the Department of Computer Science, Indiana University.1

F1
S 1

S
2

B 1

B 2F2
Function StructureBehavior

Figure 1: Structure, Behavior and Function spaces and the mappings between them.and S0TSn 6= � (Figure 2). Substitution, which involves the replacement ofsome variables by other variables, results in a space, Sn, that is di�erent fromthe original, S0, such that S0 6� Sn (Figure 3). The notions of additive
S
n

S
0

Original state space New additive state spaceFigure 2: The e�ect of additive processes on a state space.processes and substitutive processes also apply to design schemas resulting inadditive schemas that subsume the original one and substitutive schemas thatonly include parts of the original and contain new elements (Gero 1992). Theseare depicted in Figures 4 and 5.In this paper we concentrate on the learning aspect of design, focussingon that form of learning which relates to exploration, that is, modifying theproblem spaces within which decision making occurs.2

S S
0 n

New Substitutive state spaceOriginal state spaceFigure 3: The e�ect of substitutive processes on a state space.
0123Figure 4: The e�ect of additive processes on design schemas, changing from originalschema, 0, to schemas 1, 2 and 3.

0 1 32Figure 5: The e�ect of substitutive processes on design schemas, changing from originalschema, 0, to schemas 1, 2 and 3. 3

2 Machine Learning2.1 A Di�erent ViewMachine learning is comprised of principally four paradigms (Carbonell 1990,Mitchell et al 1986): the inductive paradigm, the analytic paradigm, the geneticparadigm, and the connectionist paradigm. These can be broadly categorizedas \learning to perform old tasks better using available tools". Thus, the mainemphasis is on improving previous task schedules and routines to achieve certaingiven goals. Inductive learning is a good example of this. The system is providedwith a set of instances and it produces generalizations of those instances groupedunder broad concepts that explain the instances. Two main types of inputs are:examples and observations. Examples are instances that are classi�ed by theteacher as positive or negative instances. Observations are instances that arenot classi�ed by the teacher. Thus if some conceptual examples are given to thelearning program, it learns rules that could produce such examples. Quinlan'sID3 (Quinlan 1979,1986) and Reich's Bridger (Reich 1991) are examples of thiscategory of machine learning.We propose a second view of learning which can be summarised as:learning to restructure knowledge to produce novel results that couldnot be achieved using the current knowledge.Learning is always concerned with improving the quality of knowledge, tra-ditionally from examples. A number of di�erent teleologies drive machine learn-ing not all of which are applicable in design. The foci in machine learning indesign include concept formation (Maher and Li 1992, 1993) learning high levelrelationships (Rao et al 1991, Gunaratnam and Gero 1993), and increasing thee�cacy of available knowledge (Arciszewski et al 1987). The teleology of thelearning approach adopted here is to improve the quality of the knowledge toproduce improved designs. It is concerend with restructuring of the designknowledge which is already in the form of generalizations.Grammar induction (Mackenzie 1989,1991) is an approach which can becharacterized in these terms. An important di�erence between the grammarinduction technique and the one we are proposing here, is that, the state spaceof structures produced by the induced grammar always has the example setas its proper subset. This matches the the notion of \additive state spaces"which can also be achieved by the introduction of new variables in the design(Gero and Kumar 1993). The view of learning that we present here can bemapped onto the notion of \substitutive state spaces". The implication of thissubstitutive view is that some existing variables are deleted and some new onesare added. There is no nexus between the number of existing variables deletedand the number of new ones added. In the existing notion of learning in designthe purpose of the learning activity is to predict a class into which a givenexample can be classi�ed so as to produce designs conceptually the same asthe examples used to learn (McLaughlin and Gero 1987, Mackenzie and Gero1987). Thus the state spaces are very much �xed by the jurisdiction of thegiven examples. 4

The class of learning we are presenting here restructures the design knowl-edge so as to produce new points in design spaces which lie outside the realmof the state spaces de�ned by the given examples. These points are discoveredduring an evolutionary process by the creation and exploration of possibly novelstate spaces using the restructured knowledge. The learning program is not pre-sented with examples, rather it is presented with a set of rules in a grammarwhich, when executed, produces examples. The state spaces are not de�nedby the given examples but by the grammar that produces those examples. Asa new grammar is learned the state spaces change, perhaps drastically. Thistype of system can be seen as more of a generative or formation system ratherthan a classi�cation system. Thus the system tries to achieve better designs bylearning to restructure knowledge which is capable of producing novel designswhich could not be produced with the original knowledge. We give a shortintroduction to shape grammars and genetic algorithms which we use in ourlearning process.2.2 Shape GrammarsShape grammars were introduced into the architectural literature as a formalmethod of shape generation. They provide a recursive method for generatingshapes and are similar to phrase structure grammars, but de�ned over alphabetsof shapes and generate languages of shapes (Stiny and Gips 1978). A set ofgrammatical rules map one shape into a di�erent shape. These rules de�ne theset of possible mappings or transformations. More formally, a shape grammaris the quadruple (Vt; Vm; R; I). Where Vt is a set of terminal shapes or terminalsand Vm a set of nonterminal shapes or markers. Vt and Vm provide the primitiveshape elements of a shape grammar. R is a set of rules consisting of two sides,each side of which contains members of VtSVm. If the left hand side of a rulematches a shape, applying the rule results in replacing the matching shape withthe right hand side of the rule. I is the initial shape, a subset of VtSVm andstarts the shape generation process. This models a design system where therules embody generalized design knowledge and a sequence of rule applicationsgenerates a design.2.3 Genetic AlgorithmsGenetic algorithms (GAs), originally developed by Holland (1975), model nat-ural selection and the process of evolution. Conceptually, GAs use the mecha-nisms of natural selection in evolving individuals that, over time, adapt to anenvironment. They can also be considered a search process, searching for bet-ter individuals in the space of all possible individuals. In practice, individualsrepresent points in a state space, while the environment provides a measureof \�tness" that helps identify better individuals. Genetic algorithms are arobust, parallel search process requiring little information to search e�ectively.As such they are well suited to the task of exploring and learning about largeand complex design spaces. 5

2.4 Description of the ProblemWe model routine design with a �xed set of shape grammar rules and encode thepossible execution order (application sequence) of these rules for manipulationby the genetic algorithm. The set of optimal structures for this �xed grammarde�nes a space of feasible solutions corresponding to a space of behaviors. Thegoal is to �nd the execution order of the grammar rules which will optimizea set of behaviors. In this �xed scheme, additive and substitutive processesare absent. However, when in addition to the application sequence, we allowthe grammar itself to be encoded for manipulation by the genetic algorithm,we learn new grammars and associated rule application sequences to improveon the best possible designs that could be generated by the �xed grammar.That is, instead of optimizing a plan of application of some �xed set of rules,the computational model learns new rules and optimizes application sequencesfor those new rules to generate novel and `more optimal' solutions. By moreoptimal we mean that the optimal behaviors produced by the application of thenew rules are better than those produced by the application of the original rules.To understand how the genetic algorithm learns new grammars we provide abrief introduction to genetic algorithms.3 Genetic Algorithms3.1 Introduction to Genetic AlgorithmsThe motivational idea behind GAs is natural selection implemented throughselection and recombination operators. A population of \organisms" (usuallyrepresented as bit strings) is modi�ed by the probabilistic application of thegenetic operators from one generation to the next. The basic algorithm whereP (t) is the population of strings at generation t, is given below.t = 0initialize P (t)evaluate P (t)while (termination condition not satis�ed) dobegin select P (t + 1) from P (t)recombine P (t + 1)evaluate P (t + 1)t = t + 1endEvaluation of each string which corresponds to a point in a state space isbased on a �tness function that is problem dependent. This corresponds tothe environmental determination of survivability in natural selection. Selectionis done on the basis of relative �tness and it probabilistically culls from thepopulation those points which have relatively low �tness. Recombination, whichconsists of mutation and crossover, imitates sexual reproduction. Mutation, asin natural systems, is a very low probability operator and just ips a speci�c6

bit. Crossover in contrast is applied with high probability. It is a structured yetstochastic operator that allows information exchange between points. Simplecrossover is implemented by choosing a random point in the selected pair ofstrings and exchanging the substrings de�ned by that point. Figure 6 showshow crossover mixes information from two parent strings, producing o�springmade up of parts from both parents. We note that this operator which does notable lookups or backtracking, is very e�cient because of its simplicity.3.2 Genetic Algorithm EncodingsUnderstanding how to represent a problem and any domain knowledge of theproblem in a genetic algorithm requires 1) knowing which properties of a searchspace GAs use to guide their exploration and 2) the need to produce viableo�spring during crossover. A smidgeon of GA theory clears the way.
C

A

D

B

Crossover Points

Parents

OffspringFigure 6: Crossover of the two parents A and B produces the two children C and D.Each child consists of parts from both parents which leads to information exchange.Crossover causes genotypes (an encoded individual) to be cut and spliced.This means that instead of considering the fate of individual strings in analyzinga genetic algorithm, we must consider the substrings created and manipulatedby crossover. These substrings de�ne regions of the search space and are calledschemas2. More formally, a schema is a template that identi�es a subset ofstrings with similarities at certain string positions. Holland's schema theoremis fundamental to the theory of genetic algorithms. For example consider binarystrings of length 6. The schema 1**0*1 describes the set of all strings of length6 with 1s at positions 1 and 6 and a 0 at position 4. The *" denotes a\don't care" symbol which means that positions 2, 3 and 5 can be either a1 or a 0. Although we only consider a binary alphabet this notation can beeasily extended to non-binary alphabets. The order of a schema is de�ned asthe number of �xed positions in the template, while the de�ning length is thedistance between the �rst and last speci�c positions. The order of 1**0*1 is 3and its de�ning length is 5. The �tness of a schema is the average �tness of allstrings matching the schema.2Di�erent from design schemas 7

The genetic algorithm therefore implicitly processes schemas. Because ofthe bias introduced by selection and crossover, certain types of schemas rapidlyincrease their proportions in a population. Not only does the rate of increasedepend on their �tness, it also depends on the syntactic properties of orderand de�ning length. This is of great importance when incorporating domainknowledge into the bit strings that a GA manipulates. The schema theoremproves that relatively short, low-order, above average schemas get an expo-nentially increasing number of copies in subsequent generations. This leads tothe building block hypothesis which states that genetic algorithms work near-optimally by combining short, low-order, high �tness schemas called buildingblocks (Goldberg 1989). Thus when encoding domain knowledge, we shouldchoose an encoding that reects a GA's bias toward short, low-order buildingblocks. This bias is critically a�ected by the crossover operator. The plethoraof crossover operators, each with its own bias, implies analyzing and carefullymatching an operator's bias in the encoded representation of domain knowl-edge. In practice, many encodings work well because of the large number ofschemas and a GA's reliance on �tness information.Non-viable o�spring are produced when crossover results in individuals thatdo not belong to the search space of interest. In the context of grammars, ifan individual represents a sequence of rule applications resulting in a shape, itmay call for the application of a rule that does not exist in the grammar. Anexample clari�es the problem.Consider the grammar in Figure 7. There are four classes of compositionrules, one associated with each of the cells labeled A, B, C, D. In total there areeight rules in these four classes. If we encode the rules of class 1 as the numbersfrom 0� 2, the rules of class 2 as the numbers from 3� 5, the rule of class 3 as6 and the rule of class 4 as 7, then it is easy to produce a binary string for thegenetic algorithm to work on. Fixing the number of rule applications resultsin a �xed length binary string. As explained in section 3.1, genetic algorithmsnormally use binary representations/encodings of �xed length. Consider anexample in which we �x the number of rule applications at 3, then the string2; 3; 6corresponds to successively applying rules 2; 3 and 6. Before we convert this intoa binary string, the question of how many binary digits, or bits, are requiredfor each decimal number needs to be answered. Each position in the stringcan have values ranging from 0 to 7 corresponding to each of the rules in thegrammar (Figure 7). Therefore we use three (3) bits to represent the 8 possiblerules. The string 2; 3; 6 would then be represented as the binary string010; 011; 110for the genetic algorithm. The least signi�cant bit is on the right and thecommas are for clarity only and would not appear in the actual string that thegenetic algorithm manipulates. The binary string001; 010; 0118

C

B

B

D

C

B

B

B

B

B

B

A A B

AA

AAA

A

D

C

D A

RULE : 0 -

RULE : 1 -

RULE : 2 -

RULE : 3 -

RULE : 4 -

RULE : 5 -

RULE : 6 -

RULE : 7 -Figure 7: These eight rules comprise the �xed shape grammar.9

represents another sequence of rule applications. With these strings as parents,crossover can now produce non-viable o�spring as shown belowParents 0100111 j 10 0010100 j 11+O�spring 0100111 j 11 0010100 j 10Here the �rst o�spring 010; 011; 111 is not viable because rule 111 = 7 cannotbe applied after rule 011 = 3 since the left hand side of rule 7 (D) does notmatch the right hand side of rule 2 (C). There are a few approaches to tacklingproblems of this kind:� Assign a penalty for such transgressions thereby lowering the �tness ofthe individual. This brings up the question of which penalty function touse.� Kill the individual, not allowing it to continue. However, we lose anypotentially good building blocks encoded by the individual.� Modify the crossover operator to only produce viable o�spring, potentiallychanging the search bias in unpredictable ways.� Modify the encoding so that non-viable o�spring cannot occur. This isthe best and most elegant solution but may be di�cult to implement.� Change the algorithm.In practice a host of factors a�ect which method is chosen including thenature of the problem, convenience and time available to create an encoding.We describe the learning of new grammars and the encoding used in the nextsection.4 Learning Novel Grammars4.1 Generating New GrammarsWhen modeling a design process using a (shape) grammar and its associatedlanguage, we are restricted by the choice of grammar. The design task in thissituation is a planning task: to plan a sequence of rule applications that willgenerate a desired behavior from the resultant shape. In this case the structureand behavior spaces are �xed and de�ned by the grammar. We can encode thetask for the GA by numbering the rules and representing an individual as a �-nite length string of these numbers as shown in the previous section. To attackthe problem of learning to produce better designs, we allow the grammar itselfto evolve while generating a sequence of rule applications. This is the crux ofthe learning process - the restructuring of the knowledge represented by thegrammar. Since every grammar de�nes a state space, the GA now explores anumber of structure spaces with a single behavior space in parallel. This ex-pands the number of possible designs and in the case of our system, produces10

better, more optimal designs and associated behaviors that were not possiblebefore, through the application of this learned grammar. Most learning tech-niques are concerned with producing a structure which best �ts, according toone or more criteria, the examples presented. The learning process here usesthis same idea but the the examples are not presented to the learning processdirectly. The examples appear as a result of the structure of the knowledge en-coded in the grammar. The behaviors of the examples through the evolutionaryprocess pressure the structure to change itself so as to produce examples withimproved behaviors. As a result of this evolutionary process new grammars arelearned.New grammars are generated from the original grammar, through mutationand crossover of rules. That is, rules from the original grammar serve as abasis for the generation of new grammar rules and are produced by cutting andsplicing the original rules. Consider the two rules labeled \parents" in Figure 8,choosing the crossover point as indicated produces the new rules labeled \o�-spring." Di�erent crossover points produce di�erent \o�spring" rules leading toa number of di�erent grammars. Recombination therefore plays an importantpart in the process of learning, helping to generate di�erent grammars and thusdi�erent structure spaces to explore.4.2 An Example - Designing a Beam SectionUsing a shape grammar, our goal is to learn new grammars capable of producingnew topologies of a beam section which give us optimal values of two speci�cproperties of the section. To generate di�erent beam sections to choose from,we have a set of square building blocks, called cells to distinguish them frombuilding block in GAs, which build up a section when juxtaposed with oneanother. There is also a set of rules that govern this juxtaposition. Each cellhas a label which is referred to by the composition rules of our grammar andwhich has a weight associated with it. Thus a certain con�guration of the cellswill have a beam section topology which will have two criteria to be optimized.The two properties have been chosen in such a way that a tradeo� needs to bemade. A change for the better in one criterion usually leads to a change for theworse in the other.The two properties are :� The moment of inertia (second moment of area) of the beam section whichhas to be maximized (in order to improve its sti�ness).� The perimeter of the beam section which has to be minimized (in orderto minimize the surface area).We are trying to learn new grammars that, when executed, produce di�erentcon�gurations of the cells which have improved �tness values for both the abovecriteria. The moment of inertia of the beam section, when maximized, will tendto con�gure the cells in a way that will produce poor values for minimizing theperimeter of the beam section, and vice-versa. We arbitrarily commence withthe eight rules shown in Figure 7. The number of rules is not signi�cant indemonstrating the ideas in the learning process.11

A A B

CBB

A C

B B

A

B

A A B

CBB

A B C

B A B

Crossover point

Crossover point

Parents Offspring

OffspringParents

Figure 8: Generating new grammar rules by crossover, di�erent crossover points pro-duce di�erent o�spring rules.Thus starting with an arbitrary label and selectively applying the rules,we can arrive at a topology for a beam section after a predetermined numberof rule applications. From this grammar, shapes of interest can be derivedafter nine rule applications, we therefore �x the number of rule applications atnine. Similarly, the number of rule applications (or cells) is not signi�cant indemontrating the ideas.Weights, associated with labels, �gure in the calculation of the moment ofinertia simulating larger cross sectional areas, or di�erent materials and aregiven below:� A) 1 unit� B) 2 units� C) 3 units� D) 4 unitsThese weights eventually give us a di�erent pair of values for the two be-haviors of the beam section topology that we derive with the rule applications.Thus every structure has such a pair of behavior values, and is mapped onto atwo dimensional vector space with these two behaviors as the two co-ordinates.We can therefore de�ne a set of Pareto optimal solutions from each set of newstructures that we generate. 12

We start with the �xed grammar de�ned in Section 3.2. The genetic al-gorithm only encodes the rule application sequence in each individual. Wedescribe the encoding chosen to solve the problem of non-viable o�spring be-low.We could let the numbers from 0� 7 represent the rules of the grammar inFigure 7. Such a representation of the problem however, results in non-viableo�spring as shown in Section 3.2. To avoid the problem of non-viable o�springwe change the representation/encoding of the problem for the genetic algorithm.In the new encoding, we let the interpretation of a number depend on theright hand side of the last applied rule. (In the following discussion we usethe numbers 0 - 7 in boldface to identify the 8 rules of our shape grammar inFigure 7.) In our encoding, a string of nine numbers speci�es a shape (recall thatnine rule applications are su�cient to generate interesting shapes). The �rstnumber in the string speci�es the starting label, that is, whether the startingcell is of type A ; B ; C or D . The eight remaining numbers specify anapplication sequence. Consider the string0; 2; 1; 3; 0; 2; 1; 3; 1The �rst number 0 �xes the starting cell as a cell of type A , The second number2, now refers to the second rule with an A on the left hand side. Therefore, inthis encoding the number 2 in the second position of the string, refers to rule1, that is, A �! �� A AOnce again only the rules with an A on the left hand side can be applied andthe next number, 1, refers to the �rst rule with an A on he left hand side |rule 0. The number 3 at the fourth position in the string, refers to the thirdrule with an A on the left hand side. This is rule 2:A �! �!A B�which results in the �rst appearance of a B . The next number 0 now refers toonly those rules with a B on the left hand side. In this case, 0 refers to the�rst rule with a B on the left hand side which is rule 3,B �! BC� #Since there is only one rule with a C on the left hand side, all numbers from0� 3 refer to this one rule. Therefore 2 refers to rule 6C �! �� D CSimilarly since there is only one rule with a D on the left hand side all numbersfrom 0� 3 refer to this rule and 1 refers to rule 7.D �! �!D A�13

We end up with an A on the left hand side, so 3 refers to rule 2 again, and thelast number 1 refers to rule 4 and we are done.In summary:� if there is an A on the left hand side{ 0 and 3 (00; 11 in binary) refer to rule 2A �! �!A B�{ 1 (01 in binary) refers to rule 0A �! �!A A�{ 2 (10 in binary) refers to rule 1A �! �� A A� if there is a B on the left hand side{ 0 and 3 (00; 11 in binary) refer to rule 3B �! BC� #{ 1 (01 in binary) refers to rule 4B �! BB� #{ 2 (10 in binary) refers to rule 5B �! B�B "� if there is a C on the left hand side{ 0� 3 (00 to 11 in binary) all refer to rule 6C �! �� D C� if there is a D on the left hand side{ 0� 3 (00 to 11 in binary) all refer to rule 7D �! �!D A�14

With this encoding not only do we solve the problem of non-viable o�springwe also reduce the number of bits needed to encode a shape as we use only twobits per rule instead of three.When we allow the grammar itself to evolve, we need to encode the ruleswithin the genotype. Once again we choose an encoding that does not allownon-viable o�spring. Making the grammar implicit, we encode a sequence ofdirections (up, down, left or right) and labels (A, B, C, or D) to specify anindividual. This added exibility means we require 6 bits to specify the nextmove in generating a shape, 2 bits for direction and 2 bits each for a label. Therules that we use are now of the formX �! " !# Y Zwhere X is speci�ed by the last applied rule, while the direction and new labelsY and Z are speci�ed in the current move. In our encoding0 �! A1 �! B2 �! C3 �! Dand similarly for directions 0 �! #1 �! "2 �! !3 �! For example the string 0; 2; 3; 1; 1; 2; : : :speci�es the following moves: For initialization, we ignore the �rst two numberswhich specify a direction and a label and start o� with 3 which speci�es thesecond label, which represents D . The next two numbers tell us to go up (1)after replacing the previous label (D) by the label denoted by 1 which is B .Once we have replaced the previous label we go up (as already indicated) andlabel the cell C as indicated by the number 2. We continue in this way for atotal of nine moves. The result of the �rst move is shown below.D) CBWith this encoding, crossover always results in a legal string and allows thegeneration of new grammars and application sequences. Thus, over time, thealgorithm learns improved grammars and searches for application sequencesleading to the generation and exploration of new design spaces. Figure 9 showsa part of a typical genotype and the resulting structure or phenotype.15

C

D

B

D

C

BD

A

0

2

3

00

10

10

Starting label, fixed by 0 = A

Decimal equivalent

11

2

3
Second label will be 3 (D)

01

1

01

1

Direction is upwards

Replace label D with label B

The next label will be C

10

2

Starting direction is 2 (->)

Next direction is 2 (->)

Replace label C with label 3 (D)

11 0 A
The next label will be A

00

00, 10, 11, 01, 01, 10, 10, 11, 00,

Resulting rule

Resulting rule

C C A

A B

C A

The genotype, a binary string

Resulting phenotype, cross-section
of a beam.

Figure 9: A typical genotype string and its resulting structure.16

As indicated earlier, we de�ne a two criteria �tness function for the geneticalgorithm. Individuals for mating are chosen randomly and recombined. Thetwo parents and two children form the set of solutions from which we extract thePareto optimal set using these criteria through exhaustive generate and test.Those individuals that belong in the Pareto optimal set participate in the nextgeneration of the the genetic algorithm. The GA completes a generation whenrepeated application of the above procedure �lls up the �xed size populationof 50. The population size of 50 was chosen experimentally as sizes largerthan that had very little e�ect on the performance of the system. The initialpopulation is generated randomly. We use the Pareto optimal set and its inverse(Radford and Gero 1988), over 11 runs of the GA with di�erent random seedsto compare results and solutions. The space described by the Pareto set and itsinverse is called the space of feasible solutions. Each run of the GA terminatesafter 100 generations/iterations. Results from a number of runs are usually usedin comparative studies of genetic algorithm applications since the algorithm isprobabilistic in nature and a single run may not provide a true comparison. 11runs provides a su�ciently large sample for our experiments. 100 generationswas experimentally determined to be enough for the GA to converge. Thepopulation size was chosen based on the computing resources available and theneed to have su�cient diversity at initialization (see Louis and Rawlins (1992)for details on population sizing and convergence time).4.3 ResultsFigure 10 shows the feasible solution spaces for our �xed grammar and thelearned grammar. The two feasible spaces are not equal and the space depictingfeasible solutions for the learned grammar shows a marked improvement inperformances. Let S0 denote the behavior space for the structures de�ned byour �xed grammar, and Sn the space when the grammar is allowed to evolve.Figure 10 indicates that: S0 6� SnandS0TSn 6= �This corresponds to a substitutive process. All genetic algorithm parameterswere the same for the runs with the �xed grammar and the runs with the gram-mar that is allowed to evolve. The reason for the di�erence and improvementfollows from the observation that the heaviest label D is now allowed to prop-agate in the vertical direction, thus increasing the moment of inertia. Sinceperimeter does not depend on weight, but only on shape, the genetic algorithmlearns grammars that increasingly use D labeled cells, leading to larger valuesfor the moment of inertia. Figure 11 shows how the genetic algorithm exploitscells labeled D by increasing their utilization at the expense of the other la-belled cells. Figure 12 shows a grammar that was learned by this evolutionaryprocess. This grammar is capable of producing better designs than the com-mencing grammar. Figure 13 shows some of the beam sections produced duringthe learning process. These could not be produced with the original grammar.17

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

Fixed Grammar

Perimeter

M
om

en
t o

f in
ert

ia

 20.00 18.00 16.00 14.00 12.00

Learned
Grammar

Figure 10: The spaces of feasible solutions produced when using the �xed grammarand when allowing the system to learn a new grammar.
Generations

A’s

B’s

C’s

D’s

0 20 40 60 80 100

25

30

35

40

45

50

55

20

15

Pe
rce

nta
ge

uti
liz

ati
on

 of
 ce

ll l
ab

els

Figure 11: The number of cells labeled D increases with time (generations) while thenumbers of the other cells decrease as the system learns new grammars.18

AA D

A
D

B

B
D

D

D
D

D

D
B

D

B

D

DD D

A

D

A

RULE : 0 -

RULE : 1 -

RULE : 2 -

RULE : 3 -

RULE : 4 -

RULE : 5 -

RULE : 6 -

RULE : 7 -

BFigure 12: A learned shape grammar.19

(I)

(II)

(III)

(IV)

BA C D

Figure 13: Some beam sections produced during the learning process.5 DiscussionMuch of machine learning in design is focussed on learning to perform old tasksmore e�ciently. The emphasis is on generalizing from examples. In designthis generalization forms the basis of routine design. Its application results indesigns of the same kind as the examples. Its utility is founded on one of threebases:� Complex casual theoretical models which are computationally expensiveare replaced by more abstract phenomenological models which are com-putationally inexpensive.� Weak casual models are replaced by strong phenomenological modelswhich are founded on cases (examples).� Where no casual models exist the phenomenological model provides asupportable computational approach.All of these work well within a conception of design as problem solvingand search. The generalizations provide alternative approaches to searching(or generating) the states in the state space.However, we wish to treat design not simply as the processing of searchingamongst pre-existing solutions, ie, within a �xed state space, but as a process20

of search and exploration via learning. By exploration we mean the creationof alternative state spaces that can then be searched to produce more usefulsolutions. What we have demonstrated is that, the genetic algorithm formula-tion can provide a computational construct to carry out the learning process.We used the function-behavior-structure + knowledge framework of design pro-totypes and utilized the shape grammar formalism as the genetic basis of thegenetic algorithm. Two aspects of shape grammars were encoded at the geno-type level: the order of execution of the rules of the shape grammar and therules themselves. This provided the opportunity for both the order of executionand the rules themselves to change. The former manifests itself as a means ofsearching a �xed state space for a given set of rules in the grammar. The lattermanifests itself as a means of exploration by creating new state spaces throughthe evolution of new rules. Such a system learns new grammars through theuse of an evolutionary process underpinning both search and exploration.In the example we commenced with a simple eight rule shape grammar andlimited its use to nine rule applications. We then let the system learn newshape grammars which improved the design of a beam section for moment ofinertia and for perimeter. The system demontrated substitutive characteristicsas exempli�ed in Figure 10 where the state spaces of behaviors produced bythe learned grammars both overlapped and was partially disjoint with the statespaces of behaviors produced by the original grammar.This form of exploration uses an evolutionary learning process. It demon-strates that learning need not be case based in design; that learning can occurat a more abstract level than from cases and that learning can form the basisof exploration in design.6 AcknowledgementsThis work has been supported by an Australian Research Council grant to JohnGero in the area of memory-based non-routine design. Some of the supportingideas were initially presented at the AID'92 Workshop on Search-Based andExplanation-Based Models of Design and at the AID'92 Workshop on MachineLearning in Design. Both these workshops formed part of the Second Interna-tional Conference on Arti�cial Intelligence in Design '92.References[1] Arciszewski, T. , Mustafa, Z. and Ziarko, W. (1987). A methodology ofdesign knowledge acquisition for use in learning expert systems, Man-Machine Studies 27: 23-32.[2] Carbonell, J. G. (1990). Introduction: paradigms for machine learn-ing. in Carbonell, J. (ed.) Machine Learning Paradigms and Methods,MIT/Elsevier, Cambridge, Massachusetts, pp. 1-10.21

[3] Gero, J. S. (1987). Prototypes: a new schema for knowledge based design,Working Paper, Architectural Computing Unit, Department of Architec-tural Science, University of Sydney, Sydney.[4] Gero, J. S. (1990). Design Prototypes: a knowledge representation schemafor design, AI Magazine 11(4): 26-36.[5] Gero, J. S. (1992). Creativity, emergence and evolution in design. in Gero,J.S. and Sudweeks, F. (eds), Preprints : Second International Round-TableConference on Computational Models of Creative Design, Department ofArchitectural and Design Science, University of Sydney, pp. 1-28.[6] Gero, J. S. and Kumar, B. (1993). Expanding design spaces through newdesign variables, Design Studies 14(2): 210-221.[7] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, andMachine Learning, Addison-Wesley, Reading, Massachusetts.[8] Gunaratnam, D. S. and Gero, J. S. (1993). Neural network learning instructural engineering applications, in L. F. Cohen (ed.), Computing inCivil and Building Engineering, Vol. 2, ASCE, New York, pp. 1448-1455.[9] Holland, J. (1975). Adaptation in Natural and Arti�cial Systems, Univer-sity of Michigan Press, Ann Arbor.[10] Louis, S. J. and Rawlins, G. J. E. (1992) Syntactic analysis of conver-gence in genetic algorithms in D. Whitley (ed.), Foundations of GeneticAlgorithms 2, Morgan Kau�man, San Mateo, CA, pp. 141-152.[11] Mackenzie, C. A. and Gero, J. S. (1987). Learning design rules from deci-sions and performances, Arti�cial Intelligence in Engineering 2 (1): 2-10.[12] Mackenzie, C. A. (1989). Inferring relational design grammars, Environ-ment and Planning B: Planning and Design 16: 252-287.[13] Mackenzie, C. A. (1991). Function and Structure Relationships and Trans-formations in Design Processes, PhD Thesis, Department of Architecturaland Design Science, University of Sydney, Sydney.[14] Maher, M. L. and Li. H. (1992). Automatically learning preliminary de-sign knowledge from design examples,Microcomputers in Civil Engineering7: 73-80.[15] Maher, M. L. and Li, H. (1993). Adapting conceptual clustering for pre-liminary structural design, in L. F. Cohen (ed.), Computing in Civil andBuilding Engineering, Vol. 2, ASCE, New York, pp. 1432-1439.[16] McLaughlin, S. and Gero, J. S. (1987). Learning from characterised de-signs, in D. Sriram and R. Adey (eds), Arti�cial Intelligence in Engineer-ing: Tools and Techniques, CM Publications, Southampton, pp. 347-359.22

[17] Mitchell, T. M. , Carbonell, J. G. and Michalski, R. S. (eds) (1986). Ma-chine Learning : A Guide to Current Research, Kluwer, Boston.[18] Quinlan, J. R. (1979). Discovering rules by induction from a large collectionof examples, in D. Michie (ed.), Expert Systems in the Micro-ElectronicAge, Edinburgh University Press, Edinburgh, pp. 168-201.[19] Quinlan, J. R. (1986). Induction of decision trees,Machine Learning 1: 81-106.[20] Radford, A.D. and Gero, J.S. (1988). Design By Optimization in Architec-ture, Building, and Construction, Van Nostrand Reinhold, New York.[21] Rao, R. , Lu, S. , and Stepp, R. (1991). Knowledge-based equation discov-ery in engineering domains in machine learning, in L. Birnbaum and G.Collins (eds), Proc. Eighth International Workshop in Machine Learning(ML 91), California.[22] Reich, Y. (1991). Design knowledge acquisition: task analysis and a partialimplementation, Knowledge Acquisition 3: 237-254.[23] Stiny, G. and Gips, J. (1978).Algorithmic Aesthetics: Computer Models forCriticism and Design in the Arts, Unversity of California Press, Berkeleyand Los Angeles, California.

23

