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Abstract 

The in vitro determination of the permeability through cultured Caco-2 cells is the most 

often-used in vitro model for drug absorption. In this report, we use the largest data set of 

measured PCaco-2, consisting of 157 structurally diverse compounds.  Linear discriminant 

analysis (LDA) was used to obtain quantitative models that discriminate higher absorption 

compounds from those with moderate-poorer absorption. The best LDA model has an 

accuracy of 90.58% and 84.21% for training and test set. The percentage of good correlation, 

in the virtual screening of 241 drugs with the reported values of the percentage of human 

intestinal absorption (HIA), was greater than 81%. In addition, multiple linear regression 

models were developed to predict Caco-2 permeability with determination coefficients of 0.71 

and 0.72. Our method compares favorably with other approaches implemented in the Dragon 

software, as well as other methods from the international literature. These results suggest that 

the proposed method is a good tool for studying the oral absorption of drug candidates.  

 
Keywords: Caco-2 cells, Atom-Based Linear Indices, Dragon Software, Computational 
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Introduction 

The molecular properties for absorption, distribution, metabolism, and excretion 

(ADME) are crucial for drug design. Following oral administration, a drug must pass through 

intestinal cell membranes via passive diffusion, carrier-mediated uptake, or active transport 

processes before reaching the systemic circulation. The development of many potential drugs 

has been discontinued because of their poor absorption. Several screening paradigms, which 

include absorption, have been employed to enhance the probability of success through the 

drug development stage. Methods to assess absorption rely on in situ, in vivo, in silico, or in 

vitro models used alone or in combination.1,2 

Since oral is the most favorite way in various routines for drug delivery, estimating 

human oral bioavailability of candidates in the early stage of the drug development process is 

important and necessary for lead selection and optimization. Screening for absorption ability 

is an important part of assessing oral bioavailability, as well as attracts efforts from industry 

and academia.3 In several in vitro cell culture models for drug absorption, the most widely 

used cell line is Caco-2 cells.4 These are well-differentiated intestinal cells derived from 

human colorectal carcinoma. These cells retain many morphological and functional properties 

of the in vivo intestinal epithelial cell barrier, which makes the Caco-2 cell monolayer an 

important model for in vitro absorption screening. The permeability coefficient across Caco-2 

cell monolayer (P) is increasingly used to estimate the oral absorption of new chemical 

entities (NCEs).5-7 Nevertheless, Caco-2 cell models have several disadvantages,8-10 being the 

long culture periods (21-24 days) the principal practical shortcoming of this approach, with 

consequently extensive cost.    

A good correlation between the extent of oral drug absorption in humans and rates of 

transport across Caco-2 cell monolayers was obtained by Artursson and Karlsson.7 However, 

there are several examples of application of Caco-2 cell models for prediction or correlation 

with human intestinal absorption, where the obtained results for Caco-2 cell permeability 

coefficients are influenced by the inter-laboratory differences.8,10 Moreover, in the literature, 

there are several criteria about the use of Caco-2 cell permeability in the prediction of human 

absorption. Yazdanian et al.6 reported that compounds with PCaco-2 values lesser than 0.4x10-6 

cm/s exhibited very poor oral absorption, whereas compounds with PCaco-2 values greater than 

7x10-6 cm/s had excellent oral absorption. In others reports, Artursson et al.7 and Rubas et al.11 

described that compounds with PCaco-2 values over 1x10-6 and 70x10-6 cm/s, respectively, were 

completely absorbed in human. In addition, Chong et al.12 concluded that compounds with 

PCaco-2 greater than 1x10-6 cm/s would have acceptable absorption in humans (>20%) and 



Yee13 determined that only compounds with PCaco-2 greater than 10x10-6 cm/s were well-

absorbed in humans (70-100%). Based on these criteria, Chaturveldi et al.14 have suggested 

that compounds with the following apparent permeability coefficients: <1x10-6cm/s, 1-10x10-

6cm/s, >10x10-6cm/s can be classified as poorly (0-20%), moderately (20-70%) and well (70-

100%) absorbed drugs. Thus, Caco-2 permeability is a valuable index for assessing oral 

absorption of compounds, which, in turn, calls for methods for predicting chemical Caco-2 

permeability.3 

Table 1. Summary of Several Previously Published Caco-2 Permeability Prediction Investigations. 
Year Authors Method Software Descriptors 
1996 Palm et al.21 Linear Regression 

 
PCMODEL, 
MacroModel 

Dynamic polar surface area (PSAd) 

1997 Norinder et 
al.27 

PLS MolSurf 
 

Surface, logP, Polarity, HBAoa, 
HBDb, HBA, HBD, etc. 

1998 Camenisch et 
al.15 

Non-linear Regression 
 

Statistica (statistical 
software) 

MW, logD(oct)c 
 

2000 Pickett et al.28 Not Mentioned 
 

Chem-X, SYBYL 
 

ClogPd, MW, PSAe 
 

2000 Cruciani et 
al.37 

PLS VolSurf 
 

VolSurf Descriptors 
 

2002 Kulkarni et 
al.29 

membrane-interaction 
QSAR 
(MI-QSAR) 

Chemlab-II, 
 Mopac 6.0 
 

Solute aqueous dissolution and 
salvation descriptors, Solute-membrane 
interaction and salvation descriptors, 
General intramolecular solute 
descriptors. (Many descriptors) 

2002 Fujiwara et 
al.30 

Molecular orbital (MO) 
calculation, 
5-4-1 BP neural network 

MOPAC97 
 

Dipole moment, Polarizability, 
Sum(N)f, Sum(O)g, Sum(H)h 

2002 Yamashita 
et al.35 

Genetic Algorithm Based 
Partial Least Squares 

Molconn-Z 3.50 
 

Molconn-Z descriptors 
 

2003 Marrero-Ponce 
et al.31 

MRL TOMOCOMD-
CARDD 

Atom-Based 
Quadratic Indices 

2004 Hou et al.32 MRL SYBYL, SASA, 
MSMS, etc. 

HCPSAi, logD, rgyrj, RB 
 

2004 Marrero-Ponce 
et al.36 

Linear discriminant 
analysis (LDA) 

TOMOCOMD-
CARDD 

Atom-Based  
Quadratic Indices 

2005 Refsgaard et 
al.34 

Nearest-Neighbor 
classification 
 

SYBYL, Matlab 
 

Number of flex bonds, number of 
hydrogen bond acceptors and donors, 
molecular and polar surface area 

2005 Marrero-Ponce 
et al.33 

LDA and MLR TOMOCOMD-
CARDD 

Atom-Based 
Quadratic Indices 

2006 Guangli and 
Yiyu.3 

MLR and SVM CDK 
 

HBDk, CPSA10l, CPSA20m, TPSAn 

aHydrogen bond acceptor strength for oxygen atoms. bHydrogen bond donor strength. cdistribution coefficient in 1-
octanol/water. dCalculated logP. ePolar surface area. fSum of charges of nitrogen atoms. gSum of charges of oxygen 
atoms. hHydrogen atoms bonding to nitrogen or oxygen atoms. iHigh charged polar surface area. jRadius of gyration. 
kNumber of H-bond donors. lPartial positive surface area*total positive charge. mCharge weighted partial negative 
surface area*total molecular surface area. nTopological surface area based on fragments contribution. 
 

At present, it is known that oral absorption is influenced by a different kind of 

interactions. In some studies, it has been demonstrated that permeability coefficients, 

measured for transport through Caco-2 monolayer cell cultures, are correlated with 



lipophilicity,6,15-17 while in others it has been discussed the role of hydrogen bonding or 

charge.7,10,15,16 Lipinski et al.18 proposed “the Rule of Five” for a preliminary estimation of a 

compound’s absorption on the basis of molecular weight, lipophilicity and the number of 

hydrogen bond donor and acceptor atoms in the molecule.  

The significant failure rate of drug candidates in late stage development is driving the 

need for predictive tools that could eliminate inappropriate compounds, before substantial 

time and money is invested in testing.19,20 Theoretical approaches appear to be a good 

alternative to ‘in silico’ prediction of human absorption, for new drug candidates obtained by 

combinatorial chemistry method.21-26 Therefore, it is expected an increasing use in the 

estimation of absorption parameters of potentially active NCEs by using quantitative structure 

property relationship (QSPR) methods during the drug discovery and development process. 

Research on predicting Caco-2 permeability from structures of compounds using quantitative 

structure property relationship (QSPR) modeling is on the way. In the last years, some 

researchers have explored QSPerR studies involving Caco-2 cell permeability. Table 1 

summarizes most of these studies.3,15,21,27-37 They generally used regression methods, small 

sets of molecules, and results were not fully validated by external test sets. Certainly, Hou et 

al.32 published the largest set employed for regression analysis, about 100 compounds 

collected from several published datasets. On the other hand, some studies performed linear 

discriminant analysis (LDA) to classify between compounds with higher or moderate-poorer 

absorption; among them the largest training set, made up for 134 compounds,  was published 

in 2005 by Marrero-Ponce et al;33 Refsgaard et al.34 have also built a classification model 

based on in-house data, but they cannot publish the dataset because at this time it is in 

discovery stage.  

Bearing in mind that mentioned above the aims of the present work were: 1) to obtain 

a classification model, for the largest (as far as we know) and more heterogeneous compiled 

data set (157 compounds), which permits the classification of the molecules with poor-

moderate and high absorptions from their molecular structures, by using non-stochastic and 

stochastic atom-based linear indices as molecular fingerprints, 2) to compare our result with 

other obtained by using topological descriptors implemented in the Dragon software,38 with 

the same data set, 3) to simulate a virtual screening experiment with the obtained models, in 

order to find a relationship between the predicted permeability coefficients of Caco-2 cell and 

the human intestinal absorption. Finally, we will also build Caco-2 permeability prediction 

models based on multiple linear regressions (MLR) and by using the same data set, compare 

our results with other previously obtained by other researches. 



 
Computational and Experimental Procedures 

Computational strategies. Molecular fingerprints were generated by using the ‘in 

house’ TOMOCOMD software.39 It is an interactive program for molecular design and 

bioinformatics research, which consists of four subprograms: CARDD (Computed-Aided 

Rational Drug Design), CAMPS (Computed-Aided Modeling in Protein Science), CANAR 

(Computed-Aided Nucleic Acid Research), and CABPD (Computed-Aided Bio-Polymers 

Docking). Each one of them allows both drawing the structures (drawing mode) and 

calculating molecular 2D/3D descriptors (calculation mode). In the present report, we outline 

salient features concerned with only one of these subprograms, CARDD, and with the 

calculation of non-stochastic and stochastic atom-based linear indices, considering and not 

considering H-atoms in the molecular pseudograph (G). The total and local linear indices for 

small-to-medium-sized organic compounds have been explained in some detail in the 

literature.40-46  

The main steps for the application of the present method in QSAR/QSPR and drug 

design can be summarized briefly in the following algorithm:  

1) Draw the molecular structure for each molecule in the data set, by using the software 

drawing mode. This procedure is performed by a selection of the active atomic symbol in 

the corresponding group of the periodic table of the elements;  

2) Use appropriate weights in order to differentiate the atoms in the molecule. The weights 

used in this study are those previously proposed for the calculation of the DRAGON 

descriptors,47-49 i.e., atomic mass (M), atomic polarizability (P), van der Waals atomic 

volume (V), Mulliken electronegativity (K), plus the atomic electronegativity in Pauling 

scale (G). The values of these atomic labels are shown in Table 2.47-50 

3) Compute the total and local (atomic, group and atom-type) non-stochastic and stochastic 

linear indices. It can be carried out in the software calculation mode, where one can select 

the atomic properties and the descriptor family before calculating the molecular indices. 

This software generates a table in which the rows correspond to the compounds, as well as 

columns correspond to the atom-based (both total and local) linear maps or other MD 

family implemented into this program;  

4) Find a QSPR/QSAR equation by using several multivariate analytical techniques, such as 

multilinear regression analysis (MRA), neural networks, linear discrimination analysis, 

and so on. Therefore, one can find a quantitative relation between a property P and the 

linear fingerprints having, for instance, the following appearance, 



      P = a0f0(x) + a1f1(x) + a2f2(x) +…. + akfk(x) + c                                                      (1)                               

where P is the measure of the property, fk(x) is the kth total (atom and atom-type) linear 

indices, as well as the ak’s and c are the coefficients obtained by MRA. 

5) Test the robustness and predictive power of the QSPR/QSAR equation, by using internal 

(cross-validation) and external validation techniques. 

The descriptors calculated in this work were the following:  

i) fk(x) and fk
H(x) are the kth atom-based total linear indices considering and not considering H-

atoms,  respectively, in the molecule. 

ii) fkL(xE) and fkL
H(xE) are the kth atom-based local (atom-type = heteroatoms: S, N, O) linear 

indices considering and not considering H-atoms, respectively, in the molecule.    

iii) fkL
H(xE-H) are the kth local (atom-type = H-atoms bonding to heteroatoms: S, N, O) linear 

indices considering H-atoms in the molecular pseudograph (G).  

The kth stochastic total [sfk(x) and sfk
H(x)], as well as local [sfk(xE), sfk

H(xE) and sfkL
H(xE-H)] 

atom-based linear indices were also computed.  

The Dragon38 computer software was also employed to calculate the molecular 

descriptors. The Dragon descriptors included in this work were the following groups: 

Topological indices, Molecular walk counts,51,52 BCUT descriptors,53  Gálvez´s topological 

charge indices,54,55 and 2D autocorrelations. The complete list of 2D molecular descriptors 

used in this study as well as the symbols and their description is given as Supplemental 

Material. 

Table 2. Values of the Atom Weights Used for Linear Indices Calculation.47-50 

ID Atomic Mass VdW Volume Mulliken 
Electronegativity 

Polarizability Pauling 
Electronegativity 

H 1.01 6.709 2.592 0.667 2.2 
B 10.81 17.875 2.275 3.030 2.04 
C 12.01 22.449 2.746 1.760 2.55 
N 14.01 15.599 3.194 1.100 3.04 
O 16.00 11.494 3.654 0.802 3.44 
F 19.00 9.203 4.000 0.557 3.98 
P 30.97 26.522 2.515 3.630 2.19 
S 32.07 24.429 2.957 2.900 2.58 
Cl 35.45 23.228 3.475 2.180 3.16 
Br 79.90 31.059 3.219 3.050 2.96 
I 126.90 38.792 2.778 5.350 2.66 
 

Permeability Data. In this study, we used the largest, from our knowledge, data set of 

measured PCaco-2 consisting of 157 structurally diverse compounds. It was compiled from 

several published works6,7,11-13,15,32,56-72 and divided into two subsets, used as training and test 

sets. The compounds were classified into high and moderate-poor absorbed compounds 

according to a boundary quantitative value of PCaco-2(8×10–6 cm/s). This value of PCaco-2 was 



fixed taking into consideration the experimental results reported in the literature and the wide 

inter-laboratory variability.8,10 Experimental values of PCaco-2 (AP→BL), for the training data 

set, are illustrated in Table 3 with their references. The data set used for ‘in silico’ 

permeability studies included compounds with a diverse molecular weight and net charge. In 

addition compounds with different absorption mechanisms were included in the model. Even, 

an external prediction set (test set) was used to validate our model. It was composed by 19 

(five Sulfasalazine’s metabolites and analogs, five 6–fluoroquinolones derivatives and other 

seven compounds) drugs–like compounds obtained from several previously published works. 

The experimental values of PCaco-2 (AP→BL) (APical→BasoLateral), for the test data set, are 

also shown in Table 3.  

The decimal logarithms of the apparent Caco-2 permeability coefficients (log Papp), of 

100 structurally diverse compounds, were taken from the literature.32 To compare with 

previous works,3,32 the data set was separated into a training set of 77 compounds and into a 

test set of 23 compounds, as in Hou et al.32 The training set was used to build the model, and 

the test set was used to evaluate its predictability.  

Chemometric analysis. Statistical analysis was carried out with the STATISTICA 

software.73 The considered tolerance parameter (proportion of variance that is unique to the 

respective variable) was the default value for minimum acceptable tolerance, which is 0.01. 

Forward stepwise procedure was fixed as the strategy for variable selection. The principle of 

maximal parsimony (Occam's razor) was taken into account as a strategy for model selection. 

Therefore, we selected the model with highest statistical signification, but having as few 

parameters (ak) as possible. 

A linear discriminant analysis (LDA) was performed to classify between compounds with 

poorer-moderate and higher absorption. The quality of the models was determined by 

examining Wilks’ λ parameter (U-statistic), square Mahalanobis distance (D2), Fisher ratio (F) 

and its corresponding p-level (p(F)), as well as the percentage of good classification in the 

training and test sets. The statistical robustness and predictive power of the obtained model 

were assessed by using an external prediction (test) set. In developing classification models, 

the values of 1 and -1 were assigned to active (high absorption) and inactive (moderate-poor 

absorption) compounds, respectively. By using the models, one compound can then be 

classified as either active, if ∆P% > 0, being ∆P% = [P(Active) - P(Inactive)]x100, or as 

inactive, otherwise. P(Active) and P(Inactive) are the probabilities with which the equations 

classify a compound as active and inactive, correspondingly. 



Table 3. Caco-2 Cell Permeability for 157 Structurally Diverse Compounds. 
Compounds Ref. Px10-6 Compounds Ref. Px10-6 Compounds Ref. Px10-6 
Acebutolol 32 1.48 Cimetidine 32 1.29 Imipramine 32 14.13 
 58 4.47  60 0.50  13 14.13 
 6 0.51  13 3.09 Indomethacin 6 20.42 
Acebutolol ester 32 24.55  6 1.38  6 25.12 
 58 77.62  68 0.35 Labetalol 6 9.33 

32 8.71 Clonidine 32 25.70  6 10.00 Acetylsalicylic 
acid 56 2.40  13 30.20 Mannitol 32 0.62 
 13 30.90  6 21.88  6  
 6 9.12 Corticosterone 32 33.88  56 0.18 
Aciclovir 32 0.70  56 54.95  11 3.24 
 13 2.00  6 21.38  13 0.65 
 6 0.25 Desipramine 32 22.91  6 0.40 
Alprenolol 32 23.99  13 21.38  61 2.63 
 56 40.74  6 24.55  68 0.12 
 7 40.74 Dexamethasone 32 17.78 Meloxicam 6 19.50 
 58 75.86  56 12.59  6 19.95 
 6 25.12  57 26.92 Methanol 32 131.83 
 15 38.30  13 23.44  11 131.83 
 69 242.00  6 12.30 Methotrexate 32 1.20 
Alprenolol ester 32 33.88 32 0.44  13 1.20 
 58 107.15 

Dexamethasone-β-
D-glucoside 57 0.44 Methylscopolamine 6 0.69 

Aminopyrine 32 36.31 32 1.15  6 0.79 
 6 36.31 

Dexamethasone- 
β-D-glucuronide 57 1.15 Metoprolol 32 25.70 

Artemisinin 32 30.20 Diazepam 32 47.86  6  
 59 30.40  13 70.79  56 26.92 
Artesunate 32 3.98  6 33.11  7 26.92 
 59 4.00  69 756.00  68 18.80 
Atenolol 32 0.32 Dopamine 32 9.33  15 26.71 
 56 0.20  6 9.33  69 92.00 
 7 0.20 Doxorubicin 32 0.16 Nadolol 32 3.89 
 60 0.47  13 0.16  6 3.89 
 6 0.52 Erithromycin 32 3.72 Naproxen 32 74.13 
 61 0.23  13 3.72 Nevirapine 32 30.20 
Betaxolol 58 15.49 Estradiol 32 16.98  6 30.20 
 58 95.50  6 19.95 Nicotine 32 19.50 
 68 0.19 Felodipine 32 22.91  6 19.50 
 15 0.20  56 22.91 Olsalazine 56 0.11 
 69 1.00 Ganciclovir 32 1.02 Oxprenolol 32 20.89 
Betaxolol ester 32 30.20  11 2.69  58 66.07 
 58 95.50  6 0.38  69 120.00 
Bremazocine 32 7.94 Griseofulvin 32 36.31 Oxprenolol ester 32 30.90 
 6 7.94  6 36.31  58 97.72 
Caffeine 32 38.91 Hidrochlorothiazide 32 0.87 Phencyclidine 32 24.55 
 13 50.12  60 1.51  6 24.55 
 6 30.90  6 0.51 Phenytoin 32 26.92 
Chloramphenicol  32 20.42 Hydrocortisone 32 21.88  6 26.92 
 13 20.42  6  Pindolol 32 16.60 
Chlorotiazide 32 0.19  56 21.38  6 16.60 
 6 0.19  11 35.48 Pirenzepine 32 0.44 
Chlorpromacine 32 19.95  6 15.85  6 0.44 
 6 19.95 Ibuprophen 32 52.48    
Cephalexin 59 0.18  13 52.48    



Table 3. Cont. 
Compounds Ref. Px10-6 Compounds Ref. Px10-6 Compounds Ref. Px10-6 
Piroxicam 32 35.48 Timolol 32 14.13 Bosentan 15 1.05 
 68 46.25  58 44.67  61 1.05 
Practolol 32 0.89  6 12.88 Proscillaridin 15 0.63 
 56 0.89 Timolol ester 32 25.12  61 0.63 
 7 0.89  58 79.43 Ceftriaxone 15 0.13 
 61 1.38 Uracil 32 4.27  61 0.13 
 15 0.92  6 4.27 Remikiren 15 0.74 
 69 3.50 Urea 32 4.57  61 0.74 
Propranolol 32 26.30  6 4.57 Squinavir 15 0.55 
 56 41.69 Warfarin 32 28.18  61 0.55 
 7 41.69  56 38.02 Mibefradil 15 13.49 
 58 83.18  6 20.89  61 13.49 
 13 27.54  61 53.70 Azithromycin 13 1.05 
 6 21.88 Ziduvudine 32 6.92 Penicillin  13 1.95 
 59 11.20  6 6.92 H216/44 7 0.91 
 15 43.03 PNU200603 61 0.14  70 1.14 
Prazocin 32 43.65 Amoxicillin 62 0.79 Naloxone 13 28.18 
 13 43.65 Antipyrine 62 28.18 Sumatriptan 13 3.02 
Progesterone 32 42.66  68 47.23 Taurocholic acid 13 34.67 
 11 79.43  69 2.15 Tenidap 13 51.29 
 6 23.44 Cyclosporine 62 0.89 Trovafloxacin 13 30.20 
Propranolol ester 32 33.11 Diltiazem 62 41.69 Valproic acid 13 47.86 
 58 104.71  61 48.98 Ziprasidone 13 12.30 
Quinidine 32 20.42 Enalapril 62 2.29 Gly-Pro 71 6.10 
 13 20.42 Furosemide 62 0.31 D-glucose 71 17.53 
Ranitidine 32 0.49  68 0.29 L-Phenylalanine 71 18.37 
 6 0.49 Guanabenz 62 31.62 Ketoprofen 71 23.15 
Salicylic acid 32 16.22  61 72.44 SB 209670 69 8.80 
 56 12.02 Cumarin 15 77.63 SB 217242 69 70.00 
 6 21.88  61 77.62 Raffinose 69 0.05 
Scopolamine 32 11.75 Theophyline 15 44.67 Sildenafil 69 87.00 
 6 11.75  61 44.67 Oxazepam 69 246.00 
Sucrose 32 1.70 Epinephrine 15 0.96 Nordazepam 69 307.00 
 6 1.70  61 0.95 Metolazone 69 6.10 
Sulphasalazine 32 0.20 Guanoxan 15 19.50 Lactulose 69 0.27 
 56 0.13  61 19.50 Foscarnet 69 0.05 
 6 0.30 Lidocaine 15 61.66 Azithromycin 13 1.05 
Telmisartan 32 15.14  61 61.66 Ciprofloxacin 69 1.90 
 6 15.14 Tiacrilast 15 12.59 Amiloride 69 0.78 
Terbutaline 32 0.42  61 12.59 Alfentanil 69 310.00 
 56 0.38 Sulpiride 15 0.69 H/334/75 71 0.13 
 6 0.47  69 0.39 Lef 553 69 0.02 
 68 0.97 Nitrendipine 15 16.98 Glycine 13 80.00 
Testosterone 32 45.71  61 16.98 D-Phe-L-Pro 13 44.30 
 56 51.29 Fleroxacin 15 15.49 BvaraU 12 4.00 
 13 72.44  61 15.49 Lisinopril 72 0.05 
 6 25.12 Verapamil 15 26.30 SQ-29852 12 0.02 
 61 58.88  61 26.30 L-Glutamine 72 0.85 
 
 
 
 



Table 3. Cont. 
Compounds Ref. Px10-6 Compounds Ref. Px10-6 Compounds Ref. Px10-6 
Atorvastatin 65 4.90 Amprenavir 63 21.60 CNV97103 64 15.20 
DMP450 63 36.80 Indinavir 63 6.00 CNV97104 64 13.90 
DMP850 63 12.40 Nelfinavir 63 3.40 Nicardipine 67 19.80 
DMP851 63 5.20 Ritonavir 63 3.90 Sulfapyridine 66 21.50 
Losartan 63 0.88 Vinblastine 67 3.83 5-Aminosalicylic acid 66 0.32 
Lucifer Yellow 63 0.05 CNV97100 64 3.60 Descarboxysulfasalazine 66 32.80 
Phenol red 63 0.41 CNV97101 64 21.80 Homosulfasalazine 66 0.09 
Rhodamine  63 0.55 CNV97102 64 16.80 Sulfasalamide 66 1.96 
 

Calculation of percentages of global good classification (accuracy) and Matthews’ 

correlation coefficients (MCC), in the training and test sets, permitted the assessment of the 

model.74 The MCC is always between -1 and +1. A value of -1 indicates total disagreement 

(all-false predictions), and +1, total agreement (perfect predictions). The MCC is 0 for 

completely random predictions and, therefore, it yields an easy comparison with regard to 

random baseline. 

Finally, we have used the receiver operating characteristic curve (ROC) to evaluate the 

accuracy of the discriminant functions selected (DFs) through the sensitivity (true positive 

fraction) and specificity (true negative fraction) for different thresholds of DFs. ROC curve is 

the representation of sensitivity vs 1- specificity. The closer the curve follows the left-hand 

border and then the top border of the ROC space, the more accurate the test. The closer the 

curve comes to the 45-degree diagonal of the ROC space, the less accurate the test. Accuracy 

is measured by the area under the ROC curve, AUC. An area of 1 represents a perfect test; an 

area of 0.5 represents a worthless test.75  

On the other hand, multiple linear regression (MLR) was carried out to predict Caco-2 

permeability. The quality of the models was determined by examining the regression’s 

statistic parameters and those of the cross validation procedures.76,77  Therefore, the quality of 

models was determined by examining the correlation coefficients, squared correlation 

coefficients, Fisher-ratio’s p-level [p(F)], standard deviation of the regression (s) and the leave 

one-out cross-validated statistic (q2). The statistical robustness and predictive power of the 

obtained model were assessed by using an external prediction (test) set.  

Finally, an Analysis of Principal Components (ACP) was performed to compare the 

information content of the atom-based non-stochastic and stochastic total and local linear 

indices with that of other descriptors used in this study. The existence of linear independence 

has been claimed by Randic78 as one of the desirable attributes for novel topological indices.  



To conduct this analysis, we will carry out a factor analysis by using the principal 

components method. The theoretical aspects of this statistical technique have been extensively 

exposed in the literature including many chemical applications.73,79-85 The main applications 

of factor analytic techniques are: to reduce the number of variables, and 2) to detect structure 

in the relationships between variables, that is to classify variables.73,82 In this approach, factor 

loadings (or "new" variables) are obtained from original (molecular descriptors) variables. 

Thus, these factors capture most of the "essence" of these molecular descriptors because they 

are a linear combination of the original items. Because each consecutive factor is defined to 

maximize the variability that is not captured by the preceding factor, consecutive factors are 

independent of each other.  Put another way, consecutive factors are uncorrelated or 

orthogonal to each other. In this sense, the first factor obtained is generally more highly 

correlated with the variables than the others factors. This is to be expected because, as 

previously described, these factors are extracted successively and will account for less and 

less variance overall. Finally, some of the most important conclusions that can be drawn from 

a factor analysis that will be of large usefulness in the present paper are the following: 73,79-85 

1) variables with a high loading in the same factor are interrelated and will be the more so the 

higher the loadings, and 2) no correlation exists between variables having nonzero loadings 

only in different factors. These are the principal ideas that permit the interpreting the factor 

structure obtained using the factor analysis as a classification method. 

The factor analysis was performed with the STATISTICA software,73 and “varimax 

normalized” was used as rotational strategy to obtain the factor loadings from the principal 

component analysis. The goal of this rotational procedure is to obtain a clear pattern of 

loadings, that is, factors that are somehow clearly marked by high loadings for some variables 

and low loadings for others. The “varimax normalized” is the method most commonly used as 

“varimax” rotation.73 This rotation strategy is aimed at maximizing the variances of the 

squared normalized factor loadings (row factor loadings divided by squared roots of the 

respective communalities) across variable for each factor. This strategy makes the structure of 

factors pattern as simple as possible, permitting a clearer interpretation of the factors without 

loss of orthogonality between them.73,85-87   

 
 

 

 

 



Results and Discussion  

Linear Discriminant Analysis Models. 

QSPerR Models Obtained by Using TOMOCOMD-CARDD Descriptors. In order to 

develop the LDA models, the data was conformed by 82 compounds with higher absorption 

(P ≥ 8x10-6cm/s) and 56 compounds with moderate-poorer absorption (P < 8x10-6cm/s). The 

best obtained discrimination models are given below, together with the LDA statistical 

parameters: 

Class = 4.533 -0.364 Gf3L
H(xE-H) +0.130 Gf2L

H(xE-H) +0.159 Kf4L
H(xE-H) -0.032 Vf1L

H(xE)  

     +1.4x10-8 Kf12
H(x) +0.065 Vf0L(xE) -0.004 Vf5L

H(xE-H) +1.1x10-4 Mf5(xE)            (2)  

 N = 138               λ = 0.435                        QTotal = 90.58            MCC = 0.81    

D2 = 5.31              F(8,129) = 20.94             p < 0.00001 

 

Class = 4.652 -0.318 Msf2L
H(xE-H) -0.483 Vsf3(xE) +0.095 Vsf14(xE) +3.058 Psf5(xE)  

     +2.065 Ksf2
H(xE-H) -3.273  Psf4L

H(xE-H) +0.149 Vsf5L
H(xE) +0.026 Ksf0(x)             (3)  

 N = 138             λ = 0.436                         QTotal = 89.13           MCC = 0.77 

D2 = 5.29            F(8,129) = 20.85              p < 0.00001     

where N is the number of compounds, λ is the Wilks’ statistic, QTotal is the accuracy of the 

model for the training set, MCC is the Matthews’ correlation coefficient, D2 is the squared 

Mahalanobis distance, F is the Fisher ratio and p-value is its significance level. 

The non-stochastic model (Eq. 2), which includes non-stochastic indices, has an 

accuracy of 90.56% for the training set. This model showed a high MCC of 0.81; MCC 

quantifies the strength of the linear relation between the molecular descriptors and the 

classifications, and it may often provide a much more balanced evaluation of the prediction 

than, for instance, the percentages (accuracy).88 Nevertheless, the most important criterion, for 

the acceptance or not of a discriminant model, is based on the statistic for external prediction 

set. The non-stochastic model showed an accuracy of 84.21% (MCC = 0.72) for the 

compounds in the test set. In Table 4, the results of classification and a posteriori probabilities 

for the compounds of the training and test sets are shown. 

A rather similar behavior was obtained with the stochastic linear indices (Eq. 3). In this 

case, the model achieved an accuracy of 89.13% with a MCC of 0.77; for the test set the 

results of this model were an accuracy of 84.21% and MCC of 0.72; these values are similar to 

those obtained with non-stochastic linear indices. The results of classification and a posteriori 

probabilities, with stochastic linear indices, are also shown in Table 4. 



Table 4. Results for the Classification of Compounds in Training and Test Sets thought the 
Discriminant Functions Obtained Using Non-stochastic and Stochastic Linear Indices. 

Compounds ∆P%a ∆P%b Compounds ∆P%a ∆P%b Compounds ∆P%a ∆P%b 
High absorption group (H) 

Training set 
Acebutolol esterc,d -58.30 -89.37 Metoprolol 76.63 82.69  Guanoxanc,d -78.60 -71.22 
Acetylsalicylic acid 58.10 37.92 Naproxen 90.60 90.60 Lidocaine 38.96 66.66 
 Alprenolol 88.48 89.00 Nevirapine 59.43 71.41 Tiacrilast 70.76 55.65 
Alprenolol ester 79.64 76.34 Nicotine 95.81 98.16 Nitrendipine 87.83 94.18 
Aminopyrine 95.07 97.28 Oxprenolol 73.08 82.52 Fleroxacin 33.34 57.66 
Artemisin 92.40 91.76 Oxprenolol ester 75.60 68.55 Verapamil 95.27 98.93 
Betaxolol 70.90 82.52 Phencyclidine 98.35 98.98 Mibefradil 50.10 51.53 
Betaxolol ester 73.59 66.80 Phenitoinc,d -74.77 -21.01 Naloxone 80.72 74.76 
Bremazocine 92.39 89.84 Pindololc -0.22 0.14 Taurocholic acidc,d -99.67 -98.99 
Caffeine 66.46 79.75 Piroxicam 86.35 93.63 Tenidap 81.93 75.77 
Chloranphenicol 63.57 43.89 Prazocin 44.15 77.59 Trovafloxacin 58.67 25.80 
Chlorpromazine 99.68 99.20 Progesterone 98.29 97.71 Acid valproic 68.42 70.46 
Clonidined 48.27 -6.76 Propranolol 92.04 89.46 Ziprasidone 85.00 84.55 
Corticosterone 62.43 81.91 Propranolol ester 92.86 79.55 D-Glucosec,d -58.60 -69.69 
Desipramine 92.21 91.92 Quinidine 90.51 94.42 L-Phenylalanine 86.11 91.76 
Dexamethasone 55.54 62.89 Salicylic acid 27.53 20.02 Ketoprofen 93.22 90.71 
Griseofulvin 98.74 94.18 Scopolamine 59.92 70.51 SB 209670 10.72 25.04 
Hydrocortisone 32.07 46.07 Telmisartan 97.80 92.56 SB 217242 57.77 79.71 
Ibuprophen 86.28 91.16 Testosterone 94.73 94.28 Sidenafil 13.10 74.43 
Imipramine 98.61 99.15 Timolol 24.14 50.00 Oxazepam 79.94 72.60 
Indomethacin 96.19 76.12 Timolol ester 29.36 30.86 Nordazepam 94.50 80.32 
Labetalolc,d -88.97 -72.53 Warfarin 95.84 79.31 Alfentanil 51.01 43.08 
Meloxicam 60.78 86.68 Theophyllinec -12.33 7.42 Glycine 59.00 64.16 
Methanol 89.49 85.68      

Test set 
CNV97101 39.78 59.63 CNV97103 42.11 62.82 Nicardipine 85.64 96.34 
CNV97102 41.08 57.51 CNV97104 42.80 64.57 Sulfapyridine 31.89 59.85 
Descarboxysulfasalaz
ine 

49.39 69.93       

Moderate-poor absorption group (M-P) 
Training set 

Acebutolol  -61.90 -81.25 Practolol -38.01 -46.41 Ziduvudine -97.99 -98.26 
Acyclovir -99.28 -96.52 Ranitidine -24.88 -39.19 Urea -76.04 -33.50 
Artesunatec,d 89.10 62.25 Sucrose -99.75 -99.78 Azithromycin -98.95 -99.71 
Atenolold -37.84 24.15 Sulphasalazine -78.18 -62.09 Penicillin  -53.55 -79.54 
Chlorothiazide -97.80 -97.84 Terbutaline -44.05 -62.33 H21644 -98.99 -98.53 
Cimetidine -98.86 -99.40 Uracil -95.51 -92.15 Sumatriptan -89.70 35.39 
Dexamethasone-β-D 
glucoside 

-87.30 -93.30 Dexamethasone- 
β-D glucuronide 

-95.42 -98.72 Cephalexin -72.16 -58.30 

Doxorrubicin -86.89 -97.37 Amoxicillin -93.22 -95.27 Gly-Prod -20.82 14.46 
Erythromycin -98.24 -99.80 Enalapril -43.26 -76.43  Raffinose -99.99 -100.00
Ganciclovir -99.86 -99.36 Furosemide -99.55 -99.81 Metolazone -85.85 -96.61 
Hydrochlorothiazide -99.87 -99.73 Epinephrine -66.56 -51.88 Lactulose -99.79 -99.75 
Mannitol -84.31 -86.37 Sulpiride -99.69 -99.02 Foscarnet -96.85 -99.93 
Methotrexate -99.82 -99.64 Bosentanc,d 19.51 60.42 Ciprofloxacin -28.70 -10.01 
Methylscopolaminec,d 39.02 70.31 Proscillaridinc 25.99 -2.43 Amiloride -98.43 -98.56 
Nadololc,d 43.21 47.49 Ceftriaxone -99.93 -99.64 BVARAU -95.40 -96.90 
Olsalazine -92.44 -95.29 Remikiren -99.21 -94.30 Lisinopril -96.65 -96.94 
Pirenzepined -19.51 12.48 Saquinavir -99.81 -99.81  SQ-29852 -95.19 -98.72 



Table 4. Cont. 
Compounds ∆P%a ∆P%b Compounds ∆P%a ∆P%b Compounds ∆P%a ∆P%b 
Nelfinavir -75.88 -44.80 DMP851 -44.82 -10.27 L-Glutamine -52.97 -64.12 
 Ritonavir -99.71 -99.35 Indinavir -96.45 -94.01    

Test set 
PNU200603 -83.12 -65.56 Artorvastatin -50.53 -96.59 Rhodaminec,d 93.80 88.65 
Cyclosporine -100.00 -100.00 Losartanc,d 97.93 95.53 Vinblastine -53.42 -11.39 
Homosulfasalazine -74.10 -54.88 Lucifer Yellow -98.28 -98.86 CNV97100 -3.44 -0.79 
5-Aminosalicylic 
Acid 

-29.33 -44.93 Phenol Redc,d 99.86 99.63 Sulfasalamide -90.17 -49.57 

a,b∆P% = [P(Active) - P(Inactive)]x100. 
aClassification of each compounds using the obtained model with non-stochastic linear indices.  
bClassification of each compounds using the obtained model with stochastic linear indices.  
cCompounds classified incorrectly by Eq. 2 
dCompounds classified incorrectly by Eq. 3 
 

Receiver operating characteristic curve, ROC, for the training sets are shown in the 

Figure 1a,b. The areas under the curve (AUC) are 0.9575 and 0.9386 for Eq. 2 (Fig. 1a) and 

Eq. 3 (Fig. 1b), respectively. These high values of AUC are a measure of the excellent test 

accuracy of the discriminant functions selected. 
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(a) Eq. 2, obtained by using atom-based non-
stochastic linear indices (Matthews corr coeff, 
MCC = 0.81; AUC = 0.9575) 
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(b) Eq. 3, obtained by using atom-based 
stochastic linear indices (Matthews corr 
coeff, MCC = 0.77; AUC = 0.9386) 

 
Figure 1. Receiver operating characteristic curves (ROC) (a) for the Eq. 2 (atom-based non-
stochastic linear indices) and (b) for the Eq. 3 (atom-based stochastic linear indices) in 
training sets (white points) and random classifier (black points). TPF = sensitivity and FPF = 
1-specificity for different thresholds of class function (between -10 and +10). 
 

Comparison with other approaches. The use of atom-based non stochastic and 

stochastic linear indices, for the classification of molecules with poorer-moderate and higher 

absorption, was compared with other method implemented in the Dragon software.38 Five 

kinds of indices were specifically used: Topological, BCUT, Gálvez´s topological charge 



indices, 2D Autocorrelations and Molecular walk counts; all these families are made up for 

bidimentional molecular descriptors like linear indices. The development of these five models 

involved the use of the same data set that it was used in developing the model of linear indices 

and the same number of variables in the equation, in most of the approaches. The Dragon 

software was not able to calculate compounds Cyclosporine, Squinavir and Ritonavir, because 

they have more atoms than the limit that software can calculate, so they molecules were not 

considered in further analysis. The obtained models with their statistical parameters are shown 

in Table 5. 

Table 5. Statistical Parameters of the QSAR Models Obtained Using Different 
Molecular Descriptors to Predict the Caco-2 Permeability. 

Index  N λ D2
 

F p Eq No 

2D autocorrelations ATS1e, ATS8e, ATS4v, ATS7v, 
GATS3v,  MATS6e, GATS7m, 
GATS2e 

136 0.586 2.91 11.24 0.0001 4 

BCUT BEHm1, BEHm2, BELm1, 
BELm4, BELm7, BEHv1, 
BELv2 

136 0.775 1.20 5.32 0.0001 5 

Gálvez topological 
charge indices 

GGI3, GGI4, GGI9, JGI1, JGI3, 
JGI6, JGI7, JGT 

136 0.719 1.61 6.20 0.0001 6 

Topological 
descriptors 

SEigv, PW5, AAC, T(F..F), 
T(O..Cl), X4Av, D/Dr07, X0Av 

136 0.547 3.41 13.16 0.0001 7 

Molecular Walk 
Count 

MWC09, MWC10, TWC, 
SRW03, SRW05, SRW07 

136 0.938 0.27 1.42 0.21 8 

 
The first comparison was based on the quality of the statistical parameters of the 

discriminant function, as well as predictive capacity of the models generated. As can be seen, 

the present approach (non stochastic and stochastic atom-based linear indices) achieved the 

best values, for the statistical parameters of the developed QSAR models. Moreover, our 

models showed the lowest values of the Wilks’ lambda and the highest values of square 

Mahalanobis distance and Fisher ratio. All the models were significant, from statistical point 

of view, with the exception of the model obtained with molecular walk count descriptors. For 

the training set, the most accurate models, were those obtained with non-stochastic linear 

indices (Q = 90.56%), with atom-based quadratic indices (Q = 90.30%) and with stochastic 

atom-based linear indices (Q = 89.13), respectively. The best value of the sensitivity was 

obtained with quadratic indices (96.29%), but notice that our two models Eqs. 2 and 3 had a 

sensitivity of 90.24% and 91.46%, correspondingly. In addition, it should be noted that the 

model obtained with non-stochastic quadratic indices was built with a slightly shorter training 

set; besides, their test set (11 compounds) is shorter than our test set (19 compounds). The 

specificity of our models is greater than 90%, while the specificity of the rest of the 



approaches is between 70% and 88%.  It is remarkable that both models showed a false alarm 

rate lesser than 14.5%; specifically, that the model obtained with non-stochastic linear indices 

has only 8.93% of false positive rate; and the other approaches show values between 18% and 

38%.  

 
Table 6. Comparison Between Atom-Based Linear Indices and Others Approaches Predicting 
Permeability across Caco-2 Cells. 

Models’ 
features 
to be compared 

Non-stochastic 
Linear Indices 
(Eq. 2) 

Stochastic 
Linear Indices
(Eq. 3) 

2D 
autocorr 
(Eq. 4) 

BCUT 
(Eq. 5) 

Galvez 
charge  
Indices 
(Eq. 6) 

Topological 
(Eq. 7) 

Walk 
count 
(Eq. 8)

Quadratic 
Indices 
(Eq. 12 in 
Ref. 33) 

Training set 
N 138 138 136 136 136 136 136 134 
Wilks’λ   
(U-statistic) 

0.435 0.436 0.586 0.775 0.719 0.547 0.938 0.480 

F 20.94 20.86 11.24 5.32 6.20 13.16 1.42 16.88 
D2 5.31 5.29 2.91 1.20 1.61 3.41 0.27 4.52 
p-level 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.21 0.0001 
Accuracy (%) 90.58 89.13 80.88 78.68 78.68 78.68 60.29 90.30 
MCC 0.81 0.77 0.61 0.57 0.56 0.57 0.20 0.80 
Sensitivity (%) 90.24 91.46 80.49 78.05 79.27 78.05 59.76 96.29 
Specificity (%) 93.67 90.36 86.84 85.33 84.42 85.33 70.00 88.64 
False Positive 
Rate (%) 

8.93 14.29 18.52 20.37 22.22 20.37 38.88 18.86 

Test set 
N 19 19 18 18 18 18 18 11 
Predictability 
(%) 

84.21 84.21 72.22 59.09 66.66 50.00 66.66 83.33 

MCC 0.73 0.73 0.43 0.35 0.30 0.08 0.30 0.71 
 

An important point of view to either accept or reject a QSAR model is the statistics for 

the external prediction set.77 Both obtained models achieved the highest value of accuracy of 

84.21% and MCC of 0.73. Among the other approaches only Marrero-Ponce’s model obtained 

comparable results to our two models, the other ones showed poor results predicting 

permeability across Caco-2 cells. All these results are summarized in Table 6, where a 

comparison among different computational schemes can be more easily performed. 

Virtual Screening. The relevance of QSAR studies in the prediction of human intestinal 

absorption has been demonstrated in recent publications,26,89-92 and the so-called “Rule-of-5” 

has proved very popular as a rapid screen for compounds that are likely to be poorly 

absorbed.18 In the present study, it was simulated a virtual search to predict the absorption 

profile of 241 compounds,92 using discriminant obtained models with non-stochastic and 

stochastic linear indices. The aim of the present report is to evaluate the capacity of human 

absorption prediction from the classification models (Eqs. 2 and 3), into high and moderate-

poor, for drug absorption in Caco-2 cells. Moreover, some compounds included in the 

obtained models (training or test set) were also used in this screening. As the compounds 



selected for the virtual screening were obtained from different sources, only the first 145 

compounds (data of best quality, classified as OK and Good by Zhao et al.92) should be used 

to bring a better comparative criterion; nevertheless, the rest of the compounds can be 

evaluated, but their human absorption values (Abs %) were not comparatively reliable.92 

These experimental values and the evaluation results of these compounds are depicted in 

Table 7. In this Table we give the values of ∆P% = [P(H) - P(M-P)]x100, where P(H) is the 

probability that the equation classify a compound with  PCaco-2 ≥ 8 x10-6cm/s. Conversely, 

P(M-P) is the probability that the model classify a compound with PCaco-2 <8 x10-6cm/s. This 

∆P% takes positive values when P(H) > P(M-P), and negative, otherwise. Therefore, when 

∆P% is positive (negative), the compounds are classified with Higher (Moderate-Poorer) 

absorption profile.  

 
Table 7. Results for the Virtual Screening of 241 drugs. Permeability Coefficient from Models (Eq. 
2 and Eq.3) and Observed Human Absorption and Bioavailability from Literature. 
Compounds ∆P%a ∆P%b %Abs.c %Abs.d %Bio.e %Abs.f 

1-Cisapride 1.71 -48.69 100  100 100 
2-Valproic acid 68.42 70.46 100 ~100 90(68-100) 100 
3-Salicylic acid 27.53 20.02 100 100  100 
4-Diazepam 97.88 95.31 97-100 100  100 
5-Sudoxicam 57.96 85.62  100  100 
6-Glyburide -99.00 -90.91    100 
7-Gallopamil 93.44 98.87  ~100 15 100 
8-Mexiletine 98.77 99.16  100 88 100 
9-Nefazodone 89.58 76.81  100 15-23 100 
10-Naproxen 90.60 90.60 94-99 100 99 99 
11-Lamotrigine 98.42 96.98 70  98 98 
12-Tolmesoxide 97.49 99.59 100  85 98 
13-Disulfiran 97.05 99.76  91  97 
14-Torasemide -98.14 -87.89   96 96 
15-Metoprolol 80.29 75.39 95-100 >90 50 95 
16-Naloxone 69.49 75.63    91 
17-Terazocin 16.19 59.31 91 ~100 90 90 
18-Sulindac 85.72 44.96  90  90 
19-Sultopride 71.91 95.43 100 ~100  89 
20-Topiramate -99.25 -97.51   81-95 86 
21-Tolbutamide -91.88 1.98    85 
22-Propiverine 97.14 98.31  84  84 
23-Digoxin -99.71 -99.98   67 81 

24-Mercapto ethane 
sulfonic acid 

-4.45 67.49    77 

25-Cimetidine -98.86 -99.40 62-98  60 64 
26-Furosemide -99.55 -99.81 61 61 61 61 
27-Metformin -99.61 -99.69   50-60 53 
28-Rimiterol -40.32 -50.43    48 
29-Cymarin -28.30 -89.58  47  47 
30-Ascorbic Acid -36.60 -67.71    35 
31-Fosfomycin -94.48 -99.10    31 
32-Fosmidomycin -97.47 -98.52  30  30 
33-k-Strophanthoside 93.44 98.87  16  16 
34-Adefovir -99.99 -99.99 12  12 16 



Table 7. Cont. 
Compounds ∆P%a ∆P%b %Abs.c %Abs.d %Bio.e %Abs.f 

35-Acarbose -100.00 -100.00  1-2.  2 
36-Ouabain 97.40 91.81  1.4  1.4 
37-Kanamycin -99.87 -99.93    1 
38-Lactulose -99.79 -99.75 0.6 0.6  0.6 
39-Camazepan 97.77 95.92 99  100 100 
40-Indomethacin 96.19 76.12 100  100 100 
41-Levomorgestrel 96.86 94.45   100 100 
42-Tenoxicam 99.95 96.36   100 100 
43-Theophyline -12.33 7.42 96  100 100 
44-Oxatomide 27.44 75.11 100   100 
45-Desipramine 92.21 91.92 95-100 >95 40 100 
46-Fenclofenac 98.52 85.26 100   100 
47-Imipramine 98.61 99.15 95-100 >95 22-67 100 
48-Lormetazepan 99.61 97.11 100 100 80 100 
49-Diclofenac 89.53 17.53 100  90 100 
50-Granisetron 78.87 87.07 100 100  100 
51-Testosterone 94.73 94.28 100 100  100 
52-Caffeine 66.46 79.75 100 100  100 
53-Corticosterone 62.43 81.91 100 100  100 
54-Ethinyl stradiol 95.41 88.93 100 ~100 59 100 
55-Isoxicam 80.25 88.32  100  100 
56-Lornoxicam 99.98 95.48  100  100 
57-Nicotine 95.81 98.16 100 100  100 
58-Ondansetron 97.37 95.57 100 100 60 100 
59-Piroxicam 86.35 93.63 100 100  100 
60-Verapamil 95.27 98.93 100 >90 10-52. 100 
61-Progesterone 98.29 97.71 91-100 91  100 
62-Stavudine -91.55 -67.62   100 100 
63-Toremifene 99.88 99.07   100 100 
64-Cyproterone acet. 99.53 91.61   100 100 
65-Praziquantel 92.86 95.28  100  100 
66-Cicaprost -32.46 -39.24  100  100 
67-Aminopyrine 95.07 97.28 100   100 
68-Nordazepam 86.99 62.02 99  99 99 
69-Carfecillin -96.98 -98.32 100   99 
70-Prednisolone 45.41 54.45 99  70-100 99 
71-Propranolol 92.04 89.46 90-100 >90 30 99 
72-Viloxazine 70.01 80.48 100 ~100 61-98 98 
73-Warfarin 95.84 79.31 98 ~100 93-98 98 
74-Atropine 70.08 73.67  90  98 
75-Minoxidil 90.67 90.96  95  98 
76-Clofibrate 98.54 95.19 96  95-99 97 
77-Trimethoprim 43.54 91.44 97  92-102 97 
78-Venlafaxine 78.46 94.00 92   97 
79-Antipyrine 97.19 97.19 100 ~100 97 97 
80-Bumetanide -99.47 -99.56 100 100 ~100 96 
81-Trapidil 83.17 82.70   96 96 
82-Fluconazole 42.81 49.35 95-100  >90 95 
83-Sotalol -81.09 6.26 95 ~100 90-100 95 
84-Codeine 96.03 97.07 95  91 95 
85-Flumazenil 92.66 83.10 95 >95 16 95 
86-Ibuprofen 86.28 91.16 100   95 
87-Labetalol -88.97 -72.53 90-95 >90 33 95 
88-Oxprenolol 73.08 82.52 97 90 50 95 
89-Practolol -38.01 -46.41 95 ~100  95 
90-Timolol 24.14 50.00 72 >90 75 95 
91-Alprenolol 88.48 89.00 93-96 >93  93 
92-Amrinone 35.47 71.14  93  93 



Table 7. Cont. 
Compounds ∆P%a ∆P%b %Abs.c %Abs.d %Bio.e %Abs.f 

93-Ketoprofen 93.22 90.71 100 ~100 >92 92 
94-Hydrocortisone 32.07 46.07 89-95 84-95  91 
95-Betaxolol 70.90 82.52 90 90 80-89 90 
96-Ketorolac 75.46 81.18 100 Well 80-100 90 
97-Meloxicam 60.78 86.68 90  90 90 
98-Phenytoin -74.77 -21.01 90 90 90 90 
99-Amphetamine 98.25 98.47    90 
100-Chloramphenicol  63.57 43.89 90  80 90 
101-Felbamate -98.17 -68.87  90-95 102 90 
102-Nizatidine -19.04 -9.15 99  >90 90 
103-Alprazolam 99.67 97.44   80-100 90 
104-Tramadol 87.90 94.04   65-75 90 
105-Nisoldipine 85.46 78.89    89 
106-Oxazepam 56.56 44.22 97 ~100 92.8 89 
107-Tenidap 81.93 75.77 90  89 89 
108-Dihydrocodeine 96.16 97.28   20 88 
109-Felodipine 97.91 67.86 100 100 16 88 
110-Nitrendipine 87.83 94.18   23 88 
111-Saccharin 22.94 69.27 97 88  88 
112-Mononidine -36.01 -72.04   88 87 
113-Bupropion 94.12 82.27 87  87 87 
114-Pindolol -0.22 0.14 92-95 >90 87 87 
115-Lamivudine -96.24 -99.19   86-88 85 
116-Morphine 90.10 90.27 100 ~100 20-30 85 
117-Lansoprazole 98.55 91.70   85 85 
118-Oxyfedrine 71.57 60.82   85 84 
119-Captopril -7.97 -64.63 77 71 62 84 
120-Bromazepam 94.57 76.80 84  84 84 
121-Acetylsalicylic acid 58.10 37.92    82 
122-Sorivudine -95.40 -96.90 82 82 61 82 
123-Methylprednisolone 40.73 60.55 82  82 82 
124-Mifobate 95.89 100.00    81 
125-Flecainide -65.46 -97.33   81 81 
126-Quinidine 93.74 93.01 80 81 81 81 
127-Piroximone -66.76 -52.08   81 80 
128-Acebutolol -58.58 -66.29 90 90 50 80 
129-Ethambutol -71.62 -82.84  75-80  80 
130-Acetaminophen 24.49 3.24 80-100 80 68.95 80 
131-Dexamethasone 55.54 62.89 92-100  80 80 
132-Guanabenz 72.25 17.48 75   80 
133-Isoniazid 89.83 98.86    80 
134-Omeprazole 76.84 93.80    80 
135-Methadone 98.97 98.94   80 80 
136-Fanciclovir -5.58 -63.92   77 77 
137-Metolazone -85.85 -96.61 64 62-64  64 
138-Fenoterol -69.60 -84.27  60  60 
139-Nadolol 43.21 47.49 20-35 34 34 57 
140-Atenolol -37.84 24.15 50-54 50 50 50 
141-Sulpiride -99.69 -99.02 36  30 44 
142-Metaproterenol -44.05 -62.33  44 10 44 
143-Famotidine -99.97 -99.89   37-45 28 
144-Foscarnet -96.85 -99.93 17 17(12-22)  17 
145-Cidofovir -99.96 -99.98   <5 3 



Table 7. Cont. 
Compounds ∆P%a ∆P%b %Abs.c %Abs.d %Bio.e %Abs.f 

146-Isradipine 80.54 77.44 92 90-95 17 92 
147-Terbutaline -44.05 -62.33 60-73 50-73 16 62 
148-Reproterol -97.48 -96.90  60  60 
149-Lincomycin -95.16 -96.49  20-35  28 
150-Streptomycin -100.00 -100.00  poor  1 
151-Fluvastatin 59.75 -66.03 100 >90 19-29 100 
152-Urapidil -57.35 -49.78   68 78 
153-Propylthiouracil -28.43 -81.21 75  76(53-88) 76 
154-Recainam -95.52 -89.52    71 
155-Cycloserine 94.66 85.89    73 
156Hydrochlorothiazide -99.87 -99.73 67-90 65-72  69(65-72) 
157-Pirbuterol -69.50 -68.40    60 
158-Sumatriptan -89.70 35.39 55-75 >57 14 57 
159-Amiloride -98.43 -98.56    50 
160-Mannitol -84.31 -86.37 16-26   16 
161-Ganciclovir -99.86 -99.36 3-3.8 3 3 3 
162-Neomycin -99.55 -99.96    1 
163-Raffinose -99.99 -100.00 0.3   0.3 
164-Phenglutarimide -5.47 37.10 100   100 
165-Bornaprine 95.59 96.85 100   100 
166-D-Phe-L-Pro 44.38 61.59 100   100 
167-Scopolamine 59.92 70.51 90-100   95 
168-Naloxone 78.77 74.17 91   91 
169-Ziprasidone 85.00 84.55 60   60 
170-Guanoxan -78.60 -71.22  50  50 
171-Netivudine -97.87 -85.79  28  28 
172-Gentamicin-C1 -99.85 -99.88 0 poor  poor 

Zwitterionic drugs 
173-Cefadroxil -91.02 -87.96   100 100 
174-Ofloxacin 26.38 58.82   100 100 
175-Pefloxacin 94.87 93.89   100 100 
176-Cephalexin -72.16 -58.30 98 100  100 
177-Loracarbef -37.30 -43.66 100 100  100 
178-Glycine 76.98 63.03 100   100 
179-Amoxicillin -93.22 -95.27 94  93 93 
180-Tiagabine 93.84 79.38   90 90 
181-Telmisartan 97.80 92.56 90 rapid 43 90 
182-Trovafloxacin 58.67 25.80 88  88 88 
183-Acrivastine 89.84 88.38 88   88 
184-Nicotinic acid 63.46 72.51    88 
185-Levodopa 5.57 20.91 100 80-90 86 86 
186-Cefatrizine -96.95 -97.04   75 75 
187-Ampicillin -76.40 -79.33    62 
188-Vigabatrin 44.94 5.99    58 
189-Tranexamic acid 42.19 42.29 55   55 
190-Eflurnithine 85.36 -1.65    55 
191-Metyldopa 50.46 35.55  41  41 
192-Ceftriaxone -99.93 -99.64 1 1  1 
193-Distigminebromide 26.90 84.20   47 8 
194-Ziduvudine -97.99 -98.26 100 100 63 100 
195-Ximoprofen 67.67 87.40 100  98 98 
196-Clonidine 48.27 -6.76 85-100 100 75-95 95 



Table 7. Cont. 
Compounds ∆P%a ∆P%b %Abs.c %Abs.d %Bio.e %Abs.f 

197-Viomycin -100.00 -100.00    85 
198-Ceftizoxime -99.94 -99.82    72 
199-Capreomycin -100.00 -100.00    50 
200-AAFC -78.97 -91.81  32  32 
201-Bretylium tosylate 99.02 98.80 23  23 23 

Dose-limited, dose-dependent, and formulation-dependent drugs 
202-Spironolactone 96.96 79.13  >73  73 
203-Etoposide -19.08 -63.18 50  50(25-75) 50(25-75) 
204-Cefetamet pivoxil -99.26 -93.34   47 47 
205-Cefuroximeaxetil -98.81 -98.12 36  36-58 44(36-52) 
206-Azithromycin -96.98 -99.68 35-37  37 37 
207-Fosinopril -22.65 96.68  36 25-29 36 
208-Pravastatin -88.12 -98.16 34 34 18 34 
209-Cyclosporin -100.00 -100.00 35  10-60 28(10-65) 
210-Bromocriptine -97.33 -98.66 28 28 6 28 
211-Doxorubicin -86.89 -97.37 5 trace 5 12(0.7-23) 
212-Cefuroxime -99.81 -98.97    1 
213-Iothalamate sodium 49.07 36.30 1.9 1.9  1.9 
214-Sulphasalazine -78.18 -62.09 12-13.   59(56-61) 
215-Benazepril 27.02 -34.75 37 >37  ≥37 
216-Lisinopril -96.65 -96.94 25 25 25-50 28(25-50) 
217-Esalaprilat -82.78 -94.33 9-10. 10-40.  25(10-40) 
218-Anfotericina  -100.00 -100.00 5 poor  3(2-5) 
219-Aztreonam -99.98 -99.67  <1 <1 1 
220-Mibefradil 50.10 51.53   37-109 69(37-100) 
221-Ranitidine -24.88 -39.19 50-61  50(39-88) 64(39-88) 
222-Chlorotiazide -97.80 -97.84 13-56   49(36-61) 
223-Acyclovir -99.28 -96.52 20-30  15-30 23(15-30) 
224-Norfloxacin -35.96 -13.19 35 30-40 ~70 71 
225-Metthotrexate -99.82 -99.64 20-100 100  70(53-83) 
226-Gabapentin 56.71 26.28 50 well 60A(36-64) 59(43-64) 
227-Prazocin 44.15 77.59 100  44-69 86(77-95) 
228-Olsalazine -92.44 -95.29 2.3  2.3 24(17-31) 

Drugs expected to have higher absorption 
229-Ciprofloxacin -28.70 -10.01 69-100  69 ≥69 
230-Ribavirin -96.57 -88.73   33 ≥33 
231-Pafenolol -93.22 -95.17   28 ≥29 
232-Azosemide -98.86 -98.16   10 ≤10 
233-Xamoterol -98.15 -98.96   5 ≥5 
234-Enalapril -27.13 -79.04 66 60-70 29-50 66(61-71) 
235-Phenoxymethyl 

penicillin 
-81.94 -89.49 45 45(31-60)  59(49-68) 

236-Gliclazide -76.10 45.86    ≥65 
237-Benzylpenicillin -53.55 -79.54 30 15-30  ≥30 
238-Thiacetazone -94.33 -56.28    ≥20 
239-Lovastatin 80.56 24.63 30 31  ≥10 
240-Cromolyn sodium -52.42 -70.99    ≥0.4 
241-Erythromycin -99.15 -99.82 35  35 ≥35 

∆P% = [P(High absorption group) - P(moderate-poor group)]x100. aResults of the classification of compounds obtained 
from Eq.2.  bResults of the classification of compounds obtained from Eq.3.   cThe data used for QSAR studies was 
taken from Clark,78 Wessel,26  Palm,79 Yazdanian,6 Yee,13 and Chiou.80  dAbsorption data obtained from the original and 
reviewed literature. eBioavaililability or absolute bioavailability of oral administration. fAbsorption data (or average 
values) chosen in Reference 81 based on the analysis of literature. 



Taking into account the first 145 compounds (data of best quality), the global percentage 

of good extrapolation (from “in vitro” to “in vivo”) achieved by our models was 79.31% and 

81.38%, correspondingly, when non-stochastic linear indices and stochastic linear indices 

were used. These values are similar to that value that obtained by Marrero-Ponce et al.33 for 

data of best quality. If the rest of the experimental data (compounds 146-241) are considered 

as an only great group, where less realistic data of Abs% are reported, the percentages of 

correct correspondence between “in vitro” permeability data (Caco-2 cells, predicted by linear 

indices) and the human absorption were 77.89% (74/95) with non-stochastic and 

75.79%(72/95) with stochastic linear indices. This group has a lesser percentage of 

correspondence than the first 145 previously analyzed compounds. 

Now we are going to analyze the last group (146-241) but divided into several groups 

according to the Zhao et al. classification.92 Compounds from 146 to 172 were considered as 

uncertain and unchecked data. For these compounds, the global good classifications were 

80.77% for non-stochastic and 76.92% for stochastic linear indices. In addition, the group of 

twenty zwitterionic drugs, reported by Zhao et al.,92  was analyzed. For this kind of drugs, our 

model showed only a 50% of correct correspondence between “in vitro” classification and “in 

vivo” results for both models. The same result was obtained with non-stochastic quadratic 

indices by Marrero-Ponce et al.33 The prediction of compounds 193-201 (group of missing 

fragments) was lesser than 50%. It means that more than a half of the compounds were badly 

predicted; this is a logical result if we bear in mind those the criteria followed to classify these 

compounds by Zhao et al.92. For the group with dose limited, dose-dependent and 

formulation-dependent drugs the correspondence between “in vitro” permeabilities and the 

human absorption values was high. Only one compound was misclassified by Eq. 2 for an 

accuracy of 96.15% (26/27), and two compounds were badly classified by Eq. 3, for 92.31% 

(25/27) of global good classification. Finally, for the analysis of drugs with expected higher 

absorption, according to Zhao et al,92 it is not reported a value or average for the human 

absorption. However, if the data from the fifth, sixth and seventh columns in Table 7 are 

considered, our two models explain 91.67% of the experimental variance.  

Considering the full set (241 compounds) the model obtained with the non-stochastic 

linear indices (Eq. 2) showed a 78.84% (190/241) of the explanation of the human absorption 

values, which is a logic result by considering the structural variability and the biological 

property. Notice that these values are the same as those obtained by Marrero-Ponce et al.33 On 

the other hand, the results obtained for the full set with stochastic linear indices (Eq. 3) were 

slightly better; this model has an accuracy of 79.25% (191/241). 



Nevertheless, it has been widely reported in the literature the influence of transport 

mechanism on the prediction of this biopharmaceutical property, for example: Methotrexate is 

absorbed by a carrier-mediated process, Zidovudine is absorbed by active transport, 

Amoxicillin and Cefatrizine are absorbed via dipeptide carrier system, as well as in the 

Etoposide case, it is suggested that its distribution into the brain is partially controlled by an 

active transport process.89 In addition, Cefadroxil, Digoxin and Cepahalexin were compounds 

with known active transport.93 Other compounds with the same skeleton pattern; i.e., 

cephalosporins (Cefatrizine and Ceftizoxime), cardiotonic glycosides (Ouabain) as well as 

antiviral nucleoside analogues (Stavudine, Lamivudine, Sorivudine) appear badly classified 

(uncorrelated between the permeability predicted in Caco-2 cells and the human absorption 

values), suggesting an active transport system for these drugs. In addition, in the case of the 

Viomycin, with an appropriate intestinal absorption (Abs % = 85), it has a molecular weight 

value of 685 gMol-1 (>500), similar to those drugs with poor intestinal absorption, for what it 

could be suggested that this compound can be actively transported, as it was pointed out in the 

case of Rifampicin by Egan et al.94 

According to these results, we can say that the quality of the predictions assessed the 

predictive power of the obtained QSAR models and justified their use in the prediction of this 

important biopharmaceutical property. Besides, this is not a fortuitous result, due to the data 

set used in this study including any sort of absorption model compounds. 

 

Multiple Linear Regression Models. 

QSAR Models Obtained Using TOMOCOMD-CARDD Descriptors. The purpose of 

this study was to develop a quantitative model that permit the prediction of Caco-2 cell 

permeability from the molecular structure by using a combinatorial approach of linear indices 

and multiple linear regression method. As we previously pointed out, the data set was divided 

into training and test set as in Hou et al.32 The experimental apparent permeability, and the 

results predicted by the multiple linear regression (MLR) models for the training set were 

listed in Table 8.  The models obtained by using non-stochastic linear indices with their 

statistical parameters, are given bellow: 

 

log Peff  = -3.757(±0.14) -0.031(±0.007)Mf1L
H(xE) +0.004(±0.001)Mf3L

H(xE)  

                +1.44x10-6(±2.43x10-7)Pf11L
H(xE) +1.97x10-9(±4.29x10-10)Vf14L(xE)  

                -0.040(±0.005) Vf0L
H(xE-H)                                                                             (9)  

N = 77     R = 0.82     R2 = 0.672     q2 = 0.60     F(5, 71) = 28.42     s = 0.47      p<0.0001 



 

log Peff  = -3.603(±0.136) -0.039(±0.007)Mf1L
H(xE) +0.005(±0.001)Mf3L

H(xE)  

                +1.59x10-6(±2.27x10-7)Pf11L
H(xE) +2.15x10-9(±3.98x10-10)Vf14L(xE)  

                -0.040(±0.004) Vf0L
H(xE-H)                                                                             (10)  

N = 75     R = 0.85     R2 = 0.723     q2 = 0.68     F(5, 69) = 36.03     s = 0.43      p<0.0001 

 

where N is the size of the data set, R is the regression coefficient, R2 is the determination 

coefficient,  s is the standard deviation of the regression, F is the Fischer ratio and q2 is the 

squared correlation coefficient of the cross-validation performed by the LOO procedure. 

These statistics indicate that these models are appropriate for the description of the chemicals 

studied here. In the development of the first quantitative model for the description of activities 

(Eq. 9, N = 77), two compounds were detected as statistical outliers. Once rejected the 

statistical outliers, Eq. 10 (N = 75) was obtained with better statistical parameters.  

 
Table 8. Predicted Values of Log Peff for Compounds in the Training Set 

Name Log Peff.a Pred. 
Eq 9b 

Pred. 
Eq 10b 

Pred. 
Eq 11b 

Pred. 
Eq 12b 

Pred. 
Eq. 13c 

Pred. 
Eq. 14c 

Pred. 
Eq. 15c 

Pred. 
Eq. 16c

Pred. 
Eq. 17c

 Acebutolol -5.83 -5.78 -5.94 -5.76 -5.72 -5.15 -5.04 -5.30 -5.51 -5.30 
Acebutolol ester -4.61 -5.68 outlier -5.45 -5.38 -5.14 -4.92 -5.47 -4.55 -5.07 
Acetylsalicylic -5.06 -4.73 -4.75 -4.83 -4.78 -4.97 -4.98 -5.25 -5.35 -5.01 
Acyclovir -6.15 -5.68 -5.77 -5.65 -5.62 -6.00 -5.66 -4.86 -5.29 -5.15 
Alprenolol -4.62 -4.72 -4.70 -4.91 -4.89 -4.74 -5.04 -5.00 -4.94 -5.12 
Alprenolol ester -4.47 -4.59 -4.62 -4.60 -4.55 -4.81 -4.92 -5.16 -4.20 -4.89 
Aminopyrine -4.44 -4.35 -4.34 -4.49 -4.40 -4.26 -4.83 -5.19 -4.43 -5.22 
Artemisin -4.52 -4.60 -4.72 -5.06 -4.95 -5.05 -5.06 -4.99 -4.94 -5.00 
Artesunate -5.40 -4.72 -4.91 -5.14 -5.01 -5.54 -4.88 -5.34 -5.29 -5.18 
Atenolol -6.50 -5.68 -5.78 -5.61 -5.61 -5.25 -5.08 -5.45 -5.44 -5.15 
etaxolol -4.81 -5.00 -5.06 -5.03 -5.00 -5.19 -4.94 -5.01 -5.34 -4.84 
Betaxolol ester -4.52 -4.89 -5.00 -4.72 -4.66 -5.14 -4.94 -4.96 -5.03 -4.60 
Bremazocine -5.10 -4.94 -4.92 -4.81 -4.78 -4.92 -4.60 -5.01 -4.31 -4.67 
Caffeine -4.41 -4.31 -4.31 -4.31 -4.22 -4.39 -5.37 -5.36 -4.65 -5.15 
Chloranphenicol -4.69 -5.23 -5.35 -5.29 -5.24 -5.24 -5.03 -4.93 -5.45 -5.22 
Chlorothiazide -6.72 -6.33 -6.35 -6.16 -6.21 -6.57 -6.30 -5.73 -6.23 -5.25 
Chlorpromazine -4.70 -4.40 -4.33 -4.22 -4.15 -4.67 -4.92 -4.56 -4.35 -5.34 
Cimetidine -5.89 -5.71 -5.80 -5.55 -5.54 -5.41 -5.06 -5.24 -5.19 -5.09 
Clonidine -4.59 -4.50 -4.37 -4.93 -4.92 -4.31 -5.05 -4.63 -5.03 -5.08 
Corticosterone -4.47 -4.92 -4.92 -4.80 -4.77 -4.70 -4.73 -4.92 -4.57 -5.15 
Desipramine -4.64 -4.65 -4.61 -4.58 -4.56 -4.58 -5.10 -4.47 -4.87 -5.29 
Dexamethasone -4.75 -5.03 -4.98 -4.97 -4.94 -4.63 -4.82 -5.13 -4.89 -5.33 
Dexamethasone-β-D 
Glucoside 

-6.36 -5.97 -6.04 -5.64 -5.63 -5.17 -4.85 -5.69 -6.18 -5.23 

 Dexamethasone- β-D 
Glucuronide 

-5.94 -5.89 -5.96 -5.46 -5.45 -5.22 -4.83 -5.78 -6.17 -5.29 

Diazepam -4.32 -4.50 -4.46 -4.39 -4.31 -4.31 -4.91 -4.17 -4.87 -5.32 
Dopamine -5.03 -5.14 -5.04 -5.31 -5.32 -4.66 -4.94 -5.00 -4.71 -4.95 
Doxorrubicin -6.80 -6.40 -6.52 -6.41 -6.38 -5.78 -5.06 -5.81 -6.31 -5.61 
Erythromycin -5.43 -6.43 outlier -5.78 -5.71 -5.66 -5.32 -6.28 -5.71 -5.87 
Estradiol -4.77 -4.56 -4.46 -4.70 -4.69 -4.83 -4.71 -4.67 -4.78 -4.95 
Felodipine -4.64 -4.81 -4.81 -4.61 -4.55 -4.63 -4.82 -4.17 -4.52 -4.98 



  Table 8. Cont. 
Name Log Peff.a Pred. 

Eq 9b 
Pred. 
Eq 10b 

Pred. 
Eq 11b 

Pred. 
Eq 12b 

Pred. 
Eq. 13c 

Pred. 
Eq. 14c 

Pred. 
Eq. 15c 

Pred. 
Eq. 16c

Pred. 
Eq. 17c

Ganciclovir -5.99 -5.94 -6.04 -5.88 -5.86 -6.12 -5.68 -4.95 -5.48 -5.21 
Griseofulvin -4.44 -3.93 -3.83 -4.20 -4.10 -4.89 -5.02 -5.14 -4.87 -5.05 
Hydrochlorothiazide -6.06 -5.82 -5.79 -6.38 -6.47 -6.35 -6.33 -5.73 -6.15 -5.25 
Hydrocortisone -4.66 -5.03 -5.00 -5.01 -4.99 -4.74 -4.75 -4.90 -4.73 -5.21 
Ibuprophen -4.28 -4.34 -4.27 -4.46 -4.43 -4.66 -4.66 -4.81 -4.69 -5.07 
Imipramine -4.85 -4.48 -4.48 -4.18 -4.13 -4.78 -5.10 -4.65 -4.73 -5.32 
Indomethacin -4.69 -5.24 -5.31 -4.92 -4.84 -5.14 -5.04 -4.92 -4.81 -5.01 
Labetalol -5.03 -5.93 -5.97 -5.79 -5.81 -5.04 -5.38 -5.00 -5.16 -5.35 
Mannitol -6.21 -5.51 -5.50 -5.81 -5.86 -5.96 -5.84 -5.18 -5.98 -4.95 
Meloxicam -4.71 -4.66 -4.57 -4.71 -4.68 -5.64 -5.03 -5.43 -5.29 -4.98 
Methanol -3.88 -4.18 -4.08 -4.60 -4.59 -3.27 -3.47 -4.30 -4.26 -4.67 
Methotrexate -5.92 -6.41 -6.50 -6.67 -6.62 -5.79 -5.81 -5.21 -6.24 -5.67 
Methylscopolamine -6.16 -5.05 -5.16 -4.69 -5.05 -5.60 -5.35 -5.61 -4.77 -4.61 
Metoprolol -4.59 -5.04 -5.13 -5.08 outlier -5.22 -5.01 -5.00 -5.37 -5.14 
Nadolol -5.41 -5.52 -5.58 -5.67 -5.68 -5.18 -5.08 -5.63 -5.13 -5.33 
Naproxen -4.13 -4.62 -4.61 -4.63 -4.59 -4.87 -4.51 -4.66 -4.76 -5.18 
Nevirapine -4.52 -4.99 -4.94 -5.08 -5.00 -4.36 -5.49 -4.49 -5.01 -4.49 
Nicotine -4.71 -4.59 -4.60 -4.52 -4.46 -4.57 -4.93 -4.62 -4.47 -5.02 
Olsalazine -6.96 -6.25 -6.37 -6.28 -6.22 -6.47 -5.87 -5.75 -6.54 -5.32 
Oxprenolol -4.68 -4.80 -4.79 -4.96 -4.93 -4.85 -5.23 -4.94 -5.13 -5.14 
Oxprenolol ester -4.51 -4.70 -4.74 -4.65 -4.60 -4.90 -5.11 -5.12 -4.51 -4.91 
Phencyclidine -4.61 -4.10 -4.03 -4.12 -4.07 -4.52 -4.98 -4.38 -4.60 -5.25 
Phenitoin -4.57 -4.96 -4.95 -5.04 -5.03 -4.22 -4.88 -4.97 -4.85 -5.31 
Pindolol -4.78 -5.35 -5.37 -5.45 -5.44 -5.01 -4.86 -5.08 -4.76 -5.18 
Pirenzepine -6.36 -5.40 -5.55 -5.07 outlier -5.13 -5.17 -4.98 -5.06 -5.53 
Piroxicam -4.45 -4.78 -4.69 -5.14 -5.09 -5.56 -5.71 -5.03 -5.50 -4.97 
Practolol -6.05 -5.48 -5.58 -5.58 -5.57 -5.26 -5.22 -5.45 -5.47 -5.15 
Prazocin -4.36 -5.21 -5.26 -5.09 -4.96 -5.14 -5.42 -4.78 -5.89 -5.12 
Progesterone -4.37 -4.28 -4.23 -4.17 -4.12 -4.71 -4.69 -4.85 -4.37 -5.08 
Propranolol -4.58 -4.73 -4.71 -4.93 -4.91 -4.68 -4.82 -5.05 -4.81 -5.21 
Propranolol ester -4.48 -4.62 -4.65 -4.62 -4.58 -4.77 -4.81 -5.32 -4.66 -4.97 
Quinidine -4.69 -5.24 -5.32 -4.83 -4.76 -5.10 -5.48 -4.79 -4.64 -5.02 
Ranitidine -6.31 -5.69 -6.01 -6.02 -5.92 -5.56 -5.40 -6.03 -5.79 -5.20 
Salicylic acid -4.79 -4.72 -4.65 -4.96 -4.94 -4.52 -4.55 -5.31 -5.35 -4.93 
Scopolamine -4.93 -4.84 -4.91 -4.70 -4.63 -5.48 -5.04 -5.22 -4.72 -4.55 
Sucrose -5.77 -6.07 -6.15 -6.05 -6.10 -6.30 -5.64 -5.07 -5.54 -4.95 
Sulphasalazine -6.71 -6.74 -6.87 -6.54 -6.48 -6.11 -5.83 -5.29 -6.44 -5.53 
Telmisartan -4.82 -5.44 -5.47 -4.70 -4.61 -4.73 -4.96 -5.37 -5.45 -5.55 
Terbutaline -6.38 -5.46 -5.44 -5.68 -5.70 -5.69 -5.18 -5.60 -5.12 -5.11 
Testosterone -4.34 -4.42 -4.35 -4.46 -4.43 -4.81 -4.72 -4.77 -4.28 -5.01 
Timolol -4.85 -4.69 -4.86 -4.72 -4.67 -5.21 -5.66 -5.51 -5.15 -5.27 
 Timolol ester -4.60 -4.59 -4.80 -4.48 -4.40 -5.23 -5.32 -5.39 -4.69 -5.04 
Uracil -5.37 -4.98 -5.01 -5.16 -5.16 -5.39 -5.29 -5.62 -5.71 -4.86 
Urea -5.34 -5.17 -5.17 -5.16 -5.18 -5.89 -5.57 -6.56 -5.50 -4.72 
Warfarin -4.55 -4.80 -4.78 -4.66 -4.61 -4.73 -5.25 -4.66 -4.71 -5.41 
Ziduvudine -5.16 -5.35 -5.29 -5.98 -5.93 -5.85 -5.65 -4.88 -5.13 -5.25 
PNU200603 -6.85 -6.37 -6.42 -5.99 -5.98 -5.73 -5.18 -5.13 -5.27 -5.27 

aExperimental log Peff obtained from Hou et al.32 
bPredicted value of Log Peff using non-stochastic and stochastic linear indices described in this report. 
cPredicted value of Log Peff using Dragon descriptors described in this report. 
 

The achieved values of q2 (0.60 and 0.68) showed that Eqs. 9 and 10 are reliable. 

Undoubtedly, the high value of LOO q2 appears to be necessary, but not sufficient condition 

for the models to have a good predictive power. Golbraikh and Tropsha ever emphasized that 



the real predictive ability of a QSAR model could only be estimated by using an external test 

set of compounds that were not used for building the model.77 Here, the actual prediction 

power of Equations 9 and 10 were validated by using an external test set of 23 compounds. 

The predicted values for the compounds of the test set, using non-stochastic linear indices are 

shown in Table 9. In this sense, bosentan was detected as a statistical outlier for both models; 

ceftriaxone and nitrendipine were also detected as outliers for Eqs. 9 and 10, correspondingly; 

after that, the squared correlation coefficient for the test set for both models were 0.60 and 

0.50, correspondingly. In the test set the predicted error for the other tested molecules is 

smaller than 1.0 log unit. The good prediction for the tested compounds confirms the 

significance of the selected molecular descriptors and the model based on them. 

When the stochastic linear indices were used, the obtained models for the prediction of 

Caco-2 cell permeability are the following: 

 

log Peff  = -4.298(±0.175) +9.18 x10-4(±4.18x10-4)Msf1
H(x) +0.063(±0.015)Msf8L(xE)  

                -0.043(±0.006)Msf2L
H(xE-H) -1.70(±0.22)Ksf1L

H(xE) +0.786(±0.188)Gsf3L
H(xE)  (11)  

N = 77     R = 0.79     R2 = 0.624     q2 = 0.56     F(5, 71) = 23.91     s = 0.50      p<0.0001 

 

log Peff  = -4.271(±0.155) +9.088 x10-4(±4.18x10-4)Msf1
H(x) +0.059(±0.014)Msf8L(xE)  

                -0.047(±0.006)Msf2L
H(xE-H) -1.03(±0.196)Ksf1L

H(xE) +0.774(±0.167)Gsf3L
H(xE)  (12)  

N = 75     R = 0.84     R2 = 0.706     q2 = 0.63     F(5, 69) = 31.70     s = 0.44      p< 0.0001 

 

where N is the size of the data set, R is the regression coefficient, R2 is the determination 

coefficient, s is the standard deviation of the regression, F is the Fischer ratio, and q2 is the 

squared correlation coefficient of the cross-validation performed by the LOO procedure. 

These statistics indicate that the models are appropriate for the description of those chemicals 

studied here. In the development of the stochastic model for the description of the activities 

(Eq. 11, N = 77), two compounds were detected as statistical outliers. Once rejected the 

statistical outliers, the Eq. 12 (N = 75) was obtained with better statistical parameters. The 

results predicted by the stochastic MLR models for the training set were listed in Table 8. 

As we pointed out, the predictive power of a QSAR model must be estimated using an 

external test set. At this point, the real predictive power of stochastic linear indices’ models 

(Eqs. 9 and 10) were validated by the same external test set of 23 compounds. Two 

compounds were detected as statistical outliers by Eqs. 11 and 12; they were ceftriaxone and 

guanabenz. The final squared correlation coefficients for the two models were 0.64 and 0.62, 



for the external prediction set. The obtained values for the prediction of the test set, using 

stochastic linear indices are also shown in Table 9. 

 
Table 9. Predicted Values of Log Peff for Compounds in the Test Set 

Name Log Peff.a Pred. 
Eq 9b 

Pred. 
Eq 10b 

Pred. 
Eq 11b 

Pred. 
Eq 12b 

Pred. 
Hou´sc 

Pred. 
G and Yd

Pred. 
Eq. 13e 

Pred. 
Eq. 14e 

Pred. 
Eq. 15e 

Pred.
Eq. 16e

Pred. 
Eq. 17e

Amoxicillin -6.10 -5.78 -5.81 -5.38 -5.38 -6.16 -5.65 -5.42 -5.26 -5.977 outlier -5.064 
Antipyrine -4.55 -4.55 -4.55 -4.64 -4.56 -4.82 -4.55 -4.53 -4.92 -5.062 -4.540 -5.106 
Cyclosporine -6.05 -6.42 -6.91 -5.48 -5.35 -5.81 -5.82 np np np np np 
Diltiazen -4.38 -4.86 -5.01 -4.26 -4.16 -4.84 -4.57 -5.14 -5.10 -4.355 -4.952 -5.093 
Enalapril -5.64 -4.68 -4.75 -4.69 -4.65 -5.66 -5.04 -4.89 -4.81 -4.917 -4.474 -5.440 
Furosemide -6.51 -5.86 -5.87 -6.09 -6.12 -5.81 -5.81 -6.23 -5.27 -5.459 -5.478 -5.316 
Guanabenz -4.50 -5.48 -5.49 outlier outlier -4.63 -5.24 outlier -5.03 -4.491 -5.443 -5.034 
Cumarin -4.11 -4.25 -4.18 -4.37 -4.31 -5.31 -4.44 -3.83 -5.02 -4.924 -4.804 -4.997 
Theophylline -4.35 -4.58 -4.57 -4.66 -4.60 -5.06 -4.66 -4.57 -5.31 -5.106 -5.462 -5.105 
Epinephrine -6.02 -5.30 -5.25 -5.55 -5.57 -5.47 -5.56 -5.13 -5.15 -4.772 outlier -5.015 
Guanoxan -4.71 -5.44 -5.47 -5.61 -5.61 -5.39 -5.27 -5.56 -5.48 -4.779 -4.960 -5.100 
Lidocaine -4.21 -4.59 -4.59 -4.67 -4.63 -4.45 -4.75 -5.03 -5.05 -4.903 -4.689 -5.121 
Tiacrilast -4.9 -5.43 -5.53 -4.83 -4.76 -5.68 -4.97 -5.34 -4.94 -4.938 -5.679 -5.208 
Sulpiride -6.16 -6.11 -6.27 -5.99 -5.99 -5.81 -5.47 -5.86 -5.21 -5.443 -5.150 -5.365 
Nitrendipine -4.77 -5.70 outlier -5.88 -5.74 -5.08 -4.73 -5.13 -4.96 -4.598 -4.856 -5.472 
Fleroxacin -4.81 -4.94 -5.04 -4.75 -4.64 -5.39 -4.76 -5.19 -5.36 -4.563 -5.921 -5.056 
Verapamil -4.58 -5.16 -5.30 -4.27 -4.15 -4.87 -4.52 -4.75 -5.21 -4.884 -4.490 -5.640 
Bosentan -5.98 outlier outlier -5.59 -5.49 -5.32 -5.43 -5.41 -5.56 -4.778 -5.199 -5.434 
Proscillaridin -6.20 -5.76 -5.87 -5.17 -5.15 -5.42 -5.77 outlier outlier -5.042 -6.448 -5.652 
Ceftriaxone -6.88 outlier -5.95 outlier outlier -6.53 -5.32 -5.82 -5.614 -5.928 -5.964 -5.390 
Remikiren -6.13 -6.73 -6.90 -5.75 -5.76 -5.36 -6.17 -5.18 -5.096 -5.295 outlier -5.136 
Saquinavir -6.26 -6.76 -6.99 -6.29 -6.27 -5.39 -5.87 np np np np np 
Mibefradil -4.87 -5.44 -5.60 -4.67 -4.58 -5.06 -4.97 -4.84 -4.92 -5.16 -5.26 -5.35 
R2  0.61 0.50 0.64 0.62 0.61 0.58 0.55 0.19 0.31 0.32 0.11 
UME  0.45 0.51 0.39 0.41 0.49 0.49 0.47 0.67 0.57 0.56 0.73 

a Log Peff experimentally obtained from Hou et al.32 
bPredicted value of Log Peff using non-stochastic and stochastic linear indices described in this report. 
cPredicted value of Log Peff using Hou’s models. 
dPredicted value of Log Peff using Guangli and Yiyu’s model. 
ePredicted value of Log Peff using Dragon descriptors described in this report. 
UME unsigned mean error. 

 
Comparison with other approaches. In two previous works,3,32 the authors compare 

their results with the Caco-2 permeation model published by Marrero-Ponce et al.,31 but the 

training data set used by Marrero-Ponce’s group was small (only 17 compounds); thus a direct 

comparison is not correct. Therefore, we perform a comparison by using the same data set 

reported by Hou et al.32, as well as used later by Guangli and Yiyu,3 between our models and 

those models mentioned above. The comparison between the QSAR models reported here and 

other methods previously reported with the same data set is shown in Table 10.  

The obtained models for Caco-2 permeability prediction, using atom-based non 

stochastic and stochastic linear indices were also compared with other method implemented in 

the Dragon software.38 Five families of bidimensional molecular descriptors were used to 

develop quantitative models; they were: topological, BCUT, Gálvez´s topological charge 



indices, 2D Autocorrelations and Molecular walk counts. All of these models were performed 

with the same training data set. The results predicted by these multiple regression models for 

the training set were listed in Table 8 

 
Table 10. Statistical Parameters of the QSAR Models Obtained Using Different Molecular 
Descriptors to Predict the Caco-2 Permeability. 

index  N R2 s F q2 Eq. No 
Non-Stochastic 
Linear Indices 

Mf1L
H(xE), Mf3L

H(xE), Pf11L
H(xE), 

Vf14L(xE), Vf0L
H(xE-H)         

77 0.67 0.469 28.43 0.60 9 

Non-Stochastic 
Linear Indices  

Mf1L
H(xE), Mf3L

H(xE), Pf11L
H(xE), 

Vf14L(xE), Vf0L
H(xE-H)         

75 0.72 0.432 36.03 0.68 10 

Stochastic Linear 
Indices  

Msf1
H(x), Msf8L(xE), Msf2L

H(xE-H), 
Ksf1L

H(xE), Gsf3L
H(xE)   

77 0.63 0.496 23.92 0.56 11 

Stochastic Linear 
Indices  

Msf1
H(x), Msf8L(xE), Msf2L

H(xE-H), 
Ksf1L

H(xE), Gsf3L
H(xE)   

75 0.70 0.441 31.70 0.63 12 

Hou´s model  -1.8 < log D < 2.0, HCPSA, 
rgyr, frotb 

77 0.68 0.439 38.10 0.62 Eq 17 in 
Ref. 32 

Hou´s model  -1.8 < log D < 2.0, HCPSA, 
rgyr, frotb 

74 0.71 0.405 43.1 0.66 Eq 18 in 
Ref. 32 

Guangli and Yiyu´s 
model 

HBD, CPSA10, CPSA20, TPSA 77 0.50 * * * See Ref.3 

2D autocorrelations ATS7v, ATS1e, MATS1m, 
MATS5m, MATS3e 

77 0.56 0.534 18.42 0.33 13 

BCUT BELv2, BEHv7, BELm1, 
BELv1, BEHv1 

77 0.29 0.684 5.83 0.16 14 

Gálvez topological 
charge indices 

JGI1, JGI9, JGI6, GGI3, GGI2 77 0.32 0.668 6.79 0.17 15 

Topological 
descriptors 

SEigv, JhetZ, WA, Rww, IDDE 77 0.52 0.561 15.58 0.45 16 

Molecular Walk 
Count 

SRW03, TWC, MWC10 77 0.10 0.759 2.74 0.01 17 

*Values are not reported in the literature. 
 

The predictability of these five models were also validated using the external test set of 

23 compounds as in Hou et al.32 The predicted values for the tested molecules are also shown 

in Table 9. The Dragon software was not able to calculate compounds Cyclosporine and 

Squinavir, because they have more atoms than the limit that software can calculate, so these 

molecules were not performed in the test set. 

The comparison was based on the quality of the statistical parameters of the regression. 

In this sense, the present approach (atom-based non stochastic linear indices) showed the 

highest squared correlation coefficient value of 0.72 with Eq. 10, having as outliers only two 

compounds, while Hou’s model achieved a value of 0.71 but had tree outliers. Nevertheless, 

Hou’s model yields the lowest standard deviation value of 0.405, while non-stochastic model 

(Eq. 10) shows a value of 0.432. The calculated values of q2 for non-stochastic and stochastic 

linear indices’ models are between 0.60 and 0.68; these values showed that our models are 

reliable. Certainly, the high value of LOO q2 appears to be necessary but not sufficient 



condition for the models to have a good predictive power. Golbraikh et al. ever emphasized 

that the actual predictive ability of a QSAR model can only be estimated by using an external 

test set of compounds that were not used for building the model.77 Some compound were 

detected as statistical outliers during the development of the validation of the QSAR models 

and removed for the subsequent analysis. As can be seen in Table 9, one of our models (Eq. 

11) shows the highest value (0.64) of the squared correlation coefficient for the test set and the 

lowest value of unsigned mean error (UME) of 0.39. Other models show adequate values of 

R2 between 0.50 and 0.62 (see Table 9). In addition, only two models show values of UME 

lesser than 0.46 the previously mentioned for Eq. 11 (0.39), as well as the values of 0.45 and 

0.41 achieved by the equations 9 and 12, respectively. The values of UME for the rest of the 

approaches are between 0.47 and 0.73. 

In a previous work one of the present authors (Y. M-P) performed a factor analysis to 

check the existence or not of linear independence between the total and local linear indices 

and others 0D-3D MDs available in the literature.40 In these sense, here we carried out a factor 

analysis to ensure the linear independence between the atom-based non-stochastic and 

stochastic linear indices and the others 2D molecular descriptors calculated in this work. The 

comparison was based on 98 chemicals used to develop linear regression models because two 

compounds were not performed by Dragon software.  

Table 11. Results of the Factor Analysis by Using the Principal Component Method for 23 2D 
Molecular Descriptors as Well as the 10 Non-stochastic and Stochastic Linear Indices  

Factors Eigenvalue % Total 
Variance 

Cumulative 
Eigenvalue 

% Cumulative 
Variance 

F1 13.31 40.33 13.31 40.33 
F2 6.72 20.35 20.03 60.68 
F3 3.41 10.34 23.44 71.02 
F4 2.31 7.01 25.75 78.03 
F5 1.60 4.86 27.35 82.89 
F6 1.19 3.60 28.54 86.49 

 
The results of the factor analysis are summarized in Table 11, and the six principal 

factors explain approximately 86.5% of the variance. The first factor explains 40.33% of the 

variance in the molecular indices studied. The addition of the second factor increases to 

60.68% the variance explained, and the addition of the third factor allows 71.02% of the index 

variance to be accounted for. The other factors explain (% Cumulative Variance) the 7.01 

(78.03), 4.86 (82.89) and 3.60% (86.49) of the variance in the molecular descriptors studied 

(see Table 11). Factor loadings from the principal component analysis, after a Varimax 

normalized rotation of the factors, are shown in Table 12. 

 



Table 12. Factor Loadings (Varimax Normalized Rotation) for 23 2D Molecular Descriptors 
as Well as the 10 Total and Local (Atom-type) Linear Indices  

index F1 F2 F3 F4 F5 F6 
Mf1L

H(xE) 0.14 0.93 0.07 0.15 0.23 -0.02 
Mf3L

H(xE) 0.11 0.95 0.09 0.09 0.17 -0.05 
Pf11L

H(xE) 0.00 0.94 0.15 -0.03 0.00 -0.16 
Vf14L(xE) -0.02 0.92 0.14 -0.07 -0.04 -0.17 
Vf0L

H(xE-H) 0.13 0.09 -0.04 -0.01 0.90 -0.13 
Msf1

H(x) 0.66 0.12 0.32 0.58 0.20 0.08 
Msf8L(xE) 0.35 0.73 0.04 0.12 0.53 0.10 
Msf2L

H(xE-H) 0.05 0.26 0.00 0.02 0.86 -0.19 
Ksf1L

H(xE) 0.38 0.70 0.06 0.13 0.54 0.13 
Gsf3L

H(xE) 0.40 0.68 0.06 0.12 0.55 0.15 
SEigv -0.61 -0.36 -0.07 -0.12 -0.61 -0.10 
JhetZ -0.54 0.28 -0.08 -0.47 0.22 -0.26 
WA 0.36 0.19 0.40 0.67 0.30 0.21 
Rww 0.22 0.24 0.16 0.72 0.41 0.19 
IDDE 0.52 0.16 0.65 0.34 0.14 0.18 
ATS7v 0.18 0.40 0.60 0.31 0.06 0.19 
ATS1e -0.12 0.53 -0.44 -0.39 0.50 -0.13 
MATS1m -0.13 0.61 0.08 -0.52 0.16 0.00 
MATS5m -0.04 0.03 0.87 -0.08 0.14 0.15 
MATS3e 0.24 -0.17 0.21 0.11 0.01 0.75 
BELv2 0.24 0.14 0.84 0.30 0.07 0.09 
BEHv7 0.46 0.07 0.65 0.48 -0.03 0.20 
BELm1 0.35 -0.17 0.85 0.08 -0.14 -0.03 
BELv1 0.30 0.19 0.87 -0.04 -0.04 -0.15 
BEHv1 0.22 0.12 0.94 -0.05 -0.09 -0.05 
JGI1 0.31 0.08 0.06 -0.06 0.36 -0.78 
JGI9 0.54 0.11 0.15 0.56 0.39 0.14 
JGI6 0.82 0.07 0.35 0.16 0.09 0.03 
GGI3 0.92 0.12 0.21 -0.03 0.18 -0.04 
GGI2 0.89 0.07 0.26 0.06 0.23 -0.07 
SRW03 -0.09 -0.06 -0.02 0.67 -0.15 -0.07 
TWC 0.82 0.19 0.36 0.32 0.13 0.06 
MWC10 0.89 0.05 0.12 -0.03 -0.03 -0.05 
Expl.Var 6.86 6.42 6.04 3.51 4.01 1.71 
Prp.Totl 0.21 0.19 0.18 0.11 0.12 0.05 

 
The kth total linear indices [Msf1L

H(x)] is strongly loaded in factor 1 (F1). Most of the 

Dragon 2D descriptor used in this study as Galvez topological charge indices (JGI6, GGI2 and 

GGI3) and molecular walk counts (TWC and MWC10) are also robustly loaded (loadings > 

0.65) in this factor. Thus, total linear indices and the others “F1-indices” produce much 

redundancy and overlapping among them and their relations are very complex. The second 

factor (F2) is almost exclusively for the atom-type linear indices of heteroatoms [fkL(xE)] as 

well as the five factor (F5) appears to be most significant for the atom-type (H-atoms bonding 

to heteroatoms) linear indices [fkL(xH-E)] as can be seen in Table 12. As previously stated, the 

indices with a high loading in the same factor are interrelated, while no correlation exists 



between indices having nonzero loadings only in different factors.73,79-85 Consequently, it is 

clear that the atom-type linear indices are orthogonal to most of the 2D molecular descriptors, 

Thus, we can say that the atom-type (heteroatoms and H-atoms bonding to heteroatoms) linear 

indices contain structural information not contained in any other 2D molecular descriptors 

used in this study. These results are quite similar to those achieved in an earlier work by 

Marrero-Ponce.40  

Interpretation of QSPerR Models. Now, although this topic is not an objective of our work, 

we are going to give a brief and general explanation about physical interpretation in structural 

terms of the obtained models.  

Hitherto, it is known that the absorption is influenced by a different kind of interactions. 

Several studies have demonstrated that the permeability coefficient, measured by a transport 

through Caco-2 monolayer cell cultures, is correlated with lipophilicity,6,15-17 while others 

emphasize on the role of hydrogen-bonding capacity or charge.7,10,15,16 A paradigm of 

structure-permeability relationship has been expressed as:16 

Permeability = f (lipophilicity, molecular size, H-bonding capacity, charge)             (18)   

As it can be observed, in the discriminant and the regression models, the included 

variables are very close to the factors that influence on the P values. These factors are related 

with the structural features of molecules. The variables fkL
H(xE-H) and sfkL

H(xE-H) are connected 

with the hydrogen atoms as donors, while the variables fkL(xE),  fkL
H(xE), sfkL(xE) and sfkL

H(xE) 

contain information about the number of hydrogen acceptors and the charge of molecules. All 

of them are related with the total hydrogen bond capacity. The values of P negatively depend 

on these descriptors. The values of these molecular indices increase with the rise of the 

numbers of heteroatoms and the hydrogen bond to heteroatoms in the molecules. For this 

reason, we can say that these molecular descriptors have a negative contribution to P. These 

are logical results because increasing the number of heteroatoms and the hydrogen bound to 

heteroatoms in the molecules decrease the permeability across the biological membrane. This 

effect is rather close to the molecular lipophilicity decrease and the possibility of the molecule 

of ionization and to obtain a charge. Other descriptors as fk
H(x), sfk(x) and sfk

H(x) contains 

information about the molecular weight and consequently of the size of molecules. For this 

reason, we can say that these molecular descriptors have a positive contribution to P. In 

addition, these properties (molecular weight, size), H-bonding and charge are components of 

lipophilicity.16 For each property there are limited ranges as it is established in the Rule- of- 

5,18 but anyone is independent.95 

 



Concluding Remarks 

The development in drug discovery of combinatorial chemistry methods, where large 

numbers of candidate compounds are synthesized and screened in parallel for “in vitro” 

pharmacological activity, has dramatically increased the demand for rapid and efficient 

models for estimating human absorption. Therefore, the continuous definition of novel 

molecular descriptors that could explain different biological/pharmacokinetical properties, by 

means of QSAR, is necessary. Consequently, we have develop LDA and MLR models that 

could permit us to predict, by fast “in silico” screening, the intestinal permeability of 

chemicals and to outline preliminary conclusions about their possible human intestinal 

absorption profile.  

In the current study, based on a larger set of drug or drug-like molecules, we developed 

discriminant functions that permit us the classification of molecules, in accordance with their 

molecular structure, with poorer-moderate or higher absorption. This result demonstrated that 

non-stochastic and stochastic atom-based linear indices are a novel and powerful approach to 

generate an adequate model for the correct classification of the intestinal permeability for 

structurally diverse drugs. Acceptable efficiency and a fairly good predictability were found 

for an external test set. Our method favorably compares with other approaches implemented in 

the Dragon software. Furthermore, rather satisfactory results were obtained by evaluating the 

capacity of prediction of human absorption for the obtained classification models. This 

approach permits that these indices could be applied to larger sets of NCEs synthesized via 

combinatorial chemistry approach.  

Moreover, linear correlation models were developed to estimate Caco-2 permeability 

data. The predictions in the external test set demonstrate that this model bears good 

performance, as well as could be used for estimation of Caco-2 permeability for drug and 

drug-like molecules. The comparison with other approaches assesses a good behavior of our 

method.  

Definitely, the models obtained in the current work are not ideal, because the data set 

used here, although the largest, is limited. A sufficiently large set of experimental data relating 

to this endpoint for the validation is crucial in the development of better prediction models. 

So, based on increasing data, the learning/modeling will need to be an ongoing, iterative 

process in which the models are continuously refined. Nevertheless, the present “in silico” 

method would be a valuable tool in the drug discovery process to select the molecules with the 

greatest change prior to synthesis. 
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