
1

Title: PAReS: A Proactive and Adaptive Redundant System for Enhancing
MapReduce Job Completion Reliability and Service Quality

Authors: Jia-Chun Lin, Fang-Yie Leu, Ying-ping Chen

Affiliation:

Jia-Chun Lin &
Ying-ping Chen

Department of Computer Science, National Chiao
Tung University, Taiwan.

Fang-Yie Leu Department of Computer Science, TungHai
University, Taiwan.

Address: Jia-Chun Lin Reinhold-Frank-Str. 48c, 76133 Karlsruhe , Germany
Ying-ping Chen Office EC 711, 1001 Ta Hsueh Road, HsinChu City

300, Taiwan
Fang-Yie Leu Office ST422, No.1727, Sec.4, Taiwan Boulevard,

Xitun District, Taichung 40704, Taiwan
Corresponding
authors:

Ying-ping Chen, Tel: +886-3-5712121 ext 31446, Fax: +886-3-5724176,
ypchen@cs.nctu.edu.tw

Fang-Yie Leu, Tel: +886-4-23590121 ext 33815, leufy@thu.edu.tw

Abstract: Recently, MapReduce has been a key and popular technology for tackling
data-intensive applications. But its two master servers in current
MapReduce implementations have a single-failure problem, which may
interrupt MapReduce operations and filesystem services. To solve this
problem, several redundant schemes have been proposed. However, some
schemes cannot deliver good service quality, which in this study is defined
as short service downtime and seamless/complete takeover. Some schemes
have problems such as delayed synchronization, high energy consumption,
and expensive synchronization cost, consequently failing to provide good
service quality in a cost-efficient manner. Some others are unable to
provide a sufficiently high reliability to complete a set of MapReduce jobs
(we call it job completion reliability). Therefore, in this paper, we propose
a hybrid takeover scheme, called the Proactive and Adaptive Redundant
System (PAReS for short), which employs three service-quality
improvement mechanisms, including a proactive synchronization and
replication method, a mutual life monitoring algorithm, and an adaptive
warm-up mechanism, to mitigate the above problems. The formal analysis
and extensive experiments show that the PAReS improves job completion
reliability and enhances service quality at acceptable energy consumption
level and synchronization cost as compared with four state-of-the-art
schemes.

Keywords: MapReduce, job completion reliability, redundant system, service
downtime, takeover, proactive synchronization and replication, mutual life
monitoring, adaptive warm-up mechanism

2

PAReS: A Proactive and Adaptive Redundant System for Enhancing
MapReduce Job Completion Reliability and Service Quality

Jia-Chun Lin1, Fang-Yie Leu2, Ying-ping Chen1

1Department of Computer Science, National Chiao Tung University, Taiwan
2Department of Computer Science, TungHai University, Taiwan

Recently, MapReduce has been a key and popular technology for tackling data-intensive applications. But its two

master servers in current MapReduce implementations have a single-failure problem, which may interrupt MapReduce
operations and filesystem services. To solve this problem, several redundant schemes have been proposed. However,
some schemes cannot deliver good service quality, which in this study is defined as short service downtime and
seamless/complete takeover. Some schemes have problems such as delayed synchronization, high energy consumption,
and expensive synchronization cost, consequently failing to provide good service quality in a cost-efficient manner.
Some others are unable to provide a sufficiently high reliability to complete a set of MapReduce jobs (we call it job
completion reliability). Therefore, in this paper, we propose a hybrid takeover scheme, called the Proactive and
Adaptive Redundant System (PAReS for short), which employs three service-quality improvement mechanisms,
including a proactive synchronization and replication method, a mutual life monitoring algorithm, and an adaptive
warm-up mechanism, to mitigate the above problems. The formal analysis and extensive experiments show that the
PAReS improves job completion reliability and enhances service quality at acceptable energy consumption level and
synchronization cost as compared with four state-of-the-art schemes.

Keywords: MapReduce, job completion reliability, redundant system, service downtime, takeover, proactive
synchronization and replication, mutual life monitoring, adaptive warm-up mechanism

1. INTRODUCTION

MapReduce [1] is a flexible distributed programming model introduced by Google to solve data-
intensive applications. With this model, Google processes over 20 petabytes of data per day [1]. Apache,
inspired by MapReduce, developed an open-source framework called Hadoop [2], which has been adopted
by many companies and organizations, such as Facebook and Yahoo, to process their large-scale data.
Other MapReduce implementations can be found in [3][4][5].

Generally, a MapReduce implementation, e.g., Apache Hadoop [2], is running on a MapRedcue cluster
consisting of a set of common machines, rather than a set of high-end machines. In this cluster, two
machines act as master servers. One is JobTracker [2], which coordinates the execution of MapReduce jobs
running on a MapReduce cluster. The other is NameNode [2], which manages the distributed filesystem of
the cluster. Due to running on a single and common machine, JobTracker and NameNode may fail because
of various reasons, such as hardware failure, software malfunction, and bad configuration [6]. In fact,
Yahoo has experienced three NameNode failures caused by hardware problems [6]. Even though
JobTracker and NameNode are run on reliable hardware, they mail fail some day. Consequently,
MapReduce operations and filesystem services will be interrupted, and all running jobs may not be able to
proceed and complete.

To solve this problem, Hadoop [2] adopted a warm-standby node (called checkpoint node) to
periodically back up the state of NameNode. Apparently, the corresponding energy consumption is low
since the checkpoint node does not stay awake all the time. However, due to the fixed checkpoint interval
(e.g., one hour), the recent backup files may be unable to reflect the latest NameNode state. Hence, when
NameNode fails, the checkpoint node cannot provide fast and seamless takeover. To speed up the takeover
process, several hot-standby-based schemes [6][29][9] have been proposed, which employ one or more hot-
standby nodes to maintain the up-to-date state of the MapReduce master server, thereby causing more
energy consumption and synchronization cost. These schemes also suffer from a delayed synchronization
problem, i.e., the metadata synchronization is delayed until the master performs an update operation rather
than receiving the corresponding request from a client. Consequently, when the master fails, those
unfinished update operations and MapReduce jobs may be interrupted. Besides, a hot-standby node may
crash before its master server does, consequently failing to provide a sufficiently high reliability to
complete a set of MapReduce jobs (we call it job completion reliability). Other hot-standby-based and load-
sharing schemes [8][9][10] have similar problems.

3

In this paper, we propose a hybrid takeover scheme called the Proactive and Adaptive Redundant
System (PAReS for short) for a MapReduce master server based on our previous work [30]. The PAReS
employs a hot-standby node (HNode for short) and a warm-standby node (WNode for short) to preserve the
advantages of hot-standby schemes (i.e., fast takeover) and the advantages of warm-standby schemes (i.e.,
low energy consumption and good job completion reliability). However, naively utilizing the HNode and
WNode cannot solve the delay synchronization problem and improve service qualities, including reducing
the impact of the master-server failure on client requests and shortening service downtime, which is defined
as a time period from the moment when the master server fails to the moment when a standby node takes
over for the master and is ready to process client requests.

Hence, the PAReS further employs three service-quality improvement mechanism to solve the above-
mentioned problems and guarantee good service qualities. The first mechanism is a proactive
synchronization and replication method, which starts replicating the master’s metadata to the HNode
whenever the master updates its metadata receives a write request from a client, rather than when
performing or finishing the request. Thus, when the master fails, the HNode can provide a rapid takeover
and reduce the failure impact on client requests. The second is a mutual life monitoring algorithm which
enables the master and HNode to promptly detect each other’s failure, adjust the status of the WNode, and
initiate the corresponding takeover process to accelerate takeover process and shorten takeover time. The
third is an adaptive warm-up mechanism, with which the WNode warms itself up autonomously every fixed
time interval and dynamically when receiving a warm-up request from the master or HNode. Consequently,
the WNode can adapt itself to the current system status and improve its takeover performance.

The key contributions of this study are as follows:
� The PAReS provides the MapReduce master server with a simple, reliable, and energy-efficient

working environment. By employing the HNode, WNode, and three service-quality improvement
mechanisms, the PAReS not only preserves the advantages of hot-standby-only schemes and warm-
standby-only schemes, but also solves the shortcomings of these schemes.

� We achieve a comprehensive evaluation by comparing the PAReS with several state-of-the-art schemes,
including the No-Redundant scheme (NR for short), which is the approach that Hadoop offers for its
JobTracker [2], Hot-Standby-Only scheme (HSO for short) proposed by Wang et al.’s [9], and the
warm-standby-only scheme (i.e., the checkpoint node) used by Hadoop [7]. In addition, we also
consider the warm-standby-only scheme in two versions. One is with automatic takeover, i.e., a monitor
node is employed to detect the master’s failure and ask the warm-standby node to take over for the
master (we call it an A-WSO scheme). The other version is without automatic takeover, implying no
monitor node is utilized (we call it a WSO scheme). A fair comparison is achieved by comparing these
schemes in terms of their job completion reliabilities, energy consumptions, synchronization costs,
service downtimes, and impacts of the master-server failure on client-submitted requests.

� The formal reliability analysis shows that the PAReS dramatically improves the job completion
reliability of the master server, and it provides higher job completion reliability than most of the other
schemes. The energy consumption analysis also demonstrates that the PAReS effectively reduce the
high energy consumed by the HSO and A-WSO, but the energy consumption of the PAReS is
unavoidably higher than those of the NR and WSO. The experimental results demonstrate that the
PAReS indeed provides better service quality at acceptable synchronization cost as compared with the
other schemes.
The rest of this paper is organized as follows. Section 2 introduces the background and related work of

this study. Section 3 details the PAReS and the three service-quality improvement mechanisms. The job
completion reliability and energy consumption analyses are shown in Sections 4 and 5, respectively. The
experimental results are presented and discussed in Section 6. Section 7 concludes this paper and outlines
our future studies.

2. BACKGROUND AND RELATED WORK

This section describes the background and related work of this study.

4

2.1 Background
MapReduce allows users to specify a job J by using two functions: map and reduce. The map accepts a

set of key-value pairs in one domain and generates a list of intermediate key-value pairs in another. The
reduce function merges all intermediate key-value pairs of the same key to generate final result. Fig. 1
illustrates the execution flow of J on a MapReduce cluster consisting of JobTracker, NameNode, and
multiple worker nodes. A client requests an ID for J through steps 1 and 2. After receiving worker locations
from NameNode in steps 3 and 4, the input file of J is divided into fixed-size data blocks and stored on
worker nodes in step 5. In steps 6 and 7, J is submitted to JobTracker, and JobTracker initiates J,
respectively. After requesting and retrieving the data-block information of J from NameNode in steps 8 and
9, JobTracker in step 10 assigns each map (reduce) task of J’s to an available worker, named mapper
(reducer). Before running its assigned task, a mapper/reducer needs to retrieve its required input by
consulting NameNode. When finishing its task, a mapper stores the generated results on its disk and replies
to JobTracker with the disk location. When all mappers complete their tasks, the reducers can start their
assigned tasks. After all reducers finish their tasks, JobTracker informs the client of the completion of J.

Generally, if JobTracker fails, J cannot be submitted, assigned, performed, or completed. Also, a failed
NameNode cannot help JobTracker to assign tasks, assist workers to obtain required resources, and so on.
As a result, JobTracker and NameNode must work properly during the execution of J.

Fig 1. The execution flow of a MapReduce job J on a MapReduce cluster.

2.2 Related work

Redundant mechanisms, the common methods that a general system often uses to improve its system
reliability, can be classified into four types: cold standby, warm standby, hot standby, and active parallel
[12][13][14]. Current MapReduce implementation, e.g., Hadoop, only adopted a cold-standby mechanism
to provide fault tolerance for its workers, rather than for its master server. This is because a cold-standby
node does not maintain master-server states, and hence it cannot recover the master server to the latest state.

Some systems employed a warm-standby node as a backup server, to which the master server replicates
its states periodically or under request. After that, the warm-standby node sleeps to reduce its failure
probability and energy consumption. The checkpoint node [7] utilized by Hadoop is an example. The
checkpoint node periodically generates a file to back up the log records of NameNode. When NameNode
fails, the most recent file is used to restart it. In Hadoop, this action is performed manually by system
managers, which might prolong takeover time and service downtime. To achieve an automatic takeover, a
monitor node is required to detect the master’s failure and request the checkpoint node to take over for the
master when the master fails. But it increases the energy consumption and decreases the reliability
improvement because the monitor node needs to stays awake all the time with the master. No matter the
checkpoint node has the monitor node or not, due to the fixed checkpoint interval, the backup file may be
out-of-date, implying that when NameNode crashes, the metadata produced after the generation of the file
cannot be recovered, resulting in an incomplete takeover. Besides, in Hadoop, when the checkpoint node
takes over for NameNode, it has to execute each of the operations recorded in its file and retrieve block-
location metadata from all other workers. This often lengthens the takeover process and causes longer

...

Reducer

Reducer

Reducer

...

7. Initiate J

8.
 A

sk
 d

a
ta

-b
lo

ck
 in

fo
m

a
tio

n

9.
 R

e
pl

y
da

ta
-

bl
oc

k
in

fo
rm

a
tio

n

10. Task assignment

client

...

...
Mapper

Mapper

Mapper

5. Replicate the input file of J to workers

instruction flow
data flow

...

Distributed file system

JobTracker

NameNode

worker

3.Ask worker locations
4. Reply worker locations

1. Request an ID for J

6. Submit job J

2. Return the ID
 of J

5

service downtime. Other warm-standby-based schemes have similar problems, consequently failing to
provide a fast and seamless takeover.

Several systems [2][7][8][9][15][16][29] utilized hot-standby mechanisms to speed up their failure
recovery. Among these, the schemes proposed by [7][9][29] are designed for the MapReduce master server.
The Hadoop backup node [7] synchronizes itself with NameNode. When NameNode fails, the backup node
can quickly take over for it. But this node has three drawbacks. First, as mentioned previously, it may crash
before NameNode does. Thus, the reliability improvement is limited. Second, the backup node cannot
provide a short service downtime since it does not maintain block-location information (we call it transient
metadata). When the backup node takes over for the master, it needs to enter a safe mode to retrieve all the
transient metadata from workers, thereby prolonging the time to process user requests. Third, this node has
the delayed synchronization problem, i.e., the synchronization occurs only when the backup node receives a
journal stream, which is generated and sent by NameNode after NameNode finishes the corresponding
operation. Hence, when NameNode crashes, the backup node cannot continue those unfinished operations,
consequently affecting the corresponding job execution.

Wang et al. [9] proposed a metadata replication scheme to replicate metadata from a Hadoop master
server to multiple hot-standby nodes. The authors also presented three configurable synchronization modes
to make their scheme adapt to different workloads and network environments. When the master server fails,
one of the hot-standby nodes will be elected to be the master server. Obviously, this scheme causes high
energy consumption and expensive synchronization costs due to employing multiple hot-standby nodes.
Besides, this scheme the same drawbacks incurred by the backup node [7]. Wan et al. [29] presented a hot-
standby node to back up the state of JobTracker by synchronizing their job execution logs all the time, but
this scheme also has the same abovementioned drawbacks.

Active parallel redundancy can be further classified into two types: Modular redundancy [17] and load-
sharing redundancy [18]. The former, employing multiple redundant components/nodes to simultaneously
perform a task, has been widely utilized in mission critical systems [19][20][21], but seldom employed in
MapReduce. The latter, in which several nodes share the workload of a system, has been utilized at least by
[22][23][24][10]. In this mechanism, a server informs other servers after updating its metadata so that its
failure will not interrupt the operation of the entire system. Similar to all hot-standby-only schemes, this
mechanism has limited reliability improvement and high energy consumption. Besides, its synchronization
cost is even higher, which deviates the purpose of our PAReS. In our previous work [30], we proposed a
hybrid redundant system call ReHRS to enhance the reliability and availability of the MapReduce master
server. However, the synchronization method is complicated, and the failure detection is simplified such
that the WNode cannot dynamically proceed its warm-up procedure to adapt current system state. Besides,
the job completion reliability, energy consumption, and synchronization cost are not considered and
analyzed.

3. THE PROPOSED SCHEME
In this section, we describe two types of state-update operations executed by MapReduce master servers

and then introduce the three service-quality improvement mechanisms. Finally, the processes of taking over
for the master server and HNode are presented.

3.1 State-update operations

In MapReduce, all state update-operations performed by a MapReduce master server (no matter it is
NameNode or JobTracker), can be classified into two types: persistent and transient. A persistent update
operation is a �-phase operation during which the master generates persistent metadata (P-meta for short),
which is the metadata infrequently or never changed after it is generated, to update its state and log file, � ≥ 1. For example, file access-right modification [6] is a one-phase operation, and job execution is a
multi-phase one.

A transient update operation is an operation that the master needs to update its state, rather than needing
to update its log file. When receiving transient metadata, which is the one frequently updated such as job
execution state and data-block location sent by workers [6], the master server only update its in-memory
state.

6

3.2 Proactive synchronization and replication method
 Based on the primary/backup replication method [25][26] and chain replication technique [27], the

proactive synchronization and replication method is designed to prevent any persistent update operation
from being interrupted due to the occurrence of master-server failures, and enable the HNode to maintain
all transient metadata of the master server so as to shorten service downtime. The basic idea is to replicate
the master’s metadata to the HNode whenever the master updates its P-meta and transient metadata.

Upon receiving a persistent update operation � from a client U, the master generates an prior log record
(denoted by ��), which consists of an incremental record number, � ’s ID (denoted by ���), and other
necessary information about �. When the master initiates the first phase of �, it generates a initial log
record (denoted by ��) which comprises another incremental record number, ���, and information about the
initialization of �. The synchronization processes for a prior log record and an initial log record are the
same (see Fig. 2a), which work as follows:

Step 1) The master server inserts the log record into its log file.
Step 2) The master sends this record to the HNode and continues �.
Step 3) On receiving the record, the HNode inserts it into its log file.
Step 4) The HNode tells the master that it has received the log record.
Step 5) If the master does not receive the message after a predefined time period, it periodically sends

the log record to the HNode until receiving the message or finding that the HNode has failed.
The detailed failure detection will be described later.

(a) For a prior/initial log record (b) For a E-record

Fig. 2. The synchronization sequence charts when the persistent update operation � is issued by client �.

On the other hand, when the master finishes the G-th phase of � where � = 1,2, … ,�, it generates an

end log record (E-record for short), denoted by ���, which conveys a record number, ���, the G value, and
the result of �’s G-th phase (i.e., P-meta). The E-record synchronization process issued by user � as shown
in Fig. 2b is as follows.

Step 1) The master inserts ��� into its log file and updates its state with the P-meta recorded in ���.
Step 2) The master sends ��� to the HNode.
Step 3) On receiving ���, the HNode inserts it into its log file and also updates its state. Now, the

master and the HNode are synchronous. Note that the HNode updates its state with the
received E-records one by one based on the increasing order of record numbers.

Step 4) The HNode delivers the P-meta to �.
Step 5) Upon receiving the P-meta, � responds the HNode.
Step 6) With the response from �, the HNode records {���, �, “completed”} for reminding itself that

someday when taking over for the master, it can ignore �’s G-th phase.
Step 7) The HNode returns {���, �, “completed”} to the master to show the completion of �’s G-th

phase.
Step 8) Upon receiving the message, the master also records this message. Otherwise, the master

periodically sends ��� to the HNode until receiving the message or finding that the HNode
has failed.

Notice that if � is issued by the master, the E-record synchronization process comprises only the steps 1, 2,
3, 7, and 8 since no response needs to be sent to �. By referring to its log file and all the recorded messages,
the HNode can determine the current status of �. The existence of only �� means that the master just

Master HNode

2
3

1

4
5

Master HNodeClient U

2
3

1

4
5

67
8

7

receives � from �. The existences of only �� and �� show that � has just been initiated. The existences of ��, ��, ���, ���, …, and ��� implies that �’s first G phases have been finished. Hence, when taking over for
the master, the HNode can continue �, rather than requiring to reperform � from the very beginning.

On the other hand, after receiving transient metadata, denoted by 	
, from a worker and updating its
in-memory state, the master forwards 	
 to the HNode without generating a log record since transient
metadata as mentioned above is often updated frequently. On receiving 	
 , the HNode accordingly
updates its in-memory state without returning a message to the master. The purpose is to reduce the
master’s burden and network overhead. In this way, the HNode can maintain all transient metadata of the
master and does not need to spend a lot of time to reconstruct its in-memory state when taking over for the
master.

The mutual life monitoring algorithm: /* It is p erformed by receiver R. */
Input: heartbeats from sender S;
Output: a warm-up or takeover decision;
Procedure:
1: Let ����=���=0; �� = false; /* �� = false means that R has not requested the WNode to warm up.*/
2: While a heartbeat period times out {
3: I f R has received a fresh heartbeat from S during the heartbeat period {
4: 	���� = ���� + 1; ��� = 0;
5: If ���� = �ℎ� and �� = true {
6: Request the WNode to sleep; �� = false; }}
7: Else{
8: ��� = ��� + 1; ���� = 0;
9: If ��� = �ℎ� and �� = false {
10: Claim itself as a commander; request the WNode to warm up; �� = true;}
11: Else if ��� = �ℎ� { /* Now �� must be true. */
12: I f R is the HNode
13: Take over for the master;
14: Request the WNode to take over for the HNode; stop;}}}

Fig. 3. The mutual life monitoring algorithm in which �ℎ� and �ℎ� are two predefined thresholds, 0 < �ℎ� < �ℎ�.

3.3 Mutual life monitoring algorithm

Based on a push-based failure detection technique [11], the mutual life monitoring algorithm is
designed for the master and HNode to promptly detect each other’s failure. Once a failure is detected, the
live one starts the corresponding takeover processes and requests the WNode to warm itself up so as to
accelerate the process of taking over for the HNode. In this way, the services of the master and HNode can
be continued, and the extra monitor node required by the warm-standby-based schemes can be unemployed.

In this algorithm, the master and HNode mutually send a heartbeat to each other through a reliable
transmission protocol, e.g., TCP, every predefined heartbeat period. Assume that at least one network link
between arbitrary two of the master, HNode, and WNode is always available. Hence, if one of the master
and HNode, called receiver R, cannot receive heartbeats from the other, called sender S, in a heartbeat
period, the reason must be one of the three situations: S fails, S is busy, or the link between R and S is
congested.

The algorithm is presented in Fig. 3. Let ���� and �	
 be the counters for counting consecutively
arriving and absent heartbeats, respectively. Let �
 be a boolean variable indicating whether R has
requested the WNode to warm up or not. Whenever a heartbeat period times out, if R has received a fresh
heartbeat from S, then ���� is increased by 1, and �	
 is reset to zero. Note that a fresh heartbeat means
that � > � where � is the sequence number conveyed in the heartbeat, and � is the maximum heartbeat
sequence number that R has ever received from S. Conversely, if R receives no fresh heartbeat from S,
then �	
 is increased by 1, and ���� is reset to zero. With this algorithm, when S fails, R will not misjudge
that S is still alive if it receives an unfresh heartbeat from S.

Let �ℎ� and �ℎ� are two predefined thresholds, 0 < �ℎ� < �ℎ�. If �	
 = �ℎ� and �
 = false (see line 9
of Fig. 3), R suspects that S has failed, consequently claiming itself as a commander, requesting the WNode

8

to warm up, and setting �
 = ���� . This enables the WNode to early warm itself up and shorten its
takeover time. If �	
 further reaches �ℎ� (see line 11), R claims that S has failed. Depending on the role of
R, a different action is taken. If R is the master, it informs the WNode, which is now warming up or has
finished warming itself up, to take over for the HNode. If R is the HNode, it takes over for the master and
requests the WNode to act as the HNode. On the other hand, if ���� = �ℎ� and �
 = true (see line 5), R
assumes that S is still operational and requests the WNode to sleep again.

By employing ���� , �	
 , and �
 , and limiting ���� = �ℎ� (rather than 1), we can avoid having R
continuously requesting the WNode to switch itself between the warm-up and sleep modes in adjacent
heartbeat periods, consequently reducing the failure rate of the WNode and saving energy consumption.

3.4 Adaptive warm-up mechanism

The purpose of the adaptive warm-up mechanism is enabling the WNode to adapt itself to the current
system status and improve its takeover performance. It consists of an autonomous warm-up approach and a
requested warm-up approach. In the former, the WNode periodically and autonomously warms itself up by
requesting metadata from the HNode, rather than from the master, so as not to degrade the master’s
performance. In the latter, the WNode warms itself up whenever being requested by a commander, which
might be either the master or the HNode. Table 1 summaries the two approaches.

When the master and HNode are unstable and/or the link between them is congested, the WNode may
be requested to warm up by both of them simultaneously and may receive duplicate E-records from them.
Hence, on receiving a log record, the WNode compares it with all the log records that it has ever received
to determine whether to discard the record or use it to update its state.

Let

,
�, and
� be the largest record numbers of the log records currently collected in the log files
of the WNode, HNode, and the commander, respectively. The autonomous warm-up approach works as
follows.

Step 1) The WNode wakes up when its timer, initially set to 	������, expires. Then it sends

 to
the HNode to request those log records that it lacks.

Step 2) Upon receiving

, the HNode replies
� to the WNode. After that, it retrieves log record �� from its log file, computes ��’s hash value	��, and sends a record-hash message {��, ��}
to the WNode where � is the record number of �� and

 < � ≤
�.

Step 3) Upon receiving {��, ��}, the WNode compares �� with all the hash values previously stored
in its hash pool in increasing order of �. If �� exists, implying that �� is duplicate, then the
WNode discards this message. Otherwise, the WNode inserts �� into its log file and stores ��
in the pool. If �� is an E-record, then WNode further updates its state with the P-meta
conveyed in ��.

Step 4) The WNode sleeps.
On the other hand, the requested warm-up approach works as follows (i.e., the details of step 10 in Fig. 3).

Step 1) Upon receiving a warm-up request from a commander, the WNode
1-1) wakes up and resets its timer to 	������ to inhibit the occurrence of the autonomous

warm-up process. Note that if the autonomous warm-up process is running, the WNode
immediately stops it.

1-2) The WNode sends

 to the commander to request the log records that it lacks and all
the transient metadata.

Step 2) Upon receiving the message, the commander continues sending {��, ��} and its transient
metadata to the WNode until it requests the WNode to go to sleep (i.e., step 6 in Fig. 3) or
asks the WNode to take over for the HNode (i.e., step 14 in Fig. 3). In the former case, the
commander sends a sleep-request message {“sleep”,
�} to the WNode. For the latter case,
the commander sends a takeover-request message {“takeover”,
�} to the WNode, implying
that � =

 + 1,

 + 2, … ,
� .

Step 3) On receiving a message m,
 Case 1: If m = {��, ��}, the WNode processes {��, ��} as the step 3 of the autonomous

warm-up process.
Case 2: If m is transient metadata, the WNode accordingly updates its in-memory state.

9

Case 3: If m is a sleep-request message, the WNode sleeps after processing each received {��, ��} until � =
� .
Case 4: If m is a takeover-request message, the WNode immediately acts as the HNode. The

detailed takeover process will be described later.
By using the adaptive warm-up mechanism, the WNode not only can regularly back up the log records of
the master from the HNode during the normal execution of the master, but also can adaptively warm itself
up upon receiving a warm-up request from a commander when the master or HNode behaves abnormally.
Consequently, the required takeover time can be shortened. Note that the WNode does not back up the
transient metadata of the master server since transient metadata is updated frequently.

Table 1. The adaptive warm-up mechanism
Approach Autonomous warm-up Requested warm-up
Trigger When ��	
��
 expires When the WNode is requested by a

commander
Message,
Destination

, HNode

, the commander

Requested
data

The log records that the WNode lacks The log records that the WNode lacks and all
the commander’s transient metadata

Stop
conditions

Condition 1:
When finishing processing {�����, �����},
{�����, �����}, …, and {���

, ���
}

Condition 1:
When receiving a sleep-request message
from the commander and finishing
processing {���+1 , ���+1 }, { ����� ,
�����}, …, and {���

, ���
}

Condition 2:
When being requested to warm up by a
commander

Condition 2:
On receiving a takeover-request message
from the commander

Subsequent
action

For condition 1, the WNode sleeps again. For condition 1, the WNode sleeps again.
For condition 2, the WNode stops receiving
all messages sent by the HNode. After
finishing processing all the received record-
hash messages, the WNode starts the
requested warm-up process.

For condition 2, the WNode takes over for
the HNode.

3.5 Takeover processes

Let ���, ���, and ��
 (
���,
���, and
��
) be respectively the master server’s, HNode’s, and
WNode’s IP (MAC) addresses. The process for the WNode to take over for the HNode is as follows (i.e.,
the details of step 14 in Fig. 3).

Step 1) The WNode changes its IP address to ��� and issues a gratuitous ARP reply message [28] to
inform all the related layer-3 switches to replace <MACW, IPW> recorded in their ARP tables
with <MACW, IPH> .

Step 2) The WNode sends a takeover-ready message to the master and starts all the HNode’s functions,
including synchronizing itself with the master and executing the mutual life monitoring
algorithm to detect the master’s heartbeats.

Note that it is possible that when the WNode is asked to take over for the HNode, it is in the middle of its
requested warm-up process. In this case, the WNode keeps updating its in-memory state with the transient
metadata sent by the current master, but it buffers each received log record ��′ in its memory if �� >
� .
When the requested warm-up process is completed, all buffered log records will then be stored in the
WNode’s log file and sequentially used to update the WNode’s state.

On the other hand, the process for the HNode to take over for the master is as follows (i.e., the details of
step 13 in Fig. 3).

Step 1) The HNode changes its IP address to IPM and informs all the related layer-3 switches to update
their ARP tables.

10

Step 2) The HNode starts acting as the master and uses each prior log record to find the corresponding
initial log record and E-records. If the prior log record of a persistent update operation �
exists, but the corresponding initial log record does not, implying that the master has not
initiated �, then the HNode re-performs � from the very beginning. If ���, ���, …, and ���
exist, the HNode performs � from the �� + 1�-th phase to the end, 1 ≤ � < �. If all E-records
of � exist, the HNode does nothing since � has been finished. After that, it starts processing
read/update requests submitted by clients/workers.

4. RELIABILITY ANALYSIS

This section analyzes the PAReS with the NR, HSO, A-WSO, and WSO, in terms of their job
completion reliabilities, i.e., the reliability with which each of these schemes can complete a set of
MapReduce jobs. To fairly compare these schemes, we assume that the HSO, A-WSO, and WSO
individually employ two standby nodes for the maser, and all nodes’ failure rates in their sleep (awake)
modes are constant and identical, denoted by �� (��), regardless of which scheme is analyzed. Let �� and �� individually follow a Poisson distribution, �� > ��. To simplify the analysis of this study, only node
failures are considered. Other faults, such as network failures, will be considered in our future research.

Let � be a batch of MapReduce jobs submitted by users, and 	 be the total execution time of �. From
JobTracker’s viewpoint, the execution of � can be divided into two phases. The first is the initialization
phase, which starts from the moment when JobTracker receives � from the users and ends when
JobTracker finishes the initialization of �. The second is the MapReduce phase (MR-phase for short),
which starts when the initialization phase finishes and ends when � is all completed. That is, 	 = 	� + 	�� (1)
where 	� and 	�� are the durations of the initialization phase and MR-phase, respectively. In general, 	� is
very short, e.g., ranging from several milliseconds to several seconds, implying that 	 ≈ 	�� (2)

Let ��,� and	��,� be the two standby nodes that scheme � provides for the master where � ∈ {PAReS,
HSO, A-WSO, WSO}. Without loss of generality, we further assume that the failure sequence is the master, ��,�, and then ��,�. When the master fails, �� ,� takes over for it. When ��,� crashes, ��,� takes over for it.
Hence, if all jobs of � is completed before � fails, they must be finished by the master,	��,�, or ��,�. Due to
the fact that the initialization phase is very short, the probability that the master fails in this phase
approximates zero. Hence, in the paper, we only consider the case in which the master crashes in the MR-
phase.

If � is finished by the master, it means that the master must to be operational in 	 . Hence, the
corresponding reliability, denoted by ��, is �� = exp�−�� ∙ 	� (3)

The second case is that � is all finished after ��,� takes over for the master, implying that the master fails
while executing �, then ��,� must be operational in three consecutive time periods 	� ~ 	� as shown in Fig.
4 in which 	� is the time consumed by the master to perform � before it fails (implying that 	� <), 	� is
the time required by ��,� to take over for the master, and 	� is the time during which ��,� needs to operate
normally to finish the unfinished jobs of �, i.e.,

	� = 	��� 				,if	� = PAReS	or	HSO																																					��� 			, if	� = A-WSO	or	WSO	in	the	best	case													, if	� = A-WSO	or	WSO	in	the	worst	case

& (4)

in which 	��� is the duration of the remaining MR-phase, implying that 	��� < 	��. Since ����� ,� and �� !,� keep themselves synchronized with the master, they can continue the MR-phase after taking over for
the master. Hence, for the PAReS and HSO, 	� = 	���. For the A-WSO and WSO, if �
 !,� has the latest
log records about � (we call it the best case), 	� = 	���. But if �
 !,� has no log records about � (we call
it the worst case), then it needs to reperfrom � from the very beginning, implying 	� = 	.

11

Fig. 4. When � is all completed after ��,� takes over for the master, �� ,� should be operational in ��	~ ��

where	
 ∈ {PAReS, HSO, A-WSO, WSO}.

The third case is that � is all completed after ��,� acts as the master, implying that both the master and ��,� fail during the execution of �, then ��,� must work properly in five consecutive time periods 	�� ~ 	"�
as shown in Fig. 5 where 	�� = �1, 	�� = �2, 	�� is the time during which ��,� performs � before it fails
(implying that 	�� < 	�), 	#� is the time required by ��,� to take over for the master, and 	"� is the time in
which ��,� needs to work normally to complete the unfinished jobs of �. Similar to Eq. (4),

	"� = 	���
� < 	���				,if	� = PAReS	or	HSO																																					���� < 	���			, if	� = A-WSO	or	WSO	in	the	best	case																											, if	� = A-WSO	or	WSO	in	the	worst	case

& (5)

where 	���� is the duration time of the remaining MR-phase, implying that 	���� ≤ 	���.

Fig. 5. When � is all completed after ��,� acts as the master, ��,� needs to be operational in ��

� ~ ��
�.

4.1 Job completion reliability of the NR

Since the NR does not offer any standby node for the master, when the NR is tested, the reliability with
which � can be completed by the master, denoted by �$�, is equal to �� as shown in Eq. (3), i.e., �$� = �� = exp�−�� ∙ 	�	 (6)

4.2 Job completion reliability of the HSO

In the HSO, the two hot-standby nodes (i.e., �� !,� and �� !,�) stay awake with the master after the
maste’s startup. Let �� !,� and �� !,� be the reliabilities with which �� !,� and �� !,� can operate
normally during ��	~ �� and ��

� ~ ��
�, respectively. Hence, �� !,� = exp�−�� ∙ ∑ 	��

�%� � (7)
and

�� !,� = exp(−�� ∙ ∑ 	��"
�%�)

(8)
Consequently, the reliability with which � can be finished by the HSO, denoted by �� !, is �� ! = �� + �1 − ��� ∙ �� !,� + �1 − ��� ∙ (1 − �� !,�) ∙ �� !,�
 = �$� + �1 − �$�� ∙ �� !,� + �1 − �$�� ∙ (1 − �� !,�) ∙ �� !,�

(9)

where �1 − ��� ∙ �� !,� is the probability with which � is all completed when �� ! ,� acts as the master,
and �1 − ��� ∙ (1 − �� !,�) ∙ �� !,� is the probability with which � is all finished when �� !,� acts as the
master.

Master

T1 T2 T3

The master receives

J from U

J is completed
The master fails

1,SN

XXX acts as the master
1,SN

T1

The master receives

J from U

The master fails XXXfails J is completed

XXX acts as the master XXX acts as the master

Master

1,SN

1,SN

2,SN
1,SN

2,SN

T2' T3 T4 T5' ' ' '

12

4.3 Job completion reliability of the A-WSO
Let ω be a warm-up percentage with which ��-
 !,� and ��-
 !,� warm themselves up before acting as

the master, 0 < ω < 1. Let ��-
 !,� and ��-
 !,� be the reliabilities with which ��-
 !,� and ��-
 !,� can

operate normally during ��	~ �� and ��
� ~ ��

�, respectively. Due to the fact that ��-
 !,� spends �1 − ω� ∙ 	�
to sleep, ω ∙ 	� to warm up, and 	� + 	� to act as the master,

��-
 !,� = exp�−�� ∙ �1 − ω� ∙ 	�� ∙ exp *−�� ∙ +�ω ∙ 	�� + ∑ 	��
�%� ,- (10)

On the other hand, ��-
 !,� consumes (1 − ω) ∙ ∑ 	���
�%� to sleep, ω ∙ ∑ 	���

�%� to warm up, and ∑ 	��"
�%# to

act as the master. Hence,

��-
 !,� = exp�−�� ∙ �1 − ω� ∙ ∑ 	���
�%� � ∙ exp *−�� ∙ +�ω ∙ ∑ 	���

�%� � + ∑ 	��"
�%# ,- (11)

Recall that the A-WSO employs a monitor node to detect the master’s failure so as to provide an automatic
takeover process. Let �� and �� be the probabilities that the monitor node is operational in ∑ 	��

�%� and ∑ 	��#
�%� , respectively, implying that �� = exp�−�� ∙ ∑ 	��

�%� � and �� = exp�−�� ∙ ∑ 	��#
�%� �. Consequently,

the reliability with which the A-WSO finishes J, denoted by ��-
 !, is

��-
 ! = �� + �1 − ��� ∙ �� ∙ ��-
 !,� + �1 − ��� ∙ (1 − ��-
 !,�) ∙ �� ∙ ��-
 !,� 																	= �$� + �1 − �$�� ∙ �� ∙ ��-
 !,� + �1 − �$�� ∙ (1 − ��-
 !,�) ∙ �� ∙ ��-
 !,�
(12)

4.4 Job completion reliability of the WSO

Different from the A-WSO, the WSO does not employ the monitor node. Therefore, the reliability with
which the WSO finishes J, denoted by �
 !, is �
 ! = �� + �1 − ��� ∙ �
 !,� + �1 − ��� ∙ (1 − �
 !,�) ∙ �
 !,� 																= �$� + �1 − �$�� ∙ �
 !,� + �1 − �$�� ∙ (1 − �
 !,�) ∙ �
 !,�

(13)

4.5 Job completion reliability of the PAReS

Recall that ����� ,� and ����� ,� represent the HNode and WNode, respectively. Assume that the
warm-up percentage of the WNode is also ω. Let ��$
&�	 and �
$
&� be the reliabilities with which the
HNode and WNode can work normally during ��	~ �� and ��

� ~ ��
�, respectively. Similar to �� ! ,�, the

HNode enters its hot-standby mode after the master’s startup. Hence, ��$
&�	 = �� !,� (14)
For the WNode, it consumes �1 − ω� ∙ 	�� to sleep, ω ∙ 	�� to warm up, and ∑ 	��"

�%� to act as the HNode and
master. Thus

�
$
&� = exp�−�� ∙ �1 − ω� ∙ 	��� ∙ exp +−�� ∙ (ω ∙ 	�� + ∑ 	��"
�%�), (15)

Therefore, the reliability with which J can be finished by the PAReS, denoted by ����� , is ����� = �� + �1 − ��� ∙ ��$
&� + �1 − ��� ∙ �1 − ��$
&�� ∙ �
$
&� 																		= �$� + �1 − �$�� ∙ ��$
&� + �1 − �$�� ∙ �1 − ��$
&�� ∙ �
$
&�
(16)

4.6 Job completion reliability comparison

In this subsection, we compare the job completion reliabilities of all tested schemes under �� = 0.0005
per hour, �� = 0.00001 per hour, and ω = 0.1. Ten batches of jobs with total execution time 	 = 2� hours,
1 ≤ . ≤ 10, were considered. Table 2 lists all required time information. We assume that the master fails

when finishing one third of the MR-phase of a batch of jobs, meaning that �� =
(

3
=

2
�

3
 and �� =

2
�+1

3
, and

��,� also fails when finishing a half of the rest MR-phase, implying that 	�� = 	"� =
�3

�
=

��

�
. Since the

values of 	�, 	��, and 	#� for the PAReS, HSO, and A-WSO approximate zero hour (we will show this in
Section 6.1), we set these values in Table 2 to 0. But for the WSO, its 	�, 	��, and 	#� values depend on when
do system managers notice the master’s failure. In order not to complicate our comparison, we also set
these values to zero.

Based on Eqs. (6), (9), (12), (13), and (16), the job completion reliabilities of all schemes are illustrated
in Fig. 6. Notice that when the worst cases of the A-WSO and WSO occur, both schemes are impossible to

13

complete those jobs, i.e., their job completion reliability are both zero. Fig. 6a shows that when 	 increased,
the NR’s job completion reliability decreased sharply, but other schemes’ decreased relatively slower. The
main reason is that the NR does not provide any backup node for the master. Obviously, the WSO in the
best case has the highest job completion reliability since the awake times of its two warm-standby nodes
are very short. However, owing to the non-adaptive backup of the WSO and the time at which the master
fails is random, the best case of the WSO does not always occur. Due to employing the HNode and WNode
and utilizing no monitor node that is required by the A-WSO, the PAReS’s job reliabilities were higher
than those of the NR, HSO, and A-WSO. This phenomenon was more significant when 	 was longer. Now
we can conclude that the PAReS is more reliable than all the schemes, except for the WSO in the best case.

Table 2. All time information used for each tested scheme to calculate the corresponding job completion

reliability (time unit: hour). Note that � = 1,2, … , 10.
� �� = ��

� �� = ��
� �� ��

� ��
� ��

�

2�
2�

3
 0

2
���

3

2�

3
 0

2�

3

(a) (b)

Fig. 6. Job completion reliabilities of all tested schemes on �	 = 0.0005, �� = 0.00001, and ω = 0.1.

5. ENERGY CONSUMPTION AND SYNCHRONIZATION COST

This section analyzes the energy consumptions and synchronization costs of all tested schemes.

5.1 Energy consumption
Assume that the master server has operated for � hours since it starts up. Let /) and /� be the power

consumption rates of a node in its awake mode and sleep mode, respectively. Recall that ω is the warm-up
percentage. When the NR is employed, the total energy consumption, denoted by �$�, is equal to the total
energy consumed by the master server in �, i.e., �$� = � ∙ /) (17)
Due to employing two hot-standby nodes, when the HSO is utilized, the total energy consumption in �,
denoted by �� , is �� ! = 3 ∙ � ∙ /) (18)
When the A-WSO is utilized, the total energy consumption in �, denoted by ��-
 !, is ��-
 ! = 2 ∙ � ∙ /) + 2 ∙ ω ∙ � ∙ /) + 2 ∙ �1 − ω� ∙ � ∙ /* (19)
where 2 ∙ � ∙ /) is the energy consumed by the master and monitor nodes, 2 ∙ ω ∙ � ∙ /) is the energy
consumed by the two warm-standby nodes to back up the master’s log records, and 2 ∙ �1 − ω� ∙ � ∙ /* the
energy consumed by the two warm-standby nodes in their sleep mode.

Owing to utilizing no monitoring node, the total energy consumed by the WSO in �, denoted by �
 ! ,
is only �
 ! = � ∙ /) + 2 ∙ ω ∙ � ∙ /) + 2 ∙ �1 − ω� ∙ � ∙ /* (20)
For the PAReS, its total energy consumption in �, denoted by ����� , is ����� = 2 ∙ � ∙ /) + ω ∙ � ∙ /) + �1 − ω� ∙ � ∙ /* (21)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 8 16 32 64 128 256 512

Jo
b

 c
om

p
le

tio
n

 r
el

ia
b

ili
ty

T (hour)

PAReS
NR
HSO
A-WSO (best case)
A-WSO (worst case)
WSO (best case)
WSO (worst case)

0.95

0.96

0.97

0.98

0.99

1

1 2 4 8 16 32 64 128 256 512

Jo
b

 c
om

p
le

tio
n

 r
el

ia
b

ili
ty

T (hour)

PAReS
NR
HSO
A-WSO (best case)
A-WSO (worst case)
WSO (best case)
WSO (worst case)

14

where 2 ∙ � ∙ /) is the energy consumed by the master and the HNode, ω ∙ � ∙ /) is the energy consumed by
the WNode to warm up, and �1 − ω� ∙ � ∙ /* is the energy consumed by the WNode to sleep.

Let /) = 0.3 kW, /� = 0.001 kW, and ω = 0.1 per hour. Fig. 7 illustrates the energy consumptions of
all schemes when � ranges from 100 hours to 1000 hours. Unavoidably, the PAReS consumes more energy
than the NR (approximately 2.1 times higher) and WSO (approximately 1.74 times higher). But its energy
consumption is lower than those of the HSO and A-WSO. The results show that the energy consumption of
the PAReS is only 70.1% of that of the HSO and 95.33% of that of the A-WSO.

Fig. 7. The energy consumption of the all tested schemes.

5.2 Synchronization cost

Table 3 summaries all schemes’ synchronization costs. Apparently, the NR has zero synchronization
cost since this scheme does not synchronize the master’s state with any node. For each one-phase persistent
update operation, the master in the PAReS needs to generate three log records (i.e., a prior log record, an
initial log record, and an E-record shown in Fig. 2). But the master in the HSO, A-WSO, and WSO only
needs to generate two log records (i.e., an initial log record and a finish log record). Hence, the number of
log records in the PAReS is 1.5 times those in the HSO, A-WSO, and WSO.

When the PAReS is used to perform an one-phase persistent update operation, the number of messages
used by the master and the HNode to synchronize the corresponding prior log record, initial log record, and
E-record are 2, 2, and 4, respectively (see Fig. 2). Hence, the total number of the messages is 8. When the
HSO is employed, the number of messages used by the master and the two hot-standby nodes to
synchronize the initial log record and finish record are individually 4. Thus, the total number of the
messages is also 8. In addition, in the PAReS, the total number of messages sent by the master is only 3
(i.e., a prior log record, an initial log record, and an E-record to the HNode). But in the HSO, the total
number of messages sent by the master is 4 (i.e., two initial and two finishes log records to the two hot-
standby nodes), consequently the synchronization overhead caused by the PAReS on the master is not
higher than that caused by the HSO. When the A-WSO and WSO are individually employed, no
synchronization messages are transferred between the master and the two warm-standby nodes. Hence,
similar to the NR, the two schemes have low synchronization cost.

For each record of transient metadata, the master in the PAReS forwards it to the HNode, but the master
in the other schemes does not send any message to their standby nodes. Although the transient metadata
forwarding increase network traffic, it dramatically shorten service downtime without generating
significant impact on the master’s performance.

Table 3. The synchronization costs of all tested schemes

 Scheme
Metrics

PAReS NR HSO A-WSO WSO

of log records generated by the master for each
persistent update operation

3 0 2 2 2

of transmitted messages used to synchronize a
persistent update operation

8 0 8 0 0

of messages sent by the master during the
synchronization of a persistent update operation

3 0 4 0 0

of transmitted messages used to synchronize a
record of transient metadata

1 0 0 0 0

0

200

400

600

800

1000

100 200 300 400 500 600 700 800 900 1000

E
n

er
g

y
co

n
su

m
p

tio
n

Operation time (hour)

PAReS
NR
HSO
A-WSO
WSO

15

6. SERVICE QUALITY EVALUATION
In this section, three experiments were presented. The first evaluated service downtimes. The second

analyzed the number of client requests impacted by the master server’s failure. Note that the NR and WSO
schemes were not tested in the two experiments since the former does not employ any standby node and the
latter does not offer automatic takeover. The third studied the WNode’s takeover performance.

All experiments were conducted in a private cloud system at TungHai University, Taiwan. This system
comprises fifteen nodes with 1 Gbps Ethernet network. Three nodes individually run Ubuntu 11.04 with an
AMD Opteron(tm) 6172 CPU, 2 GB memory, and a 500 GB disk drive. The remaining twelve nodes
individually run Ubuntu 11.04 with an AMD Athlon(tm) 2800+ CPU, 1 GB memory, and a 500 GB disk
drive. Each tested scheme employed the three AMD-Opteron nodes to act as the master server and two
standby nodes. No matter which scheme is tested, two AMD-Athlon nodes act as clients to submit 20
persistent-update-operation requests and 1000 read requests to the master server per second on average.
The remaining AMD-Athlon nodes act as workers to send 50 records of transient metadata about data-
block locations to the master every second.

All tested schemes were implemented in Java language. Note that we chose Mode 2 [9], which commits
a client request after the relevant metadata is written to the master server’s disk and buffered in the two hot-
standby servers’ memory, to implement the HSO since this mode is appropriate for a local area network
that is usually employed by a MapReduce cluster. When the PAReS and A-WSO were tested, their warm-
standby nodes autonomously warmed themselves up every two hours. Due to page limit and desiring to
show comprehensive experiments, in the following, we only target at only one master server, i.e.,
NameNode. The evaluation on JobTracker can be found in our previous work [30].

6.1 Service downtime

Recall that service downtime is the time period starting when the master fails and ending when its
standby node, denoted by Mnew, takes over for it and is ready to process any request newly issued by clients.
As shown in Fig. 8, this period comprises failure detection time (i.e., the time required to detect the
master’s failure), IP-address reconfiguration time (i.e., the time required by Mnew to reconfigure its IP-
address), and state update time (i.e., the time required by Mnew to update its state).

Fig. 8. Service downtime

To fairly compare the PAReS, HSO, and A-WSO, we assume that all of them employ the mutual life

monitoring algorithm (see Fig. 3) to detect the master’s failure. To shorten failure detection time for each
tested scheme, a short heartbeat period and a small value of �ℎ� are required for the algorithm. However,
too short heartbeat period and too small �ℎ� might increase the master’s overhead and misjudge the
master’s failure. Hence, we conduct an experiment by disconnecting the master at random time to simulate
the failure of the master server under four different heartbeat periods, including 1, 10, 100, and 100 ms. The
goal is to find appropriate heartbeat period and �ℎ� such that the master’s load remains unchanged and the
false positive rate is at most 0.00001. Table 4 shows that when the heartbeat period increases, the �ℎ� value
required by each tested scheme decreases since a longer heartbeat period can tolerate more heartbeat-
generation delay and network transmission delay. Fig. 9 also shows that a longer heartbeat period reduce
the master’s CPU load, regardless of which scheme is tested. It is clearly that choosing 1000 ms as the
heartbeat period is better for all tested schemes since it has insignificant impact on the master’s load. Hence,

IP-address
Reconfiguration

Master

failure
detection

state update

Xservice downtimeX

Master fails

Mnew

can start

processing requests

Mnew

16

in the following experiments, we set the heartbeat period to 1000 ms for the PAReS, HSO, and A-WSO and
respectively set their �ℎ� values to 3, 3, and 2 as shown in Table 4.

Table 4. The values of �ℎ� that satisfy the desired

false positive rate.
Heartbeat period
(ms)

PAReS HSO A-WSO

1 76 91 72
10 9 11 8
100 4 4 4
1000 3 3 2

Fig. 9. The CPU load of the master when

different schemes are employed.

Four failure cases as listed in Table 5 were employed to evaluate the service downtimes of the PAReS,
HSO, and A-WSO. Cases 1, 2, 3, and 4 respectively represent that 5000, 10000, 50000, 100000 records of
transient metadata were currently held by all workers. Each transient metadata record conveys the location
information of a data block. Before the new master server can start processing requests sent by
clients/workers, it needs to acquire all transient metadata held by workers to reconstruct its in-memory state.
The measurement for each scheme was conducted 30 times. Table 6 lists the average service downtimes
and the corresponding standard deviations (std for short) of all tested schemes. We can see that the service
downtimes and stds of the PAReS were much shorter than those of the HSO and A-WSO, no matter which

failure case is tested. The downtime of the PAReS were only 80.20 (=
#�+,.�

"#-.."
) % to 45.85 (=

#�+,.�

,""../
) % of

those of the HSO, and 8.31 (=
#�+,.�

"�+�".�
) % to 7.70 (=

#�+,.�

56855.�
) % of those of the A-WSO, indicating that the

PAReS can effectively shorten service downtime and provide a faster takeover. The key reason is that the
PAReS’s HNode always keeps receiving persistent metadata and transient metadata from the master server,
i.e., the required state reconstruction time is zero.

Due to holding no transient metadata, the downtime of the HSO increased as the amount of the transient
metadata increased. Among all tested schemes, the A-WSO has the longest service downtime since the
warm-standby node does not keep itself up with the state of the master all the time. Hence, when the warm-
standby node takes over for the master, it needs to update its state with all the required log records and
gather transient metadata from all workers to reconstruct its in-memory state. Fig. 10 shows that the A-
WSO spends almost its service downtime in reconstructing its state.

Table 5. The failure cases considered in the experiments

Failure case
The number of Transient metadata

records held by all workers
1 5000
2 10000
3 50000
4 100000

Table 6. The average service downtimes and standard deviations of the PAReS, HSO, and A-WSO (time unit:

ms) when the heartbeat period is 1000 ms.
Failure
case

PAReS HSO A-WSO
Avg/Std Avg/Std Avg/Std

1 4379.3/238.1 5460.5/408.1 52725.1/31339.6
2 4379.3/238.1 5708.6/576.4 53018.6/31350.3
3 4379.3/238.1 6434.4/636.0 53711.9/31314.5
4 4379.3/238.1 9550.8/1045.5 56855.2/31300.7

60

70

80

90

100

1 10 100 1000 infinite

C
P

U
 lo

ad
 (

%
)

heartbeat period

PAReS
HSO
A-WSO

(a)

(c)
Fig. 10. The time ratios compris

6.2 Interrupted and dropped
In this section, we analyze

PAReS, HSO, and A-WSO are individually employed
persistent-update-operation request
master’s failure. The other subexperiment
submitted by client are dropped during

6.2.1. Interrupted persistent update

Assume that the master server
and this queue is a M/M/1/N [31]
rate �, where � and � both follow a Po
operation requests waiting in the
moment, that is,

where � � �

�
 is the resource utilization of the

master server are utilized, thus making
a persistent-update-operation request
recording the first related log record
for the HSO and A-WSO, the log record

[31], � � �

���
. Then we have

0%

20%

40%

60%

80%

100%

PAReS

Failure detection time

IP-address reconfiguration time

State update time

0%

20%

40%

60%

80%

100%

PAReS

Failure detection time
IP-address reconfiguration time
State update time

17

 failure case 1 (b) failure case 2

 failure case 3

(d) failure case 4
s comprising the service downtimes of the PAReS, HSO, and

heartbeat period is 1000 ms.

Interrupted and dropped requests affected by the master server’s failure
zed how the master’s failure impacts client-submitted

WSO are individually employed. One subexperiment is to analyze
requests that have been received by the master are interrupted
subexperiment is to evaluate how many persistent-update

dropped during service downtime.

update operations
server uses a queue to buffer persistent-update-operation

M/M/1/N [31] queueing model with a limited queue size �, arrival rate
follow a Poisson distribution. Let � be the average number of

the queue plus those currently being initialized by the

� � � �

���
	 ����	����

������
	 , if	� � 1

	�

																											 , if	� � 1�

utilization of the master server. A higher � implies that

utilized, thus making � approximately 1. Let � be the expected time
request arrives at the queue and ending when the

log record. For the PAReS, the log record is the prior record
WSO, the log record refers to the initialization record of the operation

� � 1 � � � ��

PAReS HSO A-WSO

Failure detection time

address reconfiguration time

State update time

0%

20%

40%

60%

80%

100%

PAReS HSO A-WSO

Failure detection time

IP-address reconfiguration time

State update time

PAReS HSO A-WSO

Failure detection time
address reconfiguration time

State update time

0%

20%

40%

60%

80%

100%

PAReS HSO A-WSO

Failure detection time
IP-address reconfiguration time
State update time

of the PAReS, HSO, and A-WSO when the

submitted requests when the
is to analyze how many

interrupted due to the
update-operation requests

 requests sent by client,
arrival rate �, and departure

be the average number of persistent-update-
by the master server at a

(22)

that more resources of the

time period starting when
when the master server finishes

record of the operation, but
operation. According to

(23)

address reconfiguration time

address reconfiguration time

18

This experiment was performed for one hour on	� = 60000 and � = 20 persistent-update-operation
requests per second. The average values of 0 for the PAReS, HSO, and A-WSO were respectively 0.00484,
0.00446, 4.923, and 0.00447 sec. Due to employing two hot-standby nodes, the master in the HSO needs a
longer 0 than those in the PAReS and A-WSO. Table 7 lists the corresponding values of 1, �, and �. The
number of the operations interrupted by the PAReS (i.e., 0.1) is much lower than that of the HSO, implying
that the PAReS improves takeover completeness. Although the A-WSO has a small �, it does not mean that
the two warm-standby nodes have backed up this record, implying in reality more than 0.09 operations will
be interrupted by the A-WSO.

Table. 7 The values of
, �, and � of the PAReS, HSO, and A-WSO when � = 20 requests/sec. Note that
1.0968 = 1 + 0.00484 × 20, 99.46 = 1 + 4.923 × 20, and 1.0894 = 1 + 0.00447 × 20 based on the

numerator of Eq. (23)
Scheme
 � �
PAReS 226.61 (=

�.����

�.�����
) 0.088 (=

��

���.��
) 0.1 (=

�.���

���.���
)

HSO 20.2 (=
��.��

�.���
) 0.990 (=

��

��.�
) 99 (=

�.���

���.���
)

A-WSO 243.71 (=
�.����

�.�����
) 0.082 (=

��

���.��
) 0.09 (=

�.���

���.���
)

6.2.2. Dropped persistent update operations

Based on the results shown in Table 6, the average number of persistent-update-operation requests
dropped during each scheme’s service downtime can be calculated by multiplying the downtime and �
where � = 20 persistent-update-operation requests per second. The results presented in Fig. 11 show that
the PAReS outperforms the HSO and A-WSO. Only 87.59 persistent-update-operation requests were
dropped during the PAReS’s service downtime. This is because the PAReS has a shorter service downtime
than those of the HSO and A-WSO, and the PAReS’s downtime was not impacted by the four
abovementioned failure cases.

Fig. 11. The average number of persistent-update-operation requests dropped during the service downtimes

of the PAReS, HSO, and A-WSO on different failure cases.

6.3 WNode takeover performance

Recall that the adaptive warm-up mechanism of the PAReS’s WNode consists of the autonomous
warm-up approach and the requested warm-up approach (see Section 3.5). In this experiment, we evaluate
the times required by the WNode to completely act as for the HNode when the WNode individually uses
the adaptive warm-up mechanism and the traditional warm-up mechanism (i.e., the autonomous warm-up
approach). The goal is to show how the adaptive warm-up mechanism improves the takeover performance
of the traditional warm-up approach.

Assume that in the two tested mechanisms, the WNode periodically warms itself up every two hours.
Let heartbeat period be 1000 ms, and then based on Table 4 the �ℎ� value for both mechanisms are 3. In

addition, let �ℎ� = 2 (= 201�
�

3) in the adaptive warm-up mechanism. The abovementioned four failure cases

are also considered in this experiment. Fig. 12 illustrates the average results, which shows that the takeover

time of the WNode in the adaptive mechanism were only 50.66 (=
�-.+.

"�.+.
) % to 65.38 (=

�+.�/

"-./+
) % of those in

failure case 1 failure case 2 failure case 3 failure case 4

PAReS 87.59 87.59 87.59 87.59

HSO 109.21 114.17 128.69 191.02

A-WSO 1054.50 1060.37 1074.24 1137.10

0
300
600
900

1200
1500
1800

N
u

m
b

er
 o

f d
ro

p
p

ed

re
q

u
es

ts

19

the traditional mechanism. The first reason is that the WNode warmed itself up when �	
 = 2 and �
 =

false, rather than when �	
 = �ℎ� = 3. The second reason is that the master server either failed suddenly
or failed after behaving unstably for a period of time. Fig. 12 also shows that the standard deviations of the
takeover times in both mechanisms were large since the time points at which the master server failed were
random. Hence, the times required by the WNode to completely act as the HNode varied dramatically.
Nevertheless, the adaptive mechanism leads to a smaller standard deviation than the traditional one.

Fig. 12. Average time required by the WNode to take over for the master when the adaptive warm-up mechanism

and the traditional warm-up mechanism are employed, respectively.

7. CONCLUSIONS AND FUTURE WORK

In this study, we have introduced the PAReS for MapReduce master servers to improve their job
completion reliability and service quality, including short service downtime and seamless takeover, at
acceptable energy consumption level and synchronization cost. We have also conducted formal analyses
and extensive experiments to compare the PAReS with four state-of-the-art schemes, including the NR,
HSO, A-WSO, and WSO, in terms of their job completion reliabilities, energy consumptions,
synchronization costs, service downtimes, and impacts on client-submitted requests.

The PAReS dramatically improves the job completion reliability, service downtime, and the impacts on
client-submitted requests of the NR, even though the NR due to employing no standby node for the master
has lower energy consumption and synchronization cost than the PAReS.

Owing to employing the HNode and WNode and requiring no extra monitor node, the PAReS has
higher job completion reliability, lower energy consumption, shorter service downtime, and less client-
requests impact when compared the HSO and A-WSO. Unavoidably, the PAReS has higher
synchronization cost than the A-WSO, but the synchronization cost of the PAReS is acceptable as
compared with that of the HSO.

Due to adopting a manual takeover process, the service downtime and client-request impact of the WSO
depends on how soon do system manages detect the master’s failure and use the WSO to take over for the
failed master. In addition, the job completion reliability of the WSO depends on whether the WSO’s warm-
standby node has the log records of the corresponding jobs. If yes, these jobs can be continue by the WSO.
Otherwise, these jobs cannot continue. Even though the WSO has lower energy consumption than the
PAReS, the abovementioned shortcomings make the WSO unable to offer good service quality.

In the future, we plan to study JobTracker and NameNode failures caused by other reasons, such as
network failure, and take worker failure into consideration to build a more reliable MapReduce
environment. These constitute our future research.

REFERENCES
[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” Communication of the ACM

51(1) (2008), pp.107–113.
[2] Apache Hadoop, http://hadoop.apache.org. Accessed 12 March 2013
[3] Gridgain, http://www.gridgain.com. Accessed 15 March 2013
[4] MapSharp, http://mapsharp.codeplex.com. Accessed 15 March 2013
[5] Skynet, http://skynet.rubyforge.org. Accessed 15 March 2013
[6] T. White, “Hadoop: The definitive guide,” O'Reilly Media, Yahoo! Press, June 5, 2009.
[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File System,” in: Proceedings of the

IEEE Symposium on Mass Storage Systems and Technologies, , 2010, pp.1–10.

failure case 1 failure case 2 failure case 3 failure case 4

Adaptive warm-up mechanism 26.70 30.02 32.18 37.18

Traditional warm-up approach 52.70 53.04 53.73 56.87

0
20
40
60
80

100

A
ve

ra
g

e
ta

ke
ov

er
tim

e
(s

ec
)

20

[8] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J.M. Hellerstein, and R.C Sears, “BOOM: Data-Centric
Programming in the Datacenter,” Technical Report UCB/EECS-2009-113, EECS Department, University of
California, Berkeley, Jul 2009.

[9] F. Wang, J. Qiu, J. Yang, B. Dong, X. Li, and Y. Li, “Hadoop High Availability through Metadata Replication,” in:
Proceedings of the first international workshop on Cloud data management, ACM, 2009, pp. 37–44.

[10] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “Zookeeper: Wait-free Coordination for Internet-scale Systems,” in:
Proceedings of the USENIX Annual Technical Conference, 2010, pp. 145–158.

[11] P. Felber, X. D´efago, R. Guerraoui, and P. Oser, “Failure Detectors as First Class Objects,” in: Proceedings of the
9th IEEE International Symposium on Distributed Objects and Applications, 1999. pp. 132–141.

[12] O.G. Loques and J. Kramer, “Flexible Fault Tolerance for Distributed Computer Systems,” in: IEE Proceedings-E
on Computers and Digital Techniques 133(6), 1986, pp. 319–337.

[13] M.L. Shooman, “Reliability of Computer Systems and Networks: Fault Tolerance, Analysis, and Design,” New
York: John Wiley & Sons Inc., 2002.

[14] S.V. Amari and G. Dill, “A New Method for Reliability Analysis of Standby Systems,” in: Proceedings of Annual
Reliability & Maintainability Symposium, 2009, pp 417–422.

[15] F.Y. Leu, C.T. Yang, and F.C. Jiang, “Improving Reliability of a Heterogeneous Grid-based Intrusion Detection
Platform using Levels of Redundancies,” Future Generation Computer Systems 26(4), 2010, pp.554–568.

[16] Y. Du and H. Yu, “Paratus: Instantaneous Failover via Virtual Machine Replication,” in: Proceedings of 8th
International Conference on Grid and Cooperative Computing, 2009, pp.307–312.

[17] C. Engelmann, H.H. Ong, and S.L. Scott, “The Case for Modular Redundancy in Large-scale High Performance
Computing Systems,” in: Proceedings of the 27th IASTED International Conference on Parallel and Distributed
Computing and Networks, 2009, pp. 189–194.

[18] L. Huang and Q. Xu, “Lifetime Reliability for Load-Sharing Redundant Systems with Arbitrary Failure
Distributions,” IEEE Trans. on Reliability, Volume 59, Issue 2, pp. 319–330, 2010.

[19] D. Bri`ere and P. Traverse, “AIRBUS A320/A330/A340 Electrical Flight Controls – A family of fault tolerant
systems,” in: Proceedings of the IEEE International Symposium on Fault-Tolerant Computing, 1993, pp. 616–623.

[20] Y.C. Yeh, “Triple-triple Redundant 777 Primary Flight Computer,” in: Proceedings of the IEEE Aerospace
Applications Conference, volume 1,1996, pp. 293–307.

[21] M. Pignol, “How to Cope with SEU/SET at System Level,” in: Proceedings of the IEEE International On-Line
Testing Symposium, 2005, pp. 315–318.

[22] F. Marozzo, D. Talia, and P. Trunfio, “A Peer-to-Peer Framework for Supporting MapReduce Applications in
Dynamic Cloud Environments, Cloud Computing, 2010, pp.113–125.

[23] X. He, L. Ou, C. Engelmann, X. Chen, and S.L. Scott, “Symmetric Active/Active Metadata Service for High
Availability Parallel File Systems,” Journal of Parallel and Distributed Computing 69(12), 2009, pp. 961–973.

[24] Z. Chen, J. Xiong, and D. Meng, “Replication-based Highly Available Metadata Management for Cluster File
Systems,” in: Proceedings of the IEEE International Conference on Cluster Computing, 2010, pp. 292–301.

[25] P. Alsberg and J. Day, “A Principle for Resilient Sharing of Distributed Resources,” in: Proceedings of the 2nd
Internal Conference on Software Engineering, 1976, pp. 627–644.

[26] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg, “The Primary-Backup Approach,” in: Distributed systems
2, 1993, pp. 199–216.

[27] R. van Renesse and F.B. Schneider, “Chain Replication for Supporting High Throughput and Availability,” in:
Sixth Symposium on Operating Systems Design and Implementation, 2004, pp. 91–104.

[28] Gratuitous ARP, http://wiki.wireshark.org/Gratuitous_ARP. Accessed 20 April 2013
[29] J. Wan, M. Liu, X. Hu, Z. Ren, J. Zhang, W. Shi, and W. Wu, “Dual-JT: Toward the High Availability of

JobTracker in Hadoop,” in: IEEE 4th International Conference on Cloud Computing Technology and Science, pp.
263–268. 2012.

[30] J.C. Lin, F.Y. Leu, Y.-p. Chen, “ReHRS: A Hybrid Redundant System for Improving MapReduce Reliability and
Availability”, to be appeared on Modelling and Processing for Next Generation Big Data Technologies and
Applications, Springer Series in Modeling and Optimization in Science & Technology.

