Title: PAReS: A Proactive and Adaptive Redundant Syster&tfitnancing
MapReduce Job Completion Reliability and Servicaly

Authors: Jia-Chun Lin, Fang-Yie Leu, Ying-ping Chen
Affiliation: Jia-Chun Lin & | Department of Computer Science, National Chiao
Ying-ping Chen | Tung University, Taiwan.
Fang-Yie Leu Department of Computer Science, TungHai
University, Taiwan.
Address: Jia-Chun Lin Reinhold-Frank-Str. 48c, 76133 Karlsruhe , Germany
Ying-ping Chen | Office EC 711, 1001 Ta Hsueh Road, HsinChu City
300, Taiwan
Fang-Yie Leu Office ST422, No.1727, Sec.4, Taiwan Boulevard,
Xitun District, Taichung 40704, Taiwan

Corresponding | Ying-ping Chen, Tel: +886-3-5712121 ext 31446, Fe886-3-5724176,
authors: ypchen@cs.nctu.edu.tw

Fang-Yie Leu, Tel: +886-4-23590121 ext 33815, I@fhiu.edu.tw
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MapReduce implementations have a single-failureblpra, which may
interrupt MapReduce operations and filesystem sesvi To solve thi
problem, several redundant schemes have been pepdswever, som
schemes cannot deliver good service quality, whidhis study is definec
as short service downtime and seamless/complet@vak Some schemé
have problems such as delayed synchronization, énighgy consumption
and expensive synchronization cost, consequentigdao provide good
service quality in a cost-efficient manner. Sombeect are unable tp
provide a sufficiently high reliability to completeset of MapReduce jobs
(we call it job completion reliability). Therefora this paper, we propose
a hybrid takeover scheme, called th@dtive and Maptive_Reundant
System (PAReS for short), which employs three serquaality
improvement mechanisms, including a proactive ssomkation and
replication method, a mutual life monitoring algbm, and an adaptiv
warm-up mechanism, to mitigate the above probldrhe.formal analysis
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Recently, MapReduce has been a key and populandtgy for tackling data-intensive applications.t s two
master servers in current MapReduce implementatians a single-failure problem, which may interrMapReduce
operations and filesystem services. To solve thiblpm, several redundant schemes have been prbpdewever,
some schemes cannot deliver good service qualitychwin this study is defined as short service diowa and
seamless/complete takeover. Some schemes havemmsoblch as delayed synchronization, high enengsucoption,
and expensive synchronization cost, consequeniipgao provide good service quality in a costi@fnt manner.
Some others are unable to provide a sufficientihhieliability to complete a set of MapReduce j@lve call it job
completion reliability). Therefore, in this papeve propose a hybrid takeover scheme, called_ttwadive and
Adaptive Reéundant_$stem (PAReS for short), which employs three serggality improvement mechanisms,
including a proactive synchronization and replicatimethod, a mutual life monitoring algorithm, aad adaptive
warm-up mechanism, to mitigate the above problerhe. formal analysis and extensive experiments sthat the
PAReS improves job completion reliability and entesservice quality at acceptable energy consumjicel and
synchronization cost as compared with four stat#hefart schemes.

Keywords: MapReduce, job completion reliability, redundantsteyn, service downtime, takeover, proactive
synchronization and replication, mutual life monitg, adaptive warm-up mechanism

1. INTRODUCTION

MapReduce [1] is a flexible distributed programmimgpdel introduced by Google to solve data-
intensive applications. With this model, Google qasses over 20 petabytes of data per day [1]. Apach
inspired by MapReduce, developed an open-souroeefrerk called Hadoop [2], which has been adopted
by many companies and organizations, such as Fakedrod Yahoo, to process their large-scale data.
Other MapReduce implementations can be found [@][3].

Generally, a MapReduce implementation, e.g., Apatddoop [2], is running on a MapRedcue cluster
consisting of a set of common machines, rather thaset of high-end machines. In this cluster, two
machines act as master servers. One is JobTrdkevHich coordinates the execution of MapRedudss jo
running on a MapReduce cluster. The other is NardeN8], which manages the distributed filesystem of
the cluster. Due to running on a single and commaohine, JobTracker and NameNode may fail because
of various reasons, such as hardware failure, sofwnalfunction, and bad configuration [6]. In fact
Yahoo has experienced three NameNode failures dabge hardware problems [6]. Even though
JobTracker and NameNode are run on reliable haewdrey mail fail some day. Consequently,
MapReduce operations and filesystem services wiinkerrupted, and all running jobs may not be éble
proceed and complete.

To solve this problem, Hadoop [2] adopted a waramdby node (called checkpoint node) to
periodically back up the state of NameNode. Appdyethe corresponding energy consumption is low
since the checkpoint node does not stay awakdeltitne. However, due to the fixed checkpoint iwvér
(e.g., one hour), the recent backup files may ablento reflect the latest NameNode state. Henbenw
NameNode fails, the checkpoint node cannot profadeand seamless takeover. To speed up the takeove
process, several hot-standby-based schemes [@]28]ve been proposed, which employ one or more hot
standby nodes to maintain the up-to-date stath@fMapReduce master server, thereby causing more
energy consumption and synchronization cost. Tkebemes also suffer from a delayed synchronization
problem, i.e., the metadata synchronization isydelauntil the master performs an update operattimer
than receiving the corresponding request from antliConsequently, when the master fails, those
unfinished update operations and MapReduce jobs lmeanterrupted. Besides, a hot-standby node may
crash before its master server does, consequeailingf to provide a sufficiently high reliabilityot
complete a set of MapReduce jobs (we call it jolmgletion reliability). Other hot-standby-based dmaid-
sharing schemes [8][9][10] have similar problems.



In this paper, we propose a hybrid takeover scheatled the_IRoactive and Aaptive Reundant
System (PAReS for short) for a MapReduce masteresdrased on our previous work [30]. The PAReS
employs a bt-standby nodéHNode for short) and aavm-standby nodéVNode for short) to preserve the
advantages of hot-standby schemes (i.e., fast tekpand the advantages of warm-standby schenges (i.
low energy consumption and good job completiorakglity). However, naively utilizing the HNode and
WNode cannot solve the delay synchronization probéed improve service qualities, including reducing
the impact of the master-server failure on cli@gfuests and shortening service downtime, whiclefined
as a time period from the moment when the masteeséails to the moment when a standby node takes
over for the master and is ready to process cliegiests.

Hence, the PAReS further employs three serviceitguatprovement mechanism to solve the above-
mentioned problems and guarantee good service tiggaliThe first mechanism is a proactive
synchronization and replication method, which staeplicating the master's metadata to the HNode
whenever the master updates its metadata receivest@ request from a client, rather than when
performing or finishing the request. Thus, when theester fails, the HNode can provide a rapid takeov
and reduce the failure impact on client requestee Jecond is a mutual life monitoring algorithm evhi
enables the master and HNode to promptly detett ether’s failure, adjust the status of the WNaalal
initiate the corresponding takeover process tolacaie takeover process and shorten takeover fiime.
third is an adaptive warm-up mechanism, with whtelWNode warms itself up autonomously every fixed
time interval and dynamically when receiving a warmrequest from the master or HNode. Consequently,
the WNode can adapt itself to the current systettustand improve its takeover performance.

The key contributions of this study are as follows:
® The PAReS provides the MapReduce master server aviimple, reliable, and energy-efficient

working environment. By employing the HNode, WNodad three service-quality improvement

mechanisms, the PAReS not only preserves the atyemtof hot-standby-only schemes and warm-
standby-only schemes, but also solves the shortggsmf these schemes.

® We achieve a comprehensive evaluation by comp#hedAReS with several state-of-the-art schemes,
including the No-Redundant scheme (NR for shorb)ictv is the approach that Hadoop offers for its

JobTracker [2], Hot-Standby-Only scheme (HSO foorghproposed by Wang et al.’s [9], and the

warm-standby-only scheme (i.e., the checkpoint haged by Hadoop [7]. In addition, we also

consider the warm-standby-only scheme in two vessi®ne is with automatic takeover, i.e., a monitor
node is employed to detect the master’s failure asidthe warm-standby node to take over for the
master (we call it an A-WSO scheme). The otherioergs without automatic takeover, implying no
monitor node is utilized (we call it a WSO schemfe¥air comparison is achieved by comparing these
schemes in terms of their job completion relialgitit energy consumptions, synchronization costs,
service downtimes, and impacts of the master-séailere on client-submitted requests.

® The formal reliability analysis shows that the PARdramatically improves the job completion
reliability of the master server, and it providegher job completion reliability than most of thther
schemes. The energy consumption analysis also derates that the PAReS effectively reduce the
high energy consumed by the HSO and A-WSO, but ghergy consumption of the PAReS is
unavoidably higher than those of the NR and WSCe €hperimental results demonstrate that the

PAReS indeed provides better service quality agptable synchronization cost as compared with the

other schemes.

The rest of this paper is organized as followstiSe introduces the background and related wérk o
this study. Section 3 details the PAReS and theetlservice-quality improvement mechanisms. The job
completion reliability and energy consumption asalyare shown in Sections 4 and 5, respectively. Th
experimental results are presented and discussBddtion 6. Section 7 concludes this paper andnestl
our future studies.

2. BACKGROUND AND RELATED WORK
This section describes the background and relatel of this study.



2.1 Background

MapReduce allows users to specify a Joty using two functions: map and redudéne map accepts a
set of key-value pairs in one domain and genematkst of intermediate key-value pairs in anothEre
reduce function merges all intermediate key-valagspof the same key to generate final result. Eig.
illustrates the execution flow of on a MapReduce cluster consisting of JobTrackemé&Node, and
multiple worker nodes. A client requests an ID Jahrough steps 1 and 2. After receiving worker tmres
from NameNode in steps 3 and 4, the input fileJé$ divided into fixed-size data blocks and stored o
worker nodes in step 5. In steps 6 andJ7s submitted to JobTracker, and JobTracker imtiak
respectively. After requesting and retrieving tla¢adblock information o from NameNode in steps 8 and
9, JobTracker in step 10 assigns each map (redask)ofJ's to an available worker, named mapper
(reducer). Before running its assigned task, a mdpmmucer needs to retrieve its required input by
consulting NameNode. When finishing its task, a pexstores the generated results on its disk alibse
to JobTracker with the disk location. When all meygpcomplete their tasks, the reducers can stairt th
assigned tasks. After all reducers finish theiksadobTracker informs the client of the completdd.

Generally, if JobTracker failg, cannot be submitted, assigned, performed, or cetexbl Also, a failed
NameNode cannot help JobTracker to assign taskist agrkers to obtain required resources, andnso o
As a result, JobTracker and NameNode must workgshpluring the execution gt

[ ] worker
—> instruction flow
7. Initiated 10. Task assignment.---—-» data flow

(ot [wamerk:

infomation
9. Reply data-
block information

NameNode

§ 5. Replicate the input file dfto workers

Distributed file system
Fig 1. The execution flow of a MapReduce jbbn a MapReduce cluster.

2.2 Related work

Redundant mechanisms, the common methods thateaajesystem often uses to improve its system
reliability, can be classified into four types: ddtandby, warm standby, hot standby, and activellph
[12][13][14]. Current MapReduce implementation,.eldadoop, only adopted a cold-standby mechanism
to provide fault tolerance for its workers, rathiean for its master server. This is because a s@ddby
node does not maintain master-server states, araktiecannot recover the master server to thetlatate.

Some systems employed a warm-standby node as apaekver, to which the master server replicates
its states periodically or under request. Afterttiihe warm-standby node sleeps to reduce itsréailu
probability and energy consumption. The checkpaiotle [7] utilized by Hadoop is an example. The
checkpoint node periodically generates a file tokbap the log records of NameNode. When NameNode
fails, the most recent file is used to restaririt.Hadoop, this action is performed manually byteys
managers, which might prolong takeover time angliserdowntime. To achieve an automatic takeover, a
monitor node is required to detect the masterisifaiand request the checkpoint node to take awethi
master when the master fails. But it increases é¢hergy consumption and decreases the reliability
improvement because the monitor node needs to astagke all the time with the master. No matter the
checkpoint node has the monitor node or not, dubedixed checkpoint interval, the backup file sy
out-of-date, implying that when NameNode crashes,mhetadata produced after the generation of t&e fi
cannot be recovered, resulting in an incompleteda&r. Besides, in Hadoop, when the checkpoint node
takes over for NameNode, it has to execute eatheobperations recorded in its file and retrieveckt
location metadata from all other workers. This oftengthens the takeover process and causes longer



service downtime. Other warm-standby-based schdmags similar problems, consequently failing to
provide a fast and seamless takeover.

Several systems [2][7][8][9][15][16][29] utilized dirstandby mechanisms to speed up their failure
recovery. Among these, the schemes proposed 8i[Z9] are designed for the MapReduce master server
The Hadoop backup node [7] synchronizes itself WitmeNode. When NameNode fails, the backup node
can quickly take over for it. But this node hasthdrawbacks. First, as mentioned previously, it orash
before NameNode does. Thus, the reliability impmegat is limited. Second, the backup node cannot
provide a short service downtime since it doesmaintain block-location information (we call it trsient
metadata). When the backup node takes over fomtster, it needs to enter a safe mode to retrikvieea
transient metadata from workers, thereby prolongfivegtime to process user requests. Third, thi iz
the delayed synchronization problem, i.e., the Bymization occurs only when the backup node resedy
journal stream, which is generated and sent by MWade after NameNode finishes the corresponding
operation. Hence, when NameNode crashes, the bamdg cannot continue those unfinished operations,
consequently affecting the corresponding job exenut

Wang et al. [9] proposed a metadata replicatioreisehto replicate metadata from a Hadoop master
server to multiple hot-standby nodes. The authls® presented three configurable synchronizatiodeao
to make their scheme adapt to different workloads reetwork environments. When the master servks, fai
one of the hot-standby nodes will be elected tdhgemaster server. Obviously, this scheme cauggs hi
energy consumption and expensive synchronizati@tscdue to employing multiple hot-standby nodes.
Besides, this scheme the same drawbacks incurrétellyackup node [7]. Wan et al. [29] presentedta h
standby node to back up the state of JobTrackeybghronizing their job execution logs all the tjrbet
this scheme also has the same abovementioned drksvba

Active parallel redundancy can be further clasdifigo two types: Modular redundancy [17] and load-
sharing redundancy [18]. The former, employing ipidt redundant components/nodes to simultaneously
perform a task, has been widely utilized in misstoitical systems [19][20][21], but seldom employied
MapReduce. The latter, in which several nodes stharevorkload of a system, has been utilized attlby
[22][23][24][10]. In this mechanism, a server infios other servers after updating its metadata doittha
failure will not interrupt the operation of the gatsystem. Similar to all hot-standby-only schentbgs
mechanism has limited reliability improvement anghhenergy consumption. Besides, its synchroninatio
cost is even higher, which deviates the purposeuofPAReS. In our previous work [30], we proposed a
hybrid redundant system call ReHRS to enhancedha&bility and availability of the MapReduce master
server. However, the synchronization method is dmaed, and the failure detection is simplifieccsu
that the WNode cannot dynamically proceed its wapprocedure to adapt current system state. Besides
the job completion reliability, energy consumpticend synchronization cost are not considered and
analyzed.

3. THE PROPOSED SCHEME
In this section, we describe two types of stateatgdperations executed by MapReduce master servers
and then introduce the three service-quality impm&nt mechanisms. Finally, the processes of takieg
for the master server and HNode are presented.

3.1 State-update operations

In MapReduce, all state update-operations perforlned MapReduce master server (no matter it is
NameNode or JobTracker), can be classified into types: persistent and transient. A persistent tepda
operation is a-phase operation during which the master genepesistent metadata (P-meta for short),
which is the metadata infrequently or never chanaféer it is generated, to update its state andfileg
n > 1. For example, file access-right modification [6] & one-phase operation, and job execution is a
multi-phase one.

A transient update operation is an operation thatmaster needs to update its state, rather theadinge
to update its log file. When receiving transienttadata, which is the one frequently updated sudolas
execution state and data-block location sent bykersr[6], the master server only update its in-mgmo
state.



3.2 Proactive synchronization and replication method

Based on the primary/backup replication method[P# and chain replication technique [27], the
proactive synchronization and replication methodiésigned to prevent any persistent update oparatio
from being interrupted due to the occurrence oftereserver failures, and enable the HNode to miainta
all transient metadata of the master server so akdrten service downtime. The basic idea is picate
the master's metadata to the HNode whenever theemagsdates its P-meta and transient metadata.

Upon receiving a persistent update operalidnom a clientU, the master generates an prior log record
(denoted byPy), which consists of an incremental record numkés, D (denoted byD,), and other
necessary information abokit When the master initiates the first phaseX pit generates a initial log
record (denoted big) which comprises another incremental record nunitigr and information about the
initialization ofX. The synchronization processes for a prior logm@nd an initial log record are the
same (see Fig. 2a), which work as follows:

Step 1) The master server inserts the log recdedts log file.

Step 2) The master sends this record to the HNndeantinues(.

Step 3) On receiving the record, the HNode insentgo its log file.

Step 4) The HNode tells the master that it hasivedehe log record.

Step 5) If the master does not receive the messidgiea predefined time period, it periodically den

the log record to the HNode until receiving the sage or finding that the HNode has failed.
The detailed failure detection will be describeia

Master HNode ClientU Master HNode

v v v v v
(a) For a priorf/initial log record (b) For a E-redo
Fig. 2. The synchronization sequence charts whepdhsistent update operati®ns issued by client/.

On the other hand, when the master finishesGhb phase oX whereG = 1,2, ..., n, it generates an
end log record (E-record for short), denotedEl§y which conveys a record numbéb,, theG value, and
the result of{’s G-th phase (i.e., P-meta). The E-record syndhedion process issued by ugens shown
in Fig. 2b is as follows.

Step 1) The master insef§ into its log file and updates its state with thenBta recorded irE§.

Step 2) The master send$ to the HNode.

Step 3) On receiving¢, the HNode inserts it into its log file and alspdates its state. Now, the
master and the HNode are synchronous. Note thatHfiiede updates its state with the
received E-records one by one based on the inageasiler of record numbers.

Step 4) The HNode delivers the P-met#&/to

Step 5) Upon receiving the P-metaresponds the HNode.

Step 6) With the response frdiiy the HNode recordsi,, G, “completed”} for reminding itself that
someday when taking over for the master, it canrgi’s G-th phase.

Step 7) The HNode returngf,, G, “completed”} to the master to show the completidni¥ts G-th
phase.

Step 8) Upon receiving the message, the masterratsrds this message. Otherwise, the master
periodically send€§ to the HNode until receiving the message or figdihat the HNode
has failed.

Notice that ifX is issued by the master, the E-record synchrdoizgtrocess comprises only the steps 1, 2,
3, 7, and 8 since no response needs to be séntBy referring to its log file and all the recordeetssages,
the HNode can determine the current statuX.ofhe existence of onlpy, means that the master just



receivesX fromU. The existences of onBy andl, show thatX has just been initiated. The existences of
Py, Iy, EL, EZ, ..., andE§ implies thatX’s first G phases have been finished. Hence, when takingfover
the master, the HNode can contidierather than requiring to reperfonfrom the very beginning.

On the other hand, after receiving transient megadienoted by M, from a worker and updating its
in-memory state, the master forwafld to the HNode without generating a log record sitremsient
metadata as mentioned above is often updated fndguen receivingfM, the HNode accordingly
updates its in-memory state without returning a sage to the master. The purpose is to reduce the
master’s burden and network overhead. In this was,HNode can maintain all transient metadata ef th
master and does not need to spend a lot of timecanstruct its in-memory state when taking overtfie
master.

The mutual life monitoring algorithm:  /* It is p erformed by receiverR. */
Input: heartbeats from sendsr

Output: awarm-up or takeover decision;

Procedure:

1: Let Cyes=Cno=0; up = false; /* up = false means thaR has not requested the WNode to warm ug.*/
2 While a heartbeiperiod times ot {

3 If R has received a fresh heartbeat fi®during the heartbeat period {
4: Cyes = Cyes + 1; Cpp = 0;

5: If Cyes = thy andup = true {

6: Request the WNode to slegp:= false; }}

7

8

Else{

: Cho = Cpo +1; Cyes =0;
9: If o = th, andup = false {
10: Claim itself as a commander; request the WNodeaiomup;up = true;}
11: Else if C,, = thy { /* Now up must be true. */
12: If Ris theHNode
13: Take over for the master;
14: Request the WNode to take ovetlierHNode; stop;}}}

Fig. 3. The mutual life monitoring algorithm in vehith, andthy are two predefined thresholds< th; < thy.

3.3 Mutual life monitoring algorithm
Based on a push-based failure detection techniqdé fhe mutual life monitoring algorithm is
designed for the master and HNode to promptly detach other’s failure. Once a failure is detecthd,
live one starts the corresponding takeover proseasd requests the WNode to warm itself up so as to
accelerate the process of taking over for the HNbad#his way, the services of the master and HNzate
be continued, and the extra monitor node requiketh®é warm-standby-based schemes can be unemployed.
In this algorithm, the master and HNode mutuallgcdse heartbeat to each other through a reliable
transmission protocol, e.g., TCP, every predefinedrtbeat period. Assume that at least one netlirdek
between arbitrary two of the master, HNode, and ANz always available. Hence, if one of the master
and HNode, called receivd, cannot receive heartbeats from the other, callattlerS, in a heartbeat
period, the reason must be one of the three simmts fails, S is busy, or the link betweeR and S is
congested.

The algorithm is presented in Fig. 3. I&t, andC,, be the counters for counting consecutively
arriving and absent heartbeats, respectively. upebe a boolean variable indicating whetterhas
requested the WNode to warm up or not. Whenevezaatibeat period times out,Rfhas received a fresh
heartbeat frong, thenC,,; is increased by 1, ar@,, is reset to zero. Note that a fresh heartbeat snean
thata > m wherea is the sequence number conveyed in the hearthedty is the maximum heartbeat
sequence number thRthas ever received frold Conversely, ifR receives no fresh heartbeat frd@n
thenc,, is increased by 1, ar@,, is reset to zero. With this algorithm, wh&fails, R will not misjudge
thatSis still alive if it receives an unfresh heartb&atn S,

Let th, andthy are two predefined thresholds< th; < thy. If C,, = th;, andup = false (see line 9

of Fig. 3),R suspects th& has failed, consequently claiming itself as a camder, requesting the WNode



to warm up, and settingp = true. This enables the WNode to early warm itself up ahdrten its
takeover time. I, further reacheshy (see line 11)R claims thatS has failed. Depending on the role of
R, a different action is taken. R is the master, it informs the WNode, which is n@arming up or has
finished warming itself up, to take over for the été. IfR is the HNode, it takes over for the master and
requests the WNode to act as the HNode. On the bte, ifC,.; = thy andup = true (see line 5)R
assumes th&is still operational and requests the WNode teskegain.

By employingC,,s, Cn,, andup, and limitingC,.; = thy (rather than 1), we can avoid haviRy
continuously requesting the WNode to switch itdmfween the warm-up and sleep modes in adjacent
heartbeat periods, consequently reducing the &ailate of the WNode and saving energy consumption.

3.4 Adaptive warm-up mechanism

The purpose of the adaptive warm-up mechanismablerg the WNode to adapt itself to the current
system status and improve its takeover performdhcensists of amutonomous warm-ugpproachand a
requested warm-ugpproach In the former, the WNode periodically and autooostywarms itself up by
requesting metadata from the HNode, rather tham ftbe master, so as not to degrade the master’'s
performance. In the latter, the WNode warms iteplfwhenever being requested by a commander, which
might be either the master or the HNode. Tablenirsaries the two approaches.

When the master and HNode are unstable and/oirtkéétween them is congested, the WNode may
be requested to warm up by both of them simultaslgcand may receive duplicate E-records from them.
Hence, on receiving a log record, the WNode congpireith all the log records that it has ever ieed
to determine whether to discard the record or Uselpdate its state.

Let M,,, My, andM, be the largest record numbers of the log recaud®otly collected in the log files
of the WNode, HNode, and the commander, respegtividie autonomous warm-up approach works as
follows.

Step 1) The WNode wakes up when its timer, initiakét tol,,4,-myp. €Xpires. Then it sendd,, to
the HNode to request those log records that itdack

Step 2) Upon receiviny,,, the HNode repliedf, to the WNode. After that, it retrieves log record
L, from its log file, computes,’s hash valudd,., and sends a record-hash messdgeH,}
to the WNode where is the record number &f. andM,, < r < M.

Step 3) Upon receivingl{., H,}, the WNode compareH,. with all the hash values previously stored

in its hash pool in increasing orderroflf H, exists, implying thaL,. is duplicate, then the
WNode discards this message. Otherwise, the WNwmktsL, into its log file and storeH,
in the pool. IfL, is an E-record, then WNode further updates it¢estaith the P-meta
conveyed irL,..

Step 4) The WNode sleeps.

On the other hand, the requested warm-up approadksvas follows (i.e., the details of step 10 ig.H).

Step 1) Upon receiving a warm-up request from arnander, the WNode

1-1) wakes up and resets its timefT}Q, ., to inhibit the occurrence of the autonomous
warm-up process. Note that if the autonomous waprprocess is running, the WNode
immediately stops it.

1-2) The WNode sendd,, to the commander to request the log records thatks and all
the transient metadata.

Step 2) Upon receiving the message, the commarw#imaoes sendinglf,, H,} and its transient
metadata to the WNode until it requests the WNadga to sleep (i.e., step 6 in Fig. 3) or
asks the WNode to take over for the HNode (i.ep 94 in Fig. 3). In the former case, the
commander sends a sleep-request message {“sldgp'to the WNode. For the latter case,
the commander sends a takeover-request messagediter”, M} to the WNode, implying
thatz = My, + 1, My, + 2, ..., M¢.

Step 3) On receiving a message
Case 1: Im = {L,, H,}, the WNode processed.{, H,} as the step 3 of the autonomous

warm-up process.
Case 2: limis transient metadata, the WNode accordingly wgsdi$ in-memory state.



Case 3: limis a sleep-request message, the WNode sleeppaftarssing each received,{
H,}until z = M.
Case 4: Ifmis a takeover-request message, the WNode immédadts as the HNode. The
detailed takeover process will be described later.
By using the adaptive warm-up mechanism, the WNumteonly can regularly back up the log records of
the master from the HNode during the normal exeoutif the master, but also can adaptively warnifitse
up upon receiving a warm-up request from a commantien the master or HNode behaves abnormally.
Consequently, the required takeover time can betesmed. Note that the WNode does not back up the
transient metadata of the master server sinceiér@nmmetadata is updated frequently.

Table 1. The adaptive warm-up mechanism

Approact Autonomous wark-ug Requeste warm-up
Trigger WhenT,, gy €Xpires When the WNode is requested by a
commande

Message, M,,, HNode My, the commander

Destinatiol

Requested The log records that the WNode lacks The log rextndt the WNode lacks and all

dat¢ the commandfs transienimetedate

Stop Condition 1: Condition 1:

conditions  When finishing processingl{y,, 1, Hu,+1}, When receiving a sleep-request message
{Layy+20 Hupys2h - and {Ly,,, Hy,} from the commander and finishing

processing Ly, +1 ., Huy+1 b { Lz
Hyyys2}s - and {Ly, Hy,}

Condition 2: Condition 2:
When being requested to warm up by @n receiving a takeover-request message
commander from the commander

Subsequent For condition 1theWNode sleeps aga. For condition 1theWNode sleeps agai

action For condition 2, the WNode stops receivingor condition 2, the WNode takes over for

all messages sent by the HNode. Aftehe HNode.
finishing processing all the received record-

hash messages, the WNode starts the
requested war-up proces:

3.5 Takeover processes

LetIPy, IPy, andIP,, (MACy, MACy, andMAC,,) be respectively the master server’s, HNode’s, and
WNode's IP (MAC) addresses. The process for the W&\ take over for the HNode is as follows (i.e.,
the details of step 14 in Fig. 3).

Step 1) The WNode changes its IP addreg®gand issues a gratuitous ARP reply message [28] to
inform all the related layer-3 switches to repla®dACy, IPy> recorded in their ARP tables
with <MACy, IPy>.

Step 2) The WNode sends a takeover-ready messdlge moaster and starts all the HNode’s functions,
including synchronizing itself with the master aedecuting the mutual life monitoring
algorithm to detect the master’s heartbeats.

Note that it is possible that when the WNode isedsto take over for the HNode, it is in the middfets
requested warm-up process. In this case, the WiKedps updating its in-memory state with the trarsie
metadata sent by the current master, but it buBach received log recolg. in its memory ifz" > M.
When the requested warm-up process is completeduéfered log records will then be stored in the
WNode's log file and sequentially used to update\WiNode's state.

On the other hand, the process for the HNode t® éaker for the master is as follows (i.e., the itkets

step 13 in Fig. 3).

Step 1) The HNode changes its IP addre$B@nd informs all the related layer-3 switches tdatp

their ARP tables.



Step 2) The HNodstarts acting as the master and uses each prigetagd to find the corresponding
initial log record and E-records. If the prior logcord of a persistent update operafion
exists, but the corresponding initial log recorceslanot, implying thathe master has not
initiated X, then the HNode re-perfornisfrom the very beginning. &3, EZ, ..., andE}
exist, the HNod@erformsX from the(i 4+ 1)-th phase to the end,< i < n. If all E-records
of X exist, the HNode does nothing sintéas been finished. After that, it starts procegsin
read/update requests submitted by clients/workers.

4. RELIABILITY ANALYSIS

This section analyzes the PAReS with the NR, HS@N®0, and WSO, in terms of their job
completion reliabilities, i.e., the reliability viitwhich each of these schemes can complete a set of
MapReduce jobs. To fairly compare these schemesasgme that the HSO, A-WSO, and WSO
individually employ two standby nodes for the masard all nodes’ failure rates in their sleep (agak
modes are constant and identical, denoted {y,), regardless of which scheme is analyzed.A.&tnd
Aq individually follow a Poisson distributiod,, > A;. To simplify the analysis of this study, only node
failures are considered. Other faults, such asortfailures, will be considered in our future raseh.

Let J be a batch of MapReduce jobs submitted by usedsT &e the total execution time gf From
JobTracker’s viewpoint, the executiontan be divided into two phases. The first is thiéalization
phase, which starts from the moment when JobTrackeeivesJ from the users and ends when
JobTracker finishes the initialization gf The second is the MapReduce phase (MR-phasehfot)s
which starts when the initialization phase finishas ends whefi is all completed. That is,

T =T + Tyg (1)
whereT; andT); are the durations of the initialization phase ®Riphase, respectively. In generdl, is
very short, e.g., ranging from several millisecotalseveral seconds, implying that

T ~ Tyg 2)

Let N5, andN; , be the two standby nodes that schehpeovides for the master wheSec {PAReS,
HSO, A-WSO, WSO}. Without loss of generality, wether assume that the failure sequence is the maste
N5, and therN; ,. When the master faildjs , takes over for it. WheNs , crashesN; , takes over for it.
Hence, if all jobs off is completed beforé fails, they must be finished by the mashéy,, or N ,. Due to
the fact that the initialization phase is very shahe probability that the master fails in thisaph
approximates zero. Hence, in the paper, we onlgiden the case in which the master crashes in tRe M
phase.

If J is finished by the master, it means that the mastest to be operational . Hence, the
corresponding reliability, denoted By, is

Ry = exp(—1, - T) (3)
The second case is thais all finished afteN; ; takes over for the master, implying that the nvafstiés
while executingj, thenNs ; must be operational in three consecutive timeogeff; ~T; as shown in Fig.
4 in whichT; is the time consumed by the master to perfgrbefore it fails (implying thaf; < T), T, is
the time required by , to take over for the master, afidis the time during whiclVs ; needs to operate

normally to finish the unfinished jobs gf i.e.,
Trem ,ifS = PAReS or HSO

T3 = {Trem ,if S = A-WSO or WSO in the best case 4)
T ,if § = A-WSO or WSO in the worst case
in whichT,.,, is the duration of the remaining MR-phase, impdythatT,.,, < Tyz. SiNCeNp4z.s, and

Nyso1 keep themselves synchronized with the master,¢aaycontinue the MR-phase after taking over for
the master. Hence, for the PAReS and HBGOs T.p,,. For the A-WSO and WSO, Ny, s, ; has the latest
log records abouj (we call it the best casd); = T,,. But if Nyy50 1 has no log records abafit(we call

it the worst case), then it needs to reperfgpfmom the very beginning, implying; = T.
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T, P T. T
g
Mastef————x
Nsy ; >
The master fails )
The master receives J is completed

Jfrom U N, acts as the master

Fig. 4. WhenJ is all completed afteN; , takes over for the masté¥; ; should be operational i} ~ T
wheres € {PAReS, HSO, A-WSO, WSO}.

The third case is that is all completed aftel , acts as the master, implying that both the mastdr
N; , fail during the execution @, thenN, must work properly in five consecutive time pes@y ~ T
as shown in Fig. 5 whe® =T, T, =T, T is the time during whictVs, performsJ before it fails
(implying thatTy < T3), Ty is the time required by, to take over for the master, afiflis the time in
which N5 , needs to work normally to complete the unfinistredubjofj. Similar to Eq. (4),

T'om < Trem ,ifS = PAReS or HSO
Te =T/ em < Trem ,if § = A-WSO or WSO in the best case (5)

T ,if § = A-WSO0 or WSO in the worst case
whereT,,, is the duration time of the remaining MR-phasepliimg thatT; ., < Trem.

T T BT T,
o T
Mastef———— X §
N, X
Ns, P <
The master fails fails is
The master receives Nss J s completed
Jfrom U N, acts as the master N, acts as the master

Fig. 5. When7 is all completed afteNs , acts as the masté¥;, needs to be operational i ~ Ts.

4.1 Job completion reliability of the NR
Since the NR does not offer any standby node f@mthster, when the NR is tested, the reliabilitthwi
which g can be completed by the master, denotefl py is equal tar,, as shown in Eq. (3), i.e.,
Rygr = Ry =exp(—4,'T) (6)

4.2 Job completion reliability of the HSO

In the HSO, the two hot-standby nodes (Mg, andNys, ,) stay awake with the master after the
maste’s startup. LeRysoq, andRyg, be the reliabilities with whictVyg, ; and Ny, can operate
normally duringl; ~ T; andT; ~ T, respectively. Hence,

Ryso,1 = exp(—4q X Th) (7)
and
Rusoz = exp(—Aq - X1 TY) (8)
Consequently, the reliability with which can be finished by the HSO, denotedryy,, is
Ryso = Ry + (1 —Ry) *Rysos + (1 —Ry) - (1 - RHSO,l) *Ruso,2 )
= Ryg + (1 = Ryg) " Ryso1 + (1 — Ryg) - (1 - RHSO,l) *Ruso2
where(1 — Ry) * Ryso1 is the probability with whicly is all completed wheNys, ; acts as the master,

and(1 — Ry) - (1 = Ruso1) * Ruso.2 is the probability with whiclg is all finished whemVys,, , acts as the
master.
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4.3 Job completion reliability of the A-WSO
Let® be a warm-up percentage with whigh, 5, , andN, ¢, , warm themselves up before acting as

the master) < o < 1. LetR, 5o, andR, ., , be the reliabilities with whicl, 5, , andN, s, , can
operate normally during, ~ T; andTy ~Ts, respectively. Due to the fact théf ., , spend{1 — w) - T;
to sleepw * T; to warm up, and’, + T; to act as the master,

Rusos = exp(—As- (1= ) 1) - exp(~Ae - (0 1) + 5, T))) (10)

On the other handV, s, , consumegl — w) - X3, T/ to sleepw - ¥:7_, T/ to warm up, an&;_, T/ to
act as the master. Hence,

Rywsoz = exp(—4s* (1 — w) '21'3=1 T/) - exp <_Aa ) ((00 ) 21'3=1 T)) + Z?:A, Ti')) (11)
Recall that the A-WSO employs a monitor node t@dethe master’s failure so as to provide an autema
takeover process. L& andR, be the probabilities that the monitor node is afienal inY%, T; and
4 T/, respectively, implying thak, = exp(—21, - Y2, T;) andR, = exp(—1, - i, T/). Consequently,
the reliability with which the A-WSO finishek denoted by, ;5. IS

Rowso =Ry + (1 —Ry)"Ry* RA-WSO,l + (1 —=Ry)- (1 - RA-WSO,l) "Ry RA—WSO,Z (12)
=Ryp + (1 —Ryg) "Ry~ Rowso1 + (1 —Ryg) - (1 - RA—WSO,l) “Ry " Rawso,
4.4 Job completion reliability of the WSO
Different from the A-WSO, the WSO does not empliog thonitor node. Therefore, the reliability with
which the WSO finished, denoted bRy, 5., IS
Ryso =Ry + (1 —Ry) " Ryso1 + (1 —Ry) - (1 - Rwso,1) *Rwso,2 (13)
=Ryr + (1 — Ryg) - Rwso1 + (1 —Ryg)- (1 - RWSO,l) *Rwso,2
4.5 Job completion reliability of the PAReS
Recall thatNpapes1 andNpares. represent the HNode and WNode, respectively. Asstimat the
warm-up percentage of the WNode is alsoLetRyyo.4. @NdRynoqe D€ the reliabilities with which the
HNode and WNode can work normally durifig~ T, andT; ~Ts, respectively. Similar td/y,,, the
HNode enters its hot-standby mode after the masstartup. Hence,
Runode = Ruso1 (14)
For the WNode, it consumés — w) - T; to sleepw - T; to warm up, an@;_, T/ to act as the HNode and
master. Thus

Rwnode = exp(=2s - (1= @) - T)) - exp (—Aq - (0 T{ + X5, T7)) (15)
Therefore, the reliability with which can be finished by the PAReS, denoteRpyi,s, IS
Rpares = Ry + (1 = Ry) * Rynoae + (1 — Ry) - (1 — Rynoae) * Rwhode (16)

= Rygr + (1 — Ryr) * Runode + (1 — Ryr) * (1 — Rynode) * Rwnode

4.6 Job completion reliability comparison
In this subsection, we compare the job complet@iabilities of all tested schemes undgr= 0.0005
per hour A, = 0.00001 per hour, and = 0.1. Ten batches of jobs with total execution tifhe: 2* hours,
1 < x <10, were considered. Table 2 lists all required tinfermation. We assume that the master fails

when finishing one third of the MR-phase of a batéjobs, meaning that = g = % andT; = ZZ—H and
T3

N, also fails when finishing a half of the rest MRagk, implying thal; = T = 5= % Since the

values ofT,, T,, andT, for the PAReS, HSO, and A-WSO approximate zeror lfae will show this in
Section 6.1), we set these values in Table 2 Ru@for the WSO, itg,, T,, andT, values depend on when
do system managers notice the master’s failurardier not to complicate our comparison, we also set
these values to zero.

Based on Egs. (6), (9), (12), (13), and (16), tiedompletion reliabilities of all schemes aresthated
in Fig. 6. Notice that when the worst cases ofAR&/SO and WSO occur, both schemes are impossible to
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complete those jobs, i.e., their job completioiaiklity are both zero. Fig. 6a shows that wheimcreased,
the NR’s job completion reliability decreased siygrput other schemes’ decreased relatively slowhe
main reason is that the NR does not provide ankumoaode for the master. Obviously, the WSO in the
best case has the highest job completion religtsiihce the awake times of its two warm-standbyesod
are very short. However, owing to the non-adapligekup of the WSO and the time at which the master
fails is random, the best case of the WSO doeslmatys occur. Due to employing the HNode and WNode
and utilizing no monitor node that is required bg tA-WSO, the PAReS’s job reliabilities were higher
than those of the NR, HSO, and A-WSO. This phena@memas more significant whé@hwas longer. Now
we can conclude that the PAReS is more reliable #fidahe schemes, except for the WSO in the eest.c

Table 2. All time information used for each tessetieme to calculate the corresponding job compietio
reliability (time unit: hour). Note that = 1,2, ..., 10.

T T, =T/ T,=T, T3 T T, | T.
2% x+1 2% 2%
2% — 0 2 i 0 .
3 3 3 3
1 s — 1 e
[} LT ——"NR - 5}
s = +—NR
c 0.6 HSO c 0.98 -
S 05+ k) HSO \¢
L 04+ A-WSO (best case) B §g7 L —< AWSO (best case)
g 0.3 - A-WSO (worst case g —+— A-WSO (worst case
8 02- WSO (best case) S 0.96 - WSO (best case)
§ 0.1 WSO (worst case) 5) WSO (worst case) ‘
0 TR TR TR TR T T T 0.95 T T T T T T T T T ]
1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512
T (hour) T (hour)
(a) (b)

Fig. 6. Job completion reliabilities of all testechemes o, = 0.0005, A, = 0.00001, andw = 0.1.

5. ENERGY CONSUMPTION AND SYNCHRONIZATION COST
This section analyzes the energy consumptions yamcthsonization costs of all tested schemes.

5.1 Energy consumption

Assume that the master server has operatet Hours since it starts up. Let andp, be the power
consumption rates of a node in its awake mode beggp snode, respectively. Recall thais the warm-up
percentage. When the NR is employed, the totalggnesnsumption, denoted &y, is equal to the total
energy consumed by the master servetr ire.,

Eng =t pa (17)

Due to employing two hot-standby nodes, when th©HS utilized, the total energy consumptiontjn
denoted byEys, is

Epso =3t pa (18)
When the A-WSO is utilized, the total energy conption int, denoted b¥, ¢, is
Epwso =2t pa+2-w-t-p,+2-(1—w)t-p; (19)

where2 -t - p, is the energy consumed by the master and monioes)2-w -t p, is the energy
consumed by the two warm-standby nodes to backepaster’'s log records, a@d (1 — w) - t - ps the
energy consumed by the two warm-standby node<in skeep mode.

Owing to utilizing no monitoring node, the totalezgy consumed by the WSO tindenoted by, <0,
is only

Ewso =t-pat+2-w-t-p,+2-(1-w)-t-ps (20)
For the PAReS, its total energy consumption, idenoted by¥, 4z.s, IS
Epapes =2t patw-t-ps+(1—w)-t-ps (21)
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where2 - t - p, is the energy consumed by the master and the HNode:- p, is the energy consumed by
the WNode to warm up, and — w) - t - p is the energy consumed by the WNode to sleep.

Let p, = 0.3 kW, p, = 0.001 kW, andw = 0.1 per hour. Fig. 7 illustrates the energy consunmgtiof
all schemes wheniranges from 100 hours to 1000 hours. Unavoiddbhly,PAReS consumes more energy
than the NR (approximately 2.1 times higher) andQ\&pproximately 1.74 times higher). But its energy
consumption is lower than those of the HSO and A\ Bhe results show that the energy consumption of
the PAReS is only 70.1% of that of the HSO and 3% 3®f that of the A-WSO.

1000

c

S =~ PAReS

2 o0+ < NR <
£ = HSO i

@ 600 A-WSO =
o N o

8 400 wso |

> =

S 200 RS S

c % % >

100 200 300 400 500 600 700 800 900 1000
Operation time (hour)
Fig. 7. The energy consumption of the all testdwesees.

5.2 Synchronization cost

Table 3 summaries all schemes’ synchronizationscagpparently, the NR has zero synchronization
cost since this scheme does not synchronize theertgstate with any node. For each one-phasegtensi
update operation, the master in the PAReS needsrterate three log records (i.e., a prior log récan
initial log record, and an E-record shown in Fig. But the master in the HSO, A-WSO, and WSO only
needs to generate two log records (i.e., an ifigrecord and a finish log record). Hence, theber of
log records in the PAReS is 1.5 times those irHB®, A-WSO, and WSO.

When the PAReS is used to perform an one-phasestgisupdate operation, the number of messages
used by the master and the HNode to synchronizediresponding prior log record, initial log recpashd
E-record are 2, 2, and 4, respectively (see FigH2pce, the total number of the messages is 8n\itiee
HSO is employed, the number of messages used bymtmter and the two hot-standby nodes to
synchronize the initial log record and finish retare individually 4. Thus, the total number of the
messages is also 8. In addition, in the PAReS{dtaé number of messages sent by the master is3nly
(i.e., a prior log record, an initial log recordydaan E-record to the HNode). But in the HSO, thalt
number of messages sent by the master is 4 (ue.jnitial and two finishes log records to the tivot-
standby nodes), consequently the synchronizati@rh@ad caused by the PAReS on the master is not
higher than that caused by the HSO. When the A-W@ WSO are individually employed, no
synchronization messages are transferred betweemtster and the two warm-standby nodes. Hence,
similar to the NR, the two schemes have kywchronization cost.

For each record of transient metadata, the mastéei PAReS forwards it to the HNode, but the nmraste
in the other schemes does not send any messageitstandby nodes. Although the transient metadata
forwarding increase network traffic, it dramatigalshorten service downtime without generating
significant impact on the master’s performance.

Table 3. The synchronization costs of all testdtbstes
Scheme | pr\Res NR HSO AWSO WSO

Metrics
# of log records generated by the master for gach 3 0 2 2 5
persistent update operation

# of transmitted messages used to synchronige a
persistent upda operatiot

8 0 8 0 0

# of messages sent by the master during|the

o> . : 3 0 4 0 0
synchronization of a persistent update operatign
# of transmitted messages used to synchronige a 1 0 0 0 0

record of transient metadata
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6. SERVICE QUALITY EVALUATION

In this section, three experiments were preseriibd. first evaluated service downtimes. The second
analyzed the number of client requests impactethéynaster server’s failure. Note that the NR ar8ioN
schemes were not tested in the two experiments sivecformer does not employ any standby nodetznd t
latter does not offer automatic takeover. The thirdlied the WNode's takeover performance.

All experiments were conducted in a private cloystam at TungHai University, Taiwan. This system
comprises fifteen nodes with 1 Gbps Ethernet nékwbinree nodes individually run Ubuntu 11.04 with a
AMD Opteron(tm) 6172 CPU, 2 GB memory, and a 500 @8k drive. The remaining twelve nodes
individually run Ubuntu 11.04 with an AMD Athlon(jn2800+ CPU, 1 GB memory, and a 500 GB disk
drive. Each tested scheme employed the three AMEOp nodes to act as the master server and two
standby nodes. No matter which scheme is testeal,AMD-Athlon nodes act as clients to submit 20
persistent-update-operation requests and 1000 rezpcests to the master server per second on average
The remaining AMD-Athlon nodes act as workers tads&0 records of transient metadata about data-
block locations to the master every second.

All tested schemes were implemented in Java largudgte that we chose Mode 2 [9], which commits
a client request after the relevant metadata ikemrto the master server’s disk and buffered ét#o hot-
standby servers’ memory, to implement the HSO sthi mode is appropriate for a local area network
that is usually employed by a MapReduce clustereiine PAReS and A-WSO were tested, their warm-
standby nodes autonomously warmed themselves uy &wve hours. Due to page limit and desiring to
show comprehensive experiments, in the following wonly target at only one master server, i.e.,
NameNode. The evaluation on JobTracker can be foundr previous work [30].

6.1 Service downtime

Recall that service downtime is the time periodtstg when the master fails and ending when its
standby node, denoted M., takes over for it and is ready to process anyestinewly issued by clients.
As shown in Fig. 8, this period comprises failuretettion time (i.e., the time required to deted th
master’s failure), IP-address reconfiguration tithe., the time required b, to reconfigure its IP-
address), and state update time (i.e., the timgine)byM,,,t0 update its state).

Mas}i:r fails My can start
processing requests
Master =X A
Mew !
o failure !% IP-address ﬁ >
édetectiorﬁ Reconfigurationk—————state update———i
service downtime

Fig. 8. Service downtime

To fairly compare the PAReS, HSO, and A-WSO, wauarssthat all of them employ the mutual life
monitoring algorithm (see Fig. 3) to detect the t@gs failure. To shorten failure detection time fmach
tested scheme, a short heartbeat period and a sata#i ofth, are required for the algorithm. However,
too short heartbeat period and too snsh}} might increase the master's overhead and misjutige
master’s failure. Hence, we conduct an experimgrdifconnecting the master at random time to sitaula
the failure of the master server under four diffiédeeartbeat periods, including 1, 10, 100, andrh80The
goal is to find appropriate heartbeat period &g such that the master’s load remains unchangedhend
false positive rate is at most 0.00001. Table dshitat when the heartbeat period increaseg/theralue
required by each tested scheme decreases sinaeger Ibeartbeat period can tolerate more heartbeat-
generation delay and network transmission delay. Fialso shows that a longer heartbeat periodceedu
the master's CPU load, regardless of which scheartested. It is clearly that choosing 1000 ms a&s th
heartbeat period is better for all tested schenme® $t has insignificant impact on the masteradoHence,
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in the following experiments, we set the heartlpestod to 1000 ms for the PAReS, HSO, and A-WSO and
respectively set theth, values to 3, 3, and 2 as shown in Table 4.

Table 4. The values @hy, that satisfy the desired o 100 ———— ——PAReS |
false positive rate 5 9 = — 9-HSO L

Heartbeat period PAReS HSO A-WSO g 8o L AWSO

(ms) & 70 S N

1 76 91 72 © . . e

10 9 11 8 1 10 100 1000 infinite

100 4 4 4 heartbeat period

100¢ 3 3 2 Fig. 9. The CPU load of the master when

different scherrs are employed.

Four failure cases as listed in Table 5 were engadp evaluate the service downtimes of the PAReS,
HSO, and A-WSO. Cases 1, 2, 3, and 4 respectieglsesent that 5000, 10000, 50000, 100000 records of
transient metadata were currently held by all wosk&ach transient metadata record conveys théidoca
information of a data block. Before the new masterver can start processing requests sent by
clients/workers, it needs to acquire all transiastadata held by workers to reconstruct its in-nrgrstate.
The measurement for each scheme was conductedn@6.tirable 6 lists the average service downtimes
and the corresponding standard deviations (stdHort) of all tested schemes. We can see thatettvice
downtimes and stds of the PAReS were much shdréer those of the HSO and A-WSO, no matter which

failure case is tested. The downtime of the PARe®vonly 80.20€ :zzzz) % to 45.85 £ :zZEZ) % of

those of the HSO, and 8.3% @) % to 7.70 £ ﬂ) % of those of the A-WSO, indicating that the
2725.1 56855.2

PAReS can effectively shorten service downtime aimvide a faster takeover. The key reason is that t
PAReS’s HNode always keeps receiving persistenadagh and transient metadata from the master server
i.e., the required state reconstruction time i®zer

Due to holding no transient metadata, the downtifnthe HSO increased as the amount of the transient
metadata increased. Among all tested schemes, M@ has the longest service downtime since the
warm-standby node does not keep itself up withsth&e of the master all the time. Hence, when therw
standby node takes over for the master, it needgptiate its state with all the required log reccadd
gather transient metadata from all workers to retrait its in-memory state. Fig. 10 shows that Ahe
WSO spends almost its service downtime in recoosibrg its state.

Table 5. The failure cases considered in the exyssis
The number of Transient metadata

Failure case records held by all workers
1 5000
2 1000(
3 50000
4 10000(

Table 6. The averageervicedowntimes and standard deviations of the PAReS, HB® A-WSO (time unit:
ms) when the heartbeat period is 1000 ms.

Failure PAReS HSC A-WSC

case Avg/Std Avg/Std Avg/Std

1 4379.Y238.1 5460.7408.1 52725.731339.¢

2 4379.3/238.1 5708.6/576.4 53018.6/31350.3
3 4379.3/238.1 6434.4/636.0 53711.9/31314.5
4 4379.3/238.1 9550.8/1045.5 56855.2/31300.7
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Fig. 10. The time rat®compriing theservicedowntimesof the PAReS, HSO, arA-WSO when the
heartbeat period is 1000 ms.

6.2 Interrupted and dropped requests affected by the master server’s failure

In this section, we anatgd how the master's failure impacts clientbmittedrequests when the
PAReS, HSO, and AYSO are individually employc. One subexperimens to analyz how many
persistent-update-operatioequess that have been received by the masterigerruptec due to the
master’s failure. The othesubexperimenis to evaluate how many persisteqidat-operation requests
submitted by client aréropped durinservice downtime.

6.2.1. Interrupted persistenpdat¢ operations

Assume that the mastserveruses a queue to buffer persistent-update-operaguests sent by client,
and this queue is/M/1/N [31] queueing model with a limited queue si¢garrival rateAd, and departure
ratey, whered andu bothfollow a Pdsson distribution. Lek be the average number persistent-update-
operation requests waiting the queue plus those currently being initializbg the master server at a
moment, that is,

LI —(Nﬂ)ﬁivfl Jifu+#1
L= 1-u 1-u (22)

v Jifu=1
2

whereu = % is the resourcatilization of themaster server. A high@rimpliesthal more resources of the
master server angtilized, thus makinw approximately 1. Let be the expectetime period starting when
a persistent-update-operatioeques arrives at the queue and endimpen themaster server finishes
recording the first relateldg recorc. For the PAReS, the log record is the prixorc of the operation, but
for the HSO and AA/SO, the log recorrefers to the initialization record of ttoperatiol. According to
[31l], T = ﬁ Then we have

_ 14+7tx4

p=—"2% (23)
T
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This experiment was performed for one hour s 60000 andi = 20 persistent-update-operation
requests per second. The average valuedafthe PAReS, HSO, and A-WSO were respectivedp484,
0.00446, 4.923, and 0.00447 sec. Due to employiroghiot-standby nodes, the master in the HSO needs a
longert than those in the PAReS and A-WSO. Table 7 listsdorresponding values pfu, andL. The
number of the operations interrupted by the PAR&S (.1) is much lower than that of the HSO, iyinud

that the PAReS improves takeover completenessoidth the A-WSO has a small it does not mean that
the two warm-standby nodes have backed up thigdeguoplying in reality more than 0.09 operationdl w

be interrupted by the A-WSO.

Table. 7 The values ¢f, u, andL of the PAReS, HSO, and A-WSO wher= 20 requests/sec. Note that
1.0968 = 1 4+ 0.00484 x 20,99.46 = 1 + 4.923 x 20, and1.0894 = 1 + 0.00447 x 20 based on the
numerator of Eq. (23)
Scheme u L

U
PAReS 226.61 € 1.0968) 0.088 & 20 ) 01E 0.088)

CEY A 2250 15930
HSO 202 = 0990€ )  99(E——0)
A-WSO | 24371 €

2923 o990
) 0.082 & 0.09 £ =)

1.0894 ) 0.082

20
0.00447 243.71

6.2.2. Dropped persistent update operations

Based on the results shown in Table 6, the avenageber of persistent-update-operation requests
dropped during each scheme’s service downtime eapatculated by multiplying the downtime ahd
whered = 20 persistent-update-operation requests per secdmal rdsults presented in Fig. 11 show that
the PAReS outperforms the HSO and A-WSO. Only 87%BSsistent-update-operation requests were
dropped during the PAReS'’s service downtime. Thigdcause the PAReS has a shorter service downtime
than those of the HSO and A-WSO, and the PAReSwntme was not impacted by the four
abovementioned failure cases.

e]

Q 1800 -

= " 1500

5 1200 - - —— —L

52 900 —

53 600 1 1 1 1l

2 = 300 ——

zZ failure case 1| failurecase 2  failure case 3  failasect
BPAReS 87.59 87.59 87.59 87.59
OHSO 109.21 114.17 128.69 191.02
OA-WSO 1054.50 1060.37 1074.24 1137.10

Fig. 11. The average number of persistent-updaéeation requests dropped during geFvicedowntimes
of the PAReS, HSO, and A-WSO on different failuases.

6.3 WNode takeover performance

Recall that the adaptive warm-up mechanism of tARdS’s WNode consists of the autonomous
warm-up approach and the requested warm-up appisaehSection 3.5). In this experiment, we evaluate
the times required by the WNode to completely acfon the HNode when the WNode individually uses
the adaptive warm-up mechanism and the traditioram-up mechanism (i.e., the autonomous warm-up
approach). The goal is to show how the adaptivanagw mechanism improves the takeover performance
of the traditional warm-up approach.

Assume that in the two tested mechanisms, the Wihbediedically warms itself up every two hours.

Let heartbeat period be 1000 ms, and then basédble 4 theh, value for both mechanisms are 3. In
addition, letth, = 2 (= [”17”]) in the adaptive warm-up mechanism. The abovemeed four failure cases
are also considered in this experiment. Fig. 1&tthates the average results, which shows thaakemver

time of the WNode in the adaptive mechanism weig 50.66 & %) % to 65.38€ %) % of those in
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the traditional mechanism. The first reason is that WNode warmed itself up whép, = 2 andup =
false, rather than wheg,,, = thy = 3. The second reason is that the master server diived suddenly
or failed after behaving unstably for a periodiofd. Fig. 12 also shows that the standard devistajrthe
takeover times in both mechanisms were large gimed¢ime points at which the master server failedew
random. Hence, the times required by the WNodeotaptetely act as the HNode varied dramatically.
Nevertheless, the adaptive mechanism leads to Besrstmndard deviation than the traditional one.

100
80 T +

60 - - -
10 r - r T r
20 B iii ' ) )

0 :H " " -
failure case 1 failure case|2 failure case 3 failasect
BAdaptive warm-up mechanism  26.70 30.02 32.18 37.18
OTraditional warm-up approach  52.70 53.04 53.73 56.87

Fig. 12. Average time required by the WNode to taker for the master when the adaptive warm-up srgisim
and the traditional warm-up mechanism are emploggshectively.

Average takeover
time (sec)

7. CONCLUSIONS AND FUTURE WORK

In this study, we have introduced the PAReS for Riegiuce master servers to improve their job
completion reliability and service quality, inclugi short service downtime and seamless takeover, at
acceptable energy consumption level and synchrioizaost. We have also conducted formal analyses
and extensive experiments to compare the PAReS faith state-of-the-art schemes, including the NR,
HSO, A-WSO, and WSO, in terms of their job compmletireliabilities, energy consumptions,
synchronization costs, service downtimes, and ingpa client-submitted requests.

The PAReS dramatically improves the job completiiability, service downtime, and the impacts on
client-submitted requests of the NR, even thoughNR due to employing no standby node for the maste
has lower energy consumption and synchronizatiehtban the PAReS.

Owing to employing the HNode and WNode and reqginto extra monitor node, the PAReS has
higher job completion reliability, lower energy umption, shorter service downtime, and less client
requests impact when compared the HSO and A-WSOavdidably, the PAReS has higher
synchronization cost than the A-WSO, but the syoclmation cost of the PAReS is acceptable as
compared with that of the HSO.

Due to adopting a manual takeover process, thécgetiowntime and client-request impact of the WSO
depends on how soon do system manages detect #termmdailure and use the WSO to take over for the
failed master. In addition, the job completionabllity of the WSO depends on whether the WSO’smvar
standby node has the log records of the correspgndbs. If yes, these jobs can be continue by¥$©O.
Otherwise, these jobs cannot continue. Even thabghWSO has lower energy consumption than the
PAReS, the abovementioned shortcomings make the WiaBle to offer good service quality.

In the future, we plan to study JobTracker and Ndaue failures caused by other reasons, such as
network failure, and take worker failure into catesiation to build a more reliable MapReduce
environment. These constitute our future research.
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