Singularities in a Modified Kuramoto-Sivashinsky
Equation Describing Interface Motion for Phase
Transition

Andrew J. Bernoff* and Andrea L. Bertozzi®

& Dept. of Engineering Sciences & Applied Mathematics, Northwestern University,
Evanston, IL 60208

b Dept. of Mathematics, University of Chicago, Chicago, 1L 60637

Abstract

Phase transitions can be modeled by the motion of an interface between two
locally stable phases. A modified Kuramoto-Sivashinsky equation,

he + V2h 4+ Vi = (1= N)|Vh|* £ A(V?h)? + 6 haohyy — h2,),

describes near planar interfaces which are marginally long-wave unstable. We study
the question of finite-time singularity formation in this equation in one and two space
dimensions on a periodic domain. Such singularity formation does not occur in the
Kuramoto-Sivashinsky equation (A = 0). For all 1 > A > 0 we provide sufficient
conditions on the initial data and size of the domain to guarantee a finite-time blow
up in which a second derivative of h becomes unbounded. Using a bifurcation theory
analysis, we show a parallel between the stability of steady periodic solutions and
the question of finite-time blow up in one dimension. Finally, we consider the local
structure of the blow up in the one-dimensional case via similarity solutions and
numerical simulations that employ a dynamically adaptive self-similar grid. The
simulations resolve the singularity to over 25 decades in |h;; |~ and indicate that
the singularities are all locally described by a unique self-similar profile in h,,. We
discuss the relevance of these observations to the full intrinsic equations of motion
and the associated physics.
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1 Introduction

Problems of thermodynamic phase transition arise naturally in solidification,
combustion and a host of other fields. If the transition region between two sta-
ble states is sufficiently narrow, the dynamics can often be approximated by an
interface motion [25,51]. Examples include the solid/liquid interface in solid-
ification [22,41,42], the combustion front separating burnt and unburnt com-
bustants [25,45,51], and the motion of heteroclinic fronts connecting steady
states in reaction-diffusion models [10,25,52].

One method of attack for these problems is to asymptotically reduce the par-
tial differential equations governing the constituents in each phase to a simple
equation of motion for the interface. If the system is isotropic, it is reason-
able to expect that the normal velocity of the interface depends only on local
geometrical properties, such as curvature (cf. Figure 1). In the early 1980’s
Langer [6,42] and Brower et al [15,16] introduced such an intrinsic equa-
tion of motion to model solidification. Their initially heuristic derivation
prompted the study of formal asymptotic methods for the derivation of these
equations.

The basic assumption that allows a reduction to interface dynamics is the
smallness of the scale of variation of the constituents transverse to the intertace
(i.e. the boundary layer thickness) compared to the characteristic scale of
variation along the interface. Denoting this ratio by ¢, for small € we obtain a
perturbation expansion for the normal velocity of the interface, V',

V=p+ervKk)+ ez(ozK2 + Q) + 63’}/V§I( + (’)(63[&’3, 64). (1)

Here K is the mean curvature, Q is the Gaussian curvature, V? is the sur-
face Laplacian and p, v, «, 3, are constants determined by the perturbation
expansions. Note that at order ¢” the contribution to the velocity scales like
(length)™™ and that the terms appearing are isotropic descriptions of the local
geometry of the surface.

Perhaps the first derivation of an equation of motion of this kind was the
reduction of a one-component, symmetric, bistable reaction/diffusion model
to an interface motion by mean curvature by Allen and Cahn heuristically [2]
and more recently via matched asymptotics [52] and through the notion of
a viscosity solution [18,24]. In this case only the curvature term in (1) has
a non-zero coefficient and v > 0, in the ¢ — 0 limit. Note that v > 0 corre-
sponds to curvature acting as a stabilizing influence; short-wave perturbations
to the front are diffusively damped. The first two terms of this expansion, with
v > 0, have been derived in the context of a one-component, bistable, reac-
tion/diffusion systems; phase field models of combustion; and in models of
excitable media [9,25,38,52,55]. In this case, a Burger’s equation governs the



amplitude of near planar interfaces [33,58], and once again perturbations tend
to be smoothed over long times.

When curvature is marginally destabilizing (v < 0, |v]| < 1) it is possible to
asymptotically balance this term with higher stabilizing terms in the expansion
of the normal velocity. In particular, if v < 0 short-wave perturbations to
planar interfaces are damped. This observation motivated the derivation of this
equation (1) by Sivashinsky & Frankel in the context of combustion [27-29].
The same equation was derived in the context of solidification of a hypercooled
melt by Frankel [26,27], Umantsev & Davis [56], and Sarocka & Bernoff [53].
This equation can also arise for the motion of an interface in multicomponent
bistable reaction/diffusion equations [10].

Frankel observed that for near planar solutions the intrinsic equation of motion
reduces to the Kuramoto-Sivashinsky (KS) equation when the curvature term
is marginally destabilizing. Here, we derive a more general amplitude equation
by considering the near planar case when both p and v may be small. Following
Sarocka & Bernoff, denote the location of the interface by z = 71(:2', 7,1) + ut,
where |Viz| < 1. In terms of this coordinate system V, K, Q and V? to leading
order satisfy:

. . 2], L .
Ve de = B K~ Y iy - B2

Ve V2o (2)

Here V and V? denote derivatives with respect to the (Z,7) coordinates.
Rescaling the coordinates to balance leading order terms,

9
7

—b (@9)= e@(%y)a h= o (3)

t=—
yields
ho+ V2 h+ V' = (1= N)|VAP +0A (V7h) 46X (hushy, — h2,) (2D MKS)
where

o =sgn(ap) = =+1,

2y
- . 0<A<, 4
ron - v
4
5:—a—ﬂ, —00 < 6 < 00
«

This paper addresses singularity formation in this two-dimensional modified
Kuramoto-Sivashinsky equation (2D MKS). This rescaling is valid in the limit
|v| — 0 ; note that if |v| < w that A — 0 recovers the standard KS equation.



The distinguished limit of both p and v tending to zero, with /v ~ O(1),
vields the terms proportional to (V*h)? and hy.h,, — hiy in the near planar
theory (2D MKS); these terms are generated from the K* and ) terms in the
intrinsic equation of motion (1) respectively. As we show below it is the effect

of the (V*h)?, not present in KS, that drives the finite-time blow up.

We also consider the one-dimensional version (1D MKS) of (4); if h(x,y,1) =
h(x,t) then we obtain

hi + s + hosse = (1 — AR + G AR, . (1D MKS)

We present calculations of the 1D MKS on a periodic domain and show that
the singularities all exhibit self-similar structure in h,,.

The question of finite-time blow up has appeared briefly in the literature.
Hocherman and Rosenau [35] discuss a large class of KS-type equations in
one dimension and conjecture that a subclass with a suitable second-order
nonlinearity, including the 1D MKS with A = 1, yield a finite-time blow up.
Hyman et al [36] discuss numerical simulations of a modification of the 1D
MKS with A = 1 and note that blow up does occur for certain initial data.
However, their calculations seem to show only the early stages of the onset of
the singularity and in particular do not discuss a similarity profile. Elliot and
Zheng [23] prove blow up in the one-dimensional Cahn-Hilliard equation with
a cubic nonlinearity. Their method would work for the 1D MKS with A = 1
if the term h2_ were replaced with A2 . Furthermore, Novick-Cohen [48,49]
discusses the blow-up problem for an equation corresponding here to the case
6 =0, A =1 1in both one and two dimensions. She shows that a blow up in the
magnitude of a second derivative is necessary for singularity formation and
presents one family of initial conditions in one dimension that guarantee blow
up. Our analytical results slightly sharpen this necessary condition for blow
up and extend the proof to the case where A # 1 (necessitating the use of some
ideas from the KS theory) and also to the case of nonzero 6. Furthermore, we
consider the coupling of the first two Fourier modes in proving blow-up results
and hence can draw parallels between bifurcation of steady solutions and the
existence of finite-time blow up.

We briefly mention some related work on blow up in other nonlinear parabolic
equations. A well known example is the second-order semi-linear heat equation
for which the use of similarity variables provides much insight [30,31,57]. We
mention that Budd et al [17] consider this equation with a conserved first
integral and use the Fourier space method considered here to prove finite-time
blow up. There has also been some recent work on singularity formation in
degenerate fourth-order problems [11-13] in which the nonlinearity produces
a ‘second-type’ [5] self-similar singularity in which the solution extinguishes at
a point (b — 0 ) and the blow up is in a higher derivative. We also point out
the well known problem of self-similar blow up in the nonlinear Schrodinger



equation [43,44].

This paper is organized as follows: In Section 2 we present a proof that the
solution to the MKS exists at least for a finite time and that if blow up occurs
it is governed by a singularity in the second derivative of the amplitude. We
then use, in Section 3, the Fourier method of Palais to provide sufficient con-
ditions on the initial data to guarantee such a blow up. Section 4 discusses the
relationship between the Palais blow-up proof and a bifurcation theory analy-
sis of steady solutions. In Section 5 we demonstrate that a similarity solution
exists describing self-similar finite-time blow up in the second derivative. In
Section 6 we present numerical computations confirming this self-similar blow
up scenario. We summarize our results in Section 7 and discuss their impli-
cations for the full intrinsic equations and the physical problems they model.
In the appendix we describe the self-similar adaptive mesh scheme used to
numerically study singularity formation in the 1D MKS.

2 Existence and Continuation of Solutions

In Section 3 we present sufficient conditions on the initial data to insure finite-
time singularities in the 2D MKS,

B+ V2h 4 Vi = (1= N)[VA + oA (V2R)" 46X (hushy, — B2,).

To prove these results we use the method of Palais which makes use of a
comparison principle in Fourier space. In certain parameter ranges, the equa-
tion preserves the sign of the Fourier coefficients, hence blow up in a finite-
dimensional subsystem is sufficient to prove blow up in the full PDE.

However, to correctly use this method we must first establish a continuation
result for the equation. As pointed out in the eloquent paper by Ball [4] and
also by Palais [50], a common error in using any comparison technique to
prove blow up is to assume that the behavior of the comparison system is what
actually drives the singularity. In fact the comparison principle holds only on a
time interval on which the solution exists. For example, the singularity in the
PDE might occur before the blow up in the subsystem and might not exhibit
a singularity in the quantity which blows up for the subsystem. Indeed our
numerical results in Section 6 demonstrate that this is the behavior for the 1D
MKS since the Fourier modes remain bounded as the singularity forms. We
caution all readers that a suitable continuation theorem is necessary before a
valid proof of blow up can be established. To this end we prove the following
theorem:

Theorem 1 (Necessary condition for blow up) Consider the 2D MKS equa-



tion with initial condition ho € H*T*(5?), € > 0 . Then there exists a mazimal
interval of existence [0,T) (with T™ possibly infinite) and a unique solution

of the 2D MKS
hz,y,t) € C*(0,T5C%(S%)) N CH[0,T]; H*(57)), VT < T~

with h(x,y,0) = ho(x,y). Moreover if T* < oo, then necessarily [ |D*h|2dt —
0o ast — T,

Notation: in the above we use | D? |z to denote the L> norm of the Hessian
matrix of the amplitude h.

Remarks: The theorem also holds for the 1D MKS as well; the proof can be
made simpler. The ¢ in H3*¢ is necessary only for the proof in two dimensions
and results from the fact that the Sobolev space H™ is a Banach algebra only
for m > n/2.

Proof. We prove the theorem in two steps. First we appeal to an abstract
theorem for semilinear parabolic equations to establish the local existence and
uniqueness results and maximal interval of existence with a weaker blow-up
condition. Then we prove the stronger blow-up condition via Sobolev space
estimates and a standard Gronwall inequality.

We use the following abstract theorem for existence and continuation of a
solution of a semilinear parabolic equation. The reader is referred to Ball [4]
for more details:

Theorem 2 (Ball [4]) Consider the equation
u=Au+ f(u) (5)

where A is the generator of a holomorphic semigroup S(t) of bounded linear
operators on a Banach space X. Suppose that ||S(t)|| < M for some constant
M > 0 and all t € RT. Under these hypotheses the fractional powers (—A)™
can be defined for 0 < a < 1 and (—A)* is a closed linear operator with
domain X, = Domain((—A))* dense in X. Let f(u) be locally Lipschitz, i.e.
for each bounded subset U of X, there exists a constant Cy so that

1f(u) = F()]l € Collu =v]la Yu,0eU.

Then given ug € X, there exists a finite time interval [0,1) and a unique
solution to (5) with u(-,0) = ug on that time interval and the solution can
be continued uniquely on a maximal interval of existence [0,T*). Moreover, if
T* < oo then necessarily

Tim, [lu(t)]l = oo.



We directly apply Theorem 2 to the 2D MKS with a = (3 +¢)/4, A = —V*,
X = L*(S") and

flu) = —V?u + (1- )\)|Vu|2 + oA (Vzu)2 + 6 (umuyy — uiy) )
Then X, = H3*¢ and

£ () = f(0)llze < [lu—vllzz + C(A O)(|D*ulp + [ D] )[[u — vl 2
+ (=N Vulre + [Volr)lju — vl < C(l[ullaore + o]l o) (lu = vl a2)-

Hence f is locally Lipschitz continuous on H3%¢. The direct application of the
theorem implies that a solution exists on any time interval in which the H3*¢
norm is controlled.

We now finish the proof of Theorem 1 by showing that the H3T¢ norm is a
priori controlled by |D?h|p. (Recall that this denote the L* norm of the
Hessian matrix of h).

The proof uses some ideas from [47] for the Kuramoto-Sivashinksy equation.

We have
h2 _ / 2h 2 / h 2
ot V2 + [ 98]
(- )\)/h|Vh|2 + )\a/h|V2h|2 + 5)\/(hmhyy — h2)h. (6)
Note that

d
1 [1vnp = —)\a/(V W+ [ 1900 = [ 1900
21— A /h2 » 5)\/ wrhyy — B2V (7)

implies
dtz/IVhIQ < C(8N)(ID*hlpe + 1) /|V2h|2 LVRh 2, (8)
Using
J IR < (IR (9
we have .
12 / [VA[* < C'(6, N (I1D* A= + 1)* /|Vh|2.

Gronwall’s lemma then implies

/|Vh 1) </|Vh 0)|2 el (8:N)(ID%h| o +1)7dt (10)



Furthermore, (8) and (9) imply that

LR < ) [ (D% + 1) 1R [ (TR
L/ [ J IR [ 15

T T
< C(6, ) sup [Vhlgal [ (1Dl + 1L [ 19702
[0,T] 0 0

T T ' 2 2
[ 19 <4/ AP[[ (D2 hle +17] [IVh(,0) el SO0 M
0 0

(11)

Now note that
| [V RER] ISRl A Bl
Using the embedding of W#2(5?) in W'4(S?) [1] and interpolation in the

Sobolev spaces we have
I/IVh|2h| < ClIVA||za (IRl + IIVZRIL2).

Equation (6) then implies

d
hal h2 < _/ 2h2 / h2
o[ [Ivnp s 19
+ COND B[ B2 4 (1= NC TR (1Al + V2]

A second application of Gronwall’s lemma, using (10), shows that [A? is a
priori bounded on any time interval on which [i |D?A(-,s)|2.ds is controlled.

Now estimate ||[V™h||z2 m > 3 using

d
S [Ivmh = = [omenE 4 [ e

n /vm (GAIV?AI + 6A(aohy, — 12,))V™h + (1 A) / VIV RPV
This implies

d

@%/WmhIQ < —/|vm+2h|2+/|vm+lh|2

+ C(A,6>H<D2h>2HHm</ VR 4 (1 - )\)H(Vh)zHHm(/ |th|221/2).
12

We now apply the following calculus inequality in the Sobolev spaces [40]: For
all m € Z U {0}, there exists ¢ > 0 such that for all u,v € L™ N H™(SY)

Juv|[rm < e{ulpe | D™ v][g2 4[| D™ wl| 2 [v] Lo} (13)



This gives

dt2/|vmh|2 /|vm+2h|2+/|vm+lh|2
+ CEOMND e ([ V420122 [ [V b2y

(1= NIV ([ 19 RE [9mR (1)

Using
JIV U < [V 2R 12 9

and maximizing over all [|[V™*2h||2 gives

4 [ IV < )0+ MD Rlo + [Vhl)? [ [97A

Applying Gronwall’s lemma gives
/|vmh| </|vmh| (§)(1+AID2A(,5) oo +|Vhl oo )2 ds.

The fact that |[VA|7. < C [|V?R[* in 1 and 2-D and (11) implies that all
higher Sobolev norms are a priori bounded provided that we have a bound for

Jo ID*h(-, 5|1 ~ds.

Remark: Setting A = 0 in the above and noting that in one dimension (7)
produces a bound on [ 22 depending only on T', one can directly reproduce the
well known global existence result [20,21,32,37,46,47] for the one-dimensional
Kuramoto-Sivashinsky equation.

3 Proof of Blow Up via Palais’ Fourier Method

We can combine the theorem above with the Fourier space method of Palais
[50] to prove that blow up occurs in both the 1D and 2D MKS equations. For
simplicity we start with the one-dimensional problem for which we prove the
following blow-up theorem:

Theorem 3 (Blow up of solutions to 1D MKS) Let h(x,t) be a solution to
the 1D MKS,
ht + hxx + hxxxx = ( )\)hz + U)\hz

rxr

with initial condition hg on a period of length 27 [k. Let us assume

A€ (0,1], o=+l



and

—A _
pogo) s o=l . (15)
‘ % for o= —1

Then, (1) For k <1, there exists initial data, ho, of arbitrarily small H*> norm
which produces a solution that blows up in finite time. (2) For k > 1, there
exists sufficiently large initial data that yield a solution which blows up in finite
time. In either case the blow up necessarily has [3 |hpz|2e dt — o0 ast — T*.

In Sections 5 and 6 we present a similarity solution and numerical compu-
tations that indicate that the blow up also has |h|p« — oo as t — T*. We
conjecture that this is true in general although no proof is known.

Proof. Following Palais [50] we consider even periodic solutions on interval
of length 27 /k and expand h(z,?) in a Fourier series

ha,t)= 3 ha(t)e™  hy = hy,

n=—0oo

= i_o% ]Azn(t)(Z — bon) cos(nkx). (16)

The Fourier transform of the 1D MKS is

(ha)e = anhn+ 32 Bpghyphy 0 =0,1,2..., (17)
ptHg=n
where
0, pq = 0
a, = (nk)* — (nk)* By = ~ . (18)
Pq )\k4p2q2 (U . A1k2;q) : g 7& 0

There is some arbitrariness in the definition of the f3,, due to the fact that
the terms with indices (p,q) and (¢,p) have the same functional form; by
specifying that 8,, = f3,, the coeflicient is determined uniquely. Note also that
if either p or ¢ is zero that 3,, vanishes which indicates that the constant term
(izo) decouples from the system; for the purpose of the analysis below we can
restrict ourselves to n > 1.

The system (17) is called cooperative if 3,, > 0 for all p, ¢. Palais shows that

the evolution of the h,, for any finite subsystem of (17) serves as a lower bound
for the A, of the full system provided that the full system is cooperative and

10



that the initial condition satisfies

A

h,(0) >0 for all n. (19)

Note that if 8,, <0 for all p+ ¢ = n > 0 that the system can be transformed
into a cooperative system by letting h(x,t) — —h(x,t) and hy, — —h,. Since
on any interval of existence of the full solution, the coefficients in the subsystem
majorize the coefficients in the full system, a blow up in the subsystem means
that the full system does not have a global solution. We reemphasize that this
does not however signify a blow up of the Fourier coefficients in the full system
because the singularity in the full system may occur well before the blow up
in the subsystem.

To determine when the system (17) is cooperative, note that when o =1 and
pq # 0 that 8,,/(k*p?q?) is minimized when p = ¢ = 1 leading to the conclu-
sion that 3,, > 0 for (15). Similarly, when o = —1, note that 3,,/(k*p*¢?) is
maximized when p = 1,¢ = —2 (n. b. that for p = 1,¢ = —1 is disallowed as
n =p+q = 0) leading to the conclusion that ,, < 0 for (15). Hence, equa-
tion (17) has cooperative structure or can be transformed into a cooperative
system when (15) is satisfied.

To finish the proof of blow up, consider the n = 1, n = 2 subsystem. As in
Palais [50], given an initial condition satisfying (19) and k satisfying (15), on
any time interval of existence the Fourier coefficients of the solution must be
bounded from below by the solution of the 1-2 subsystem of (17),

(ill)t = Oé1il1 + 25—127"61}}2
(%2)15 = Oézilz + 5117"6%- (20)

Following Lemma 4.5 in [50] we see that if £ < 1 then oy > 0 and arbitrarily
small initial amplitudes give finite-time blow up. For k£ > 1 Lemma 4.5 of [50]
requires oy > o (which is always true) to show that sufficiently large initial
conditions blow up. Note that when k = k. either 317 or $_12 vanishes, and
although the system (17) remains cooperative, the 1-2 subsystem does not
exhibit finite-time blow up. For this case an exact solution exists for both the
full problem and the 1-2 subsystem which blows up only in infinite time (cf.
Sarocka & Bernoff [53]).

Thus the solution can not be continued forever and must have a finite-time sin-
gularity. From Theorem 1 this implies that [; |h..|?«dt becomes unbounded.

Section 4 provides a more graphical exposition of this result indicating the
regions of k where small and finite amplitude blow up occur and relating
these results to the bifurcation of a branch of periodic solutions at k£ = 1.

11



The limit A — 0 recovers the Kuramoto-Sivashinsky equation which does not
exhibit blow up in one dimension. In this limit both k. and the amplitude
of the perturbation needed to ensure blow up from Theorem 3 both tend to
infinity. We believe that for sufficiently small A that some finite amplitude
initial conditions will lead to bounded dynamics which qualitatively resemble
what is seen for the Kuramoto-Sivashinsky equation while some set of large
amplitude initial conditions will lead to finite-time blow up.

Note that the one-dimesional blow-up results provides a set of initial condi-
tions, in which the profile is independent of one of the space variables, that
yield blow up in two dimensions as well. In fact, one can apply Palais’ method
to obtain a much larger set of initial conditions that also yield blow up in the

2D MKS. We state such a theorem below.

Theorem 4 (Blow up of solutions to 2D MKS) Let h(x,y,t) be a solution to
2D MKS,

hi+ V2h 4 Vi = (1= NV + oA (V2h) 46X (hashy, — 12,).

with initial condition hg on a periodic rectangle with sides (27 [ky, 27 [ks).
Assume

A€ (0,1], o=+l

ki, k3 > k2, (21)
and

o> —1 for oc=1
: (22)
0 <1 for oc=-—1

Then, (1) If ky or ky < 1, there exists initial data of arbitrarily small H* norm
which produces a solution that blows up in finite time. (2) For ky and ky > 1,
there exists sufficiently large initial data that yield a solution which blows up
in finite time. In either case the blow up necessarily has fj |D*h|? dt — oo
ast — T,

Remarks: Recall from Section 1 that |D?h|p~ denotes the L> norm of the
Hessian of h. Additional ranges of the parameters can also be studied using
this method. For ease of exposition we present a proof that addresses (22).

Proof. Consider even, doubly periodic solutions on a rectangle with sides
(27 [ k1,27 [ kg). Consequently h(x,y,t) can be written as a double Fourier
series,

12



(z,y,1 Z Z P (1) i R4 mh20) hm = Biam

n=—oo Mm=—00

= Z Z hnm )(2 — 80,)(2 — bom ) cos(nkyx) cos(mkay). (23)

n=0 m=0

Substituting this Fourier series into (4) yields

(ilnm)t — Oénmilnm + Z Z ’}/pqrsilpqilrs n,m= 0, 1, 2... (24)

ptr=ng+s=m

where

Qo = (nk1 + mk2)2 — (nkl + mk2)4

)
Ypgrs = 6pr(k1) + ﬂqS(kQ) + )\k%k% [U(pQSZ + q2r2) + 5(}?8 - qr)z)]
=)+ Bl 43S (74 8075+ 74%) = S0+ 1)

Here (3,.(k1) is just 3, evaluated at ky instead of k. Once again we have
chosen 4,4rs = Yrspg to eliminate any arbitrariness in the expansion. Note that
if either p and ¢ or r and s are zero that ~,,,, vanishes, which indicates that the
constant term (iloo) decouples from the system; for the purpose of the analysis
below we can restrict ourselves to n, m nonnegative and not both zero.

The system (24) is cooperative when 7,45 > 0 (for 0 = 1) or vp4s < 0 (for
o = —1). The constraint (21) arises in an exactly parallel fashion as (15) when
considering 3,,(k1) (corresponding to ¢ = s = 0) and f,s(ks) (corresponding
to p = r = 0). The second constraint (22) is sufficient to assure that the
remaining term in 7,4, has the appropriate sign.

Hence, equation (24) has cooperative structure or can be transformed into a
cooperative system when (21 22) are satisfied. Note that the subsystems gen-
erated by (hlo,hzo) and (h01,h02) have the exact same structure as the 1-2
subsystem (20) with & replaced by ky and kq respectively. Consequently, con-
sideration of these subsystems again leads to the conclusions of the theorem.

Remark: While the theorems presented here give sufficient conditions for
blow up, our numerical results show that blow up can occur for a much larger
class of initial conditions. In Section 5 and 6 we show that the blow up in 1D
MKS is actually characterized by a similarity solution in h,,. The similarity
solution does not exhibit a blow up in the L? norm of h but in the L°° norm
and in higher Sobolev norms. This lack of blow up in the L? norm indicates
that in the limit as t — 7., all of the Fourier modes remain bounded but that
the decay of h, is bad as n — oc. We conjecture that any initial condition

13



with h,, locally close enough to the similarity profile will exhibit a finite-time
blow up.

4 Bifurcation Theory and its Relationship to the Blow-up Results

This section addresses the relationship between the bifurcation of periodic
solutions from a uniform planar state to the blow-up results proved in the
previous section. We consider the 1D MKS:

hi + s + hosse = (1 — MR + 0AB2, . (1D MKS)

A cursory examination of the problem suggest that bifurcation from the pla-
nar state should be unrelated to finite-time blow up since the blow-up proof
deals with a fully nonlinear phenomena (blow up) and the bifurcation theory
deals with the weakly nonlinear regime. However, since the 1D MKS possesses
a purely quadratic nonlinearity, both the proof of blow up and the bifurcation
analysis reduce to a study of the 1-2 subsystem of Fourier modes. Below we
review the bifurcation theory for periodic states in the system, present nu-
merical continuation of the bifurcation branches, and relate these results to
Theorem 3 on blow up discussed in the previous section.

4.1 Bifurcation analysis of periodic solutions

Sarocka and Bernoff [53] discuss the bifurcation of the planar state to periodic
solutions for the 1D MKS with ¢ = 1; we review these results and extend them
to the case 0 = —1. We use center manifold theory [34] as this elucidates the
connection with the 1-2 subsystem discussed in the context of the Palais the-
ory. The Fourier transform of the 1D MKS converts the PDE into a countably
infinite coupled system of ODE’s (17). The n = 0 mode is the average of h on
the interval. This mode is driven by the other modes but does not appear in
the equations for the remaining modes, reflecting the translational invariance
of the underlying physical problem.

The linear growth rate of h, (about the zero state) is «,, = (nk)* — (nk)* If
we think of & as the bifurcation parameter (equivalent to changing the length
of the interval) hy undergoes a change in stability at & = 1. Consequently, at
k = 1 the system possesses a one-dimensional center subspace (ill) with all
the remainder modes lying in the stable subspace. A standard perturbation
analysis of the center manifold then reveals the topology of the system of

ODE’s in a neighborhood of £ = 1.

Proceeding with this center manifold reduction, we use the amplitude of the
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l-mode, hl, as the expansion parameter and see that at order (hl) only the
ho and hy play a role. Recalling that the n = 0 mode decouples from the
problem, the center manifold at order h2 can be approximated by:

zgz—@%af. (25)

a

Substituting this expression into the amplitude equation for by gives the equa-
tion governing the evolution of 2y on the center manifold correct to order (%1)?,

7 7 6116—12

(hl)t = Oélhl -2 (%1)3

:(M—kﬂa—%u—x—amu—x+2ﬂxaf (26)

which is valid near the bifurcation point & = 1; note that the coefficient of the
cubic term is evaluate at k= 1.

Equation (26) describes a pitchfork bifurcation from the planar state to a peri-
odic solution. When the coefficient of the cubic term is negative (positive) the
bifurcation is supercritical (subcritical) to a stable (unstable) state specified
by

s aq Qg

)= S50pns

B 72(k —1)
(1= A=) (1 = A+20))

+0 ((k-1)?)

+0((k-1)?). (27)

Hence, there is a transition from a supercritical to a subcritical bifurcation at
A = A where A\. = 1/2 for 0 = 1 (Figure 2a) and A, = 1/3 for 0 = —1 (Fig-
ure 2b). For A < A, the branch of solutions is stable, at least to perturbations
with the same period, whereas for A > A, the initial bifurcation is to an un-
stable state. Below we extend these curves numerically to the fully nonlinear
regime. There are two branches that bifurcate from k£ = 1, corresponding to
positive and negative values of ill; in fact these branches are the same solution
spatially translated by half a period (cf. [3,39]).

4.2 Numerical extension of periodic solutions

To compute these branches of one-dimensional periodic solutions for the 1D
MKS we integrate the steady state equation,

numerically with a shooting method as was done in Sarocka & Bernoff [53].
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The results are presented in Figures 2a,b. The branch corresponding to the
standard KS equation (A = 0) agrees with the primary bifurcation branch
found by Kevrekidis, Nicolaenko, and Scovell [39] in their numerical study of
the KS equation and terminates in a secondary bifurcation to a solution with
half the spatial period. As A increases the bifurcation branch becomes vertical
at A. where the bifurcation goes from supercritical to subecritical. For A = 1/2
and o = 1 the exact solution h(x,t) = %G%t + Foy + Gy cos x yields a perfectly
vertical bifurcation [53]. The subcritical branches appear to asymptote to a
constant amplitude for increasing wavenumber (outside the range of these
figures).

4.8 The relationship between the Palais blow-up results & bifurcation theory

There is an interesting parallel between the blow-up Theorem 3 and the bi-
furcation theory discussed above: both sets of results are governed by the 1-2
subsystem of Fourter modes. Recall from section 3 that the cooperativity of
1-2 subsystem

(ill)t = Oé1il1 + 25—127"61}}2
(%2)15 = Oézilz + 5117"6% (29)

implies the cooperativity of the full system and that the set of initial conditions
that lead to blow up in (29) determine a class of initial conditions that lead
to blow up in the full system. Note also that the 1-2 subsystem reproduces
the perturbation expansion from the bifurcation theory analysis to order izf
Consequently, the branches of solutions originating in the pitchfork bifurcation
at £ =1 in the 1-2 subsystem is tangent to the branch of solutions for the full
system. Below, we first show the behavior of the 1-2 subsystem divides into
two cases depending on whether the pitchfork bifurcation is sub- or super-
critical. We then analyze the behavior of the system in each case.

The proof of blow up from the previous section relies on a comparison principle
in Fourier space; the system (17) is cooperative when the coefficients, /3,4, of all
the nonlinearities have the same sign. In particular, the system is cooperative
when the product (3115_15 is positive. This determines a critical value of £,
k = k. (as a function of A and o) such that when k& > k. the system is
cooperative. Moreover, this condition at £ = 1 is exactly what distinguishes
a subcritical from a supercritical bifurcation; when k. > 1 the bifurcation is
supercritical and when k. < 1 the bifurcation is subcritical. The bifurcation
is vertical for the critical value of A such that A = A, such that k. = 1. Table
1 summarizes these critical values:

16



Table 1: Critical values of A and &

:1 O':—l

Q

Cooperativity (k > k.) ke = /1522 | k= /152

Bifurcation Structure (k.(A;) =1) | A, =1/2 Ae=1/3

The dynamics of the system can now be separated into two cases; the super-
critical case (0 < A < A.) and the subcritical case (A. < A < 1). The features
of each are described in table 2:

Table 2: Dynamical features of 1-2 subsystem

Supercritical vs. Subcritical cases

Bifurcation type Supercritical | Subcritical
Range of A 0< A< | A< A<
Location of &, k.>1 k. <1

Blow up from infinitesimal Absent ke< k<1

amplitude initial data

Blow up from finite k> k. k>1

amplitude initial data

Figures 3a.,b illustrate the supercritical and subcritical cases respectively.

In the supercritical case (Figure 3a), the pitchfork bifurcation at & = 1 pro-
duces a stable branch of periodic solutions for & slightly below 1, while for
k > 1 the zero solution is stable. For £ > k. > 1 the system is cooperative
but requires sufficient large initial data satisfying (19) to produce a finite-time
blow up. At & = k. in the 1-2 subsystem an unstable branch of steady solu-
tions bifurcates from infinity. The Palais theory tells us that finite amplitude
initial conditions will lead to finite-time blow up provided that hy and hy are
in excess of the values along this branch and h,, is non- negative for n > 1.
Note also that as A tends to zero, corresponding to the well-posed Kuramoto-
Sivashinsky limit, that k. tends to infinity suggesting that blow up only occurs
in the corresponding short-wave limit.

In the subcritical case (Figure 3b), the pitchfork bifurcation at k£ = 1 produces
a branch of unstable periodic solutions for & > 1. Here k. < 1. The Palais
theory tells us that for k. < k < 1 non-zero initial conditions will lead to
finite-time blow up provided that h,, is non- negative for n > 1. In addition,
the theory tells us that for £ > 1 finite amplitude initial conditions will lead
to blow up provided that hy and hy are in excess of the values along the
unstable branch produced in the pitchfork bifurcation and h,, is non- negative
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for n > 1. Note that in this region (k > 1) the zero solution is stable and
locally attracting.

Taken together these observations suggest the following picture of the dynam-
ics; for some values of k£ and A almost all initial conditions lead to finite-time
blow up. For other values, small initial conditions are attracted to either zero
or periodic solutions, while some large amplitude perturbations lead to blow
up. Some invariant set must separate the basins of attraction of these two be-
haviors. For the subcritical case the obvious candidate is the unstable branch
of periodic solutions which bifurcates from & = 1 and its stable manifold. For
the supercritical case, the situation is less clear; the well-studied chaotic dy-
namics for the Kuramoto-Sivashinsky problem [3,39,46] suggest that the phase
space is much less orderly in this case.

5 Similarity Solution for the 1D MKS

This section describes properties of a similarity solution for the blow-up profile

of the 1D MKS:
hi + hyy + haypee = (1 — )\)hi + a)\hfm, . (1D MKS)

The self-similarity occurs in the second derivative h,, (the curvature in the
long wave theory), with a simple “first-type’ [5] scaling, in which the power
laws in the blow up of the magnitude of h,, and its characteristic length scale
can be determined by dimensional analysis. This section describes analytical
behavior of the similarity solution. We do not attempt here to prove that this
self-similarity is the typical asymptotic behavior of a finite-time singularity.
However the extremely well resolved numerical simulations of the full PDE,
described in Section 6, suggest this to be a universal form for the blow-up
profile. As we show below, two interesting features of the similarity solution
are that (1) it is symmetric about the blow-up point and (2) there are no free
parameters for either the time dependence or profile of the similarity solu-
tion. We conjecture that this is responsible for the universal blow-up behavior
observed in the numerical simulations. Indeed even singularity formation re-
sulting from non-symmetric initial data still exhibits this locally symmetric
blow-up profile.

We conjecture that this self-similar route to blow up is universal over a large
class of parameters and initial conditions for both the second derivative in the
1D MKS and the amplitude, h, in related equations such as the Sivashinsky
equation that arises in directional solidification [22,48,49,54],

ht + Oéoh + hxx + hxxxx + (hz)xx = 07 (30)
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Cahn-Hilliard type problems with quadratic potentials [23,49],
he + (B2 £ h + hpp)ow = 0. (31)

and the Childress-Speigel equation [19] which is equivalent to equation (31)
after rescaling.

This section is organized as follows. First we propose similarity variables (in
both time and space) and rescale the equation. A self-similar blow-up profile
for h,, then corresponds to a steady solution of a rescaled equation. We dis-
cuss several integrals associated with the similarity equation and in particular
rewrite the rescaled evolution equation as a conservation law to reduce the
steady fourth-order ODE to a third-order equation. The constant of integra-
tion provides a link between the behavior of the solution at the origin and
the decaying behavior in the far-field. A WKB analysis of the far-field be-
havior is instrumental in studying the ODE as a boundary value problem on
the half-line with an appropriate number of boundary conditions. We numer-
ically compute a locally (and perhaps globally) unique solution of the ODE
via a shooting method. Finally, we discuss the behavior of the solution in the
original variables for both h and h,,.

5.1 Similarity variables

Recall that the blow-up Theorem 3 states that the second derivative f,., should
develop a singularity. As the zero mode of h does not affect small scale struc-
ture of the solution, we look for a similarity solution to the evolution equation
for hu,. = p.

Rewriting the 1D MKS in terms of p yields

It the singularity occurs for short length scales and large amplitudes, then
o A(p?)zx should dominate both (1 — A\)k2 and p,,. We now balance the re-
maining three terms to uniquely determine appropriate time and space scales
for the problem. First define a new variable

q(x,t) = Ap(z,1) /0.

Equation (32) then becomes

Gt + Garae — (¢*)ar = @((&2161)2)

The right hand side of (33) contains all the lower order terms that do not
contribute to the similarity solution described below. We propose the similarity

— quz = 0. (33)

T
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solution as an asymptotic behavior locally near the singular point. Hence we
look for a solution to the homogeneous equation

on the line —o0 < 2 < .

The A — 0 limit in the 1D MKS yields the Kuramoto-Sivashinsky equation
for which singularities are not possible. Note that in this limit the first term
on the right hand side of (33) blows up. As shown in Section 4, it is this
term that is simultaneously responsible for the transition from subcritical to
supercritical bifurcation at the critical wavenumber £ = 1 and for the need to
take sufficiently large initial data to obtain finite-time blow up when X is small.
We see this latter effect in the search for a stable similarity solution in that in
order for the RHS of (33) to be lower order, the solution must be large enough
for the LHS to dominate the large coefficient in front of the ((9;'¢)?)..-

We consider a self-similar blow-up solution of the form

[/ A7 (1)

AT (35)

q(x,1) =
Substituting this into (34) and separating variables yields A(t) = (t. — ¢)'/2,
r = 1/2. Rewriting (34) in terms of the similarity variables

r—x,

s=—1In(t.—t) n= a7 Fn,8) = q(a, t)(t.— 1)'/* (36)

gives the following rescaled fourth-order PDE for f,

1
2
which we refer to as the similarity PDE. A steady solution (f(n,s) = F(n))
produces a self-similar blow up profile for the original evolution equation for g.
Plugging the scaling form (35) into the original equation (33) shows that right

hand side terms scale as (f.—t)™', a lower order behavior than (¢.— t)_3/2 for
the terms on the left hand side.

fs+%(f‘|' ):(fZ)nn_fnmm — 00 <1 <00, (37)

As is typical of such rescaled equations, the similarity PDE retains reflection
symmetry about the origin (n — —n), but does not possess the the translation
invariance in the spatial variable of the original equation due to the fact that
we have used a time dependent dilation of space for the rescaling. However,
the various translation symmetries in the original equation transform into
more complicated invariances in the rescaled problem. The subject of these
symmetries and there relationship to the stability of the similarity solution
is beyond the scope of this paper. It would be interesting to know if some of
the similarity variable techniques used to study problems like the semilinear
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heat equation [5,30,31,57] might apply to such higher order nonlinear diffusion
equations as well.

Some information about solutions to the similarity PDE can be obtained by
considering the properties of the unscaled equation (33). In particular, as this
equation takes the form of a conservation law,

¢ = 0: (0o = Qo) - (38)

the similarity PDE takes a related form,

(as + 877%) fes/4 = 65/4677 ((fQ)n - fmm) ) (39)

where the differential operator on the left hand side computes the time rate of
change with respect to the new time s of a quantity including a contribution
from the dilating coordinate 7.

Integrating this conservation law over the entire line tells us that the total
area of ¢,

lo=["qde, (40)

which is conserved, is related to the total area of f by
/OO fdny = eI, (41)

Conservation of the integral of ¢ implies that any steady solution F' of the
similarity PDE must have zero area and therefore obtain both positive and
negative values (cf. Figure 4).

Since equation (34) is an evolution equation for the second derivative of a
potential, the evolution of the first moment, (z — x.)¢ can also be written as
a conservation law,

(= 22)q), = 0 (2 = 2)(@) = 4" = (¢ = @) owms + o) - (42)
The related form for the similarity equation (37) is
<8S+&7%) nf =0, (n(fz)n —f? _77f777777‘|’f7777) : (43)

The definition of the similarity variables (36) implies that the first moments
of both ¢ and f are equal and conserved,

]1:/00(:1;—:1;c)qd:1;:/_(:77fd77. (44)

— 00
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Note that symmetric solutions have vanishing first moment but that solutions
that decay like 7% in the far field, as in the case of our similarity solution,
have divergent integrands in (44).

5.2 Steady solutions to the similarity PDE

We now look for steady solutions of the similarity PDE to obtain similarity
solutions describing the asymptotic behavior of blow up.

We integrate once the time independent version of the conservation form (43)
to yield the following third-order ODE for the similarity profile,

2
n

ZF+F2_U(F2)U+77F777777_F7777:C‘ (45)
Evaluating (45) at n = 0 produces a relationship between the integration
constant C' and the boundary values at n = 0,

C = F*(0) — F,,(0). (46)

We can match the similarity profile to the integral order behavior away from
the singular point by finding a far-field solution invariant under the similarity
rescaling (36). This leads us to look for a solution F' of (45) that decay like p~2
as |n| — oo. Examination of (45) shows that this decay must have a leading
order behavior of 4C'/n?.

To understand this behavior of (45) at infinity, we linearize this equation and
apply a WKB analysis. The linear equation

2
n

77F777777_F7777‘|'IF:C (47)

has a particular solution and three homogeneous solutions. For large |n| the

particular solution, Fp, has a regular Laurent expansion in inverse powers of
244n
U

o0

1C Cn
Fp(n) = o + Z_:l pEawTy (48)

WKB methods! applied to the homogeneous solutions F,,n = 0,1,2 yield
L Alternatively, the homogeneous solution can be transformed into a hyper-Airy
equation by the change of variables ¢ = F,,,,/n and an integral representation can

be found by a generalized Fourier transformation leading to a complete asymptotic
expansion for F.
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the asymptotic behavior for large n [7],

- 271
Fy() ~ PPt~ exp(n =) ()

Note that F; and F, grow exponentially; consequently, for the solution to
remain bounded we specify that that

F(n) = Fp + b F, as n — too, (50)

corresponding to two boundary conditions at n = d+oco. We note that the
nonlinear term introduces a 1/n* correction to Fip and higher-order corrections
to the asymptotic expansion of Fj, which may be safely ignored.

At first glance the problem seems over-specified, with four conditions (two each
at +00) on a third-order equation. However, we have neglected to consider the
reflection symmetry. Two possibilities exist for the solution; a symmetric so-
lution invariant under (7 — —n) or a non-symmetric pair of solutions mapped
into each other by (n — —n). The non-symmetric case is indeed over specified,
and we consider it unlikely that such a solution exists. However, the symmetric
case yields only a single boundary condition at the origin,

F,(0) =0, (51)

yielding a total of three boundary conditions on a third-order ODE. Note that
the values of F' and its second derivative at the origin determine C' through

(46).

Recapitulating, this suggests the existence of a locally (perhaps globally)
unique steady solution to the third-order ODE (45) that is symmetric about
the origin, and decays in the far-field as 4C'/n?. We numerically compute such
a solution using a shooting method to yield the profile in Figure 4. In the
next section we show that this solution has exceedingly good agreement with
the blow-up profiles observed in our numerical solutions of the full 1D MKS
equation.

The shooting method uses an iterative procedure to search for the special
values of F'(0) and F,,(0). We integrate the non-linear ODE until its norm
grew above a threshold, then linearize the equation and integrate a fixed dis-
tance further and project the solution onto the growing modes F; and F3.
An underrelaxed Newton-Rapheson method eliminates the growing modes in
the far-field. Since this method converges only locally in parameter space, the
initial guess for F'(0) and F,,(0) come from the numerical simulations of blow
up in the 1D MKS. The far-field behavior of the ODE shows extreme sensitive
dependence on initial conditions; the values of the initial condition need to
be specified to a tolerance of 107 to suppress the growing modes at n = 20.
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Numerically, we find that
F(0) = —2.168965546 F,,(0) = 2.694018654 (52)
which implies that the constant of integration in (45) is
C = C = 2.010392886. (53)
Figure 4 graphs a profile of the steady solution.

The numerical evidence for the existence of this solution is convincing, coming
from both the numerical solution of the 1D MKS and the steady solution to
the similarity equation found with the shooting method. Indeed all our obser-
vations of a finite-time singularity exhibit precisely this asymptotic behavior.
However, a proof of the the existence and in particular the uniqueness of this
solution remains an open question.

5.3  Behavior of the interface near singularity

We now discuss the expected behavior of the profiles for ~ and h,, if the above
similarity solution describes the asymptotic blow-up behavior.

In the far-field, the steady similarity solution takes the form

4C | 160C(3 —20)

F(n) e 7 for In| > 1. (54)

Transforming to the original (x,t) variables gives
t.—1
(x — a.)8

for (t.—t)Y* < |z — x| < 1. (55)

e _ _
gz, 1) ~ 702 + 160C (3 — 2C)

(x — a.)

Note that ¢(x,t) converges pointwise to the function 4C'/(x — x.)? in a neigh-
borhood of the singularity.

The amplitude A(wx,t) must satisfy h(z,t) = h(t) + £0;%q(x,t) where h(t) is
undetermined by the evolution equation for ¢. To compute this time depen-
dence consider h(x,1) at the tip of the singularity; define

h(t) = h(ze,1). (56)

Plugging the similarity solution into the equation for h gives
Et = _hxx(xcv t) - hl’l’l’l’(xcv t) + U)\h?m,(l'c, t) + (1 o )‘)hl’(x“ t)z
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oC
~—— t, — 1)~ V? f t,—t< 1.
TR O ((t.—1)7'1?) or < (57)

Hence
. o0
h(1) ~ ho — == In(t: = 1) + O ((te—1)"72) (58)

where hq is a constant of integration determined by the initial front location.

The similarity profile in the neighborhood of the singularity now provides the
complete asymptotic behavior for the amplitude, .

h(z,t) ~ A/ dn/ (59)

The double integral can be evaluated in the far-field of the singularity using
the far-field expansion (55), and the fact that the area under the similarity
profile vanishes (cf. 41),

41Co t.—1t
R A (R )
for (t. — )1/4 L e — 2| < 1, (60)
where the constant Cy is given by
Co = ho + 2 Jim {/ dy' / n")dn" + 4ClnL} (61)

In summary, the amplitude h(x,t) blows up like In(f. — ) at the point of
singularity, x. (cf. 58). The amplitude in the neighborhood of the singularity
converges pointwise to a profile like In |z — .| (cf. 60). In the next section
we show numerical simulations of the PDE which show quite clearly that the
blow up has precisely the behavior described here in the limit as ¢ — t..

6 Numerics

This section presents results from numerical simulations of the finite-time blow

up in the 1D MKS:
B + huw + Boger = (1 — A2 + 0 ARZ . (1D MKS)

The code used here is an adaptation of a code used in [11-13] to study sin-
gularity formation in degenerate fourth-order equations. The main features of
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the code are that it is an implicit finite difference scheme with a self-similar
dynamically adaptive mesh for extremely high resolution of the singularity
and its scaling structure. The details of the numerical method are presented
in the appendix.

We considered values of A ranging from 0.1 to 1 and a number of different
initial conditions. All of the finite-time singularities observed have identical
self-similar profiles in a neighborhood of the singular point as ¢ — ¢.. These
singularities are observed for some initial conditions not included in the con-
ditions in Theorem 3. Moreover, even when the initial data is not symmetric
about the point of blow up, the singularity exhibits the same local symmetric
similarity solution seen in the cases where the initial data is symmetric. These
results suggest that this similarity solution is a universal behavior for blow up
in these equations.

Since all the blow-up profiles are identical, we present data from just one case
with A = 1 on the periodic domain [—4,4]. The initial condition (at £ = 0) is

h(x) =2+ 4cos(wa/4) + 2cos(ma/2) + %COS(TFQ?)

and blow up occurs at the origin at roughly #. = 0.02415. The profile over
five spatial periods is shown in Figure 5. The profile has a form reminiscent of
direction solidification; a series of fingers are separated by deep roots. Figure 6
shows a close up of the singularity as it forms. At @ = 0 the amplitude, h(x,1),
goes to infinity as the log of the time to singularity (cf. 58). Near the singularity
h(z,t) converges pointwise to to —4Cln|z|. As the singularity occurs in a finite
time, the regions far from the singularity (i. e. the tip of the finger) remain in
a transient phase and do not reflect a long time character of the system. Some
profiles are convex, while some such as that shown in Figure 5 may have a
second local maximum.

The second derivative, h,,, which approximates the curvature in the near-
planar limit, exhibits the self-similar behavior described in the previous sec-
tion. Figure 7 shows h,, near the singularity time. Although the figure resem-
bles the similarity profile (Figure 4), note that length scales depicted on the
axes in Figure 7 indicate that this is a small scale structure very close to the
singularity time. We confirm that the evolution approaches the universal sim-
ilarity profile by rescaling amplitudes and widths. Figure 8 depicts nineteen
orders of magnitude of rescaled data with excellent agreement to the solution
F(n) of the similarity ODE. In accordance with the change of variables defined
by (36) the similarity width is computed by multiplying by (h...(0)/F(0))/2.
The amplitude of A, is rescaled by dividing h,.(x) by hy(0)/F(0). Since the

solution shown here is symmetric, only values for = > 0 are shown.

In addition to confirming the similarity profile, we can directly verify that the
blow up exhibits the time dependences (both power law exponents in (f. — t)
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and prefactors) predicted by the similarity solution. Figure 9 examines the
time dependence of h,,. Pictured are computed values of log,, |h,-(0)]/F(0)
vs. logyo d(|hz(0)]/F(0))/dt. The solid line is a plot of the same data for the
function h,,(0,t) = F(0)(t.—1)~"/? as predicted by the similarity solution (cf,
36). Note that there are no free parameters with which to fit this data.

The similarity solution predicts that the amplitude at the blow-up point,
h(0,1), should grow as the natural log of the time to singularity (cf. 58),

h(0,t) ~ ho — C'ln(t. — 1) + O ((t. — 1)'/?) (62)

Figure 10 shows this blow up for the solution to the 1D MKS. Since the
previous figure demonstrates that 2In|h,.(0)/F(0)] ~ —In(t. —t) It is conve-
nient to study the time dependence of the blow up in & by plotting it against
2In|h;-(0)/F(0)]. A linear fit to the data shows a slope of approximately 2.015,
which agrees quite well with the slope of C' ~ 2.010 predicted by the similarity
solution.

The numerical study presented here clearly demonstrates that the blow up
observed conforms to the asymptotic theory for the first-type self-similar blow
up presented in the previous section. Although we have presented a detailed
study of only one evolution, our numerical studies suggest that this blow up
study is generic over a large range of parameters and initial conditions.

7 Conclusions

This paper addresses the question of finite-time singularity formation in a
modified Kuramoto-Sivashinsky equation,

Bt V2h 4 V= (1= A)[VA[ + oA (V2R) + 6A (hushy, — B2,)

in one and two space dimensions on a periodic domain. Using the Fourier space
method of Palais [50] coupled with the continuation Theorem 1 we prove that
for certain ranges of parameter space and period length, there exist initial
conditions that yield finite-time singularities in which a second derivative of
the amplitude blows up. Focusing on the one-dimensional problem, we (1) elu-
cidate a relationship between the parameters and initial conditions for which
blow up occurs and the bifurcation structure of spatially periodic solutions to
the equation and (2) propose a similarity solution for the asymptotic behavior
of the blow up in h,,.

The picture of the dynamics emerging is that in the Kuramoto-Sivashinsky
limit (A tending to zero) small and moderate amplitude initial conditions are
attracted to some bounded attractor while sufficiently large initial conditions
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lead to finite-time blow up. For A greater than a critical value, associated
with the transition from super to subcritical in the pitchfork bifurcation dis-
cussed in Section 4, arbitrarily small initial conditions can lead to finite-time
singularities.

The similarity solution associated with this blow up has three important fea-
tures: (a) it is symmetric about the blow-up point, (b) it is of ‘“first type’ so that
the similarity scalings may be determined from dimensional analysis, and (c)
it has no free parameters. We confirm this behavior as an apparently universal
route to blow up via numerical simulations of the 1D MKS. The numerics use
a dynamically adaptive self-similar mesh for extremely high resolution of the
blow-up profile.

This paper is to our knowledge the first to study the asymptotic behavior of
blow up in equations of this type. The combination of the blow-up results
with the bifurcation analysis here and in [53] is a first step in obtaining a
complete understanding of the complex structure of solutions to this problem.
We believe the similarity profile should also describe blow up in the related
Sivashinsky equation which describes directional solidification [22,48,49,54]
and the quadratic Cahn-Hilliard equation [23,49] which models clumping of
microorganisms [19].

Some interesting open mathematical problems raised by the work here include
a rigorous existence proof and a stability analysis of the similarity solution
introduced here and the asymptotic behavior of blow in the 2D problem. Also
the blow-up Theorems 3 and 4 prove a singularity in the second derivative of
h however the similarity solution shows a logarithmic blow up in A itself. We
conjecture that a sharper result is true.

The MKS equation describes the near-planar limit of an intrinsic equation
of motion (1). We believe that the blow up in the MKS driven by the term
(V2h)? corresponds to an analogous blow up in (1) driven by the curvature
squared term, K? [10]. The blow up in h (cf. Figure 5) corresponds to the
formation of deep roots between ‘fingers’ of one phase. Presumably, when the
width of a root becomes comparable to boundary layer thickness any local
description of the dynamics breaks down and the full governing equations
need to be considered. One possible treatment of this problem is to look for
a local defect solution that matches to a solution to the amplitude equation
far from the singularity. For example, in models of spiral defects in excitable
media, the intrinsic equation of motion breaks down at the spiral core, where it
can be matched to a local defect solution for the core [9]. A possible candidate
for this local defect for the blow up considered here is the asymptotic model
of a root between directional solidification fingers of Brattkus [14]. It is our
hope that the study presented here will lead to a better understanding of the
morphology of the formation of these structures.
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Appendix: An Adaptive Mesh Scheme for Singularity Formation

Is this appendix we describe a self-similar adaptive mesh numerical method
design to capture singularity formation; this code is an adaptation of a code
used in [11-13] hence some of the language comes from these sources. The
simulations use a conventional finite difference method. It is an implicit two-
level scheme based on central differences.

The simulations are on a domain [—[,{]. The solutions are symmetric about
x = 0 hence the equation is solved on the interval [0, (], discretized by the N
mesh points,

D=1 <9< ... <y =1.

At each computational time level the arrays h; and p;, ¢ € [1,..., N], approxi-
mate h(xz,t) and —h,,(x,1), and v;, 7 € [1,..., N — 1] approximates hy.(x,1).
The h; and p; values exist at the point x;, while v; is the computed third
derivative at the center of the interval, (; + x;41)/2. The following picture
depicts these associations:

€; U5 Tipq
h; it
Pi Pi+1
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Using the notation:

i+35 i—5
h¢+% =5 (higr + hi),
Ohi =(hizr — hi1) /(i1 — 2i1),
hiiy — h;
Oh,1 :ﬁ,
gy et~ Ot
e Ax; ’

The following describes the spatial discretization of the equation. Discretize
the spatial operators by

(hi)t + T +pi — (1 - )\)(ahz)z - )‘p? =0, (63)
vi+ Op, 1 =0, (64)
p; + 82hi =0. (65)

The calculations presented here use symmetric initial data so that periodic
boundary conditions can be imposed by reflection symmetry at the endpoints.

The time discretization of the above set of differential-algebraic relations uses
a simple two-level scheme. In advancing from time ¢ to time ¢ 4 dt a difference
quotient replaces the time derivative term. The difference quotient involves
the solution at the old time level (time ¢) and the as yet unknown solution
at the new time level (time ¢ 4+ dt). The other terms in the equation use a
weighted average of the solution at the two time levels; a typical weight is
6 = 0.55 on the advanced time level and 1 — 8 = 0.45 on the old time level:

oh

5 =N

would yield

% (hilt + dt) — hi(t)) = N (0.55h(-,t + dt) + 0.45h(-,1)).

At each time level, the code uses Newton’s method to solve the set of nonlinear
difference equations. By choosing an appropriate ordering of the 3N — 1 equa-
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tions (63-65), the Jacobi matrix has its nonzero entries close to the diagonal.
For this reason, the use of Newton’s method is not a prohibitive expense.

The length of the time steps adapts during the computation to control several
aspects. If the result of the time step violates any of a list of constraints,
it rejects the step and tries again with a smaller step size. To avoid using
unnecessarily short time steps, if the the computation easily meet all the
constraints for several steps, it increase the step size by about 20% on the next
step. The first constraint comes from local time truncation. Another constraint
rejects any step for which the maximum of |A,.| increases by more than 10%.
Furthermore the correction on the first iteration of Newton’s method must
be a small fraction of the change over the step, where the initial guess at the
change was the change over the previous step, corrected for any difference in
dt’s. Hence the method can solve the equations (63-65) in only one Newton
iteration per time step, if desired.

The key part of the simulations needed to produce such high resolution of the
singularity is a dynamically adaptive regridding scheme.

Self-similar adaptive mesh scheme

The method is straight forward and much simpler to implement than for in-
stance the ‘dynamic rescaling’ proposed in [43,44] or the rescaling algorithm

of Berger and Kohn [8].

In addition to ease of implementation this method is extremely efficient since
it requires only O(]|logr|) mesh points to resolve a self-similar singularity to
a width r. The computation described below took only a few minutes to run
on a Sparcl0 in double precision.

The method described here assumes a singularity at the origin. However, it
can be generalized to a singularity at another point or a moving singularity.
Initially start with a fixed mesh. The computation presented here uses an
initial grid of 2'° = 1024 uniform intervals. A second parameter is the number
of grid points desired to resolve the singularity scale. In this calculation, this
length scale is given by

§ = (max|hg,|)

which can be thought of as the minimum length of the radius of curvature
in the long wave limit. The calculation presented here uses 64 mesh points to
resolve this length scale. When 6 decreases to a width spanned by only 64 mesh
points, the algorithm divides the first 64 intervals in half and defines this to be
the new mesh. This division process is then repeated as the singularity forms,
introducing 64 new mesh points with each regridding. This can be repeated ad
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infinttum with only logarithmic dependence of the number of mesh points on
the smallest scale resolved. Moreover, in this special case where the singularity
occurs at x = 0, the fact that intervals are always halved exploits the binary
arithmetic of of the computation and hence computes dx to infinite precision.

The simulation presented here goes through 55 levels of regridding, produc-
ing 3520 new points. Hence the smallest dz at the end of the simulation is
dx = 27% . The values of h at each new mesh point are computed by linearly
interpolating h,, (computed from simple three point central differencing). The
third derivative h,,,, stored as a separate array throughout the calculation, is
computed by linear interpolation.
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Intrinsic Equation of Interface Motion

Liquid

Solid

Fig. 1. Intrinsic Equation of Interfacial Motion. The interface between two phases,
here denoted solid and liquid (as in solidification) moves with normal velocity, V,
at each point on the interface. The purely local dynamic coupling between points
on the interface and the isotropy of the system suggest that only local geometric
properties of the interface, such as the mean and Gaussian curvature, determine the
velocity of the interface.
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Periodic Solutionsto 1D MK S
o=1
10

Fig. 2. Bifurcation of periodic solutions to the 1D MKS. We use a shooting method
to compute the branch of periodic solutions bifurcating from k£ = 1. The amplitude
between maximum and minimum height (hqs — Amin) is graphed as a function
of wavenumber (k) for different values of A. Note that for A < A. (A > A. ) the
bifurcation is supercritical (subcritical) to a branch of solutions that are stable
(unstable) at small amplitudes (to perturbations of the same periodicity); the stable
(unstable) branch is denoted by a solid (dashed) line. At A = A, the bifurcation is
vertical at leading order in the center manifold theory (dash-dot). (a) Bifurcations
for o = 1. Note that when A = A. = 1/2 the bifurcation is perfectly vertical
corresponding to a known exact (time dependent) solution. (b) Bifurcations for
o = —1. Here A\, = 1/3; in this case the branch eventually veers off to larger k
indicating instability.
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Periodic Solutionsto 1D MKS
o=1
10

Fig. 2. (b) For caption see previous figure.
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Steady states: 1-2 Subsytem
A<M,

Fig. 3. Steady solutions to the 1-2 subsystem. (a) Supercritical case (A < A.). Here
the bifurcation to periodic solutions is supercritical and tangent to the bifurcation
in the full problem. The system is cooperative for &k > k. > 1. At k. a branch of
unstable solutions bifurcates from infinity. Initial conditions that start “above” (in
the sense of Theorem 3) this branch will tend to infinity, reflecting finite-time blow
up in both the 1-2 subsystem and the full problem.

39



Steady States: 1-2 Subsystem
ASA

10

Fig. 3. Steady solutions to the 1-2 subsystem. (b) Subcritical case (A > A.). Here
the bifurcation to periodic solutions is subcritical and tangent to the bifurcation
in the full problem. The system is cooperative for & > k., but in this case k. < 1.
For k. < k < 1, a class of initial conditions of arbitrarily small amplitude leads to
finite-time blow up in both the 1-2 subsystem and the full problem; for & > 1, initial
conditions that start “above” (in the sense of Theorem 3) the unstable branch will
also lead to finite-time blow up.
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Similarity Profile for 1D MKS

Fn) -1 | .

-20 -10 0 10 20

Fig. 4. Self-similar profile for blow up. A steady solution F(7) to the ODE (45)
describes the similarity profile for blow up in the second derivative h,, of the am-
plitude. The solution is symmetric, obtains both positive and negative values, and
tends to zero like 4C'/n? for large |7|.
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Blow Up inthe 1D MKS
A=1

300

250 |

200

h(x,t) 150 |

100 |

S0

-20 0

Fig. 5. Blow up of a periodic initial condition (A = 1). Typical profiles for a periodic
initial condition as a function of time are shown. Note that the blow up occurs
pointwise, reminiscent of the deep root formation between fingers often seen in
directional solidification.
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Close Up of Blow Up in h(x,t)

A=1
300
200 | :
h(x,t)

100 } :

O . . . ! . . .

-0.01 0 0.01

X

Fig. 6. Close up of the singularity formation (A = 1). The height, h(z,t) grows
monotonically in time and develops a singularity at z = 0. The maximum height
blows up as the log of (t. —t). Near the singularity the profile converges pointwise
to —4Cln|z|.
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Curvature (h ) Close to the Singularity Time
self-similar profile

let27 | 1

-let+27

h,, (x.t)
-3e+27 | .

-5et+27 | U f

Ter27 L— —
4613 2613 0 2613 4e-13

Fig. 7. The curvature blow up close to the singularity time with A = 1. Note the
extreme magnitude of the scales. The profile clearly depicts the universal similarity
shape (compare Figure 4).
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Agreement of h,, with Similarity Solution
A=1

Similarity solution
© rescaled data, h (0)= 28X1O
o rescaled data, h (0)= 41X1O
< rescaled data, h (0)= 61X1O
» rescaled data, h (0)= 1.2X10%

h,, (X)F(0)/h (0)

3 ‘ ‘ ‘ ‘ ‘ ‘

&

0 5 10 15
x(h, (0)/F(0))"?

Fig. 8. Rescaled h,, over nineteen orders of magnitude. The data is rescaled to
similarity variables by multiplying & by (h,.(0)/F(0))"/? and h,, by F(0)/hy.(0),
where F'(0) is fixed by the similarity solution. As the solution is symmetric only
values for > 0 are shown. The data shows excellent agreement of the blow up
profile with the similarity solution (solid line graphed above) from Section 5.
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log,,({ d/dit} |n,, (0,)/ F(O)])

Time dependence of h_ (0,t)

h (0,t) vs. {d/dt} h_(O,t)

O data |
h, (0.H)=F(0)(t )™

10 20
log,,|n, . (0,t)/F(0)]

30

Fig. 9. Time dependence of hy,(0,¢). Pictured are computed values of
log10|hes(0,1)/ F(0)] vs. logrod|hey(0,1)/F(0)]/dt compared with the predicted value
from the similarity solution. Near blow up we expect h,,(0,t) ~ F(0)(t. — t)~*/2,
s0 there are no free parameters with which to fit the data to the similarity solution.

46



h(O,t) vs. Inlh, (O,t)]

A=1
O data
— fit to data, lope = 2.015
200 |
h(O,t)
100 |
O . | . |
0 50 100

2 Injh, (0,t)/F(O)]

Fig. 10. Logarithmic blow up of height. Pictured h(0,¢) vs. 2In|h;,(0)/F(0)|. Recall
that |h;(0,t)/F(0)| ~ —In[t. — t]) (see e.g. Figure 9). By plotting h(0,¢) against
2In|hy(0)/F(0)] we show that A(0,¢) blows up as the natural log of (¢, —t). The
slope of 2.015 from a linear regression of the data agrees quite well with the expected
value C' & 2.010 from the similarity solution.
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