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1 IntroductionProblems of thermodynamic phase transition arise naturally in solidi�cation,combustion and a host of other �elds. If the transition region between two sta-ble states is su�ciently narrow, the dynamics can often be approximated by aninterface motion [25,51]. Examples include the solid/liquid interface in solid-i�cation [22,41,42], the combustion front separating burnt and unburnt com-bustants [25,45,51], and the motion of heteroclinic fronts connecting steadystates in reaction-di�usion models [10,25,52].One method of attack for these problems is to asymptotically reduce the par-tial di�erential equations governing the constituents in each phase to a simpleequation of motion for the interface. If the system is isotropic, it is reason-able to expect that the normal velocity of the interface depends only on localgeometrical properties, such as curvature (cf. Figure 1). In the early 1980'sLanger [6,42] and Brower et al [15,16] introduced such an intrinsic equa-tion of motion to model solidi�cation. Their initially heuristic derivationprompted the study of formal asymptotic methods for the derivation of theseequations.The basic assumption that allows a reduction to interface dynamics is thesmallness of the scale of variation of the constituents transverse to the interface(i.e. the boundary layer thickness) compared to the characteristic scale ofvariation along the interface. Denoting this ratio by �, for small � we obtain aperturbation expansion for the normal velocity of the interface, V ,V = � + �(�K) + �2(�K2 + �Q) + �3r2sK +O(�3K3; �4): (1)Here K is the mean curvature, Q is the Gaussian curvature, r2s is the sur-face Laplacian and �; �; �; �;  are constants determined by the perturbationexpansions. Note that at order �n the contribution to the velocity scales like(length)�n and that the terms appearing are isotropic descriptions of the localgeometry of the surface.Perhaps the �rst derivation of an equation of motion of this kind was thereduction of a one-component, symmetric, bistable reaction/di�usion modelto an interface motion by mean curvature by Allen and Cahn heuristically [2]and more recently via matched asymptotics [52] and through the notion ofa viscosity solution [18,24]. In this case only the curvature term in (1) hasa non-zero coe�cient and � > 0, in the �! 0 limit. Note that � > 0 corre-sponds to curvature acting as a stabilizing inuence; short-wave perturbationsto the front are di�usively damped. The �rst two terms of this expansion, with� > 0, have been derived in the context of a one-component, bistable, reac-tion/di�usion systems; phase �eld models of combustion; and in models ofexcitable media [9,25,38,52,55]. In this case, a Burger's equation governs the2



amplitude of near planar interfaces [33,58], and once again perturbations tendto be smoothed over long times.When curvature is marginally destabilizing (� < 0; j�j � 1) it is possible toasymptotically balance this termwith higher stabilizing terms in the expansionof the normal velocity. In particular, if  < 0 short-wave perturbations toplanar interfaces are damped. This observation motivated the derivation of thisequation (1) by Sivashinsky & Frankel in the context of combustion [27{29].The same equation was derived in the context of solidi�cation of a hypercooledmelt by Frankel [26,27], Umantsev & Davis [56], and Sarocka & Berno� [53].This equation can also arise for the motion of an interface in multicomponentbistable reaction/di�usion equations [10].Frankel observed that for near planar solutions the intrinsic equation of motionreduces to the Kuramoto-Sivashinsky (KS) equation when the curvature termis marginally destabilizing. Here, we derive a more general amplitude equationby considering the near planar case when both � and � may be small. FollowingSarocka & Berno�, denote the location of the interface by z = ~h(~x; ~y; ~t) + �~t,where jr~hj � 1. In terms of this coordinate system V;K;Q and r2s to leadingorder satisfy:V � ~h~t � �2 jr~hj2; K � r2~h2 ; Q � ~h~x~x~h~y~y � ~h2~x~y; r2s � r2 : (2)Here r and r2 denote derivatives with respect to the (~x; ~y) coordinates.Rescaling the coordinates to balance leading order terms,~t = �2�2 t; (~x; ~y) = �r� (x; y); ~h = �h�� + � �2 ; (3)yieldsht+r2h+r4h = (1��)jrhj2+�� �r2h�2+ �� �hxxhyy � h2xy� (2D MKS)where � = sgn(��) = �1;� = �� �2�� + � �2 ; 0 � � � 1; (4)� = ��4�� ; �1 < � <1:This paper addresses singularity formation in this two-dimensional modi�edKuramoto-Sivashinsky equation (2D MKS). This rescaling is valid in the limitj�j ! 0 ; note that if j�j � � that �! 0 recovers the standard KS equation.3



The distinguished limit of both � and � tending to zero, with �=� � O(1),yields the terms proportional to (r2h)2 and hxxhyy � h2xy in the near planartheory (2D MKS); these terms are generated from the K2 and Q terms in theintrinsic equation of motion (1) respectively. As we show below it is the e�ectof the (r2h)2, not present in KS, that drives the �nite-time blow up.We also consider the one-dimensional version (1D MKS) of (4); if h(x; y; t) =h(x; t) then we obtainht + hxx + hxxxx = (1� �)h2x + ��h2xx : (1D MKS)We present calculations of the 1D MKS on a periodic domain and show thatthe singularities all exhibit self-similar structure in hxx.The question of �nite-time blow up has appeared briey in the literature.Hocherman and Rosenau [35] discuss a large class of KS-type equations inone dimension and conjecture that a subclass with a suitable second-ordernonlinearity, including the 1D MKS with � = 1, yield a �nite-time blow up.Hyman et al [36] discuss numerical simulations of a modi�cation of the 1DMKS with � = 1 and note that blow up does occur for certain initial data.However, their calculations seem to show only the early stages of the onset ofthe singularity and in particular do not discuss a similarity pro�le. Elliot andZheng [23] prove blow up in the one-dimensional Cahn-Hilliard equation witha cubic nonlinearity. Their method would work for the 1D MKS with � = 1if the term h2xx were replaced with h3xx. Furthermore, Novick-Cohen [48,49]discusses the blow-up problem for an equation corresponding here to the case� = 0, � = 1 in both one and two dimensions. She shows that a blow up in themagnitude of a second derivative is necessary for singularity formation andpresents one family of initial conditions in one dimension that guarantee blowup. Our analytical results slightly sharpen this necessary condition for blowup and extend the proof to the case where � 6= 1 (necessitating the use of someideas from the KS theory) and also to the case of nonzero �. Furthermore, weconsider the coupling of the �rst two Fourier modes in proving blow-up resultsand hence can draw parallels between bifurcation of steady solutions and theexistence of �nite-time blow up.We briey mention some related work on blow up in other nonlinear parabolicequations. A well known example is the second-order semi-linear heat equationfor which the use of similarity variables provides much insight [30,31,57]. Wemention that Budd et al [17] consider this equation with a conserved �rstintegral and use the Fourier space method considered here to prove �nite-timeblow up. There has also been some recent work on singularity formation indegenerate fourth-order problems [11{13] in which the nonlinearity producesa `second-type' [5] self-similar singularity in which the solution extinguishes ata point (h! 0 ) and the blow up is in a higher derivative. We also point outthe well known problem of self-similar blow up in the nonlinear Schr�odinger4



equation [43,44].This paper is organized as follows: In Section 2 we present a proof that thesolution to the MKS exists at least for a �nite time and that if blow up occursit is governed by a singularity in the second derivative of the amplitude. Wethen use, in Section 3, the Fourier method of Palais to provide su�cient con-ditions on the initial data to guarantee such a blow up. Section 4 discusses therelationship between the Palais blow-up proof and a bifurcation theory analy-sis of steady solutions. In Section 5 we demonstrate that a similarity solutionexists describing self-similar �nite-time blow up in the second derivative. InSection 6 we present numerical computations con�rming this self-similar blowup scenario. We summarize our results in Section 7 and discuss their impli-cations for the full intrinsic equations and the physical problems they model.In the appendix we describe the self-similar adaptive mesh scheme used tonumerically study singularity formation in the 1D MKS.2 Existence and Continuation of SolutionsIn Section 3 we present su�cient conditions on the initial data to insure �nite-time singularities in the 2D MKS,ht +r2h +r4h = (1� �)jrhj2 + �� �r2h�2 + �� �hxxhyy � h2xy� :To prove these results we use the method of Palais which makes use of acomparison principle in Fourier space. In certain parameter ranges, the equa-tion preserves the sign of the Fourier coe�cients, hence blow up in a �nite-dimensional subsystem is su�cient to prove blow up in the full PDE.However, to correctly use this method we must �rst establish a continuationresult for the equation. As pointed out in the eloquent paper by Ball [4] andalso by Palais [50], a common error in using any comparison technique toprove blow up is to assume that the behavior of the comparison system is whatactually drives the singularity. In fact the comparison principle holds only on atime interval on which the solution exists. For example, the singularity in thePDE might occur before the blow up in the subsystem and might not exhibita singularity in the quantity which blows up for the subsystem. Indeed ournumerical results in Section 6 demonstrate that this is the behavior for the 1DMKS since the Fourier modes remain bounded as the singularity forms. Wecaution all readers that a suitable continuation theorem is necessary before avalid proof of blow up can be established. To this end we prove the followingtheorem:Theorem 1 (Necessary condition for blow up) Consider the 2D MKS equa-5



tion with initial condition h0 2 H3+�(S2), � > 0 . Then there exists a maximalinterval of existence [0; T �) (with T � possibly in�nite) and a unique solutionof the 2D MKSh(x; y; t) 2 C1(0; T ;C1(S2)) \ C1([0; T ];H3+�(S2)); 8T < T �with h(x; y; 0) = h0(x; y). Moreover if T � <1, then necessarily R t0 jD2hj2L1dt!1 as t! T �.Notation: in the above we use jD2hjL1 to denote the L1 norm of the Hessianmatrix of the amplitude h.Remarks: The theorem also holds for the 1D MKS as well; the proof can bemade simpler. The � in H3+� is necessary only for the proof in two dimensionsand results from the fact that the Sobolev space Hm is a Banach algebra onlyfor m > n=2.Proof. We prove the theorem in two steps. First we appeal to an abstracttheorem for semilinear parabolic equations to establish the local existence anduniqueness results and maximal interval of existence with a weaker blow-upcondition. Then we prove the stronger blow-up condition via Sobolev spaceestimates and a standard Gronwall inequality.We use the following abstract theorem for existence and continuation of asolution of a semilinear parabolic equation. The reader is referred to Ball [4]for more details:Theorem 2 (Ball [4]) Consider the equation_u = Au+ f(u) (5)where A is the generator of a holomorphic semigroup S(t) of bounded linearoperators on a Banach space X. Suppose that kS(t)k �M for some constantM > 0 and all t 2 R+. Under these hypotheses the fractional powers (�A)��can be de�ned for 0 � � < 1 and (�A)� is a closed linear operator withdomain X� = Domain((�A))� dense in X. Let f(u) be locally Lipschitz, i.e.for each bounded subset U of X� there exists a constant CU so thatkf(u)� f(v)k � CUku� vk� 8u; v 2 U:Then given u0 2 X, there exists a �nite time interval [0; t) and a uniquesolution to (5) with u(�; 0) = u0 on that time interval and the solution canbe continued uniquely on a maximal interval of existence [0; T �). Moreover, ifT � <1 then necessarily limt!T � ku(t)k� =1:6



We directly apply Theorem 2 to the 2D MKS with � = (3 + �)=4, A = �r4,X = L2(S1) andf(u) = �r2u+ (1� �)jruj2 + �� �r2u�2 + �� �uxxuyy � u2xy� :Then X� = H3+� andkf(u)� f(v)kL2 � ku� vkH2 + C(�; �)(jD2ujL1 + jD2vjL1)ku� vkH2+ (1��)(jrujL1 + jrvjL1)ku� vkH1 � C(kukH3+� + kvkH3+�)(ku� vkH2):Hence f is locally Lipschitz continuous on H3+�. The direct application of thetheorem implies that a solution exists on any time interval in which the H3+�norm is controlled.We now �nish the proof of Theorem 1 by showing that the H3+� norm is apriori controlled by jD2hjL1. (Recall that this denote the L1 norm of theHessian matrix of h).The proof uses some ideas from [47] for the Kuramoto-Sivashinksy equation.We haveddt 12 Z h2 = � Z jr2hj2 + Z jrhj2+ (1� �) Z hjrhj2 + �� Z hjr2hj2 + �� Z (hxxhyy � h2xy)h: (6)Note thatddt 12 Z jrhj2 = ��� Z (r2h)3 + Z jr2hj2 � Z jr3hj2� 2(1 � �) Z h2xhyy � �� Z (hxxhyy � h2xy)r2h (7)implies ddt 12 Z jrhj2 � C(�; �)(jD2hjL1 + 1) Z jr2hj2 � 12jr3hj2: (8)Using Z jr2hj2 � (Z jr3hj2)1=2(Z jrhj2)1=2 (9)we have ddt 12 Z jrhj2 � C 0(�; �)(jD2hjL1 + 1)2 Z jrhj2:Gronwall's lemma then impliesZ jrh(�; t)j2 � Z jrh(�; 0)j2eR t0 C0(�;�)(jD2hjL1+1)2dt: (10)7



Furthermore, (8) and (9) imply that12 Z T0 Z jr3hj2 � C 0(�; �) Z T0 h(jD2hjL1 + 1)(Z jr3hj2)1=2(Z jrhj2)1=2i� C 0(�; �) sup[0;T ] jrhjL2[Z T0 (jD2hjL1 + 1)2]1=2[Z T0 Z jr3hj2]1=2Z T0 Z jr3hj2 � 4C 0(�; �)2hZ T0 (jD2hjL1 + 1)2i Z jrh(�; 0)j2eR T0 C0(�;�)(jD2hjL1+1)2dt:(11)Now note that j Z jrhj2hj � krhkL2krhkL4khkL4:Using the embedding of W 2;2(S2) in W 1;4(S2) [1] and interpolation in theSobolev spaces we havej Z jrhj2hj � CkrhkL2(khk2L2 + kr2hk2L2):Equation (6) then impliesddt Z h2 � � Z jr2hj2 + Z jrhj2+ C(�)�jD2hj2L1(Z h2)1=2 + (1 � �)CkrhkL2(khk2L2 + kr2hk2L2):A second application of Gronwall's lemma, using (10), shows that R h2 is apriori bounded on any time interval on which R t0 jD2h(�; s)j2L1ds is controlled.Now estimate krmhkL2 m � 3 usingddt 12 Z jrmhj2 = � Z jrm+2hj2 + Z jrm+1hj2+ Z rm���jr2hj2 + ��(hxxhyy � h2xy)�rmh+ (1 � �) Z rmjrhj2rmh:This impliesddt 12 Z jrmhj2 � � Z jrm+2hj2 + Z jrm+1hj2+ C(�; �)k(D2h)2kHm(Z jrmhj2)1=2 + (1� �)k(rh)2kHm(Z jrmhj2)1=2:(12)We now apply the following calculus inequality in the Sobolev spaces [40]: Forall m 2Z+ [ f0g, there exists c > 0 such that for all u; v 2 L1 \Hm(SN )kuvkHm � cfjujL1kDmvkL2 + kDmukL2jvjL1g: (13)8



This givesddt 12 Z jrmhj2 � � Z jrm+2hj2 + Z jrm+1hj2+ C(�)�jD2hjL1(Z jrm+2hj2)1=2(Z jrmhj2)1=2+ (1 � �)jrhjL1(Z jrm+1hj2)1=2(Z jrmhj2)1=2: (14)Using Z jrm+1hj2 � krm+2hkL2krmhkL2and maximizing over all krm+2hkL2 givesddt 12 Z jrmhj2 � C(�)(1 + �jD2hjL1 + jrhjL1)2 Z jrmhj2:Applying Gronwall's lemma givesZ jrmhj2(T ) � Z jrmhj2(0)eR T0 C(�)(1+�jD2h(�;s)jL1+jrhjL1 )2ds:The fact that jrhj2L1 � C R jr3hj2 in 1 and 2-D and (11) implies that allhigher Sobolev norms are a priori bounded provided that we have a bound forR t0 jD2h(�; s)j2L1ds.Remark: Setting � = 0 in the above and noting that in one dimension (7)produces a bound on R h2x depending only on T , one can directly reproduce thewell known global existence result [20,21,32,37,46,47] for the one-dimensionalKuramoto-Sivashinsky equation.3 Proof of Blow Up via Palais' Fourier MethodWe can combine the theorem above with the Fourier space method of Palais[50] to prove that blow up occurs in both the 1D and 2D MKS equations. Forsimplicity we start with the one-dimensional problem for which we prove thefollowing blow-up theorem:Theorem 3 (Blow up of solutions to 1D MKS) Let h(x; t) be a solution tothe 1D MKS, ht + hxx + hxxxx = (1� �)h2x + ��h2xx ;with initial condition h0 on a period of length 2�=k. Let us assume� 2 (0; 1]; � = �1;9



and k2 > k2c = 8><>: 1��� for � = 11��2� for � = �1 : (15)Then, (1) For k � 1, there exists initial data, h0, of arbitrarily small H3 normwhich produces a solution that blows up in �nite time. (2) For k > 1, thereexists su�ciently large initial data that yield a solution which blows up in �nitetime. In either case the blow up necessarily has R t0 jhxxj2L1 dt!1 as t! T �.In Sections 5 and 6 we present a similarity solution and numerical compu-tations that indicate that the blow up also has jhjL1 ! 1 as t ! T �. Weconjecture that this is true in general although no proof is known.Proof. Following Palais [50] we consider even periodic solutions on intervalof length 2�=k and expand h(x; t) in a Fourier seriesh(x; t)= 1Xn=�1 ĥn(t)eink ĥn = ĥjnj= 1Xn=0 ĥn(t)(2� �0n) cos(nkx): (16)The Fourier transform of the 1D MKS is(ĥn)t = �nĥn + Xp+q=n �pqĥpĥq n = 0; 1; 2 : : : ; (17)where�n = (nk)2 � (nk)4 �pq = 8<:0; pq = 0�k4p2q2 �� � 1���k2pq� ; pq 6= 0 : (18)There is some arbitrariness in the de�nition of the �pq due to the fact thatthe terms with indices (p; q) and (q; p) have the same functional form; byspecifying that �pq = �qp the coe�cient is determined uniquely. Note also thatif either p or q is zero that �pq vanishes which indicates that the constant term(ĥ0) decouples from the system; for the purpose of the analysis below we canrestrict ourselves to n � 1.The system (17) is called cooperative if �pq � 0 for all p; q. Palais shows thatthe evolution of the ĥn for any �nite subsystem of (17) serves as a lower boundfor the ĥn of the full system provided that the full system is cooperative and10



that the initial condition satis�esĥn(0) � 0 for all n: (19)Note that if �pq � 0 for all p+ q = n > 0 that the system can be transformedinto a cooperative system by letting h(x; t)! �h(x; t) and ĥn ! �ĥn. Sinceon any interval of existence of the full solution, the coe�cients in the subsystemmajorize the coe�cients in the full system, a blow up in the subsystem meansthat the full system does not have a global solution. We reemphasize that thisdoes not however signify a blow up of the Fourier coe�cients in the full systembecause the singularity in the full system may occur well before the blow upin the subsystem.To determine when the system (17) is cooperative, note that when � = 1 andpq 6= 0 that �pq=(k4p2q2) is minimized when p = q = 1 leading to the conclu-sion that �pq � 0 for (15). Similarly, when � = �1, note that �pq=(k4p2q2) ismaximized when p = 1; q = �2 (n. b. that for p = 1; q = �1 is disallowed asn = p + q = 0) leading to the conclusion that �pq � 0 for (15). Hence, equa-tion (17) has cooperative structure or can be transformed into a cooperativesystem when (15) is satis�ed.To �nish the proof of blow up, consider the n = 1, n = 2 subsystem. As inPalais [50], given an initial condition satisfying (19) and k satisfying (15), onany time interval of existence the Fourier coe�cients of the solution must bebounded from below by the solution of the 1-2 subsystem of (17),(ĥ1)t = �1ĥ1 + 2��12ĥ1ĥ2(ĥ2)t = �2ĥ2 + �11ĥ21: (20)Following Lemma 4.5 in [50] we see that if k � 1 then �1 > 0 and arbitrarilysmall initial amplitudes give �nite-time blow up. For k > 1 Lemma 4.5 of [50]requires �1 > �2 (which is always true) to show that su�ciently large initialconditions blow up. Note that when k = kc either �11 or ��12 vanishes, andalthough the system (17) remains cooperative, the 1-2 subsystem does notexhibit �nite-time blow up. For this case an exact solution exists for both thefull problem and the 1-2 subsystem which blows up only in in�nite time (cf.Sarocka & Berno� [53]).Thus the solution can not be continued forever and must have a �nite-time sin-gularity. From Theorem 1 this implies that R t0 jhxxj2L1dt becomes unbounded.Section 4 provides a more graphical exposition of this result indicating theregions of k where small and �nite amplitude blow up occur and relatingthese results to the bifurcation of a branch of periodic solutions at k = 1.11



The limit �! 0 recovers the Kuramoto-Sivashinsky equation which does notexhibit blow up in one dimension. In this limit both kc and the amplitudeof the perturbation needed to ensure blow up from Theorem 3 both tend toin�nity. We believe that for su�ciently small � that some �nite amplitudeinitial conditions will lead to bounded dynamics which qualitatively resemblewhat is seen for the Kuramoto-Sivashinsky equation while some set of largeamplitude initial conditions will lead to �nite-time blow up.Note that the one-dimesional blow-up results provides a set of initial condi-tions, in which the pro�le is independent of one of the space variables, thatyield blow up in two dimensions as well. In fact, one can apply Palais' methodto obtain a much larger set of initial conditions that also yield blow up in the2D MKS. We state such a theorem below.Theorem 4 (Blow up of solutions to 2D MKS) Let h(x; y; t) be a solution to2D MKS,ht +r2h +r4h = (1� �)jrhj2 + �� �r2h�2 + �� �hxxhyy � h2xy� ;with initial condition h0 on a periodic rectangle with sides (2�=k1; 2�=k2).Assume � 2 (0; 1]; � = �1;k21; k22 > k2c ; (21)and � � �1 for � = 1� � 1 for � = �1 : (22)Then, (1) If k1 or k2 � 1, there exists initial data of arbitrarily small H4 normwhich produces a solution that blows up in �nite time. (2) For k1 and k2 > 1,there exists su�ciently large initial data that yield a solution which blows upin �nite time. In either case the blow up necessarily has R t0 jD2hj2L1dt ! 1as t! T �.Remarks: Recall from Section 1 that jD2hjL1 denotes the L1 norm of theHessian of h. Additional ranges of the parameters can also be studied usingthis method. For ease of exposition we present a proof that addresses (22).Proof. Consider even, doubly periodic solutions on a rectangle with sides(2�=k1; 2�=k2). Consequently h(x; y; t) can be written as a double Fourierseries, 12



h(x; y; t)= 1Xn=�1 1Xm=�1 ĥnm(t)ei(nk1x+mk2y) ĥnm = ĥjnjjmj= 1Xn=0 1Xm=0 ĥnm(t)(2� �0n)(2 � �0m) cos(nk1x) cos(mk2y): (23)Substituting this Fourier series into (4) yields(ĥnm)t = �nmĥnm + Xp+r=n Xq+s=m pqrsĥpqĥrs n;m = 0; 1; 2 : : : (24)where�nm=(nk1 +mk2)2 � (nk1 +mk2)4pqrs=�pr(k1) + �qs(k2) + �k21k22 "�(p2s2 + q2r2) + �2(ps � qr)2)#=�pr(k1) + �qs(k2) + �k21k22 "(� + �)(p2s2 + q2r2)� �2(ps+ qr)2)# :Here �pr(k1) is just �pr evaluated at k1 instead of k. Once again we havechosen pqrs = rspq to eliminate any arbitrariness in the expansion. Note thatif either p and q or r and s are zero that pqrs vanishes, which indicates that theconstant term (ĥ00) decouples from the system; for the purpose of the analysisbelow we can restrict ourselves to n;m nonnegative and not both zero.The system (24) is cooperative when pqrs � 0 (for � = 1) or pqrs � 0 (for� = �1). The constraint (21) arises in an exactly parallel fashion as (15) whenconsidering �pr(k1) (corresponding to q = s = 0) and �qs(k2) (correspondingto p = r = 0). The second constraint (22) is su�cient to assure that theremaining term in pqrs has the appropriate sign.Hence, equation (24) has cooperative structure or can be transformed into acooperative system when (21,22) are satis�ed. Note that the subsystems gen-erated by (ĥ10; ĥ20) and (ĥ01; ĥ02) have the exact same structure as the 1-2subsystem (20) with k replaced by k1 and k2 respectively. Consequently, con-sideration of these subsystems again leads to the conclusions of the theorem.Remark: While the theorems presented here give su�cient conditions forblow up, our numerical results show that blow up can occur for a much largerclass of initial conditions. In Section 5 and 6 we show that the blow up in 1DMKS is actually characterized by a similarity solution in hxx. The similaritysolution does not exhibit a blow up in the L2 norm of h but in the L1 normand in higher Sobolev norms. This lack of blow up in the L2 norm indicatesthat in the limit as t! tc, all of the Fourier modes remain bounded but thatthe decay of hn is bad as n ! 1. We conjecture that any initial condition13



with hxx locally close enough to the similarity pro�le will exhibit a �nite-timeblow up.4 Bifurcation Theory and its Relationship to the Blow-up ResultsThis section addresses the relationship between the bifurcation of periodicsolutions from a uniform planar state to the blow-up results proved in theprevious section. We consider the 1D MKS:ht + hxx + hxxxx = (1� �)h2x + ��h2xx : (1D MKS)A cursory examination of the problem suggest that bifurcation from the pla-nar state should be unrelated to �nite-time blow up since the blow-up proofdeals with a fully nonlinear phenomena (blow up) and the bifurcation theorydeals with the weakly nonlinear regime. However, since the 1D MKS possessesa purely quadratic nonlinearity, both the proof of blow up and the bifurcationanalysis reduce to a study of the 1-2 subsystem of Fourier modes. Below wereview the bifurcation theory for periodic states in the system, present nu-merical continuation of the bifurcation branches, and relate these results toTheorem 3 on blow up discussed in the previous section.4.1 Bifurcation analysis of periodic solutionsSarocka and Berno� [53] discuss the bifurcation of the planar state to periodicsolutions for the 1D MKS with � = 1; we review these results and extend themto the case � = �1. We use center manifold theory [34] as this elucidates theconnection with the 1-2 subsystem discussed in the context of the Palais the-ory. The Fourier transform of the 1D MKS converts the PDE into a countablyin�nite coupled system of ODE's (17). The n = 0 mode is the average of h onthe interval. This mode is driven by the other modes but does not appear inthe equations for the remaining modes, reecting the translational invarianceof the underlying physical problem.The linear growth rate of ĥn (about the zero state) is �n = (nk)2 � (nk)4. Ifwe think of k as the bifurcation parameter (equivalent to changing the lengthof the interval) ĥ1 undergoes a change in stability at k = 1. Consequently, atk = 1 the system possesses a one-dimensional center subspace (ĥ1) with allthe remainder modes lying in the stable subspace. A standard perturbationanalysis of the center manifold then reveals the topology of the system ofODE's in a neighborhood of k = 1.Proceeding with this center manifold reduction, we use the amplitude of the14



1-mode, ĥ1, as the expansion parameter and see that at order (ĥ1)2 only theĥ0 and ĥ2 play a role. Recalling that the n = 0 mode decouples from theproblem, the center manifold at order ĥ21 can be approximated by:ĥ2 = ��11�2 (ĥ1)2: (25)Substituting this expression into the amplitude equation for ĥ1 gives the equa-tion governing the evolution of ĥ1 on the center manifold correct to order (ĥ1)5,(ĥ1)t = �1ĥ1 � 2�11��12�2 (ĥ1)3= (k2 � k4)ĥ1 � 13(1� � � ��)(1 � �+ 2��)(ĥ1)3 (26)which is valid near the bifurcation point k = 1; note that the coe�cient of thecubic term is evaluate at k = 1.Equation (26) describes a pitchfork bifurcation from the planar state to a peri-odic solution. When the coe�cient of the cubic term is negative (positive) thebifurcation is supercritical (subcritical) to a stable (unstable) state speci�edby (ĥ1)2 = �1�22�11��12 +O �(k � 1)2�= 72(k � 1)(1� � � ��)(1 � �+ 2��) +O �(k � 1)2�: (27)Hence, there is a transition from a supercritical to a subcritical bifurcation at� = �c where �c = 1=2 for � = 1 (Figure 2a) and �c = 1=3 for � = �1 (Fig-ure 2b). For � < �c the branch of solutions is stable, at least to perturbationswith the same period, whereas for � > �c the initial bifurcation is to an un-stable state. Below we extend these curves numerically to the fully nonlinearregime. There are two branches that bifurcate from k = 1, corresponding topositive and negative values of ĥ1; in fact these branches are the same solutionspatially translated by half a period (cf. [3,39]).4.2 Numerical extension of periodic solutionsTo compute these branches of one-dimensional periodic solutions for the 1DMKS we integrate the steady state equation,hxxxx + hxx = ��h2xx + (1� �)h2x; (28)numerically with a shooting method as was done in Sarocka & Berno� [53].15



The results are presented in Figures 2a,b. The branch corresponding to thestandard KS equation (� = 0) agrees with the primary bifurcation branchfound by Kevrekidis, Nicolaenko, and Scovell [39] in their numerical study ofthe KS equation and terminates in a secondary bifurcation to a solution withhalf the spatial period. As � increases the bifurcation branch becomes verticalat �c where the bifurcation goes from supercritical to subcritical. For � = 1=2and � = 1 the exact solution h(x; t) = 12G20t+ F0 +G0 cosx yields a perfectlyvertical bifurcation [53]. The subcritical branches appear to asymptote to aconstant amplitude for increasing wavenumber (outside the range of these�gures).4.3 The relationship between the Palais blow-up results & bifurcation theoryThere is an interesting parallel between the blow-up Theorem 3 and the bi-furcation theory discussed above: both sets of results are governed by the 1-2subsystem of Fourier modes. Recall from section 3 that the cooperativity of1-2 subsystem (ĥ1)t = �1ĥ1 + 2��12ĥ1ĥ2(ĥ2)t = �2ĥ2 + �11ĥ21 (29)implies the cooperativity of the full system and that the set of initial conditionsthat lead to blow up in (29) determine a class of initial conditions that leadto blow up in the full system. Note also that the 1-2 subsystem reproducesthe perturbation expansion from the bifurcation theory analysis to order ĥ51.Consequently, the branches of solutions originating in the pitchfork bifurcationat k = 1 in the 1-2 subsystem is tangent to the branch of solutions for the fullsystem. Below, we �rst show the behavior of the 1-2 subsystem divides intotwo cases depending on whether the pitchfork bifurcation is sub- or super-critical. We then analyze the behavior of the system in each case.The proof of blow up from the previous section relies on a comparison principlein Fourier space; the system (17) is cooperative when the coe�cients, �pq, of allthe nonlinearities have the same sign. In particular, the system is cooperativewhen the product �11��12 is positive. This determines a critical value of k,k = kc (as a function of � and �) such that when k > kc the system iscooperative. Moreover, this condition at k = 1 is exactly what distinguishesa subcritical from a supercritical bifurcation; when kc > 1 the bifurcation issupercritical and when kc < 1 the bifurcation is subcritical. The bifurcationis vertical for the critical value of � such that � = �c such that kc = 1. Table1 summarizes these critical values: 16



Table 1: Critical values of � and k� = 1 � = �1Cooperativity (k > kc) kc = q1��� kc = q1��2�Bifurcation Structure (kc(�c) = 1) �c = 1=2 �c = 1=3The dynamics of the system can now be separated into two cases; the super-critical case (0 � � < �c) and the subcritical case (�c < � � 1). The featuresof each are described in table 2:Table 2: Dynamical features of 1-2 subsystemSupercritical vs. Subcritical casesBifurcation type Supercritical SubcriticalRange of � 0 � � < �c �c < � � 1Location of kc kc > 1 kc < 1Blow up from in�nitesimal Absent kc < k � 1amplitude initial dataBlow up from �nite k > kc k > 1amplitude initial dataFigures 3a,b illustrate the supercritical and subcritical cases respectively.In the supercritical case (Figure 3a), the pitchfork bifurcation at k = 1 pro-duces a stable branch of periodic solutions for k slightly below 1, while fork > 1 the zero solution is stable. For k > kc > 1 the system is cooperativebut requires su�cient large initial data satisfying (19) to produce a �nite-timeblow up. At k = kc in the 1-2 subsystem an unstable branch of steady solu-tions bifurcates from in�nity. The Palais theory tells us that �nite amplitudeinitial conditions will lead to �nite-time blow up provided that ĥ1 and ĥ2 arein excess of the values along this branch and ĥn is non-negative for n � 1.Note also that as � tends to zero, corresponding to the well-posed Kuramoto-Sivashinsky limit, that kc tends to in�nity suggesting that blow up only occursin the corresponding short-wave limit.In the subcritical case (Figure 3b), the pitchfork bifurcation at k = 1 producesa branch of unstable periodic solutions for k > 1. Here kc < 1. The Palaistheory tells us that for kc < k < 1 non-zero initial conditions will lead to�nite-time blow up provided that ĥn is non-negative for n � 1. In addition,the theory tells us that for k > 1 �nite amplitude initial conditions will leadto blow up provided that ĥ1 and ĥ2 are in excess of the values along theunstable branch produced in the pitchfork bifurcation and ĥn is non-negative17



for n � 1. Note that in this region (k > 1) the zero solution is stable andlocally attracting.Taken together these observations suggest the following picture of the dynam-ics; for some values of k and � almost all initial conditions lead to �nite-timeblow up. For other values, small initial conditions are attracted to either zeroor periodic solutions, while some large amplitude perturbations lead to blowup. Some invariant set must separate the basins of attraction of these two be-haviors. For the subcritical case the obvious candidate is the unstable branchof periodic solutions which bifurcates from k = 1 and its stable manifold. Forthe supercritical case, the situation is less clear; the well-studied chaotic dy-namics for the Kuramoto-Sivashinsky problem [3,39,46] suggest that the phasespace is much less orderly in this case.5 Similarity Solution for the 1D MKSThis section describes properties of a similarity solution for the blow-up pro�leof the 1D MKS:ht + hxx + hxxxx = (1� �)h2x + ��h2xx : (1D MKS)The self{similarity occurs in the second derivative hxx (the curvature in thelong wave theory), with a simple `�rst-type' [5] scaling, in which the powerlaws in the blow up of the magnitude of hxx and its characteristic length scalecan be determined by dimensional analysis. This section describes analyticalbehavior of the similarity solution. We do not attempt here to prove that thisself-similarity is the typical asymptotic behavior of a �nite-time singularity.However the extremely well resolved numerical simulations of the full PDE,described in Section 6, suggest this to be a universal form for the blow-uppro�le. As we show below, two interesting features of the similarity solutionare that (1) it is symmetric about the blow-up point and (2) there are no freeparameters for either the time dependence or pro�le of the similarity solu-tion. We conjecture that this is responsible for the universal blow-up behaviorobserved in the numerical simulations. Indeed even singularity formation re-sulting from non-symmetric initial data still exhibits this locally symmetricblow-up pro�le.We conjecture that this self-similar route to blow up is universal over a largeclass of parameters and initial conditions for both the second derivative in the1D MKS and the amplitude, h, in related equations such as the Sivashinskyequation that arises in directional solidi�cation [22,48,49,54],ht + �0h+ hxx + hxxxx + (h2)xx = 0; (30)18



Cahn-Hilliard type problems with quadratic potentials [23,49],ht + (h2 � h+ hxx)xx = 0: (31)and the Childress-Speigel equation [19] which is equivalent to equation (31)after rescaling.This section is organized as follows. First we propose similarity variables (inboth time and space) and rescale the equation. A self-similar blow-up pro�lefor hxx then corresponds to a steady solution of a rescaled equation. We dis-cuss several integrals associated with the similarity equation and in particularrewrite the rescaled evolution equation as a conservation law to reduce thesteady fourth-order ODE to a third-order equation. The constant of integra-tion provides a link between the behavior of the solution at the origin andthe decaying behavior in the far-�eld. A WKB analysis of the far-�eld be-havior is instrumental in studying the ODE as a boundary value problem onthe half-line with an appropriate number of boundary conditions. We numer-ically compute a locally (and perhaps globally) unique solution of the ODEvia a shooting method. Finally, we discuss the behavior of the solution in theoriginal variables for both h and hxx.5.1 Similarity variablesRecall that the blow-up Theorem 3 states that the second derivative hxx shoulddevelop a singularity. As the zero mode of h does not a�ect small scale struc-ture of the solution, we look for a similarity solution to the evolution equationfor hxx = p.Rewriting the 1D MKS in terms of p yieldspt + pxx + pxxxx � ��(p2)xx � (1 � �)(h2x)xx = 0: (32)If the singularity occurs for short length scales and large amplitudes, then��(p2)xx should dominate both (1 � �)h2x and pxx. We now balance the re-maining three terms to uniquely determine appropriate time and space scalesfor the problem. First de�ne a new variableq(x; t) = �p(x; t)=�:Equation (32) then becomesqt + qxxxx � (q2)xx = �(1� �)� �(@�1x q)2�xx � qxx � 0: (33)The right hand side of (33) contains all the lower order terms that do notcontribute to the similarity solution described below.We propose the similarity19



solution as an asymptotic behavior locally near the singular point. Hence welook for a solution to the homogeneous equationqt + qxxxx � (q2)xx = 0 (34)on the line �1 < x <1.The � ! 0 limit in the 1D MKS yields the Kuramoto-Sivashinsky equationfor which singularities are not possible. Note that in this limit the �rst termon the right hand side of (33) blows up. As shown in Section 4, it is thisterm that is simultaneously responsible for the transition from subcritical tosupercritical bifurcation at the critical wavenumber k = 1 and for the need totake su�ciently large initial data to obtain �nite-time blow up when � is small.We see this latter e�ect in the search for a stable similarity solution in that inorder for the RHS of (33) to be lower order, the solution must be large enoughfor the LHS to dominate the large coe�cient in front of the ((@�1x q)2)xx.We consider a self-similar blow-up solution of the formq(x; t) = f(x=Ar(t))A(t) : (35)Substituting this into (34) and separating variables yields A(t) = (tc � t)1=2,r = 1=2. Rewriting (34) in terms of the similarity variabless = � ln(tc � t) � = x� xc(tc � t)1=4 f(�; s) = q(x; t)(tc� t)1=2 (36)gives the following rescaled fourth-order PDE for f ,fs + 12(f + �f�2 ) = (f2)�� � f���� �1 < � <1; (37)which we refer to as the similarity PDE. A steady solution (f(�; s) = F (�))produces a self-similar blow up pro�le for the original evolution equation for q.Plugging the scaling form (35) into the original equation (33) shows that righthand side terms scale as (tc� t)�1, a lower order behavior than (tc� t)�3=2 forthe terms on the left hand side.As is typical of such rescaled equations, the similarity PDE retains reectionsymmetry about the origin (� ! ��), but does not possess the the translationinvariance in the spatial variable of the original equation due to the fact thatwe have used a time dependent dilation of space for the rescaling. However,the various translation symmetries in the original equation transform intomore complicated invariances in the rescaled problem. The subject of thesesymmetries and there relationship to the stability of the similarity solutionis beyond the scope of this paper. It would be interesting to know if some ofthe similarity variable techniques used to study problems like the semilinear20



heat equation [5,30,31,57] might apply to such higher order nonlinear di�usionequations as well.Some information about solutions to the similarity PDE can be obtained byconsidering the properties of the unscaled equation (33). In particular, as thisequation takes the form of a conservation law,qt = @x �(q2)x � qxxx� ; (38)the similarity PDE takes a related form,�@s + @��4� fes=4 = es=4@� �(f2)� � f���� ; (39)where the di�erential operator on the left hand side computes the time rate ofchange with respect to the new time s of a quantity including a contributionfrom the dilating coordinate �.Integrating this conservation law over the entire line tells us that the totalarea of q, I0 = Z 1�1 q dx; (40)which is conserved, is related to the total area of f byZ 1�1 f d� = e�s=4I0: (41)Conservation of the integral of q implies that any steady solution F of thesimilarity PDE must have zero area and therefore obtain both positive andnegative values (cf. Figure 4).Since equation (34) is an evolution equation for the second derivative of apotential, the evolution of the �rst moment, (x� xc)q can also be written asa conservation law,((x� xc)q)t = @x �(x� xc)(q2)x � q2 � (x� xc)qxxxx + qxxx� : (42)The related form for the similarity equation (37) is�@s + @� �4� �f = @� ��(f2)� � f2 � �f��� + f��� : (43)The de�nition of the similarity variables (36) implies that the �rst momentsof both q and f are equal and conserved,I1 = Z 1�1(x� xc)q dx = Z 1�1 �f d�: (44)21



Note that symmetric solutions have vanishing �rst moment but that solutionsthat decay like ��2 in the far �eld, as in the case of our similarity solution,have divergent integrands in (44).5.2 Steady solutions to the similarity PDEWe now look for steady solutions of the similarity PDE to obtain similaritysolutions describing the asymptotic behavior of blow up.We integrate once the time independent version of the conservation form (43)to yield the following third-order ODE for the similarity pro�le,�24 F + F 2 � �(F 2)� + �F��� � F�� = C: (45)Evaluating (45) at � = 0 produces a relationship between the integrationconstant C and the boundary values at � = 0,C = F 2(0)� F��(0): (46)We can match the similarity pro�le to the integral order behavior away fromthe singular point by �nding a far-�eld solution invariant under the similarityrescaling (36). This leads us to look for a solution F of (45) that decay like ��2as j�j ! 1. Examination of (45) shows that this decay must have a leadingorder behavior of 4C=�2.To understand this behavior of (45) at in�nity, we linearize this equation andapply a WKB analysis. The linear equation�F��� � F�� + �24 F = C (47)has a particular solution and three homogeneous solutions. For large j�j theparticular solution, FP , has a regular Laurent expansion in inverse powers of�2+4n FP (�) = 4C�2 + 1Xn=1 cn�2+4n : (48)WKB methods 1 applied to the homogeneous solutions Fn; n = 0; 1; 2 yield1 Alternatively, the homogeneous solution can be transformed into a hyper-Airyequation by the change of variables G = F��=� and an integral representation canbe found by a generalized Fourier transformation leading to a complete asymptoticexpansion for F. 22



the asymptotic behavior for large � [7],Fn(�) � j�j2=3e�3!nj�j4=32�8=3 !n = exp(n2�i3 ) : (49)Note that F1 and F2 grow exponentially; consequently, for the solution toremain bounded we specify that thatF (�) = FP + b�1 F0 as �! �1; (50)corresponding to two boundary conditions at � = �1. We note that thenonlinear term introduces a 1=�4 correction to FP and higher-order correctionsto the asymptotic expansion of F0, which may be safely ignored.At �rst glance the problem seems over-speci�ed, with four conditions (two eachat �1) on a third-order equation. However, we have neglected to consider thereection symmetry. Two possibilities exist for the solution; a symmetric so-lution invariant under (�! ��) or a non-symmetric pair of solutions mappedinto each other by (�! ��). The non-symmetric case is indeed over speci�ed,and we consider it unlikely that such a solution exists. However, the symmetriccase yields only a single boundary condition at the origin,F�(0) = 0; (51)yielding a total of three boundary conditions on a third-order ODE. Note thatthe values of F and its second derivative at the origin determine C through(46).Recapitulating, this suggests the existence of a locally (perhaps globally)unique steady solution to the third-order ODE (45) that is symmetric aboutthe origin, and decays in the far-�eld as 4C=�2. We numerically compute sucha solution using a shooting method to yield the pro�le in Figure 4. In thenext section we show that this solution has exceedingly good agreement withthe blow-up pro�les observed in our numerical solutions of the full 1D MKSequation.The shooting method uses an iterative procedure to search for the specialvalues of F (0) and F��(0). We integrate the non-linear ODE until its normgrew above a threshold, then linearize the equation and integrate a �xed dis-tance further and project the solution onto the growing modes F1 and F2.An underrelaxed Newton-Rapheson method eliminates the growing modes inthe far-�eld. Since this method converges only locally in parameter space, theinitial guess for F (0) and F��(0) come from the numerical simulations of blowup in the 1D MKS. The far-�eld behavior of the ODE shows extreme sensitivedependence on initial conditions; the values of the initial condition need tobe speci�ed to a tolerance of 10�9 to suppress the growing modes at � = 20.23



Numerically, we �nd thatF (0) = �2:168965546 F��(0) = 2:694018654 (52)which implies that the constant of integration in (45) isC = �C � 2:010392886: (53)Figure 4 graphs a pro�le of the steady solution.The numerical evidence for the existence of this solution is convincing, comingfrom both the numerical solution of the 1D MKS and the steady solution tothe similarity equation found with the shooting method. Indeed all our obser-vations of a �nite-time singularity exhibit precisely this asymptotic behavior.However, a proof of the the existence and in particular the uniqueness of thissolution remains an open question.5.3 Behavior of the interface near singularityWe now discuss the expected behavior of the pro�les for h and hxx if the abovesimilarity solution describes the asymptotic blow-up behavior.In the far-�eld, the steady similarity solution takes the formF (�) � 4 �C�2 + 160 �C(3 � 2 �C)�6 for j�j � 1: (54)Transforming to the original (x; t) variables givesq(x; t) � 4 �C(x� xc)2 + 160 �C(3 � 2 �C) tc � t(x� xc)6for (tc � t)1=4 � jx� xcj � 1: (55)Note that q(x; t) converges pointwise to the function 4 �C=(x�xc)2 in a neigh-borhood of the singularity.The amplitude h(x; t) must satisfy h(x; t) = �h(t) + ��@�2x q(x; t) where �h(t) isundetermined by the evolution equation for q. To compute this time depen-dence consider h(x; t) at the tip of the singularity; de�ne�h(t) = h(xc; t): (56)Plugging the similarity solution into the equation for h gives�ht=�hxx(xc; t)� hxxxx(xc; t) + ��h2xx(xc; t) + (1 � �)hx(xc; t)224



� � �C�(tc � t) +O �(tc � t)�1=2� for tc � t� 1: (57)Hence �h(t) � �h0 � � �C� ln(tc � t) +O �(tc � t)1=2� ; (58)where �h0 is a constant of integration determined by the initial front location.The similarity pro�le in the neighborhood of the singularity now provides thecomplete asymptotic behavior for the amplitude, h.h(x; t) � �h(t) + �� Z �0 d�0 Z �00 F (�00)d�00: (59)The double integral can be evaluated in the far-�eld of the singularity usingthe far-�eld expansion (55), and the fact that the area under the similaritypro�le vanishes (cf. 41),h(x; t) ��4 �C�� ln jx� xcj+ C0 +O (tc � t)1=2; tc � t(x� xc)4!for (tc � t)1=4 � jx� xcj � 1; (60)where the constant C0 is given byC0 = �h0 + �� limL!1(Z L0 d�0 Z �00 F (�00)d�00 + 4 �C lnL) : (61)In summary, the amplitude h(x; t) blows up like ln(tc � t) at the point ofsingularity, xc (cf. 58). The amplitude in the neighborhood of the singularityconverges pointwise to a pro�le like ln jx � xcj (cf. 60). In the next sectionwe show numerical simulations of the PDE which show quite clearly that theblow up has precisely the behavior described here in the limit as t! tc.6 NumericsThis section presents results from numerical simulations of the �nite-time blowup in the 1D MKS:ht + hxx + hxxxx = (1� �)h2x + ��h2xx : (1D MKS)The code used here is an adaptation of a code used in [11{13] to study sin-gularity formation in degenerate fourth-order equations. The main features of25



the code are that it is an implicit �nite di�erence scheme with a self-similardynamically adaptive mesh for extremely high resolution of the singularityand its scaling structure. The details of the numerical method are presentedin the appendix.We considered values of � ranging from 0:1 to 1 and a number of di�erentinitial conditions. All of the �nite-time singularities observed have identicalself-similar pro�les in a neighborhood of the singular point as t ! tc. Thesesingularities are observed for some initial conditions not included in the con-ditions in Theorem 3. Moreover, even when the initial data is not symmetricabout the point of blow up, the singularity exhibits the same local symmetricsimilarity solution seen in the cases where the initial data is symmetric. Theseresults suggest that this similarity solution is a universal behavior for blow upin these equations.Since all the blow-up pro�les are identical, we present data from just one casewith � = 1 on the periodic domain [�4; 4]. The initial condition (at t = 0) ish(x) = 2 + 4 cos(�x=4) + 2 cos(�x=2) + 12 cos(�x)and blow up occurs at the origin at roughly tc = 0:02415. The pro�le over�ve spatial periods is shown in Figure 5. The pro�le has a form reminiscent ofdirection solidi�cation; a series of �ngers are separated by deep roots. Figure 6shows a close up of the singularity as it forms. At x = 0 the amplitude, h(x; t),goes to in�nity as the log of the time to singularity (cf. 58). Near the singularityh(x; t) converges pointwise to to �4 �Clnjxj. As the singularity occurs in a �nitetime, the regions far from the singularity (i. e. the tip of the �nger) remain ina transient phase and do not reect a long time character of the system. Somepro�les are convex, while some such as that shown in Figure 5 may have asecond local maximum.The second derivative, hxx, which approximates the curvature in the near-planar limit, exhibits the self-similar behavior described in the previous sec-tion. Figure 7 shows hxx near the singularity time. Although the �gure resem-bles the similarity pro�le (Figure 4), note that length scales depicted on theaxes in Figure 7 indicate that this is a small scale structure very close to thesingularity time. We con�rm that the evolution approaches the universal sim-ilarity pro�le by rescaling amplitudes and widths. Figure 8 depicts nineteenorders of magnitude of rescaled data with excellent agreement to the solutionF (�) of the similarityODE. In accordance with the change of variables de�nedby (36) the similarity width is computed by multiplying x by (hxx(0)=F (0))1=2.The amplitude of hxx is rescaled by dividing hxx(x) by hxx(0)=F (0). Since thesolution shown here is symmetric, only values for x � 0 are shown.In addition to con�rming the similarity pro�le, we can directly verify that theblow up exhibits the time dependences (both power law exponents in (tc � t)26



and prefactors) predicted by the similarity solution. Figure 9 examines thetime dependence of hxx. Pictured are computed values of log10 jhxx(0)j=F (0)vs. log10 d(jhxx(0)j=F (0))=dt. The solid line is a plot of the same data for thefunction hxx(0; t) = F (0)(tc� t)�1=2 as predicted by the similarity solution (cf.36). Note that there are no free parameters with which to �t this data.The similarity solution predicts that the amplitude at the blow-up point,h(0; t), should grow as the natural log of the time to singularity (cf. 58),h(0; t) � �h0 � �C ln(tc � t) +O �(tc � t)1=2� (62)Figure 10 shows this blow up for the solution to the 1D MKS. Since theprevious �gure demonstrates that 2lnjhxx(0)=F (0)j � � ln(tc � t) It is conve-nient to study the time dependence of the blow up in h by plotting it against2lnjhxx(0)=F (0)j. A linear �t to the data shows a slope of approximately 2.015,which agrees quite well with the slope of �C � 2:010 predicted by the similaritysolution.The numerical study presented here clearly demonstrates that the blow upobserved conforms to the asymptotic theory for the �rst-type self-similar blowup presented in the previous section. Although we have presented a detailedstudy of only one evolution, our numerical studies suggest that this blow upstudy is generic over a large range of parameters and initial conditions.7 ConclusionsThis paper addresses the question of �nite-time singularity formation in amodi�ed Kuramoto-Sivashinsky equation,ht +r2h +r4h = (1� �)jrhj2 + �� �r2h�2 + �� �hxxhyy � h2xy� ;in one and two space dimensions on a periodic domain. Using the Fourier spacemethod of Palais [50] coupled with the continuation Theorem 1 we prove thatfor certain ranges of parameter space and period length, there exist initialconditions that yield �nite-time singularities in which a second derivative ofthe amplitude blows up. Focusing on the one-dimensional problem, we (1) elu-cidate a relationship between the parameters and initial conditions for whichblow up occurs and the bifurcation structure of spatially periodic solutions tothe equation and (2) propose a similarity solution for the asymptotic behaviorof the blow up in hxx.The picture of the dynamics emerging is that in the Kuramoto-Sivashinskylimit (� tending to zero) small and moderate amplitude initial conditions areattracted to some bounded attractor while su�ciently large initial conditions27



lead to �nite-time blow up. For � greater than a critical value, associatedwith the transition from super to subcritical in the pitchfork bifurcation dis-cussed in Section 4, arbitrarily small initial conditions can lead to �nite-timesingularities.The similarity solution associated with this blow up has three important fea-tures: (a) it is symmetric about the blow-up point, (b) it is of `�rst type' so thatthe similarity scalings may be determined from dimensional analysis, and (c)it has no free parameters. We con�rm this behavior as an apparently universalroute to blow up via numerical simulations of the 1D MKS. The numerics usea dynamically adaptive self-similar mesh for extremely high resolution of theblow-up pro�le.This paper is to our knowledge the �rst to study the asymptotic behavior ofblow up in equations of this type. The combination of the blow-up resultswith the bifurcation analysis here and in [53] is a �rst step in obtaining acomplete understanding of the complex structure of solutions to this problem.We believe the similarity pro�le should also describe blow up in the relatedSivashinsky equation which describes directional solidi�cation [22,48,49,54]and the quadratic Cahn-Hilliard equation [23,49] which models clumping ofmicroorganisms [19].Some interesting open mathematical problems raised by the work here includea rigorous existence proof and a stability analysis of the similarity solutionintroduced here and the asymptotic behavior of blow in the 2D problem. Alsothe blow-up Theorems 3 and 4 prove a singularity in the second derivative ofh however the similarity solution shows a logarithmic blow up in h itself. Weconjecture that a sharper result is true.The MKS equation describes the near-planar limit of an intrinsic equationof motion (1). We believe that the blow up in the MKS driven by the term(r2h)2 corresponds to an analogous blow up in (1) driven by the curvaturesquared term, K2 [10]. The blow up in h (cf. Figure 5) corresponds to theformation of deep roots between `�ngers' of one phase. Presumably, when thewidth of a root becomes comparable to boundary layer thickness any localdescription of the dynamics breaks down and the full governing equationsneed to be considered. One possible treatment of this problem is to look fora local defect solution that matches to a solution to the amplitude equationfar from the singularity. For example, in models of spiral defects in excitablemedia, the intrinsic equation of motion breaks down at the spiral core, where itcan be matched to a local defect solution for the core [9]. A possible candidatefor this local defect for the blow up considered here is the asymptotic modelof a root between directional solidi�cation �ngers of Brattkus [14]. It is ourhope that the study presented here will lead to a better understanding of themorphology of the formation of these structures.28
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Using the notation: �xi+12 =xi+1 � xi;xi+12 =12(xi+1 + xi);�xi =xi+12 � xi�12 ;hi+12 =12(hi+1 + hi);@hi =(hi+1 � hi�1)=(xi+1 � xi�1);@hi+12 =hi+1 � hi�xi+12 ;@2hi =@hi+12 � @hi�12�xi ;The following describes the spatial discretization of the equation. Discretizethe spatial operators by(hi)t + vi � vi�1�xi + pi � (1 � �)(@hi)2 � �p2i =0; (63)vi + @pi+12 =0; (64)pi + @2hi=0: (65)The calculations presented here use symmetric initial data so that periodicboundary conditions can be imposed by reection symmetry at the endpoints.The time discretization of the above set of di�erential-algebraic relations usesa simple two-level scheme. In advancing from time t to time t+dt a di�erencequotient replaces the time derivative term. The di�erence quotient involvesthe solution at the old time level (time t) and the as yet unknown solutionat the new time level (time t + dt). The other terms in the equation use aweighted average of the solution at the two time levels; a typical weight is� = 0:55 on the advanced time level and 1 � � = 0:45 on the old time level:@h@t = N(h)would yield1dt (hi(t+ dt)� hi(t)) = N�0:55h(�; t+ dt) + 0:45h(�; t)�:At each time level, the code uses Newton's method to solve the set of nonlineardi�erence equations. By choosing an appropriate ordering of the 3N �1 equa-30



tions (63{65), the Jacobi matrix has its nonzero entries close to the diagonal.For this reason, the use of Newton's method is not a prohibitive expense.The length of the time steps adapts during the computation to control severalaspects. If the result of the time step violates any of a list of constraints,it rejects the step and tries again with a smaller step size. To avoid usingunnecessarily short time steps, if the the computation easily meet all theconstraints for several steps, it increase the step size by about 20% on the nextstep. The �rst constraint comes from local time truncation. Another constraintrejects any step for which the maximum of jhxxj increases by more than 10%.Furthermore the correction on the �rst iteration of Newton's method mustbe a small fraction of the change over the step, where the initial guess at thechange was the change over the previous step, corrected for any di�erence indt's. Hence the method can solve the equations (63{65) in only one Newtoniteration per time step, if desired.The key part of the simulations needed to produce such high resolution of thesingularity is a dynamically adaptive regridding scheme.Self-similar adaptive mesh schemeThe method is straight forward and much simpler to implement than for in-stance the `dynamic rescaling' proposed in [43,44] or the rescaling algorithmof Berger and Kohn [8].In addition to ease of implementation this method is extremely e�cient sinceit requires only O(j log rj) mesh points to resolve a self-similar singularity toa width r. The computation described below took only a few minutes to runon a Sparc10 in double precision.The method described here assumes a singularity at the origin. However, itcan be generalized to a singularity at another point or a moving singularity.Initially start with a �xed mesh. The computation presented here uses aninitial grid of 210 = 1024 uniform intervals. A second parameter is the numberof grid points desired to resolve the singularity scale. In this calculation, thislength scale is given by � = (maxjhxxj)�1=2which can be thought of as the minimum length of the radius of curvaturein the long wave limit. The calculation presented here uses 64 mesh points toresolve this length scale. When � decreases to a width spanned by only 64 meshpoints, the algorithm divides the �rst 64 intervals in half and de�nes this to bethe new mesh. This division process is then repeated as the singularity forms,introducing 64 new mesh points with each regridding. This can be repeated ad31
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Intrinsic Equation of Interface Motion

Liquid

V

Solid

Fig. 1. Intrinsic Equation of Interfacial Motion. The interface between two phases,here denoted solid and liquid (as in solidi�cation) moves with normal velocity, V ,at each point on the interface. The purely local dynamic coupling between pointson the interface and the isotropy of the system suggest that only local geometricproperties of the interface, such as the mean and Gaussian curvature, determine thevelocity of the interface.
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Fig. 2. Bifurcation of periodic solutions to the 1D MKS. We use a shooting methodto compute the branch of periodic solutions bifurcating from k = 1. The amplitudebetween maximum and minimum height (hmax � hmin) is graphed as a functionof wavenumber (k) for di�erent values of �. Note that for � < �c (� > �c ) thebifurcation is supercritical (subcritical) to a branch of solutions that are stable(unstable) at small amplitudes (to perturbations of the same periodicity); the stable(unstable) branch is denoted by a solid (dashed) line. At � = �c the bifurcation isvertical at leading order in the center manifold theory (dash-dot). (a) Bifurcationsfor � = 1. Note that when � = �c = 1=2 the bifurcation is perfectly verticalcorresponding to a known exact (time dependent) solution. (b) Bifurcations for� = �1. Here �c = 1=3; in this case the branch eventually veers o� to larger kindicating instability. 37
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Fig. 4. Self-similar pro�le for blow up. A steady solution F (�) to the ODE (45)describes the similarity pro�le for blow up in the second derivative hxx of the am-plitude. The solution is symmetric, obtains both positive and negative values, andtends to zero like 4 �C=�2 for large j�j.
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Fig. 5. Blow up of a periodic initial condition (� = 1). Typical pro�les for a periodicinitial condition as a function of time are shown. Note that the blow up occurspointwise, reminiscent of the deep root formation between �ngers often seen indirectional solidi�cation.
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Fig. 6. Close up of the singularity formation (� = 1). The height, h(x; t) growsmonotonically in time and develops a singularity at x = 0. The maximum heightblows up as the log of (tc � t). Near the singularity the pro�le converges pointwiseto �4 �Clnjxj.
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