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1. Introduction

In this paper we discuss the design, implementation and performance of an interior point
method for solving the nonlinearly constrained optimization problem

min f(x)

subject to h(x) = 0

g(x) ≤ 0, (1.1)

where f : Rn → R, h : Rn → Rt, and g : Rn → Rm are smooth functions. We are
particularly interested in the case when (1.1) is not a convex program and when the number
of variables n is large. We assume in this paper that first and second derivatives of the
objective function and constraints are available, but our strategy can be extended so as to
make use of quasi-Newton approximations.

Interior point methods provide an alternative to active set methods for the treatment
of inequality constraints. Our algorithm, which is based on the framework proposed by
Byrd, Gilbert and Nocedal [7], incorporates within the interior point method two powerful
tools for solving nonlinear problems: sequential quadratic programming and trust region
techniques. Sequential quadratic programming (SQP) ideas are used to efficiently handle
nonlinearities in the constraints. Trust region strategies allow the algorithm to treat convex
and non-convex problems uniformly, permit the direct use of second derivative information
and provide a safeguard in the presence of nearly dependent constraint gradients.

Of crucial importance in the new algorithm is the formulation and solution of the equality
constrained barrier subproblems that determine the steps of the algorithm. The formulation
of the subproblems gives the iteration primal or primal-dual characteristics, and ensures that
the slack variables remain safely positive. The technique used to solve the subproblems has
a great impact on the efficiency and robustness of the algorithm; we use an adaptation of
the trust region method of Byrd and Omojokun [6, 34] which has proved to be effective for
solving large equality constrained problems [31].

Our numerical results suggest that the new algorithm holds much promise: it appears
to be robust and efficient (in terms of function evaluations), and can make effective use of
second derivative information. The test results also indicate that the primal-dual version of
the algorithm is superior to the primal version. The new algorithm has a solid theoretical
foundation, since it follows the principles of the globally convergent primal method devel-
oped in [7]. In particular, the approximate solution strategies for the subproblems solved
by our algorithm are chosen to satisfy the explicit conditions for global convergence stated
in that paper.

There has been much research in using interior point methods for nonlinear program-
ming; most of it concerns line search methods. The special case when the problem is a
convex program can be handled by line search methods that are direct extensions of interior
point methods for linear programming (see e.g. [1]). In the convex case, the step generated
by the solution of the primal-dual equations can be shown to be a descent direction for
several merit functions, and this allows one to establish global convergence results. Other
research [19, 44] has focused on the local behavior of interior point line search methods
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for nonlinear programming. Conditions have been given that guarantee superlinear and
quadratic rates of convergence. These algorithms can also be viewed as a direct extension
of linear programming methods, in that they do not make provisions for the case when the
problems is non-convex.

Several line search algorithms designed for non-convex problems have recently been
proposed [43, 22, 15, 23, 2, 35]. An important feature of many of these methods is a
strategy for modifying the KKT system used in the computation of the search direction.
This modification, which is usually based on a matrix factorization algorithm, ensures that
the search direction is a descent direction for the merit function. This is an approaches
are interesting, but there is not yet enough experience to fully evaluate their efficacy in
general-purpose codes.

The use of trust region strategies in interior point methods for linear and nonlinear
problems is not new [5, 33]. Coleman and Li [13, 14] proposed a primal method for bound
constrained nonlinear optimization; see also [18]. Plantenga [36] developed an algorithm for
general nonlinear programming that has some features in common with our algorithm; the
main differences lie in his treatment of the trust region, in the purely primal nature of his
step, and in the fact that his algorithm reverts to an active set method near the solution.

The algorithm proposed in this paper makes use of sequential quadratic programming
techniques [3, 21, 24, 25], and in this sense is related to the line search algorithm of Ya-
mashita [43]. But the way in which our algorithm combines trust region strategies, interior
point approaches and sequential quadratic programming techniques leads to an iteration
that is different from those proposed in the literature.

2. The New Algorithm

The algorithm is a barrier method in which the subproblems are solved approximately
by an SQP iteration with trust regions. Each barrier subproblem is of the form

min
x,s

f(x)− µ
m
∑

i=1

ln si

subject to h(x) = 0 (2.1)

g(x) + s = 0,

where µ > 0 is the barrier parameter and where the slack variable s is assumed to be
positive. By letting µ converge to zero, the sequence of solutions to (2.1) should normally
converge to a stationary point of the original nonlinear program (1.1). As in some interior
point methods for linear programming [42], our algorithm does not require feasibility of the
iterates with respect to the inequality constraints in (1.1), but only forces the slack variables
in (2.1) to remain positive.

To characterize the solution of the barrier problem (2.1) we introduce its Lagrangian,

L(x, s, λh, λg) = f(x)− µ
m
∑

i=1

ln si + λT
h h(x) + λT

g (g(x) + s), (2.2)
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where λh and λg are the Lagrange multipliers. Rather than solving each barrier sub-
problem (2.1) accurately, we will be content with an approximate solution (x̂, ŝ) satisfying
E(x̂, ŝ;µ) ≤ ǫµ, where E measures the optimality conditions of the barrier problem and is
defined by

E(x, s;µ) = max (‖∇f(x) + Ah(x)λh + Ag(x)λg‖∞, ‖Sλg − µe‖∞, ‖h(x)‖∞,

‖g(x) + s‖∞) . (2.3)

Here e = [1, ..., 1]T , S = diag(s1, ..., sm), with superscripts indicating components of a
vector, and

Ah(x) = [∇h1(x), . . . ,∇ht(x)], Ag(x) = [∇g1(x), . . . ,∇gm(x)]

are the matrices of constraint gradients. Throughout the paper we will assume that Ah

has full column rank. In the definition of the optimality measure E, the vectors λh, λg are
least squares multiplier estimates (to be discussed later), and thus are functions of x, s and
µ. We will show later (see (3.7)-(3.10)) that the terms in (2.3) correspond to each of the
equations of the so-called perturbed KKT system upon which our primal-dual algorithm
is based. The tolerance ǫµ, which determines the accuracy in the solution of the barrier
problems, is decreased from one barrier problem to the next, and must converge to zero. In
this paper we will use the simple strategy of reducing both ǫµ and µ by a constant factor
θ ∈ (0, 1). We test for optimality for the nonlinear program (1.1) by means of E(x, s; 0).

Algorithm I: Barrier Algorithm for Solving the Nonlinear Problem (1.1)

Choose an initial value for the barrier parameter µ > 0, and select the parame-
ters ǫµ > 0, θ ∈ (0, 1), and the final stop tolerance ǫTOL . Choose the starting
point x and s > 0, and evaluate the objective function, constraints, and their
derivatives at x.

Repeat until E(x, s; 0) ≤ ǫTOL :
1. Apply an SQP method with trust regions, starting from (x, s),

to find an approximate solution (x+, s+) of the barrier
problem (2.1) satisfying E(x+, s+;µ) ≤ ǫµ.

2. Set µ← θµ, ǫµ ← θǫµ, x← x+, s← s+.
end

To obtain a rapidly convergent algorithm, it is necessary to carefully control the rate
at which the barrier parameter µ and the convergence tolerance ǫµ are decreased [19, 44].
This question has been studied, in the context of our algorithm, in [8].

Most of the work of Algorithm I lies clearly in step 1, in the approximate solution of
an equality constrained problem with an implicit lower bound on the slack variables. The
challenge is to perform this step efficiently, even when µ is small, while forcing the slack
variables to remain positive. To do this we apply an adaptation of the equality constrained
SQP iteration with trust regions proposed by Byrd [6] and Omojokun [34] and developed
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by Lalee, Nocedal and Plantenga [31] for large-scale equality constrained optimization. We
follow an SQP approach because, in our view, it is effective for solving equality constrained
problems, even when the problem is ill-conditioned and the constraints are highly nonlinear
(see also [3, 25, 21, 24]), and choose to use trust region strategies to globalize the SQP
iteration because they facilitate the use of second derivative information when the problem
is non-convex.

However, our numerical experience shows that a straightforward application of this SQP
method to the barrier problem leads to inefficient steps that tend to violate the positivity
of the slack variables, and that are thus frequently cut short by the trust region constraint.
The novelty of our approach lies in the formulation of the quadratic model in the SQP
iteration and in the definition of the (scaled) trust region. These are designed so as to
produce steps that have some of the properties of primal-dual iterations and that avoid
approaching the boundary of the feasible region too soon.

In order to describe our approach more precisely, it is instructive to briefly review the
basic principles of Sequential Quadratic Programming for equality constrained optimization
with trust regions [3, 9, 10, 31, 40]. Every iteration of such an SQP method begins by
constructing a quadratic model of the Lagrangian function. A step d of the algorithm is
computed by minimizing the quadratic model, subject to satisfying a linear approximation
to the constraints, and subject to a trust region bound on this step. If the step d gives a
sufficient reduction in the chosen merit function, then it is accepted; otherwise the step is
rejected, the trust region is reduced and a new step is computed.

Let us apply these ideas to the barrier problem (2.1), in order to compute a step d =
(dx, ds) from the current iterate (xk, sk). To economize space we will often write vectors
with x and s-components as

(

dx

ds

)

= (dx, ds).

After computing Lagrange multiplier estimates (λh, λg), we formulate the subproblem

min
dx,ds

∇f(xk)
T dx +

1

2
dT

x∇
2
xxL(xk, sk, λh, λg)dx − µeT S−1

k ds +
1

2
dT

s Σkds (2.4)

subject to Ah(xk)
T dx + h(xk) = rh (2.5)

Ag(xk)
T dx + ds + g(xk) + sk = rg (2.6)

(dx, ds) ∈ Tk. (2.7)

Here Σk is an m ×m positive definite diagonal matrix that represents either the Hessian
of the Lagrangian (2.2) with respect to s or an approximation to it. As we will see in the
next section, the choice of Σk is of crucial importance because it determines whether the
iteration has primal or primal-dual characteristics. Ideally, we would like our step to satisfy
(2.5)-(2.6) with r = (rh, rg) = 0, i.e. to satisfy the linearized constraints. However, this
may may be inconsistent with (2.7), so we choose the residual vector r to be the smallest
vector such that (2.5)-(2.7) are consistent (with some margin). This computation is done by
solving the preliminary subproblem in which we compute the normal step, described in §3.2.
The closed and bounded set Tk defines the region around xk where the quadratic model
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(2.4) and the linearized constraints (2.5)-(2.6) can be trusted to be good approximations
to the problem, and also ensures the feasibility of the slack variables. This trust region
also guarantees that (2.4)-(2.7) has a finite solution even when ∇2

xxL(xk, sk, λh, λg) is not
positive definite. The precise form of the trust region Tk requires careful consideration and
will be described in the next section.

We compute a step d = (dx, ds) by approximately minimizing the quadratic model (2.4)
subject to the constraints (2.5)-(2.7), as will be described in §3.2. We then determine if the
step is acceptable according to the reduction obtained in the following merit function

φ(x, s; ν) = f(x)− µ
m
∑

i=1

ln si + ν

∥

∥

∥

∥

∥

[

h(x)
g(x) + s

]∥

∥

∥

∥

∥

2

, (2.8)

where ν > 0 is a penalty parameter. This non-differentiable merit function has been success-
fully used in the SQP algorithm of Byrd and Omojokun [6, 34, 31], and has been analyzed in
the context of interior point methods in [7]. We summarize this SQP trust region approach
as follows.

Algorithm II: SQP Trust Region Algorithm for the Barrier Problem (2.1)
Input parameters µ > 0 and ǫµ > 0 and values k, xk and sk > 0;
set trust region Tk; compute Lagrange multipliers λh and λg.
Repeat until E(xk, sk;µ) ≤ ǫµ

Compute d = (dx, ds) by approximately solving (2.4)-(2.7).
If the step d provides sufficient decrease in φ

then set xk+1 = xk + dx, sk+1 = sk + ds,
compute new Lagrange multiplier estimates λh and λg,
and possibly enlarge the trust region;

else set xk+1 = xk, sk+1 = sk, and shrink the trust region.
Set k := k + 1.

end

Algorithm II is called at each execution of step 1 of Algorithm I. The iterates of Algo-
rithm II are indexed by (xk, sk), where the index k runs continuously during Algorithm I.
In the next section we present a full description of Algorithm II, which forms the core of
the new interior point algorithm.

3. Algorithm for Solving the Barrier Problem

Many details of the SQP trust region method outlined in Algorithm II need to be devel-
oped. We first give a precise description of the subproblem (2.4)-(2.7), including the choice
of the diagonal matrix Σk which gives rise to primal or primal-dual iterations. Further, we
define the right hand side vectors (rh, rg), the form of the trust region constraint Tk, and
the choice of Lagrange multiplier estimates. Once a complete description of the subprob-
lem (2.4)-(2.7) has been given, we will present our procedure for finding an approximate
solution of it. We will conclude this section with a discussion of various other details of
implementation of the new algorithm.
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3.1. Formulation of the Subproblem

Let us begin by considering the quadratic model (2.4). We have mentioned that SQP
methods choose the Hessian of this model to be the Hessian of the Lagrangian of the
problem under consideration, or an approximation to it. Since the problem being solved
by Algorithm II is the barrier problem (2.1), which has a separable objective function in
the variables x and s, its Hessian consists of two blocks. As indicated in (2.4), we choose
the Hessian of the quadratic model with respect to dx to be ∇2

xxL(xk, sk, λh, λg) (which we
abbreviate as ∇2

xxLk) but consider several choices for the Hessian Σk of the model with
respect to ds. The first choice is to define Σk = ∇2

ssLk, which gives

Σk = µS−2
k . (3.1)

The general algorithm studied in Byrd, Gilbert and Nocedal [7] defines Σk in this manner.
To study the effect of Σk in the step computation, let us analyze the simple case when

the matrix ∇2
xxLk is positive definite on the null space of the constraint gradients, when

the residual (rh, rg) is zero, and when the step generated by (2.4)-(2.7) lies strictly inside
the trust region. In this case the subproblem (2.4)-(2.6) has a unique solution d = (dx, ds)
which satisfies the linear system











∇2
xxLk 0 Ah(xk) Ag(xk)
0 Σk 0 I

AT
h (xk) 0 0 0

AT
g (xk) I 0 0





















dx

ds

λ+
h

λ+
g











=











−∇f(xk)
µS−1

k e
−h(xk)

−g(xk)− sk











. (3.2)

If Σk is defined by (3.1), we call this approach a primal method. In this case, it is easy to
verify (see e.g. [19, 42, 7]) that the system (3.2) is equivalent to a Newton iteration on the
KKT conditions of the barrier problem (2.1), which are given by

∇f(x) + Ah(x)λh + Ag(x)λg = 0 (3.3)

−µS−1e + λg = 0 (3.4)

h(x) = 0 (3.5)

g(x) + s = 0. (3.6)

Several authors, including Jarre and S. Wright [30], M. Wright [41] and Conn, Gould and
Toint [16] have given arguments suggesting that the primal search direction will often cause
the slack variables to become negative, and can be inefficient. Although those papers
consider a different formulation of the problem, it is easy to see [29] that the arguments
apply in our case.

Research in linear programming [42] has shown that a more effective interior point
method is obtained by considering the perturbed KKT system

∇f(x) + Ah(x)λh + Ag(x)λg = 0 (3.7)

Sλg − µe = 0 (3.8)

h(x) = 0 (3.9)

g(x) + s = 0, (3.10)
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which is obtained by multiplying (3.4) by S. Even though (3.4)-(3.6) and (3.8)-(3.10) have
the same solutions, applying Newton’s method to them will produce different iterates. It
is well-known, and also easy to verify, that a Newton step on (3.8)-(3.10) is given by the
solution to (3.2), with

Σk = S−1
k Λg. (3.11)

Here Λg =diag(λ1
g, . . . , λ

m
g ) contains the Lagrange multiplier estimates corresponding to the

inequality constraints. The system (3.2) with Σk defined by (3.11) is called the primal-

dual system. This choice of Σk may be viewed as an approximation to ∇2
ssLk since, by

(3.4), at the solution (x, s, λ) of the barrier problem the equation µS−1 = Λg is satisfied.
Substituting this equation in (3.1) gives (3.11).

The system (3.7)-(3.10) has the advantage that the derivatives of (3.8) are bounded
as any slack variables approach zero, which is not the case with (3.4). In fact, analysis
of the primal-dual step, as well as computational experience with linear programs, has
shown that it overcomes the drawbacks of the primal step: it does not tend to violate the
constraints on the slacks, and usually makes excellent progress towards the solution (see
e.g. [30, 41, 42, 39]). These observations suggest that the primal-dual model in which
Σk is given by (3.11) is likely to perform better than the primal choice (3.1). Of course,
these arguments do not apply directly to our algorithm which solves the SQP subproblem
inexactly, and whose trust region constraint may be active. Nevertheless, as the iterates
approach a solution point, the algorithm will resemble more and more an interior point
method in which a Newton step on some form of the KKT conditions of the barrier problem
is taken at each step.

Lagrange multiplier estimates are needed both in the primal-dual choice (3.11) of Σk and
in the Hessian ∇2Lxx(xk, sk, λh, λg). To complete our description of the quadratic model
(2.4) we must discuss how these multipliers are computed.

Lagrange Multipliers

Since the method we will use for finding an approximate solution to the subproblem
(2.4)-(2.7) does not always provide Lagrange multiplier estimates as a side computation,
we will obtain them using a least squares approach. As is done in some SQP methods
[21, 3], which compute least squares estimates based on the stationarity conditions at the
current iterate, we will choose the vector λ = (λh, λg) that minimizes the Euclidean norm
of (3.7)-(3.8). This gives the formula

λk =

[

λh

λg

]

= λLS(xk, sk, µ) =
(

ÂT
k Âk

)−1
ÂT

k

[

−∇f(xk)
µe

]

, (3.12)

where

Âk =

[

Ah(xk) Ag(xk)
0 Sk

]

. (3.13)

The computation of (3.12) will be performed by solving an augmented system, instead of
factoring ÂT

k Âk, as will be discussed in §3.4.
We should note that the multiplier estimates λg obtained in this manner may not always

be positive, and it may be questionable to use them in this case in the primal-dual choice
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of Σk given by (3.11). In particular, since the Hessian of the barrier term −µ
∑

ln si is
known to be positive definite, it seems undesirable to create an indefinite approximation Σk

to it. On the other hand, one could argue that trust region methods can handle indefinite
approximations and therefore that the multipliers need not be modified. We cannot see a
compelling argument in favor of either strategy. In primal-dual interior point methods for
linear programming, the initial Lagrange multiplier estimate is chosen to be positive, and
in subsequent iterations a backtracking line search ensures that all new multiplier estimates
remain safely positive (see e.g. [42]). Here we follow a different approach, not enforcing the
positivity of the multipliers λg, but ensuring that the quadratic model remains convex in
the slack variables. To do so, in the primal-dual version of the algorithm we define the i-th
diagonal element of Σk as

σi
k =

{

λi
g/s

i if λi
g > 0

µ/(si)2 otherwise.
(3.14)

This means, in particular, that when a multiplier λi
g given by (3.12) is negative, the corre-

sponding entry in the primal-dual matrix Σk coincides with the corresponding entry in the
primal Hessian.

To avoid an abrupt change in Σk when µ is decreased, we modify the definition of λk

slightly in the primal-dual version of the algorithm. If (xk, sk) is the starting point for a
new barrier subproblem (i.e. the input in Algorithm II), then in the formula (3.14) λg is
the multiplier from the last iterate of the previous barrier problem.

Thus the definition of the multipliers is

λk =

{

λLS(xk, sk, µ) in primal version
λLS(xk, sk, µ̄) in primal-dual version,

(3.15)

where µ̄ is the value of the barrier parameter used in the computation of (xk, sk). As
mentioned earlier, other strategies for computing multiplier estimates can be used, and we
do not yet know which choice might be preferable in practice.

This approach could just barely be considered a primal-dual method, as other primal-
dual methods treat the multipliers λh, λg as independent variables. In that respect our
approach is much closer to those SQP methods where the multipliers have a subordinate
role, being estimated as a function of the primal variables, and not appearing explicitly in
the merit function.

The Trust Region

Algorithm II stipulates that the step (dx, ds) must be restricted to a set Tk, called
the trust region. We will define Tk so as to accomplish two goals. First of all it should
restrict the step to a region where the quadratic model (2.4) is a good approximation of
the Lagrangian (2.2), and where the linear equations (2.5)-(2.6) are good approximations
to the constraints. This is the basic philosophy of trust regions and is normally achieved by
imposing a bound of the form ‖(dx, ds)‖ ≤ ∆k, where the trust region radius ∆k is updated
at every iteration according to how successful the step has been.

We will impose such a bound on the step, but the shape of the trust region must also
take into account other requirements of Algorithm II. Since the slack variables should not
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approach zero prematurely, we introduce the scaling S−1
k that penalizes steps ds near the

boundary of the feasible region. This scaled trust region will be defined as

‖(dx, S−1
k ds)‖2 ≤ ∆k, (3.16)

and we will allow ∆k to be greater than 1. The second objective of our trust region is to
ensure that the slack variables remain positive. For this purpose we impose the well-known
[42, 39] fraction to the boundary rule

sk + ds ≥ (1− τ)sk, (3.17)

where τ ∈ (0, 1); in our tests we use τ = 0.995. Combining this inequality, which can be
rephrased as ds ≥ −τsk, with (3.16) we obtain the final form of the trust region,

‖(dx, S−1
k ds)‖2 ≤ ∆k, and ds ≥ −τsk. (3.18)

We have experimented with other forms of the trust region, in particular with box-
shaped trust regions defined by an ℓ∞ norm, but so far (3.18) appears to be the most
appropriate for our algorithm.

Now that the quadratic model (2.4) and the trust region (2.7) have been defined, it only
remains to specify the choice of the residual vector r = (rh, rg) in (2.5)-(2.6). This vector
will be determined during the course of solving the subproblem, as discussed next.

3.2. Solution of the Quadratic Subproblem

We will use the decomposition proposed by Byrd and Omojokun [6, 34] to find an
approximate solution of the subproblem (2.4)-(2.7). In this approach the step d is a com-
bination of a normal step that attempts to satisfy the linear constraints (2.5)-(2.6) as well
as possible, and a tangential step that lies on the tangent space of the constraints and that
tries to achieve optimality. The efficiency of the new algorithm depends, to a great extent,
on how these two components of the step are computed.

Throughout this section we omit the iteration subscript, and write sk as s, Ah(xk) as
Ah, etc.

Normal Step

It is clear [40] that restricting the size of the step d by means of the trust region bounds
(3.18) may preclude d from satisfying the linearized constraints (2.5)-(2.6) with r = 0. To
find a value of r that makes the quadratic subproblem feasible, we first compute the normal
step v, that lies well within the trust region and that approximately satisfies (2.5)-(2.6), in
the least squares sense. To do this, we choose a parameter ζ ∈ (0, 1) (in our code we use
the value ζ = 0.8) and formulate the following subproblem in the variable v = (vx, vs)

min
v
‖AT

h vx + h‖22 + ‖AT
g vx + vs + g + s‖22

subject to ‖(vx, S−1vs)‖2 ≤ ζ∆ (3.19)

vs ≥ −τs/2.
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To simplify the constraints we define

ṽ = (vx, ṽs) = (vx, S−1vs).

Performing this transformation, recalling the definition (3.13) of Â, squaring and expanding
the quadratic objective and ignoring constant terms, we obtain

min
ṽ

m(ṽ) ≡ 2
[

hT (g + s)T
]

ÂT

[

vx

ṽs

]

+
[

vT
x ṽT

s

]

ÂÂT

[

vx

ṽs

]

(3.20)

subject to ‖ṽ‖2 ≤ ζ∆ (3.21)

ṽs ≥ −τ/2. (3.22)

We compute an approximate solution of this problem by means of an adaptation of Powell’s
dogleg method [37], which provides a relatively inexpensive solution that is good enough to
allow our algorithm to be robust and rapidly convergent. Like Powell’s dogleg, it provides
as least as much decrease on (3.19) as a truncated steepest descent step, and it equals the
unconstrained minimizer of (3.19) if that vector satisfies the constraints of the subproblem.
This first property, together with the fact that it lies in the range space of Â, implies that
it satisfies the conditions placed on the normal step for the global convergence theory in [7].

We first calculate the Cauchy point ṽCP for problem (3.20)-(3.21), which is obtained by
minimizing the quadratic (3.20) along the steepest descent direction, starting from ṽ = 0.
A simple computation shows that

ṽCP =

[

vCP

x

ṽCP

s

]

= −αÂ

[

h
g + s

]

, (3.23)

where α is given by

α =

∥

∥

∥

∥

∥

Â

[

h
g + s

]∥

∥

∥

∥

∥

2

2
[

hT gT + sT
]

(ÂT Â)2

[

h
g + s

] .

Note that this computation is inexpensive, requiring only matrix-vector multiplications and
no matrix factorizations.

We then compute the Newton step ṽN, which in our case is defined as the minimum
norm minimizer of (3.20). It is given by

ṽN =

[

vN

x

ṽN

s

]

= −Â(ÂT Â)−1

[

h
g + s

]

. (3.24)

The computation of ṽN will be done by solving an augmented system, instead of factoring
ÂT Â, as will be discussed in §3.4.

The Cauchy and Newton steps define the dogleg path, which consists of the two line
segments from ṽ = 0 to ṽ = ṽCP, and from ṽ = ṽCP to ṽ = ṽN. We compute the normal step
by minimizing m(ṽ) subject to (3.21) and (3.22) along this path, and along the Newton
direction, as described below.

10



Dogleg Procedure.

Compute ṽCP and ṽN .
θ1 = max{θ ∈ (0, 1]|θṽN is feasible}
If θ1 = 1 then

ṽ = ṽN

Else

θ2 = max{θ ∈ (0, 1]|(1 − θ)ṽCP + θṽN is feasible for (3.21) and (3.22) }
If no such value θ2 exists then

θ3 = max{θ ∈ (0, 1]|θṽCP is feasible}
ṽDL = θ3ṽ

CP

Else

ṽDL = (1− θ2)ṽ
CP + θ2ṽ

N

Endif

If m(ṽDL) < m(θ1ṽ
N) then

ṽ = ṽDL

Else

ṽ = θ1ṽ
N

Endif

Endif

v = (vx, Sṽs)

Since the model function m is convex, it decreases along the dogleg path, and thus the
dogleg point ṽDL minimizes m along that path, subject to (3.21) and (3.22). Note that even
if ṽCP and ṽN are infeasible, the line from ṽCP to ṽN may still contain a feasible segment.
Also, to try to achieve a greater reduction in the model function, we compare the dogleg
step with the Newton step truncated to the feasible region, and choose whichever of these
two points gives a lower value of m. Finally, we obtain the normal step by transforming ṽ
into the original space of variables.

For future reference we note that the step ṽ lies in the range space of Â; see (3.23) and
(3.24).

An alternative to the dogleg method is to compute the normal step by means of Stei-
haug’s implementation of the conjugate gradient method [38]. This is described in detail
in [29] (see also [31]), and is certainly a viable option. We prefer the dogleg method in
this study because it allows us to compute the normal step using a direct linear algebra
solver, thereby avoiding the difficulties that can arise when applying the conjugate gradient
method to ill-conditioned systems. In addition, the matrix factorization performed during
the computation of the Lagrange multipliers can be saved and used to compute the normal
step, giving significant savings in computation. We will return to this in §3.4.

Tangential Problem

Once the normal step v is computed, we define the vectors rh and rg in (2.5)-(2.6) as
the residuals in the normal step computation, i.e.

rh = AT
h vx + h, rg = AT

g vx + vs + g + s.

11



The subproblem (2.4)-(2.7) therefore takes the form

min∇fTdx − µeT S−1ds +
1

2
(dT

x∇
2
xxLdx + dT

s Σds) (3.25)

subject to AT
h dx = AT

h vx (3.26)

AT
g dx + ds = AT

g vx + vs (3.27)

‖(dx, S−1ds)‖2 ≤ ∆ (3.28)

ds ≥ −τs. (3.29)

We will devote much attention to this subproblem, whose solution represents the most
complex and time consuming part of the new algorithm.

Let us motivate our choice of the residual vectors rh and rg. First, the constraints
(3.26)-(3.29) are now feasible since d = v clearly satisfies them (recall that ζ < 1 in (3.19)).
Second, we are demanding that the total step d makes as much progress towards satisfying
the constraints (3.26)-(3.27) as the normal step v.

To find an approximate solution of (3.25)-(3.29), we write d = v + w, where v is the
normal step and w, which is to be determined, is tangent to the (scaled) constraint gradients.
Introducing the same change of variables as in the normal step computation, we define

d̃ =

(

d̃x

d̃s

)

=

(

dx

S−1ds

)

=

(

vx

ṽs

)

+

(

wx

w̃s

)

= ṽ + w̃. (3.30)

Using this and defining

G =

[

∇2
xxL 0
0 SΣS

]

, (3.31)

the objective of (3.25) can be expressed as

q(ṽ + w̃) ≡ (∇fT , −µeT )(ṽ + w̃) +
1

2
(ṽ + w̃)T G(ṽ + w̃). (3.32)

The constraint (3.28) can be rewritten as

‖d̃‖22 = ‖ṽ + w̃‖22 ≤ ∆2. (3.33)

We have noted in §3.2 that the (scaled) normal step ṽ lies in the range space of Â, and we
will require that w satisfies ÂT w̃ = 0. Thus w̃T ṽ = 0, and (3.28) can be expressed as

‖w̃‖22 ≤ ∆2 − ‖ṽ‖22.

Using this, (3.32) and the definitions (3.30), we can rewrite (3.25)-(3.29) as

min
w̃

q(ṽ + w̃) ≡ q(ṽ) +∇fTwx − µeT w̃s + (Gṽ)T w̃ +
1

2
(w̃T Gw̃) (3.34)

subject to AT
h wx = 0 (3.35)

AT
g wx + Sw̃s = 0 (3.36)

‖w̃‖22 ≤ ∆2 − ‖ṽ‖22, (3.37)

w̃s ≥ −τe− ṽs. (3.38)

12



We call this the tangential subproblem. Clearly this subproblem can be very expensive to
solve. However, the shape of the feasible region for this problem resembles a trust region in
that the boundaries of the feasible region are never close to the origin (w̃ = 0) in the scaled
coordinates. So it is reasonable to expect that an adaptation of a method for computing
an approximate solution of a trust region problem, such as the CG iteration proposed by
Steihaug, will be efficient in this context. We will follow this approach and apply the
conjugate gradient (CG) method to the quadratic objective (3.34), while forcing the CG
iterates to satisfy the constraints (3.35)-(3.36). To take into account the trust region and
the possibility of indefiniteness in the model, we will terminate the CG iteration using the
stopping tests of Steihaug [38]. We will also precondition the CG iteration.

Rather than simply presenting this CG iteration, we will now describe in detail the steps
that lead to it, and will motivate our preconditioning strategy.

Since w̃ is assumed to lie in the null space of ÂT , it can be expressed as

w̃ = Z̃u ≡

(

Zx

Z̃s

)

u, (3.39)

for some vector u ∈ Rn−t, and where Z̃ is a basis for the null space of ÂT . The constraints
(3.35)-(3.36) can be written as ÂT w̃ = 0, and are therefore satisfied by any w̃ of the form
(3.39). Therefore the tangential problem (3.34)-(3.38) can be stated as

min
u

q(ṽ + Z̃u) (3.40)

subject to ‖Z̃u‖22 ≤ ∆2 − ‖ṽ‖22,

Z̃su ≥ −τe− ṽs. (3.41)

We will precondition the CG iteration so as to eliminate the inefficiencies that can arise
from an ill-conditioned null space basis Z. Note that if we were to apply the unprecondi-
tioned CG iteration for minimizing (3.40), since the Hessian of (3.40) is

Z̃
T
GZ̃,

a poor choice of Z could make this matrix unnecessarily ill-conditioned, causing the CG
iteration to be very slow. Such a poor choice of null space basis could occur, for example,
when using the easily computable basis

Z̃ =

[

Â−1
1 Â2

−I

]

based on the basic-nonbasic partition ÂT = [Â1 Â2]. This problem could be avoided by
preconditioning the CG iteration for minimizing (3.40) by the matrix

Z̃T Z̃, (3.42)

in which case the rate of convergence is governed by the spectrum of

(Z̃T Z̃)−
1
2 Z̃

T
GZ̃(Z̃T Z̃)−

1
2 . (3.43)
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Since the matrix Z̃(Z̃T Z̃)−
1
2 has orthonormal columns, the behavior of the CG iteration will

now be identical to that obtained when Z̃ is a basis with orthonormal columns. Note also
from (3.4) that µS−1 ≈ Λg near the solution of the barrier problem, and thus by (3.11) SΣS
is close to µI. From (3.31) we see that (3.43) does become increasingly ill-conditioned as
µ→ 0, but this ill-conditioning does not greatly degrade the performance of the CG method
since it results in one tight cluster of small eigenvalues. The numerical tests described in §4
confirm that the solution by the CG method does not become significantly more difficult
as µ tends to zero.

The conjugate gradient iteration computes estimates of the minimizer of (3.40) by the
recursion (see e.g. [21])

u+ = u + αδ, (3.44)

where the parameter α is chosen to minimize the quadratic objective q along the direction
δ. Since the gradient of q with respect to u is Z̃T∇q(ṽ + Z̃u), and since our preconditioner
is given by (3.42), the conjugate directions δ are recurred by

δ+ = −(Z̃T Z̃)−1Z̃T∇q(ṽ + Z̃u) + βδ, (3.45)

where the parameter β is initially zero and is chosen at subsequent steps to maintain con-
jugacy.

However, because of the computational cost of manipulations with the preconditioner
(3.42), it is preferable to perform the CG iteration in the full space rather than the reduced
space. More specifically, by applying the transformation (3.39) to (3.44)-(3.45), we obtain
the following iteration in the variable w̃ of problem (3.34),

w̃+ = w̃ + αp (p ≡ Z̃δ) (3.46)

p+ = −Z̃(Z̃T Z̃)−1Z̃T∇q(ṽ + w̃) + βp. (3.47)

We have therefore obtained a CG iteration to minimize the objective (3.34) of the tangential
subproblem that, by construction, satisfies the constraints (3.35)-(3.36). Note that the
matrix Z̃(Z̃T Z̃)−1Z̃T is actually the orthogonal projection onto the null space of ÂT and
thus can be expressed as

P = Z̃(Z̃T Z̃)−1Z̃T = I − Â(ÂT Â)−1ÂT . (3.48)

We compute projections of the form Pr by solving an augmented system whose coefficient
matrix coincides with that used in the normal step and Lagrange multiplier computations,
as will be discussed in §3.4. The resulting iteration is equivalent to the preconditioned CG
iteration in the null space, described above, but allows us to totally bypass the computation
of the null space matrix Z. The computation of the projected residual Pr corresponds to
the preconditioning step in the null space iteration.

Because of the trust region constraint (3.37), and due to the possibility of indefiniteness
in the quadratic model, we use Steihaug’s stopping tests in the iteration (3.46)-(3.47): we
terminate if the projected gradient of q is smaller than a prescribed tolerance, if the direction
p+ is one of negative curvature, or if the iterates violate the trust region norm constraint
(3.37). We include an additional step truncation to satisfy the bound constraint (3.38).
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PCG Procedure: Projected CG Method for the Tangential Subproblem (3.34)-(3.38).

Set w̃ = 0, r = (rx, rs) = (∇f,−µe) + Gṽ, g = Pr, p = −g, tol = 0.01
√

gT r.

Repeat at most 2(n− t) times, or until a stopping test is satisfied.
If pTGp ≤ 0

then w̃+ = w̃ + θp, where θ > 0 is such that ‖w̃+‖2 = ∆; STOP
α = rT g/pT Gp
w̃+ = w̃ + αp
If ‖w̃+‖2 > ∆

then w̃+ = w̃ + θp, where θ > 0 is such that ‖w̃+‖2 = ∆; STOP
r+ = r + αGp
g+ = Pr+

If (g+)T r+ < tol, STOP
β = (r+)T g+/rT g
p+ = −g+ + βp
w̃ ← w̃+, r ← r+, p← p+

End repeat

If w̃+ does not satisfy the slack variable bound (3.38), restore the last feasible
iterate w̃ and the direction p computed at that point. Set w̃+ = w̃ + θp, where
θ > 0 is is the largest value such that w̃ + θp is feasible. Set w = (wx, ws) =
(w̃+

x , Sw̃+
s ).

Note that during the Repeat loop we only test whether the trust region norm constraint
(3.37) is satisfied, and ignore the slack variable bound (3.38). The reason for this is that it
can be shown [38] that the norm of the iterates ‖w̃‖2 increases during the conjugate gradient
iteration, so that once an iterate violates (3.37), all subsequent iterates will also violate this
constraint. It is therefore sensible to stop iterating when (3.37) is violated. However, the
slack bounds (3.38) could be crossed several times, so we do not check feasibility with
respect to the bound until we have gone as far as possible subject to the norm constraint.
Thus, at the end of the Repeat loop the point w̃+ may not satisfy the slack variable bounds
(3.38). In this case we select the last intersection point of the path generated by the iterates
w̃ with the bounds (3.38). This strategy has the potential of being wasteful, because we
could generate a series of iterates that violate the slack variable bounds and never return to
the feasible region. To control this cost we include a limit of 2(n− t) CG iterations in the
tangential step computation. In the tests described in §4, the infeasible CG steps accounted
for about 2% of the total, and our strategy appears to pay off because, in our experience,
when the iterates did return to the feasible region they usually generated a much better
step than the one obtained when the bounds were first encountered.

In §3.4 we will show how the projection Pr+ can be computed by solving an augmented
system whose coefficient matrix is the same as that needed in the normal step and Lagrange
multiplier computations.
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3.3. Merit Function, Trust Region, and Second-Order Correction

The merit function φ(x, s; ν), defined by (2.8), is used to determine whether the total
step d = v + w is acceptable, and also provides information on how to update the trust
region radius ∆. The penalty parameter ν (not to be confused with the barrier parameter
µ) balances the relative contribution of the objective function and constraints, and needs
to be selected at every iteration so that the step d and the merit function φ are compatible.
By this we mean that if the trust region is sufficiently small, then the step d must give a
reduction in φ.

We approximate the change in the merit function due to the step d by the predicted

reduction defined as
pred(d) = −q(ṽ + w̃) + νvpred, (3.49)

where q is the objective in the tangential subproblem (3.34) and vpred is the reduction
provided by the normal step,

vpred =

∥

∥

∥

∥

∥

[

h
g + s

]
∥

∥

∥

∥

∥

−

∥

∥

∥

∥

∥

[

h
g + s

]

+ ÂT ṽ

∥

∥

∥

∥

∥

. (3.50)

The definition (3.49) is motivated and analyzed in [7], and is similar to the measures used
in other trust region algorithms for constrained optimization. We demand that ν be large
enough that pred(d) be positive and proportional to vpred, i.e.

pred(d) ≥ ρνvpred, (3.51)

where 0 < ρ < 1 (in our code we use the value ρ = 0.3).
We see from (3.49) that we can enforce inequality (3.51) by choosing the penalty pa-

rameter ν so that

ν ≥
q(ṽ + w̃)

(1− ρ)vpred
. (3.52)

As has been argued in [7], if m(ṽ) = 0, then ṽ = 0, which implies q(ṽ + w̃) ≤ 0, and so
(3.51) is satisfied for any value of ν. In this case ν can be defined as its value in the previous
iteration of Algorithm II, ν−. Thus we update ν as follows.

Penalty Parameter Procedure.

If m(ṽ) = 0 then

ν = ν−

Else

ν = max

{

ν−, q(ṽ+w̃)

(1−ρ)vpred

}

.

End

This procedure is applied while the barrier parameter µ is fixed. Thus, for a fixed barrier
problem the penalty parameter ν is monotonically increasing as the iterations progress,
which is an important property for the global convergence analysis of the algorithm [7]. If
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the value of the barrier parameter was just changed at the beginning of the current iteration,
the value of ν− to be used in the Penalty Parameter Procedure is reset to a default initial
value.

Now that the merit function has been completely specified, let us consider how to use
it to determine if a step d is to be accepted by Algorithm II. As is common in trust region
methods, we compute the actual reduction in the merit function,

ared(d) = φ(x, s; ν)− φ(x + dx, s + ds; ν), (3.53)

and accept d only if it gives a sufficient reduction in φ, in the sense that

γ ≡
ared(d)

pred(d)
≥ η, (3.54)

where 0 < η < 1 (in our code we use η = 10−8). Using essentially the same argument as
in [7] it can be shown that (3.54) will be satisfied if the trust region radius ∆ is sufficiently
small.

If a step is accepted then the trust region is increased as follows:

∆+ =











max{7‖d‖,∆} if γ ≥ 0.9
max{2‖d‖,∆} if 0.3 ≤ γ < 0.9
∆ if η ≤ γ < 0.3

. (3.55)

When a step is rejected, the new trust region radius is at most one half, but not less than
one tenth, of the length of the step. To determine the exact fraction of contraction in ∆ we
use linear or quadratic interpolation; the details are given in [36]. We also adjust ∆ when
the barrier parameter µ is reduced using the rule ∆← max(5∆, 1).

In order to achieve fast convergence, it is important that near the solution the trust
region be inactive so that the algorithm can take full Newton steps. However, because
of the non-differentiability of the merit function, it can occur that a step that approaches
the solution point does not satisfy (3.54) and is rejected. (This is sometimes referred to
as the Maratos effect; see e.g. [32, 11].) Since this problem is caused by an increase in
the norm of the constraints due to their nonlinearity, one way to rectify the situation is
to add a second order correction step y when (3.54) fails. (See section 14.4 in [21].) This
is a Newton-like step on the constraints, and amounts to computing (3.24) at the point
x + d. In our implementation the second order correction is applied only when the normal
component is small relative to the tangential component of the step.

Procedure SOC. Second Order Correction.

If ‖ṽ‖ ≤ 0.1‖w̃‖ then

y = Â
(

ÂT Â
)−1

[

h(x + dx)
g(x + dx) + s + ds

]

Else

y = 0
End
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The total step of Algorithm II, when a second order correction is needed, is given by d + y.

3.4. Solution of Linear Systems

The algorithm requires the solution of three linear systems per iteration. They occur
in the computation of the Lagrange multiplier estimates (3.12), in the Newton component
(3.24) of the normal step, and in the projection Pr+ required by the PCG Procedure, where
P is defined by (3.48). We now show that these three systems can be solved using only one
matrix factorization.

Note that the normal step (3.24) requires the solution of a system of the form

ÂT Âx = b,

where Â is defined by (3.13). We compute the solution by solving the augmented system

[

I Â

ÂT 0

][

z
x

]

=

[

0
−b

]

. (3.56)

Similarly, the computation g = Pr, where P is expressed in terms of Â (3.48), can be
performed by solving

[

I Â

ÂT 0

] [

g
l

]

=

[

r
0

]

. (3.57)

Moreover, if we solve the system (3.57) with r replaced by (−∇f, µe)T then, by (3.12), the
vector l contains the least-squares multiplier estimates.

We use routine MA27 [27] to factor the coefficient matrix in (3.56) and (3.57). We
prefer working with this augmented system, rather than factoring the normal equations
matrix ÂT Â, because our numerical experience and the analysis given by Gould, Hribar
and Nocedal [26] indicates that it is usually more accurate. Our code includes an option
for detecting errors in the solution of the linear systems, and applying iterative refinement,
when necessary. A detailed description of this procedure is given in [26].

3.5. Full Description of the New Interior Point Method

Having gone over all the details of our approach we can now present a complete de-
scription of the new algorithm for solving the nonlinear programming problem (1.1). We
will refer to this algorithm as NITRO, for Nonlinear Interior point Trust Region Optimizer.
There are primal and primal-dual versions of the algorithm, depending on how Σk, (3.1)
and (3.11), and the Lagrange multipliers λk (3.15) are defined.

The stopping conditions for each barrier subproblem, and for the entire algorithm, are
based on the function E(x, s;µ), which is defined by (2.3) where (λh, λg) = λLS(x, s, µ), is
defined by (3.12).

18



Algorithm III. Complete NITRO Algorithm
Choose a value for the parameters η > 0, τ ∈ (0, 1), θ ∈ (0, 1), and ζ ∈ (0, 1),
and select the stopping tolerances ǫµ and ǫTOL . Choose an initial value for µ,
x0, s0 > 0 and ∆0. Set k = 0.

Repeat until E(xk, sk; 0) ≤ ǫTOL :
Repeat until E(xk, sk;µ) ≤ ǫµ:

Compute the normal step vk = (vx, vs) by the Dogleg Procedure,
described in §3.2.

Compute Lagrange multipliers from (3.15).
Compute ∇2

xxL(xk, sk, λh, λg) and Σk, using (3.1) or (3.14).
Compute the tangential step wk by the PCG Procedure.
Compute the total step dk = vk + wk.
Update νk by Penalty Parameter Procedure in §3.3.
Compute predk(dk) by (3.49), and aredk(dk) by (3.53).
If aredk(dk) ≥ ηpredk(dk)

Then set xk+1 = xk + dx, sk+1 = sk + ds, and update ∆k+1

by (3.55).
Else perform Procedure SOC to obtain yk = (yx, ys).

If yk 6= 0, if aredk(dk + yk) ≥ ηpredk(dk),
and if sk + ds + ys ≥ (1− τ)sk

then set xk+1 = xk + dx + yx, sk+1 = sk + ds + ys,
and ∆k+1 = ∆k.

else set xk+1 = xk, sk+1 = sk, ∆k+1 ∈ [0.1∆k, 0.5∆k].
Endif

Endif

Set k ← k + 1.
End

µ← θµ , ǫµ ← θǫµ.
Reset νk−1 and ∆k.

End

In our code we assign the following values to the parameters in the algorithm: η = 10−8,
τ = 0.995, θ = 0.2, ζ = 0.8, and ǫTOL = 10−7. We use the following initial values: ǫµ = 0.1,
µ = 0.1, ν0 = 1, and ∆0 = 1.

Byrd, Gilbert and Nocedal [7] present a global convergence analysis for an algorithm
that is very similar to the one just given. Perhaps the only significant difference is that [7]
studies only the primal method where Σk is given by (3.1); here we are interested also in
the primal-dual formulation. We expect, however, that the results of [7] can be extended
without great difficulty to the primal-dual case.

4. Numerical Tests

We have tested our algorithm on a set of problems from the CUTE collection [4] whose
characteristics are described in Table 1. For each problem, we give the number of variables
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and the total number of constraints, including equalities and general inequalities (but not
bounds on the variables). We also state what kinds of conditions are imposed on the vari-
ables (fixed, free, bounds). For example in problem CORKSCRW some variables are fixed,
some are free and some contain bounds. We also specify what kind of general constraints
occur in the problem (equalities, inequalities, linear, nonlinear), and the characteristics of
the objective function. The problem set has been chosen for its variety: it contains problems
with negative curvature (e.g. OPTMASS), problems with ill-conditioned matrices of con-
straint gradients (e.g. HAGER4), problems containing only simple bounds (OBSTCLAE,
TORSION1), problems with highly nonlinear equality constraints, and problems with a
large number of variables and constraints. On the other hand our test set is small enough
to allow us to know each problem well and analyze each run in detail.

# of # of
Problem var constr variable types constraint types objective

CORKSCRW 456 350 free, bounded, fixed linear eq, nonlin ineq nonlinear
COSHFUN 61 20 free nonlin ineq linear
DIXCHLNV 100 50 bounded nonlin eq nonlinear
GAUSSELM 14 11 free, bounded, fixed linear ineq, nonlin eq linear
HAGER4 2001 1000 free, bounded, fixed linear eq nonlinear
HIMMELBK 24 14 bounded linear eq, nonlin eq linear
NGONE 100 1273 bounded, fixed linear ineq, nonlin ineq nonlinear
OBSTCLAE 1024 0 bounded, fixed nonlinear
OPTCNTRL 32 20 free, bounded, fixed linear eq, nonlin eq nonlinear
OPTMASS 1210 1005 free, fixed linear eq, nonlin ineq nonlinear
ORTHREGF 1205 400 free, bounded nonlin eq nonlinear
READING1 202 100 bounded, fixed nonlin eq nonlinear
SVANBERG 500 500 bounded nonlin ineq nonlinear
TORSION1 484 0 bounded, fixed nonlinear

Table 1: The main test problem set.

In Table 2 we present the results for the primal-dual version of our new algorithm,
NITRO. For comparison we also solved the problems with LANCELOT [17] using sec-
ond derivatives and all its default settings. The runs of NITRO were terminated when
E(xk, sk; 0) ≤ 10−7, and LANCELOT was stopped when the projected gradient and con-
straint violations were less than 10−7; the termination criteria for these two methods are
therefore very similar. In all these problems the two codes approached the same solution
point. Since both algorithms use the conjugate gradient method to compute the step, we
also report in Table 2 the total number of CG iterations needed for convergence. All runs
were performed on a Sparcstation 20 with 32 MB of main memory, using a FORTRAN
77 compiler and double precision; the CPU time reported is in seconds. An asterisk indi-
cates that the stopping test was not satisfied after 10,000 iterations. The results of NITRO
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reported in Table 2 are highly encouraging, particularly the number of function evaluations.

# of # of f evals CG iters Time
Problem var constr NITRO LAN NITRO LAN NITRO LAN

CORKSCRW 456 350 61 171 430 114780 53.78 657.94
COSHFUN 61 20 40 149 1316 3421 4.22 5.83
DIXCHLNV 100 50 19 1445 83 1431 14.46 153.97
GAUSSELM 14 11 52 28 115 112 0.79 0.25
HAGER4 2001 1000 18 14 281 2291 37.34 99.65
HIMMELBK 24 14 33 154 89 1533 4.15 8.18
NGONE 100 1273 256 3997 1821 129963 1027.51 1446.09
OBSTCLAE 1024 0 26 5 6184 366 566.39 12.98
OPTCNTRL 32 20 47 25 165 65 1.44 0.3
OPTMASS 1210 1005 39 * 151 * 24.79 *
ORTHREGF 1205 400 30 192 78 315 57.09 48.18
READING1 202 100 40 720 130 13981 130.89 74.13
SVANBERG 500 500 35 82 5067 3908 2720.19 120.96
TORSION1 484 0 19 8 2174 66 58.39 1.11

Table 2: Number of function evaluations, number of CG iterations and CPU time for the
new primal-dual interior point method (NITRO) and LANCELOT (LAN). A * indicates
that the method did not meet the stopping test in 10,000 iterations.

In Table 3 we compare the primal version of NITRO using (3.1) and the primal-dual
version using (3.11). The column under the header “%full steps” denotes the percentage of
steps that did not encounter the trust region (3.18). We see that the primal-dual version
(pd) outperforms the primal version (p), and its step tends to be constrained by the trust
region less often.

To observe whether the tangential subproblem becomes very difficult to solve as the
barrier parameter approaches zero, we report in Table 4 the number of CG iterations re-
quired in the step computation during the last iteration of the interior point algorithm.
At this stage the barrier parameter µ is of order 10−7. Table 4 gives the number of CG
iterations relative to the dimension n− t of the linear system to be solved (recall that the
code imposes a limit of 2 on this ratio). We also report if the step was inside the trust
region (full), if it encountered the trust region (hit tr) or if the number of CG iterations
reached the permissible limit of 2(n − t). These results, as well as an examination of the
complete runs, indicate that the subproblems do not become particularly hard to solve as
the problem approaches the solution. This is due to the preconditioning described before
the statement of PCG Procedure.

To test the robustness of the new interior point method, we solved a set of problems
from the Hock and Schittkowski collection [28], as programmed in CUTE. The results are
given in Table 5, and include all the problems that we tested. Since these problems contain
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# of # of NITRO (pd) NITRO (p)
Problem var constr f evals %full steps f evals %full steps

CORKSCRW 456 350 61 40 78 58
COSHFUN 61 20 40 83 472 6
DIXCHLNV 100 50 19 79 18 78
GAUSSELM 14 11 52 27 62 27
HAGER4 2001 1000 18 78 21 62
HIMMELBK 24 14 33 79 62 36
NGONE 100 1273 256 6 200 18
OBSTCLAE 1024 0 26 77 60 82
OPTCNTRL 32 20 47 92 51 73
OPTMASS 1210 1005 39 59 67 60
ORTHREGF 1205 400 30 30 31 30
READING1 202 100 40 78 33 33
SVANBERG 500 500 35 71 61 72
TORSION1 484 0 19 79 41 78

Table 3: Primal dual vs primal options of the new interior point method. The table gives
the number of function evaluations and percentage of full steps. A * indicates that the
stopping test was not satisfied in 10,000 iterations.

# of # of NITRO (pd)
Problem var constr CG iter step type

CORKSCRW 456 350 0.03 full
COSHFUN 61 20 2.0 CG limit
DIXCHLNV 100 50 0.1 full
GAUSSELM 14 11 0.4 full
HAGER4 2001 1000 0.1 full
HIMMELBK 24 14 0.3 full
NGONE 100 1273 0.08 hit tr
OBSTCLAE 1024 0 2.0 CG limit
OPTCNTRL 32 20 0.3 full
OPTMASS 1210 1005 0.0 full
ORTHREGF 1205 400 0.006 full
READING1 202 100 0.03 full
SVANBERG 500 500 1.5 full
TORSION1 484 0 1.8 full

Table 4: Analysis of the last step computed by NITRO. Total number of CG iterations
divided by the dimension of the linear system, n− t, and the type of step taken.
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a very small number of variables, we do not report CPU time. NITRO failed for problems
HS99 and HS109. In problem HS99, the code terminated very close to a solution because
the trust region was too small. In problem HS109, the routine MA27 failed to factor the
augmented systems in (3.56) and (3.57) because they were determined to be very close
to singular. LANCELOT failed for four problems. In HS75, the code completed without
reporting any errors. However, the point that was returned failed to satisfy the stopping
test. In problems HS106, HS109, and HS116, LANCELOT was unable to compute a solution
in 10,000 iterations.

It is reassuring to observe that NITRO failed on very few problems. Nevertheless its
performance is not as good as that of LANCELOT on these small problems, and it appears
that our strategy for decreasing the barrier parameter is overly conservative. We suspect
that by decreasing it more rapidly, and in a carefully controlled manner [8], the number of
function evaluations will be reduced significantly. We should also mention that we do not
yet have a complete understanding of the behavior of NITRO on some of the problems on
which it took a large number of iterations.

5. Final Remarks.

We have presented an interior point method for solving large nonlinear programming
problems. Rather than trying to mimic primal-dual interior point methods for linear pro-
gramming, we have taken the approach of developing a fairly standard SQP trust region
method, and introduced in it some of the key features of primal-dual iterations. No attempt
was made to obtain a rapidly convergent method: the barrier parameter was decreased at
a linear rate, forcing the iterates of the algorithm to converge linearly. We have, however,
given careful attention to the treatment of non-convexity, to the exploitation of sparsity
though use of the conjugate gradient method and the sparse Cholesky code MA28, and
have designed many features to make the algorithm robust on general problems. This ap-
proach appears to have paid off in that the algorithm has proved to be capable of solving
a wide range of problems, even when ill-conditioning and non-convexity is present. Our
tests seem to indicate that our code is competitive on large problems with a production
code such as LANCELOT. We have also shown that the preconditioning of the tangential
subproblem has, to a large extent, removed the effects of the ill-conditioning inherent in
interior point methods, and that the CG iteration does not have particular difficulties in
computing the tangential component of the step as the iterates approach the solution.

The algorithm presented here is not as rapidly convergent as it can be. We are currently
developing [8] various mechanisms to accelerate the iteration; these include the use of higher-
order corrections and rules for decreasing the barrier parameter at a superlinear rate. We
should also note that the technique for refining the solution of linear systems referred to at
the end of §3.4 is very conservative (in that it demands very tight accuracy) and leads to
high execution times on some problems. More efficient techniques for refining the solution
of linear systems are the subject of current investigation [26].

Acknowledgments. We would like to thank Guanghui Liu for help in the preparation of
this article.
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Problem NITRO LAN

HS2 18 7
HS3 12 5
HS4 11 2
HS7 8 18
HS10 17 19
HS11 14 19
HS13 40 81
HS14 14 13
HS16 15 16
HS17 27 20
HS19 47 36
HS20 18 23
HS22 15 11
HS24 19 8
HS26 16 39
HS28 3 4
HS31 13 13
HS32 19 9
HS33 28 12
HS39 19 21
HS46 16 29
HS51 3 3
HS52 3 8
HS53 8 8
HS63 13 14
HS64 43 53
HS65 20 28
HS70 35 29
HS71 16 16
HS72 44 94
HS73 29 18
HS74 15 28

Problem NITRO LAN

HS75 107 141**
HS77 17 22
HS78 5 12
HS79 6 10
HS80 13 15
HS81 13 17
HS83 36 26
HS84 20 60
HS85 1658 17
HS86 16 18
HS93 14 6
HS95 156 8
HS96 196 8
HS97 45 19
HS98 53 18
HS99 * 70
HS100 20 46
HS104 34 62
HS105 34 15
HS106 221 *
HS107 15 40
HS108 49 24
HS109 * *
HS111 15 47
HS112 14 44
HS113 17 81
HS114 33 763
HS116 71 *
HS117 40 50
HS118 28 17
HS119 31 29

Table 5: The number of function evaluations for NITRO and LANCELOT to solve a subset
of the Hock and Schittkowski test collection. An asterisk (*) indicates a failure to obtain a
solution within 10,000 iterations. A double asterisk indicates that LANCELOT computed
a point that was not a local minimum.
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