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Abstract—Multicarrier modulation in the form of orthogonal-  and Doppler shift compensation, while the receivers in§11]
frequency-division-multiplexing (OFDM) has been intensvely [13] explicitly deal with ICI. Ignoring the ICI, the receive
pursued for underwater acoustic (UWA) communications recatly in [2]-[9] have low complexity on channel estimation and

due to its ability to handle long dispersive channels. Fastariation . . .
of UWA channels destroys the orthogonality of the sub-cariérs data detection, however, their performance degrades iguick

and leads to inter-carrier interference (ICI), which degrades the in channels with large Doppler spread. Explicitly accongti
system performance significantly. In this paper we propose a for the ICI, the receiver in [13] achieves robust perforn@nc

progressive receiver dealing with time-varying UWA channés. even in very challenging channel conditions. However, it
The progressive receiver Is In nature an iterative recelverbased requires a Signiﬁcant pllot overhead for channel estinﬂatio

on the turbo principle. However, it distinguishes itself from d th X lexity i iderablv higher th it
existing iterative receivers in that the system model for chnnel an € receiver complexity 1s considerably higher than its

estimation and data detection is itself continually update during  |Cl-ignorant counterparts [16].
the iterations. When the decoding in the current iteration & In practice, underwater acoustic (UWA) channels are rgpidl

not successful, the receiver increases the span of the ICl ithe  time-varying due to environmental variations such as wind
system model and utilizes the currently available soft infamation speed, wave height, and the motion of the transceiver plat-

from the decoder to assist the next iteration which deals wit a f So far. th . | d del for UWA
channel with larger Doppler spread. Numerical simulation and orms. S0 1ar, there 1S no commonly-agreed moadel for

experimental data collected from the2008 Surface Processes and ~ channels. One important area of research is to investigate h
Acoustic Communications Experiment (SPACEO08) show that the environmental factors affect the performance of a paricul
proposed receiver can self adapt to channel variations, eajing receiver structure, see e.g., [17], [18].
low complexity in good channel conditions while maintainirg In this paper, we propose an OFDM receiver that can adapt
excellent performance in adverse channel conditions. . - - . .
o . . . to different channel conditions in an automatic fashion. By
Index Terms—Turbo equalization, iterative receiver, sparse jts nature, the proposed progressive receiver is an ierati
channel estimation, OFDM, inter-carrier interference, underwa- receiver, following the turbo principle. However, it disti
ter acoustic communications. ; . T : .
guishes itself from existing iterative receivers, e.g9]H25],
in that the system model itself for channel estimation artd da
|. INTRODUCTION detection keeps being updated during the iterations. When t

Recently, multicarrier modulation in the form of orthogéna decoding in the current iteration is not successful, theivec
frequency-division-multiplexing (OFDM) has been actjvel increases the span of the ICI in the system model and utilizes
pursued for underwater acoustic communications; see pﬂj}e available soft information from the channel decoder to
formance results based on data recorded from various figigal with a channel with a larger Doppler spread in the next
experiments in [2]-[13]. Different receivers are built bds iteration.
on different assumptions on the underlying channel models.For channel estimation, we use basis pursuit algorithms
Specifically, the receivers in [2]-[10] assume that interrier developed in the compressed sensing context to exploit the
interference (ICI) can be neglected after proper resampligparse nature of UWA channels [13], where we also in-

corporate the soft information from the decoder. The ICI
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conducted off the coast of Martha’s Vineyard, MA, from Octand the passband signal at the receiver is

14 to Nov. 1, 2008. The reported experimental results irelud N,

eight consecutive days, where the environmental condition _oN - ~

had significant changes. The progressive receiver achieves t= ZAPI L+ap)t=mp) +0(t) ©)

consistent performance despite large channel variatibns.

good channel conditions, it has as low complexity as the I0nhered(t) is the additive noise.

ignorant receiver in [2], [5]. In adverse channel condiion As in [2], [13], the receiver applies a resampling operation

it maintains excellent performance, but avoids the drakbat® remove the dominant Doppler effect, which leads to a

of extra pilot overhead in the ICl-aware receiver as in [13]esampled passband sigrit) = 5(t/(1 + a)), wherel +a

Compared with an iterative receiver that uses a fixed 13 the resampling factor. Let(t) denote the baseband signal

model, the proposed progressive receiver has compara@iéresponding tci(t). After the Doppler shift compensation

performance but much lower complexity. e~7?7<! (see [2] for details on how to estimatg, the FFT
The rest of this paper is organized as follows. Section @utput on themth subcarrier is

p=1

presents the system model and Section Il describes the 1 [T+ _ _
proposed progressive receiver in detail. Section V presiiet z[m] = T/ 2(t)e T2t gy @)
simulation results and Section VI contains the experimenta 0
results. Section VIl contains the conclusions. Plugging inz(t) and carrying out the integration, we obtain:
Notation: Bold upper case and lower case letters denote N,
matrices and column vectors, respectively}”, (-)*, and 27 (o +€)
’ A —727(fm+te€ ‘r
() denote transpose, conjugate, and Hermltlan transposL Z c Z om.i(b +olml,
keESA
respectivelyly stands for an identity matrix with siza'. (8)

wherewv[m] is the additive noise and
Il. SYSTEM MODEL

Zero-padded (ZP) OFDM is used as in [2], [3], [13]. L&t po— a A = Ap L= _Tp 9)
. . p A P 9 P )
denote the OFDM symbol duration afiyj the guard interval. l+a 1+ bp 1+ by
The total OFDM block duration ig” = T + T, and the (b)) = G (fon = i+ = bp fm (10)
subcarrier spacing is/7. The kth subcarrier is at frequency Om.k m Ik 1+0b, /-
fe=fc+k/T, k=-K/2,...,K/2—1, (1) With the definition of

where f. is the carrier frequency anH subcarriers are used No o - ,
so that the bandwidth i3 = K/T. Let s[k] denote the Hp o= A2 Unt9 0, 1 (by) (11)
information symbol to be transmitted on tl¢h subcarrier. p=1

The non-overlapping sets of active subcarrigts and null e can rewrite the input-output relationship as
subcarriersSy satisfy Sy USy = {—-K/2,--- ,K/2 —1}.
The transmitted passband signal is zlm) = Y Hp ps[k] + v[m]. (12)

keSa
I(t) = 2Re{ l > S[k]ej%;tg(t)] €j2”f“t} , t€[0, 7] Clearly H,, . is the ICI coefficient that determines how the
k€S @ symbol transmitted on théth subcarrier contributes to the

h h | h il h F ‘ output on themth subcarrier. Using a matrix-vector notation,
w ereg(t) is the pulse shaping filter whose Fourier transform e can rewrite (12) as
is denoted byG(f).

Assume that the UWA multipath channel consists9f Z[—g] U[—%]
discrete paths [13] : - : +
N, K K
: A5 -1/ \elf -1l
h(rt) = 3 Ap(0)5 (1 = 7 (1)) (3) =N -
p=1 =z =v
- H x _x H_rx x4 s[— %]
where A, (t) andr,(t) are the amplitude and delay of théh 272 2072 2
path. Within the block duratiofi”, we assume that i) the path : : : (13)
amplitudes do not changé, (t) ~ A,, and ii) the path delays Hx | x - Hrx | x s[E —1]
can be approximated by LR z
=H =s
p(t) = 1p — apt, (4)

where z, s, and v collect the FFT outputs, the transmitted
wherer, is the delay at the start of the OFDM block angl data symbols, and the noise elements across all subcarriers
is the Doppler rate corresponding to thtl path. As such, the m = —K/2, -K/2+1,...,K/2 — 1, andH is the channel

channel model simplifies to mixing matrix.
In [2] and [13], we have developed two block-by-block
ZA 6 (1 — —apt)), (5) OFDM receivers based on different assumptions on the chan-

nel model:
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« ICl-ignorant receiver [2]: It is assumed that all the paths  ~ 4
have a similar Doppler rate, = a, Vp, and hence the ICI
can be ignored after proper resampling and Doppler shift
compensation. As such, the channel mixing maklixs
diagonal, leading to low-complexity channel estimation
and data demodulation. The experimental results in [2], | % | =
[13] show that the ICI-ignorant receiver works well in
good channel conditions, but its performance degrades
considerably at adverse channel conditions.

« ICl-aware receiver [13]: It is assumed that all the paths
have different Doppler rates, and hence ICI exists and
is explicitly dealt with by the receiver. The ICl-aware
receiver achieves excellent performance even in advefd 1. The equivalent system model with different ICI spans
channel conditions. However, a large number of pilots is
needed for channel estimation, which reduces the spectrgl
efficiency. Also, the complexity is much higher than thaﬁS
of ICI-ignorant receivers.

[
L

diagonals, as shown in Fig. 1. The effective system rhode
ed for channel estimation and data demodulation is:

In this paper, we develop a progressive receiver structure z=Hps+(H-Hp)s+v
that can adapt itself to channel conditions. It will have as =Hps+n, (15)
low complexity as the ICI-ignorant receiver in good channel
e e Whoposed progrese recever. e paramiloncrases o
' the iteration goes on, and hence more severe ICI can be

the progressive receiver does _not require any extra p'f'él)adressed as the receiver processing proceeds to deal with
overhead, compared to the non-iterative receiver in [13].

channels with large Doppler spread.

Fig. 2 depicts the progressive receiver structure, which

I1l. RECEIVER STRUCTURE consists of the following steps.

o Step 1: Pre-processing. For each received OFDM block,
the receiver applies the pre-processing operation to re-
move the dominant Doppler effect [2]. SBX = 0.

o Sep 2: Channel estimation. Estimate the equivalent chan-
nel mixing matrix Hp based on the assumed channel

A. The Progressive Receiver Sructure model given in (15).

Sep 3: Noise variance estimation. After channel estima-

tion, the variance of the effective noiseis computed.

This quantity is needed for ICI equalization.

Sep 4: IClI equalization. By using the estimated channel

matrix Hp, the equivalent noise variance, and #ariori

information from the nonbinary LDPC decoder in the
previous iteration, the ICI equalizer generates soft autpu

; . X . on the reliability of the data symbols.

severity of the assumed ICI increases as the iteration goes Sep 5: Nonbinary LDPC decoding. The nonbinary LDPC

on. Jgetsoftt |nf(;]rmat|(|)n otllatau:.ed frorg ;h? p(rjewouds ||tet1_1at| ¢ decoder yields the decoded information symbols and the
contributes 1o channel estimation and data demoauialion 10 ¢h¢ information that can be used for channel estimation

the hcut‘renli |tera,t,|c()jn. This }Na%/’ thelreC(_alvgr can self gdallpt and ICl equalization [5]. During the decoding process,
to the “unknown egree of channe varlatlc_m ProgressWVely  ine decoder will declare success if all the parity check
The proposed receiver keeps the complexity low when the s I
" . : S conditions are satisfied.
channel conditions are good, while still maintaining elers . Sep 6: Iteration ng steps 2 to 5. IncreaseD in
performance when the channel conditions deteriorate. the sy.stem model. and the assumea maximum Doppler
The channel models used in the proposed receiver structure spread of the cha;nnel to be estimated. Feed back the

are parameterized by a parameieras soft information to the channel estimator and the ICI

heren := (H — Hp)s + v is the effective noise. In the

We first present the overview of the proposed receiver
structure in Section IlI-A, and then specify the key modules
in Sections III-B — llI-E.

The proposed progressive receiver is an iterative receiver
in nature, following the turbo principle. However, in coast
to existing iterative receivers in the literature, the epst
model used for channel identification and data demodulation”
changes at each iteration. It starts with a simple channel
model that allows for ICI-ignorant receiver processingd an
then progresses to ICl-aware receiver processing where the

Hpp~0, |m—kl>D (14) equalizer. lteration stops when the decoder declares a
" ’ success, or whenD reaches a pre-specified number
In other words, each symbol only affects Iisdirect neighbors Drjax.

on each side, a reasonable assumption used in many existinip the proposed receiver as depicted in Fig. 2, each iteratio
works, e.g., [11], [22], [24], [30]. In this paper, we terthas is associated with a differer®. The receiver can also iterate
the ICI depth an@D + 1 as the ICI span. LeH, denote the multiple times among step 2 to step 5 on channel estimation,
matrix carved fronH keeping only the main diagonal a@d® equalization and decoding for each fix&q before increasing
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l Despite havingK (2D + 1) non-zero entries, the matrix
T Hp is determined byV,, triplets of (A;, by, 7,) as described _
setD=0 in (11). Hence, instead of estimating the full channel matri
directly, we estimate the parameters &, channel paths.
Z =Hps +n l‘ For sparse UWA channels [13], it is possible that thége
paths can be identified based on only a limited number of
Channel estimation measurements via advanced methods, such as compressed
¢ sensing. We will use the basis pursuit algorithms developed
: : in the compressed sensing context as the building block [13]
No;zr\r/;:g:ce The compressed sensing based channel estimator tries to
identify the discrete paths from an overcomplete dictignar
¢ Incrg(zjase Dfi [13]. In particular, let us split the delay/Doppler randes b)
@) el ?r:%'r'mzsgn into a large number qf diction_aries, and then connept the
r complex channel amplitudes with the frequency domain ob-
¢ servations through the constructed dictionaries. On thayde
Nl and Doppler plane, a set of uniformly spaced points can be
LDPC decoding constructed from
, T 2T (N, —1)T
T G{O’AK’)\K""’ Ve }, (18)
o b2 e {—b2 —bE. +Ab.. b2}, (19)

Yes where the time resolution is chosen as a fractianpf the
baseband sampling tim&/K, leading toN, = AKT,/T
tentative delays. For the Doppler rates, we assume that they

Output
decisions
are spread around zero after pre-processing, Ahds the

Fig. 2. Progressive receiver structure. Doppler resolutionb? . can be chosen based on the assumed

max

Doppler spread for the current system model. There are

D to update the system model. Here we skip such a possibility opP
. « . . max

for simplicity. Note that we have extended the progressévse r

ceiver structure to a multi-input multi-output (MIMO) sesh

in [38], where multiple iterations among channel estimatio

equalization and decoding are explicitly used for eachesyst

model with a particulaD.

(Ab) +1 = NP, (20)

tentative Doppler rates, leading to a delay-Doppler dictio
nary of size N.NJ. During the iterations, the progressive
receiver keeps the delay dictionary unchanged, but erdarge
the Doppler dictionary size by increasinf,, asD increases.

This way, channels with large Doppler spread can be ad-
B. Sparse Channel Estimation dressed.

The inputs to the channel estimator are the observationd et & ; be the complex coefficient for a possible path that
in z, the pilot symbols, and the posteriori probabilities has delayr; and Doppler scalé”. Define a diagonal matrix
(APP) of the information symbols from the nonbinary LDPQ\; with [A;],,.., = e 727%7. Define another matrid"”
decoder. Different strategies on how to use APP can be foumaving (m, k)th entry as
in [9]. Here, we use the soft feedback strategy, which preduc

MMSE estimates of the information symbols as
D omk(0P), |m —k| <D,
M [T; ]m, = 0 ’ " : (21)
s[k] = Pupp(slk] = ai)as, YkeSp  (16) ’ othermse,
i=1

where M is the constellation sizey; is theith constellation ;Nher? tg”f;,’g('.) IS bdef(ljnzd mt .(10)' Note tg‘?‘t t]gJe Doppler
point, P, (-) is the APP from LDPC decoder, ai&} is the emplatel;” 1S a ban ? ma rff'_CF’”fSp"” NG - )
set of data subcarriers #,. Hence, an estimate sf(denoted ~ Therefore, the equivalent “mixing” channel matrix con-

by §) can be formed from structed by thoséVTNlP dictionaries can be written as
S[/{], k € Sp, NP N
sfk] =4 0, ke Sy, 17 o
) S, ks o Ho = 3 6 ALY @)
’ ’ i=1 =1

whereSp is the set of pilot subcarriers frody (SpUSp =
Sa). With this, the observation can be rewritten as the combi-
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nation of all possible delay/Doppler dictionaries as noise. As the iteration goes on wiih > 0, the spillover from
the neighboring subcarriers to the null subcarriers isaetéd

z=Hps+n as in (25), and no whitening is applied.
Ny N,
= AP+ n
;;&’ : D. ICI Equalization
&1 After obtaining the estimated channel mat#p, the
— (A, TPS), ..., (AN.TD,3 : I 23) receiver now deals with ICI mitigation, based on the observa
[(AiT7S) (An, NbDS)] : n (29) tions in z and the soft information (denoted by?) fed back
=A gNnNz? from the nonbinary LDPC decoder.
=x Based on (15), the observation on theh subcarrier can
Then, channel estimation becomes a fitting problem with tig written as
constraint that the solutior is sparse, which can be solved k=D
by the following convex optimization problem z[m] = Z Hpm—ksm — k] + nim], (26)
. k=—D
min || Ax —z|” + ¢ ||| , (24)

which is in the convolution form but with coefficients thaear
where( is the regularization parameter to control the sparsighanging from symbol to symbol. Hence, the ICI mitigation
of x. problem in the frequency domain is equivalent to an inter-
After obtaining the sparse channel solution we can symbol-interference (ISI) equalization problem in the gim
reconstruct the frequency domain response according %o (22main with time-varying channel taps. Existing methods fo
Many solvers for the formulation in (24) are available, s@g,e |S| equalization can be used for ICI equalization. Here we co
[31]-{33], but it should be noted that ¥ is complex, and ii) sider the MAP equalizer [26], the MMSE equalizer from [19],
the matrix A is of large dimension, buAb and A”c can be [20], and the Markov Chain Monte Carlo (MCMC) equalizer

evaluated efficiently. In this paper, we use the SpaRSA alggom [27]-[29], all of which can effectively incorporate fso
rithm [34], which is based on iterative shrinkage/thredhad information from the channel decoder.

(IST). The complexity issue is investigated in [16]. ) _ )
Remark 1: During the first iteration, the symbol estimates 1) MAP Equalizer: In our system with nonbinary LDPC
from the decoder ([c.f. (24)]) are not available. Only th&0des, the size of the Galois field is matched to the con-

measurements on the pilot subcarriers are used for charfigflation size, with each element in the finite field dingctl

estimation, as done in [2]. Since only the delay grid is sesdc MaPped to a constellation point [5]. Tre posterior log-

in the first iteration withD = 0, the number of measurementdikelinood-ratio vector (LLRV) fors[m] is defined as\[m] =

needed can be much smaller than the later iterations witwl™l; A1lm], ..., Ay—1[m]]", where) is the constellation

D> 0. size and
Remark 2: We choose the sparsity factgrin (24) as a

function of the effective signal-to-noise ratio (SNR) fach

OFDM block as¢ = ¢/v/SNR, wherec is a constant. In

simulation and experimental results,is set t00.12. The

P(s[m] = a;|z, A%)
P(s[m] = 0]z, X°)
P(z|s, X°) P(s|\°)

effective SNR will be updated as the iteration goes on. Noise e
variance estimation is described in Section I1I-C. P(z]s, X°)P(s|X%)
s:s[m]=0
C. Noise Variance Estimation > P(zls)P(s|]x%)
When D increases, more ICI will be modeled as opposed to _ ms:s[m]:al 27)
being treated as additive noise. The variance of the efiecti N P(z|s)P(s|A°)
noise hence needs to be updated at each iteration. We estimat s:5[m]=0

the noise variance as o _

kD The summation in the numerator and denominator of (27)

No=E ‘Z’m _ Z flm,m—ké[m _ k]r . (25) are over a total o/ ¥ —! combinations o§. Due to the banded
structure ofH,,,, (27) can be expressed as (28), shown at the

top of the next page. Hence, the correlation length among the

postulated data sequeneés reduced fron¥i to 2D, and the

k=—D

where the expectation is carried out on the null subcarirers
Sy that are within the S|g_nal ba_nd. Fav = 0, all the ICI well-known BCJR algorithm [35] can be used to evaluate (28),
terms are treated as additive noise, avglin (25) measures  ..._. ;

. > > utilizing the ICI trellis structure.
the energy on the null subcarriers [2]. As less ICI is viewed
as additive noise, the effective signal-to-noise ratio RN 2) MMSE Equalizer: An MMSE equalizer witha priori

expected to increase. information from [19], [20] is used here for ICI mitigation.
A simple noise-whitening approach as in [10] will be used@he channel decoder feeds back the extrinsic information,
when D = 0, as the effective noise may not be independedenoted as\®, based on which the meamk] := FE(s[k])

of the desired signal and ICI is the dominant source for thend the variance?[k] := Cov(s[k], s[k]) can be calculated.



6 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING (TO APAR)

_ — 2 e
Zs:s[m]:ai eXp {_]\% 2712/22—11(/2 ‘Z[m] - IZ:EJD Hmvm_ks[m - k]‘ } P(S|)‘ )

Ai[m] = In 5 (28)
DRI EETD v N H RS oty AU SRS
z[m — D] ,Hm_D,m_QD . flm_Dm s[m — 2D] n[m — D]
= T AR 29)
z[m + D] ﬁmﬂp_m ﬁm+D’m+2D s[m + 2D] n[m + D]
=Z, —H,, ‘=S =n,,

The a priori information for different symbols is assumed teymbol-to-bit and bit-to-symbol conversion in our systeme,

be independent. now present the MCMC detector in a symbol-wise notation.
Based on (26), we collect the FFT outputs that are directly The procedure of MCMC sampling can be found in [27]-

related tos[m] as (29), shown at the top of this page. Now29]. Assume that?} importance samples are obtained after

let h,,, be the(D + 1)th column ofH,,: removing the redundant samples as in [27]. With the impor-

R . X T tance samples, the LLRV is computed as

B = [Hon-Dos s B o (30)

P(zps, ™, s [m] = o) P(X°)

WE

which is of length2D + 1. DefineH;, to be H,, with h,,

Il
-

removed, ands:, to bes,, with s[m] removed. As such, we  Ailm] =In = . (34)
rewrite (29) as P(z]s, ™, s [m] = 0)P(X°)
Zoy = hys[m] + Ho s +ny,. (31) n=l

Lo . ' wheres,," is defined similar as in the MMSE equalizer based
Based on the extrinsic information, define the mean an thenth le inq). and P —(n) ()]
covariance ok, as: on thenth sample inQ, and P(z,|sm" ’, s™[m] = «;) can

be simplified as
B = E(sp,),  Zpm = Cov(s,,;s,,). (32) P(zm|s;, ™, s™[m] = a;)

Note that no a priori information of[m] is included for the 1
MMSE estimation of it, hence(s[m]) = 0 ando?[m] = Ej, ~ eXp {_
whereF; is the average symbol energy. Further, the equivalent
noisen is assumed Gaussian with a covariance matvig.

n)

Zoy, — flmo&i — I:I;s;(

2
}. (35)
0
The main difference between the MCMC and the MAP

The MMSE estimator fos[m] based on (31) is then equalizer is how large the contributing $etis. In the MAP
equalizer, the size i8/%P, which is prohibitive to compute in
3[m] = (33) practice for largeM or D, while the MCMC equalizer only

o No 1 . R . R uses the importance set to approximate the optimal solution
by [ by + =T+ S H B (H) ] (2 — Hpsy).

Assuming thag[m] is Gaussian distributed, the probabilitieg' Nonbinary LDPC Decoding
P(3[m]|s|m] = a;),i=0,..., M —1, can be computed [19]. Nonbinary LDPC decoding as in [5] is performed based
These probabilities are passed to the nonbinary LDPC decod® the equalizer outputs. The decoder outputs the decoded

, o information symbols and the updated a posterior and ex-
3) Markov Chain Monte Carlo (MCMC) Equalizer: The gingic probabilities, which are used for the next round of

high complexity of the MAP equalizer lies in the exponentiglpanne| estimation and data detection, respectively. rguri
complexity in (28), where all the possible combinationswit ,o gecoding process, if all the parity check conditions are
the correlation length are involved to calculate the LLRV ofyjisfied, the decoder declares success. This is a nicerprope

s[m]. In fact, only a handful of combinations, tfportance ,ssqciated with LDPC codes, which is well known in the
set, contribute significantly to the summation in the numerat(&rodmg literature.

and denominator of (28). The MCMC method tries to find the
importance set by browsing the possible choices of postulated
data sequences in an efficient manner. o o _ _
The MCMC method has been successfully applied fdy Distinctions from Existing Iterative Receivers

MIMO detection in [27], [28] and ISI equalization in [29]. It The turbo principle has been recognized as one important
has been recently applied to UWA channels with single carrimethodology in advanced communication systems, and there
transmission in [36]. Note that both bit-wise and groupewiss a large body of work on iterative receiver designs for
MCMC detectors have been proposed [29]. Since there is wireless communications, see e.g. [21] and referencesither

IV. DISCUSSION
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One significant distinction of this work is that the syster 0 : : : : : :
model keeps being updated during the iterations, while afix ———— 0 ,=0.1mis
system model is usually assumed in existing iterative vecsi -5 27\ $—0—0,=02ms |+
[21]. This work is motivated by decoding the recorded dal 7/ \ | — + —o,=03ms
from experiments: practical underwater acoustic chanaeds -10t '

constantly varying and the characteristics are largelgcaéd
by environmental conditions, and hence a fixed model wou @ ~15}

not be appropriate for all channel conditions. o ol
—251
B. Complexity of Channel Estimation ()
. o -30
The complexity of sparse channel estimation in (24) di
pends on the the problem dimension. On th¢h iteration, _35 . . . . . . .
NP possible Doppler scaling factors are considered. For ez -4 -3 -2 -1 0 1 2 3 4
tentative Doppler scalé”, similar operations are carried out ICI index

to evaluate the effects due to the path delays [16]. Hence, _
channel estimation complexity is approximately linearhwit™9- 3- Average ICl powed{| Hy, . —p|*} versus the ICI indexD.
NP. In the problem studied in [16], the average runtime to

solve (24) with NP = 15 tentative Doppler rates is about
30 times larger than that wittv” = 1 for the ICl-ignorant
receiver. Note that the proposed receiver gradually irserea {17 te 0,7,

pulse shaping filtér

NP during the iterations, which helps to lower the complexity. g(t) = (36)

0, otherwise.
Out of K = 1024 subcarriers, there are 256 pilot subcarriers,
C. Complexity of ICI Equalization 96 null subcarriers, and 672 data subcarriers. With rate 1/2

nonbinary LDPC coding, the data rate is
When D increases, the ICI equalization complexity in-
creases at different rates for different equalizers. po L 072 log, M {5-2 kb/s  QPSK (37)
2

« The complexity of a MAP equalizer i©(M?2?), which T+, 10.4 kb/s  16-QAM.

increasesponentially with D. Hence, the MAP equal-  \we generate sparse channels with = 15 discrete paths,
izer is only suitable for smalD and small constellation ynere the inter-arrival times are distributed exponelytiaith
size M. o . _ _ inter-arrival mean of 1 ms, leading to a total average delay
« The MMSE equalizer involves matrix inversion as in (33)spread of 15 ms. The amplitudes are Rayleigh distributed
and its complexity is cubic withD. Since D is small, \yith the average power decreasing exponentially with delay
the MMSE equalizer has low complexity. Further, thgach path has a separate Doppler rate, which is drawn from
complexity does not depend on the constellation dize 5 piform distribution with standard deviation of m/s. We
« The complexity of the MCMC equalizer depends on thgngose a zero-mean Doppler distribution, as a non-zero mean

sample siz& and the constellation siz&/. Processing ¢oyid be removed through the resampling operation.
the propab|llt|es in the log domain, the cqm.ple>.<|ty of Fig. 3 plotsE{|H,n.m_p|?} as a function of the ICI index
calculating (35) is4D? + 5D complex multiplications D for variousc,, normalized relative t@{| Hyp.m|2}. The ICI

(CMs) and4_D? + 5D complex additions (CAs). As the .,efficients are calculated based on full channel stateritde
termH, s, in (35) is the same when drawing one partico, (CSJ). As expected, the average ICI power decreases as
ular symbol, the complexity of drawing samples for acfye || index increases. Most of symbol energy concentrates
symbol is roughlng(M(3D+1)+2D(2D+1)) CMs and  5r4und the neighborhood of the desired subcarrier, whie th
UM(5D+2)+4D") CAs. Computing the output LLRVS |} energy increases with,. Hence, it becomes necessary to
as in (34) need®(M (3D +1)+2D(2D+1)) CMs and  gypjicitly consider ICI wherv, increases.

Q(M(5D+2)+4D?) CAs. Therefore, the total complex- Figs. 4 and 5 show the performance of the progressive

ity for the MCMC equalizer is abOLﬂQK(M(?’D2+ 1)+ receiver with QPSK and 16-QAM constellations, respedivel

2D(2D +1)) CMs and2QK (M (5D +2) +4D%) CAs.  \\nere only one receive-phone is used. We use the block

WhenD < M, the complexity is roughly linear with). 1o rate (BLER) after LDPC decoding as the performance
metric. The results are averaged over at least 1000 channel

realizations or when 50 block errors are detected. Theadlat
V. SIMULATION RESULTS
INote that other pulse-shaping filters have been designednfroive

The system parameters are the same as used in the SPACEpgystem performance in Doppler spread channels, e4j,, [I5], [24].
. ith bandwidttB — KH bol d . However, their benefits have not yet been validated by exyenral results.
experiment, wit andwidtlis = 9.77 z, symbol duration On the other hand, rectangular pulse-shaping filters haea leatensively

T = 104.86 ms, guard timel, = 24.6 ms, and a rectangulartested for multicarrier UWA communications [2], [3], [6]7]} [11], [12].
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BLER
BLER

SNR [dB] SNR [dB]
(@) oo =0.2mls (b) o = 0.3 m/s

Fig. 4. Simulated performance for the progressive receniéir different Dyax, QPSK.

BLER
BLER

Dmax =3
— e -
B £
- - - h % $ $ P 10 - - - - } S—b—
9 10 11 12 13 14 15 10 11 12 13 14 15 16
SNR [dB] SNR [dB]
(@) o, =0.1mls (b) o = 0.2 m/s

Fig. 5. Simulated performance for the progressive recenitét different Dy ax, 16-QAM.

parameters ard,.x = 3, the time resolution\ = 2 (as using the ICl-ignorant receiver. Next we consider more askve
suggested in [13]), the Doppler resolutidkb = 4 - 10>, channel conditions as in Fig. 5(b). Clearly, the ICl-igndra
As Ab = Awv/ec, the corresponding velocity step size iseceiver now has very poor performance, decoding barely
Av = 0.06 m/s. During the iteration proces®/” = 7,11 half of the OFDM symbols at 13 dB. In comparison, with
and 15 forD = 1, 2 and 3, respectively. For the MCMC D, = 1 about 80% of the OFDM symbols can be decoded,
detector, we use) = 250 samples with 5 parallel Gibbsalmost 97% atD,,,., = 2, and more than 99% fab,,,., = 3.
samplers. Due to the high complexity, we only report th€his also means that only 20% of the tini¢ = 2 has to
MAP equalization results for QPSK up 0,,., = 2. We can be used and less than 3% of the time the algorithm runs to
see that the MAP equalization outperforms the MMSE and = 3.

MCMC slightly. The performance difference between MMSE ) ) ) ) ) )
and MCMC equalization is negligible, while both of them In the progressive receiver, the effective noise variasce i

achieve significant performance improvement relative ® tfie-€stimated during each iteration, as shown in (25). Define
ICI-ignorant receiver. the effective SNR as the energy ratio of the signal portion to

the effective noise. Fig. 6 illustrates how the effective RSN
We first consider 16-QAM with good channel conditionschanges during the progressive process across a certga ran
see Fig. 5(a); at an operating SNR of 11 dB, more thai SNR, wheres, = 0.3 m/s ando,, = 0.2 m/s for QPSK and
90% OFDM symbols can be decoded in the first round, i.eL6-QAM, respectively. As more ICI is addressed, rather than
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Fig. 6. Estimated effective SNR during the progressive @sec MMSE equalization.
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Fig. 7. Average CPU run-times per OFDM block with the progies receiver for differentD,.x. MMSE equalization.

being regarded as additive noise, the effective SNR inesea$SNR improves. However, the complexity is larger than the
as the iteration goes on. ICl-ignorant receiver, as a large portion of OFDM blocks can

Now, let us briefly explore the complexity issue. Becaus nly be recovered after explicit ICI mitigation. In this Seg,

both the sparse channel estimation and the LDPC decod} SDrecelv_erlcotmhpleﬁlt%/NvgtH)max :t'273tﬁo?\:rejégis 2to thdat
are iterative processes, which can stop at any time once the ™2* — at g » Suggesting tha ==an

stopping criteria are met, we will not count the FLOPs T:h3 lterations are use_d mfrquerltly: | t all the f
individual algorithms. Instead, we use the average receive € progressive receiver needs 1o implement afl the func-

processing time per block for the proposed receiver. Tiigns of differentD values. Howevgr, the progressive receiver
numerical results were carried on under MATLAB 2007bV,VIII I|kely_ be run on software-defined modems [:.37]’ where .
on a personal computer with an Intel(R) Core(TM)2 CP torage is not a concern. Rather, the. processing spee_d 'S
6600@2.4 GHz and 3GB of memory. A total ¢ OFDM the main focus in order to meet real-time data processing
blocks were tested for each SNR point. Fig. 7 shows ghgauirements.

overall complexity of the progressive receiver for the ingtt

of Fig. 4. In Fig. 7(a) when the channel conditions are good, VI. EXPERIMENTAL RESULTS

the average total run-times for differem,,,, are close to = We use data recorded during the SPACEO8, conducted off
the ICI-ignorant receiver at the medium to high SNR regiothe coast of Martha’s Vineyard, MA, from Oct. 14 to Nov. 1,
This verifies that the proposed receiver structure keeps th@08. The water depth was about 15 meters, the transmitter
complexity low automatically when the channel conditiors awas approximately 4 meters from the sea floor, and the top of
good. In Fig. 7(b) corresponding to more challenging chémnethe receive arrays were about 3.25 meters above the sea floor,
the trend is similar that the average run-times decreaskeasds shown in Fig. 8.
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TABLE |
THE NUMBER OF UNDECODEDOFDM BLOCKS FOR DIFFERENT VALUES OFDmax IN THE PROGRESSIVE RECEIVERJULIAN DATES 295-302. 16-QAM,
RATE 1/2 CODING, MMSE BASED IC| EQUALIZATION

System S1 (60 m); 1560 blocks S3 (200 m); 1640 blocks S5 (1000 m); 1600 blocks
# of Phones|| Dmax=0 1 2 3 Dmax=0 1 2 3 Dmax=0 1 2 3
1 1178 | 1048 | 951 | 877 1229 | 1141 | 1090 | 1046 809 | 758 | 743 | 732
2 731 565 | 431 | 298 775 679 630 583 395 | 337 | 296 | 277
3 350 215 | 123 73 470 368 299 259 179 | 136 | 119 | 104
4 152 77 38 19 213 126 80 57 109 86 76 66
5 70 32 13 5 88 47 24 15 82 65 51 37
6 36 19 8 4 44 17 9 8 68 46 30 23
7 24 12 6 2 16 9 4 0 53 34 21 18
8 19 10 4 1 11 3 0 0 45 22 14 12
9 16 7 3 0 4 2 0 0 37 19 14 13
10 13 6 2 0 2 0 0 0 26 16 14 13
11 11 5 2 0 0 0 0 0 25 17 11 11
12 9 5 2 0 0 0 0 0 23 12 10 9
TABLE 1l

THE NUMBER OF UNDECODEDOFDM BLOCKS FOR DIFFERENT VALUES OFDmax IN THE PROGRESSIVE RECEIVERJULIAN DATES 295-302. 16-QAM,
RATE 1/2 CODING, MCMC BASED IC| EQUALIZATION

System S1 (60 m); 1560 blocks S3 (200 m); 1640 blocks S5 (1000 m); 1600 blocks
# of Phones|| Dmax=0 1 2 3 Dmax=0 1 2 3 Dmax=0 1 2 3
1 1178 | 1041 | 933 | 855 1229 | 1136 | 1078 | 1034 809 | 758 | 741 | 727
2 731 556 | 397 | 281 775 673 619 563 395 | 333 | 291 | 265
3 350 202 | 112 60 470 365 288 242 179 | 136 | 114 | 103
4 152 75 33 16 213 120 72 48 109 | 85 71 60
5 70 31 11 4 88 42 21 12 82 64 42 30
6 36 19 6 3 44 16 9 5 68 43 24 23
7 24 11 5 2 16 9 3 1 53 30 18 17
8 19 9 4 0 11 3 0 0 45 20 12 10
9 16 7 2 0 4 1 0 0 37 17 13 12
10 13 7 2 0 2 0 0 0 26 16 12 12
11 11 5 2 0 0 0 0 0 25 16 11 11
12 9 5 2 0 0 0 0 0 23 11 10 10

$

S3

1000 m

€
n
N
o

Fig. 8. Setup of SPACEO08 experiment.

typical channel responses for SPACEO8 experiment can be
found in [13, Fig. 10].

A. Performance Overview

Tables | and Il report the number of OFDM blocks thave

not been decoded correctly as D increases in the progressive
receiver, using the MMSE and MCMC equalizers, respectively
with different number of phones combirfedhe data across
eight days (Julian dates 295-302) is used. Since some extord
files are corrupted, there are a total of 1560, 1640 and 1600
blocks processed for S1, S3 and S5, respectively. Comparing
Tables | and I, we see that the MCMC equalizer performs
slightly better when only a small humber of hydrophones
are combined, and the gap closes when more hydrophones

The carrier frequency waf. = 13 kHz, and the sampling are available. Combining 12 hydrophone#, blocks in S1
frequency wasf, = 39.0625 kHz. More experiment descrip-and S3 are decoded correctly using the progressive receiver
tions can be found in [13], [18]. A transmission occurredrgve when it reachesD = 3. There are 9 (with MMSE) or 10
two hours, resulting in 12 recorded files each day. For eaghith MCMC) blocks that cannot be decoded in S5. Since the
transmission, there are 20 OFDM blocks with the parametggrformance difference between MMSE and MCMC is small,
specified in the simulation settings. Hence, the data ratejisthe following we use the MMSE results for illustration.

10.4 kb/s, with 16-QAM and rate-1/2 nonbinary LDPC coding
over a bandwidth of 9.77 kHz.

We report performance_ results for ‘]u”_an dates 295 — 3@2 SNR after combining increases, hence performance iraprent is due to
(Oct. 21 — 28) and consider three receivers, labeled as $dth diversity effect and SNR increase. In this paper, thenph are selected
S3, and S5, which were 60 m, 200 m, and 1,000 m frofgguentially across the array, from top to the bottom. Thquency domain

the transmitter, respectively. The Doppler resolution &mel
dictionary size are the same as used in the simulation. Tée also [38] for the extension to MIMO equalization.

2For recorded data, one common practice is to investigat@ehfermance
a function of the number of phones combined. Note thatmite phones,

observations are stacked into a longer vector to the eguallhe extension
from single channel processing to multichannel processsirggraightforward.
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Fig. 9. The block success percentage averaged over Juliaa 885-302, SPACE08, MMSE based ICI equalization.
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Fig. 10. Success level for each transmission of 20 OFDM lsipfur hydrophones. Markers are placed at convenient teefgh illustration purposes only.
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Fig. 9 shows the block success rate averaged over the eigfitout of 1640 blocks with decoding errors in S3, and 66 out
consecutive days using the proposed progressive receitrer vof 1600 blocks with decoding errors in S5, for the progressiv
the MMSE equalizer. At short (S1) to medium (S3) rangesgceiver withD ., = 3. Fig. 10 illustrates the success level
we expect rich multipath and significant Doppler variatioof each transmission of 20 OFDM blocks across the 8-day
due to the geometry. When the number of hydrophonesgsriod. Each day, we have about 12 files recorded (a few files
small, the performance of the ICI-ignorant receivér £ 0) are corrupted). “All success” means that all 20 blocks irt tha
is limited, and many more OFDM symbols can be decoddite, of duration20(T" + T;,) = 2.59 s, can be decoded, while
by applying the progressive procedure, with a lareMWhen “With errors” means that some blocks cannot be decoded out
the number of hydrophones is large, the ICI-ignorant resreivof 20 blocks in the file.
already achieves excellent results for all the blocks. Ringc ~ The significant wave height and average wind speed are
the results using four hydrophones, about 90% OFDM blockbown in Fig. 11. The significant wave height is calculated as
can be decoded at th® = 0 stage, and the success ratdl = 4,/mg, wheremy is the zeroth-moment of the variance
increases to 95% wheb,,., = 1, and up to 98.8% when spectrum obtained by integration of the variance spectitien.
Diax = 3. can observe some correlations between Fig. 10 and Fig. 11.

For S5, we see similar trends as S1 and S3, but tfibere are two periods that the progressive receiver with 0
gap between the ICl-ignorant and progressive receivers gistused: Julian dates 296-297 and Julian dates 300-30hgduri
smaller. When four hydrophones are combined, over 93#hich the wind speed and the wave height are high. For
blocks can be decoded by ignoring the ICI, and the succdbs rest of the days, the ICl-ignorant receiver can decode
rate increases to 96% when the progressive receiver reachiéshe blocks. Fig. 10 confirms that the progressive receive
D =3. can self adapt to channel conditions, maintaining both good

performance and low complexity.

B. Environmental Impact C. Progressive versus lterative ICl-aware receivers

Using four hydrophones for combining, Table | shows that In Fig. 12, we compare the performance between the
there are 19 out of 1560 blocks with decoding errors in Sfiroposed progressive receiver and an iterative ICl-awefe r
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