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Abstract—Multicarrier modulation in the form of orthogonal-
frequency-division-multiplexing (OFDM) has been intensively
pursued for underwater acoustic (UWA) communications recently
due to its ability to handle long dispersive channels. Fast variation
of UWA channels destroys the orthogonality of the sub-carriers
and leads to inter-carrier interference (ICI), which degrades the
system performance significantly. In this paper we propose a
progressive receiver dealing with time-varying UWA channels.
The progressive receiver is in nature an iterative receiver, based
on the turbo principle. However, it distinguishes itself from
existing iterative receivers in that the system model for channel
estimation and data detection is itself continually updated during
the iterations. When the decoding in the current iteration is
not successful, the receiver increases the span of the ICI inthe
system model and utilizes the currently available soft information
from the decoder to assist the next iteration which deals with a
channel with larger Doppler spread. Numerical simulation and
experimental data collected from the2008 Surface Processes and
Acoustic Communications Experiment (SPACE08) show that the
proposed receiver can self adapt to channel variations, enjoying
low complexity in good channel conditions while maintaining
excellent performance in adverse channel conditions.

Index Terms—Turbo equalization, iterative receiver, sparse
channel estimation, OFDM, inter-carrier interference, underwa-
ter acoustic communications.

I. I NTRODUCTION

Recently, multicarrier modulation in the form of orthogonal-
frequency-division-multiplexing (OFDM) has been actively
pursued for underwater acoustic communications; see per-
formance results based on data recorded from various field
experiments in [2]–[13]. Different receivers are built based
on different assumptions on the underlying channel models.
Specifically, the receivers in [2]–[10] assume that inter-carrier
interference (ICI) can be neglected after proper resampling
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and Doppler shift compensation, while the receivers in [11]–
[13] explicitly deal with ICI. Ignoring the ICI, the receivers
in [2]–[9] have low complexity on channel estimation and
data detection, however, their performance degrades quickly
in channels with large Doppler spread. Explicitly accounting
for the ICI, the receiver in [13] achieves robust performance
even in very challenging channel conditions. However, it
requires a significant pilot overhead for channel estimation,
and the receiver complexity is considerably higher than its
ICI-ignorant counterparts [16].

In practice, underwater acoustic (UWA) channels are rapidly
time-varying due to environmental variations such as wind
speed, wave height, and the motion of the transceiver plat-
forms. So far, there is no commonly-agreed model for UWA
channels. One important area of research is to investigate how
environmental factors affect the performance of a particular
receiver structure, see e.g., [17], [18].

In this paper, we propose an OFDM receiver that can adapt
to different channel conditions in an automatic fashion. By
its nature, the proposed progressive receiver is an iterative
receiver, following the turbo principle. However, it distin-
guishes itself from existing iterative receivers, e.g., [19]–[25],
in that the system model itself for channel estimation and data
detection keeps being updated during the iterations. When the
decoding in the current iteration is not successful, the receiver
increases the span of the ICI in the system model and utilizes
the available soft information from the channel decoder to
deal with a channel with a larger Doppler spread in the next
iteration.

For channel estimation, we use basis pursuit algorithms
developed in the compressed sensing context to exploit the
sparse nature of UWA channels [13], where we also in-
corporate the soft information from the decoder. The ICI
mitigation problem in the frequency-domain is equivalent to
that of intersymbol interference (ISI) equalization in thetime-
domain, but with time-varying ISI coefficients. Hence, existing
methods for ISI equalization can be directly used for ICI
mitigation. In this paper, we adopt the maximuma posteriori
(MAP) equalizer from [26], the minimum-mean-squared-error
(MMSE) equalizer from [19]–[21], and the Markov Chain
Monte Carlo (MCMC) equalizer from [27]–[29], all of which
can effectively utilizea priori information for data detection.

We conduct extensive tests on the progressive receiver using
both simulations and experimental data from the Surface Pro-
cesses and Acoustic Communications Experiment (SPACE08),
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conducted off the coast of Martha’s Vineyard, MA, from Oct.
14 to Nov. 1, 2008. The reported experimental results include
eight consecutive days, where the environmental conditions
had significant changes. The progressive receiver achieves
consistent performance despite large channel variations.In
good channel conditions, it has as low complexity as the ICI-
ignorant receiver in [2], [5]. In adverse channel conditions,
it maintains excellent performance, but avoids the drawback
of extra pilot overhead in the ICI-aware receiver as in [13].
Compared with an iterative receiver that uses a fixed ICI
model, the proposed progressive receiver has comparable
performance but much lower complexity.

The rest of this paper is organized as follows. Section II
presents the system model and Section III describes the
proposed progressive receiver in detail. Section V presents the
simulation results and Section VI contains the experimental
results. Section VII contains the conclusions.

Notation: Bold upper case and lower case letters denote
matrices and column vectors, respectively;(·)T , (·)∗, and
(·)H denote transpose, conjugate, and Hermitian transpose,
respectively.IN stands for an identity matrix with sizeN .

II. SYSTEM MODEL

Zero-padded (ZP) OFDM is used as in [2], [3], [13]. LetT
denote the OFDM symbol duration andTg the guard interval.
The total OFDM block duration isT ′ = T + Tg and the
subcarrier spacing is1/T . Thekth subcarrier is at frequency

fk = fc + k/T, k = −K/2, . . . , K/2 − 1, (1)

wherefc is the carrier frequency andK subcarriers are used
so that the bandwidth isB = K/T . Let s[k] denote the
information symbol to be transmitted on thekth subcarrier.
The non-overlapping sets of active subcarriersSA and null
subcarriersSN satisfy SA ∪ SN = {−K/2, · · · , K/2 − 1}.
The transmitted passband signal is

x̃(t) = 2Re

{[
∑

k∈SA

s[k]ej2π k
T

tg(t)

]

ej2πfct

}

, t ∈ [0, T ′]

(2)
whereg(t) is the pulse shaping filter whose Fourier transform
is denoted byG(f).

Assume that the UWA multipath channel consists ofNp

discrete paths [13]

h(τ, t) =

Np∑

p=1

Ap(t)δ (τ − τp(t)) (3)

whereAp(t) andτp(t) are the amplitude and delay of thepth
path. Within the block durationT ′, we assume that i) the path
amplitudes do not changeAp(t) ≈ Ap, and ii) the path delays
can be approximated by

τp(t) = τp − apt, (4)

whereτp is the delay at the start of the OFDM block andap

is the Doppler rate corresponding to thepth path. As such, the
channel model simplifies to

h(τ, t) =

Np∑

p=1

Apδ (τ − (τp − apt)) , (5)

and the passband signal at the receiver is

ỹ(t) =

Np∑

p=1

Apx̃ ((1 + ap)t − τp) + ṽ(t), (6)

whereṽ(t) is the additive noise.
As in [2], [13], the receiver applies a resampling operation

to remove the dominant Doppler effect, which leads to a
resampled passband signalz̃(t) = ỹ(t/(1 + â)), where1 + â
is the resampling factor. Letz(t) denote the baseband signal
corresponding tõz(t). After the Doppler shift compensation
e−j2πεt (see [2] for details on how to estimateε), the FFT
output on themth subcarrier is

z[m] =
1

T

∫ T+Tg

0

z(t)e−j2πεte−j2π m
T

t dt. (7)

Plugging inz(t) and carrying out the integration, we obtain:

z[m] =

Np∑

p=1

(

A
′

pe
−j2π(fm+ε)τ

′

p

(
∑

k∈SA

%m,k(bp)s[k]

))

+v[m],

(8)
wherev[m] is the additive noise and

bp =
ap − â

1 + â
, A

′

p =
Ap

1 + bp
, τ

′

p =
τp

1 + bp
, (9)

%m,k(bp) = G

(

fm − fk +
ε − bpfm

1 + bp

)

. (10)

With the definition of

Hm,k =

Np∑

p=1

A
′

pe
−j2π(fm+ε)τ ′

p%m,k(bp) (11)

we can rewrite the input-output relationship as

z[m] =
∑

k∈SA

Hm,ks[k] + v[m]. (12)

Clearly Hm,k is the ICI coefficient that determines how the
symbol transmitted on thekth subcarrier contributes to the
output on themth subcarrier. Using a matrix-vector notation,
we can rewrite (12) as






z[−K
2 ]

...
z[K

2 − 1]






︸ ︷︷ ︸

:=z

=






v[−K
2 ]

...
v[K

2 − 1]






︸ ︷︷ ︸

:=v

+






H−K
2

,−K
2

· · · H−K
2

, K
2
−1

...
. . .

...
HK

2
−1,−K

2

· · · HK
2
−1, K

2
−1






︸ ︷︷ ︸

:=H






s[−K
2 ]

...
s[K

2 − 1]






︸ ︷︷ ︸

:=s

(13)

where z, s, and v collect the FFT outputs, the transmitted
data symbols, and the noise elements across all subcarriers
m = −K/2,−K/2 + 1, . . . , K/2 − 1, andH is the channel
mixing matrix.

In [2] and [13], we have developed two block-by-block
OFDM receivers based on different assumptions on the chan-
nel model:
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• ICI-ignorant receiver [2]: It is assumed that all the paths
have a similar Doppler rateap = a, ∀p, and hence the ICI
can be ignored after proper resampling and Doppler shift
compensation. As such, the channel mixing matrixH is
diagonal, leading to low-complexity channel estimation
and data demodulation. The experimental results in [2],
[13] show that the ICI-ignorant receiver works well in
good channel conditions, but its performance degrades
considerably at adverse channel conditions.

• ICI-aware receiver [13]: It is assumed that all the paths
have different Doppler rates, and hence ICI exists and
is explicitly dealt with by the receiver. The ICI-aware
receiver achieves excellent performance even in adverse
channel conditions. However, a large number of pilots is
needed for channel estimation, which reduces the spectral
efficiency. Also, the complexity is much higher than that
of ICI-ignorant receivers.

In this paper, we develop a progressive receiver structure
that can adapt itself to channel conditions. It will have as
low complexity as the ICI-ignorant receiver in good channel
conditions, while achieving as excellent performance as the
ICI-aware receiver in adverse channel conditions. Furthermore
the progressive receiver does not require any extra pilot
overhead, compared to the non-iterative receiver in [13].

III. R ECEIVER STRUCTURE

We first present the overview of the proposed receiver
structure in Section III-A, and then specify the key modules
in Sections III-B – III-E.

A. The Progressive Receiver Structure

The proposed progressive receiver is an iterative receiver
in nature, following the turbo principle. However, in contrast
to existing iterative receivers in the literature, the system
model used for channel identification and data demodulation
changes at each iteration. It starts with a simple channel
model that allows for ICI-ignorant receiver processing, and
then progresses to ICI-aware receiver processing where the
severity of the assumed ICI increases as the iteration goes
on. The soft information obtained from the previous iteration
contributes to channel estimation and data demodulation for
the current iteration. This way, the receiver can self adapt
to the “unknown” degree of channel variation progressively.
The proposed receiver keeps the complexity low when the
channel conditions are good, while still maintaining excellent
performance when the channel conditions deteriorate.

The channel models used in the proposed receiver structure
are parameterized by a parameterD as

Hm,k ' 0, |m − k| > D. (14)

In other words, each symbol only affects itsD direct neighbors
on each side, a reasonable assumption used in many existing
works, e.g., [11], [22], [24], [30]. In this paper, we termD as
the ICI depth and2D +1 as the ICI span. LetHD denote the
matrix carved fromH keeping only the main diagonal and2D
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Fig. 1. The equivalent system model with different ICI spans.

off-diagonals, as shown in Fig. 1. The effective system model
used for channel estimation and data demodulation is:

z = HDs + (H − HD)s + v

= HDs + n, (15)

where n := (H − HD)s + v is the effective noise. In the
proposed progressive receiver, the parameterD increases as
the iteration goes on, and hence more severe ICI can be
addressed as the receiver processing proceeds to deal with
channels with large Doppler spread.

Fig. 2 depicts the progressive receiver structure, which
consists of the following steps.

• Step 1: Pre-processing. For each received OFDM block,
the receiver applies the pre-processing operation to re-
move the dominant Doppler effect [2]. SetD = 0.

• Step 2: Channel estimation. Estimate the equivalent chan-
nel mixing matrix HD based on the assumed channel
model given in (15).

• Step 3: Noise variance estimation. After channel estima-
tion, the variance of the effective noisen is computed.
This quantity is needed for ICI equalization.

• Step 4: ICI equalization. By using the estimated channel
matrixHD, the equivalent noise variance, and thea priori
information from the nonbinary LDPC decoder in the
previous iteration, the ICI equalizer generates soft output
on the reliability of the data symbols.

• Step 5: Nonbinary LDPC decoding. The nonbinary LDPC
decoder yields the decoded information symbols and the
soft information that can be used for channel estimation
and ICI equalization [5]. During the decoding process,
the decoder will declare success if all the parity check
conditions are satisfied.

• Step 6: Iteration among steps 2 to 5. IncreaseD in
the system model, and the assumed maximum Doppler
spread of the channel to be estimated. Feed back the
soft information to the channel estimator and the ICI
equalizer. Iteration stops when the decoder declares a
success, or whenD reaches a pre-specified number
Dmax.

In the proposed receiver as depicted in Fig. 2, each iteration
is associated with a differentD. The receiver can also iterate
multiple times among step 2 to step 5 on channel estimation,
equalization and decoding for each fixedD, before increasing
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LDPC decoding
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information

Pre-processing;

set D = 0

z = HDs + n

Fig. 2. Progressive receiver structure.

D to update the system model. Here we skip such a possibility
for simplicity. Note that we have extended the progressive re-
ceiver structure to a multi-input multi-output (MIMO) system
in [38], where multiple iterations among channel estimation,
equalization and decoding are explicitly used for each system
model with a particularD.

B. Sparse Channel Estimation

The inputs to the channel estimator are the observations
in z, the pilot symbols, and thea posteriori probabilities
(APP) of the information symbols from the nonbinary LDPC
decoder. Different strategies on how to use APP can be found
in [9]. Here, we use the soft feedback strategy, which produces
MMSE estimates of the information symbols as

s̄[k] =

M∑

i=1

Papp(s[k] = αi)αi, ∀ k ∈ SD (16)

whereM is the constellation size,αi is the ith constellation
point, Papp(·) is the APP from LDPC decoder, andSD is the
set of data subcarriers inSA. Hence, an estimate ofs (denoted
by ŝ) can be formed from

ŝ[k] =







s[k], k ∈ SP ,
0, k ∈ SN ,
s̄[k], k ∈ SD,

(17)

whereSP is the set of pilot subcarriers fromSA (SP ∪SD =
SA).

Despite havingK(2D + 1) non-zero entries, the matrix
HD is determined byNp triplets of (A′

p, bp, τ
′
p) as described

in (11). Hence, instead of estimating the full channel matrix
directly, we estimate the parameters ofNp channel paths.
For sparse UWA channels [13], it is possible that theseNp

paths can be identified based on only a limited number of
measurements via advanced methods, such as compressed
sensing. We will use the basis pursuit algorithms developed
in the compressed sensing context as the building block [13].

The compressed sensing based channel estimator tries to
identify the discrete paths from an overcomplete dictionary
[13]. In particular, let us split the delay/Doppler ranges(τ ′, b)
into a large number of dictionaries, and then connect the
complex channel amplitudes with the frequency domain ob-
servations through the constructed dictionaries. On the delay
and Doppler plane, a set of uniformly spaced points can be
constructed from

τ ′ ∈
{

0,
T

λK
,

2T

λK
, . . . ,

(Nτ − 1)T

λK

}

, (18)

bD ∈
{
−bD

max,−bD
max + ∆b, . . . , bD

max

}
, (19)

where the time resolution is chosen as a fraction,λ, of the
baseband sampling timeT/K, leading toNτ = λKTg/T
tentative delays. For the Doppler rates, we assume that they
are spread around zero after pre-processing, and∆b is the
Doppler resolution.bD

max can be chosen based on the assumed
Doppler spread for the current system model. There are

2bD
max/(∆b) + 1 = ND

b , (20)

tentative Doppler rates, leading to a delay-Doppler dictio-
nary of sizeNτND

b . During the iterations, the progressive
receiver keeps the delay dictionary unchanged, but enlarges
the Doppler dictionary size by increasingbD

max asD increases.
This way, channels with large Doppler spread can be ad-
dressed.

Let ξl,i be the complex coefficient for a possible path that
has delayτ ′

l and Doppler scalebD
i . Define a diagonal matrix

Λl with [Λl]m,m = e−j2π m
T

τ ′

l . Define another matrixΓD
i

having(m, k)th entry as

[ΓD
i ]m,k =

{

%m,k(bD
i ), |m − k| ≤ D,

0, otherwise,
(21)

where %m,k(·) is defined in (10). Note that the Doppler
templateΓD

i is a banded matrix, corresponding toHD.
Therefore, the equivalent “mixing” channel matrix con-

structed by thoseNτND
b dictionaries can be written as

HD =

ND
b∑

i=1

Nτ∑

l=1

ξl,iΛlΓ
D
i (22)

With this, the observationz can be rewritten as the combi-
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nation of all possible delay/Doppler dictionaries as

z = HD ŝ + n

=

ND
b∑

i=1

Nτ∑

l=1

ξl,iΛlΓ
D
i ŝ + n

= [(Λ1Γ
D
1 ŝ), . . . , (ΛNτ

Γ
D
ND

b
ŝ)]

︸ ︷︷ ︸

:=A






ξ1,1

...
ξNτ ,ND

b






︸ ︷︷ ︸

:=x

+n (23)

Then, channel estimation becomes a fitting problem with the
constraint that the solutionx is sparse, which can be solved
by the following convex optimization problem

min
x

‖Ax − z‖2
+ ζ ‖x‖1 , (24)

whereζ is the regularization parameter to control the sparsity
of x.

After obtaining the sparse channel solutionx, we can
reconstruct the frequency domain response according to (22).
Many solvers for the formulation in (24) are available, see e.g.,
[31]–[33], but it should be noted that i)x is complex, and ii)
the matrixA is of large dimension, butAb andA

T
c can be

evaluated efficiently. In this paper, we use the SpaRSA algo-
rithm [34], which is based on iterative shrinkage/thresholding
(IST). The complexity issue is investigated in [16].

Remark 1: During the first iteration, the symbol estimates
from the decoder ([c.f. (24)]) are not available. Only the
measurements on the pilot subcarriers are used for channel
estimation, as done in [2]. Since only the delay grid is searched
in the first iteration withD = 0, the number of measurements
needed can be much smaller than the later iterations with
D > 0.

Remark 2: We choose the sparsity factorζ in (24) as a
function of the effective signal-to-noise ratio (SNR) for each
OFDM block asζ = c/

√
SNR, wherec is a constant. In

simulation and experimental results,c is set to 0.12. The
effective SNR will be updated as the iteration goes on. Noise
variance estimation is described in Section III-C.

C. Noise Variance Estimation

WhenD increases, more ICI will be modeled as opposed to
being treated as additive noise. The variance of the effective
noise hence needs to be updated at each iteration. We estimate
the noise variance as

N̂0 = E

[
∣
∣
∣zm −

k=D∑

k=−D

Ĥm,m−kŝ[m − k]
∣
∣
∣

2
]

, (25)

where the expectation is carried out on the null subcarriersin
SN that are within the signal band. ForD = 0, all the ICI
terms are treated as additive noise, andN̂0 in (25) measures
the energy on the null subcarriers [2]. As less ICI is viewed
as additive noise, the effective signal-to-noise ratio (SNR) is
expected to increase.

A simple noise-whitening approach as in [10] will be used
when D = 0, as the effective noise may not be independent
of the desired signal and ICI is the dominant source for the

noise. As the iteration goes on withD > 0, the spillover from
the neighboring subcarriers to the null subcarriers is extracted
as in (25), and no whitening is applied.

D. ICI Equalization

After obtaining the estimated channel matrix̂HD, the
receiver now deals with ICI mitigation, based on the observa-
tions in z and the soft information (denoted byλe) fed back
from the nonbinary LDPC decoder.

Based on (15), the observation on themth subcarrier can
be written as

z[m] =

k=D∑

k=−D

Ĥm,m−ks[m − k] + n[m], (26)

which is in the convolution form but with coefficients that are
changing from symbol to symbol. Hence, the ICI mitigation
problem in the frequency domain is equivalent to an inter-
symbol-interference (ISI) equalization problem in the time
domain with time-varying channel taps. Existing methods for
ISI equalization can be used for ICI equalization. Here we con-
sider the MAP equalizer [26], the MMSE equalizer from [19],
[20], and the Markov Chain Monte Carlo (MCMC) equalizer
from [27]–[29], all of which can effectively incorporate soft
information from the channel decoder.

1) MAP Equalizer: In our system with nonbinary LDPC
codes, the size of the Galois field is matched to the con-
stellation size, with each element in the finite field directly
mapped to a constellation point [5]. Thea posterior log-
likelihood-ratio vector (LLRV) fors[m] is defined asλ[m] =
[λ0[m], λ1[m], . . . , λM−1[m]]

T , whereM is the constellation
size and

λi[m] = ln
P (s[m] = αi|z, λe)

P (s[m] = 0|z, λe)

= ln

∑

s:s[m]=αi

P (z|s, λe)P (s|λe)

∑

s:s[m]=0

P (z|s, λe)P (s|λe)

= ln

∑

s:s[m]=αi

P (z|s)P (s|λe)

∑

s:s[m]=0

P (z|s)P (s|λe)
(27)

The summation in the numerator and denominator of (27)
are over a total ofMK−1 combinations ofs. Due to the banded
structure ofHm, (27) can be expressed as (28), shown at the
top of the next page. Hence, the correlation length among the
postulated data sequences is reduced fromK to 2D, and the
well-known BCJR algorithm [35] can be used to evaluate (28),
utilizing the ICI trellis structure.

2) MMSE Equalizer: An MMSE equalizer witha priori
information from [19], [20] is used here for ICI mitigation.
The channel decoder feeds back the extrinsic information,
denoted asλe, based on which the meanµ[k] := E(s[k])
and the varianceσ2[k] := Cov(s[k], s[k]) can be calculated.
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λi[m] = ln

∑

s:s[m]=αi
exp

{

− 1
N̂0

∑K/2−1
m=−K/2

∣
∣
∣z[m]−∑k=D

k=−D Ĥm,m−ks[m − k]
∣
∣
∣

2
}

P (s|λe)

∑

s:s[m]=0 exp

{

− 1
N̂0

∑K/2−1
m=−K/2

∣
∣
∣z[m] −

∑k=D
k=−D Ĥm,m−ks[m − k]

∣
∣
∣

2
}

P (s|λe)

(28)






z[m− D]
...

z[m + D]






︸ ︷︷ ︸

:=zm

=






Ĥm−D,m−2D . . . Ĥm−D,m

. . .
...

. . .

Ĥm+D,m · · · Ĥm+D,m+2D






︸ ︷︷ ︸

:=Ĥm






s[m − 2D]
...

s[m + 2D]






︸ ︷︷ ︸

:=sm

+






n[m − D]
...

n[m + D]






︸ ︷︷ ︸

:=nm

(29)

The a priori information for different symbols is assumed to
be independent.

Based on (26), we collect the FFT outputs that are directly
related tos[m] as (29), shown at the top of this page. Now,
let ĥm be the(D + 1)th column ofĤm:

ĥm :=
[

Ĥm−D,m, . . . , Ĥm+D,m

]T

, (30)

which is of length2D + 1. Define Ĥ
−
m to be Ĥm with ĥm

removed, ands−m to be sm with s[m] removed. As such, we
rewrite (29) as

zm = ĥms[m] + Ĥ
−
ms

−
m + nm. (31)

Based on the extrinsic information, define the mean and
covariance ofs−m as:

µm = E(s−m), Σm = Cov(s−m, s−m). (32)

Note that no a priori information ofs[m] is included for the
MMSE estimation of it, hence,E(s[m]) = 0 andσ2[m] = Es,
whereEs is the average symbol energy. Further, the equivalent
noisen is assumed Gaussian with a covariance matrixN̂0I.
The MMSE estimator fors[m] based on (31) is then

ŝ[m] = (33)

ĥ
H
m

[
ĥmĥ

H
m +

N̂0

Es
I +

1

Es
Ĥ

−
mΣm(Ĥ−

m)H
]−1

(zm − Ĥ
−
mµm).

Assuming that̂s[m] is Gaussian distributed, the probabilities
P (ŝ[m]|s[m] = αi), i = 0, . . . , M −1, can be computed [19].
These probabilities are passed to the nonbinary LDPC decoder.

3) Markov Chain Monte Carlo (MCMC) Equalizer: The
high complexity of the MAP equalizer lies in the exponential
complexity in (28), where all the possible combinations within
the correlation length are involved to calculate the LLRV of
s[m]. In fact, only a handful of combinations, theimportance
set, contribute significantly to the summation in the numerator
and denominator of (28). The MCMC method tries to find the
importance set by browsing the possible choices of postulated
data sequences in an efficient manner.

The MCMC method has been successfully applied for
MIMO detection in [27], [28] and ISI equalization in [29]. It
has been recently applied to UWA channels with single carrier
transmission in [36]. Note that both bit-wise and group-wise
MCMC detectors have been proposed [29]. Since there is no

symbol-to-bit and bit-to-symbol conversion in our system,we
now present the MCMC detector in a symbol-wise notation.

The procedure of MCMC sampling can be found in [27]–
[29]. Assume thatΩ importance samples are obtained after
removing the redundant samples as in [27]. With the impor-
tance samples, the LLRV is computed as

λi[m] = ln

Ω∑

n=1

P (zm|s−(n)
m , s(n)[m] = αi)P (λe)

Ω∑

n=1

P (zm|s−(n)
m , s(n)[m] = 0)P (λe)

, (34)

wheres−(n)
m is defined similar as in the MMSE equalizer based

on thenth sample inΩ, andP (zm|s−(n)
m , s(n)[m] = αi) can

be simplified as

P (zm|s−(n)
m , s(n)[m] = αi)

∼ exp

{

− 1

N̂0

∥
∥
∥zm − ĥmαi − Ĥ

−
ms

−(n)
m

∥
∥
∥

2
}

. (35)

The main difference between the MCMC and the MAP
equalizer is how large the contributing setΩ is. In the MAP
equalizer, the size isM2D, which is prohibitive to compute in
practice for largeM or D, while the MCMC equalizer only
uses the importance set to approximate the optimal solution.

E. Nonbinary LDPC Decoding

Nonbinary LDPC decoding as in [5] is performed based
on the equalizer outputs. The decoder outputs the decoded
information symbols and the updated a posterior and ex-
trinsic probabilities, which are used for the next round of
channel estimation and data detection, respectively. During
the decoding process, if all the parity check conditions are
satisfied, the decoder declares success. This is a nice property
associated with LDPC codes, which is well known in the
coding literature.

IV. D ISCUSSION

A. Distinctions from Existing Iterative Receivers

The turbo principle has been recognized as one important
methodology in advanced communication systems, and there
is a large body of work on iterative receiver designs for
wireless communications, see e.g. [21] and references therein.
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One significant distinction of this work is that the system
model keeps being updated during the iterations, while a fixed
system model is usually assumed in existing iterative receivers
[21]. This work is motivated by decoding the recorded data
from experiments: practical underwater acoustic channelsare
constantly varying and the characteristics are largely affected
by environmental conditions, and hence a fixed model would
not be appropriate for all channel conditions.

B. Complexity of Channel Estimation

The complexity of sparse channel estimation in (24) de-
pends on the the problem dimension. On theDth iteration,
ND

b possible Doppler scaling factors are considered. For each
tentative Doppler scalebD

i , similar operations are carried out
to evaluate the effects due to the path delays [16]. Hence,
channel estimation complexity is approximately linear with
ND

b . In the problem studied in [16], the average runtime to
solve (24) withND

b = 15 tentative Doppler rates is about
30 times larger than that withND

b = 1 for the ICI-ignorant
receiver. Note that the proposed receiver gradually increases
ND

b during the iterations, which helps to lower the complexity.

C. Complexity of ICI Equalization

When D increases, the ICI equalization complexity in-
creases at different rates for different equalizers.

• The complexity of a MAP equalizer isO(M2D), which
increasesexponentially with D. Hence, the MAP equal-
izer is only suitable for smallD and small constellation
sizeM .

• The MMSE equalizer involves matrix inversion as in (33),
and its complexity is cubic withD. SinceD is small,
the MMSE equalizer has low complexity. Further, the
complexity does not depend on the constellation sizeM .

• The complexity of the MCMC equalizer depends on the
sample sizeΩ and the constellation sizeM . Processing
the probabilities in the log domain, the complexity of
calculating (35) is4D2 + 5D complex multiplications
(CMs) and4D2 + 5D complex additions (CAs). As the
termĤ

−
ms

−
m in (35) is the same when drawing one partic-

ular symbol, the complexity of drawing samples for each
symbol is roughlyΩ(M(3D+1)+2D(2D+1)) CMs and
Ω(M(5D+2)+4D2) CAs. Computing the output LLRVs
as in (34) needsΩ(M(3D +1)+2D(2D+1)) CMs and
Ω(M(5D+2)+4D2) CAs. Therefore, the total complex-
ity for the MCMC equalizer is about2ΩK(M(3D+1)+
2D(2D + 1)) CMs and2ΩK(M(5D + 2) + 4D2) CAs.
WhenD < M , the complexity is roughly linear withD.

V. SIMULATION RESULTS

The system parameters are the same as used in the SPACE08
experiment, with bandwidthB = 9.77 kHz, symbol duration
T = 104.86 ms, guard timeTg = 24.6 ms, and a rectangular

−4 −3 −2 −1 0 1 2 3 4
−35

−30

−25

−20

−15

−10

−5

0

ICI index

IC
I d

B

 

 
σ

v
 = 0.1 m/s

σ
v
 = 0.2 m/s

σ
v
 = 0.3 m/s

Fig. 3. Average ICI powerE{|Hm,m−D |2} versus the ICI indexD.

pulse shaping filter1

g(t) =

{

1, t ∈ [0, T ],

0, otherwise.
(36)

Out of K = 1024 subcarriers, there are 256 pilot subcarriers,
96 null subcarriers, and 672 data subcarriers. With rate 1/2
nonbinary LDPC coding, the data rate is

R =
1

2
· 672 · log2 M

T + Tg
=

{

5.2 kb/s, QPSK,

10.4 kb/s, 16-QAM.
(37)

We generate sparse channels withNp = 15 discrete paths,
where the inter-arrival times are distributed exponentially with
inter-arrival mean of 1 ms, leading to a total average delay
spread of 15 ms. The amplitudes are Rayleigh distributed
with the average power decreasing exponentially with delay.
Each path has a separate Doppler rate, which is drawn from
a uniform distribution with standard deviation ofσv m/s. We
choose a zero-mean Doppler distribution, as a non-zero mean
could be removed through the resampling operation.

Fig. 3 plotsE{|Hm,m−D|2} as a function of the ICI index
D for variousσv, normalized relative toE{|Hm,m|2}. The ICI
coefficients are calculated based on full channel state informa-
tion (CSI). As expected, the average ICI power decreases as
the ICI index increases. Most of symbol energy concentrates
around the neighborhood of the desired subcarrier, while the
ICI energy increases withσv. Hence, it becomes necessary to
explicitly consider ICI whenσv increases.

Figs. 4 and 5 show the performance of the progressive
receiver with QPSK and 16-QAM constellations, respectively,
where only one receive-phone is used. We use the block
error rate (BLER) after LDPC decoding as the performance
metric. The results are averaged over at least 1000 channel
realizations or when 50 block errors are detected. The related

1Note that other pulse-shaping filters have been designed to improve
the system performance in Doppler spread channels, e.g., [14], [15], [24].
However, their benefits have not yet been validated by experimental results.
On the other hand, rectangular pulse-shaping filters have been extensively
tested for multicarrier UWA communications [2], [3], [6], [7], [11], [12].
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Fig. 4. Simulated performance for the progressive receiverwith different Dmax, QPSK.

9 10 11 12 13 14 15
10

−3

10
−2

10
−1

10
0

SNR [dB]

B
LE

R

 

 
MMSE
MCMC

Dmax = 3

Dmax = 1

Dmax = 2

Dmax = 0

(a) σv = 0.1 m/s

10 11 12 13 14 15 16
10

−3

10
−2

10
−1

10
0

SNR [dB]

B
LE

R

 

 

MMSE
MCMC

Dmax = 0

Dmax = 2

Dmax = 1

Dmax = 3

(b) σv = 0.2 m/s

Fig. 5. Simulated performance for the progressive receiverwith different Dmax, 16-QAM.

parameters areDmax = 3, the time resolutionλ = 2 (as
suggested in [13]), the Doppler resolution∆b = 4 · 10−5.
As ∆b = ∆v/c, the corresponding velocity step size is
∆v = 0.06 m/s. During the iteration process,ND

b = 7, 11
and 15 forD = 1, 2 and 3, respectively. For the MCMC
detector, we useΩ = 250 samples with 5 parallel Gibbs
samplers. Due to the high complexity, we only report the
MAP equalization results for QPSK up toDmax = 2. We can
see that the MAP equalization outperforms the MMSE and
MCMC slightly. The performance difference between MMSE
and MCMC equalization is negligible, while both of them
achieve significant performance improvement relative to the
ICI-ignorant receiver.

We first consider 16-QAM with good channel conditions,
see Fig. 5(a); at an operating SNR of 11 dB, more than
90% OFDM symbols can be decoded in the first round, i.e.,

using the ICI-ignorant receiver. Next we consider more adverse
channel conditions as in Fig. 5(b). Clearly, the ICI-ignorant
receiver now has very poor performance, decoding barely
half of the OFDM symbols at 13 dB. In comparison, with
Dmax = 1 about 80% of the OFDM symbols can be decoded,
almost 97% atDmax = 2, and more than 99% forDmax = 3.
This also means that only 20% of the timeD = 2 has to
be used and less than 3% of the time the algorithm runs to
D = 3.

In the progressive receiver, the effective noise variance is
re-estimated during each iteration, as shown in (25). Define
the effective SNR as the energy ratio of the signal portion to
the effective noise. Fig. 6 illustrates how the effective SNR
changes during the progressive process across a certain range
of SNR, whereσv = 0.3 m/s andσv = 0.2 m/s for QPSK and
16-QAM, respectively. As more ICI is addressed, rather than
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Fig. 6. Estimated effective SNR during the progressive process. MMSE equalization.
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Fig. 7. Average CPU run-times per OFDM block with the progressive receiver for differentDmax. MMSE equalization.

being regarded as additive noise, the effective SNR increases
as the iteration goes on.

Now, let us briefly explore the complexity issue. Because
both the sparse channel estimation and the LDPC decoding
are iterative processes, which can stop at any time once the
stopping criteria are met, we will not count the FLOPs of
individual algorithms. Instead, we use the average receiver
processing time per block for the proposed receiver. The
numerical results were carried on under MATLAB 2007b,
on a personal computer with an Intel(R) Core(TM)2 CPU
6600@2.4 GHz and 3GB of memory. A total of104 OFDM
blocks were tested for each SNR point. Fig. 7 shows the
overall complexity of the progressive receiver for the setting
of Fig. 4. In Fig. 7(a) when the channel conditions are good,
the average total run-times for differentDmax are close to
the ICI-ignorant receiver at the medium to high SNR region.
This verifies that the proposed receiver structure keeps the
complexity low automatically when the channel conditions are
good. In Fig. 7(b) corresponding to more challenging channels,
the trend is similar that the average run-times decrease as the

SNR improves. However, the complexity is larger than the
ICI-ignorant receiver, as a large portion of OFDM blocks can
only be recovered after explicit ICI mitigation. In this setting,
the receiver complexity withDmax = 2, 3 converges to that
of Dmax = 1 at high SNR, suggesting that theD = 2 and
D = 3 iterations are used infrequently.

The progressive receiver needs to implement all the func-
tions of differentD values. However, the progressive receiver
will likely be run on software-defined modems [37], where
storage is not a concern. Rather, the processing speed is
the main focus in order to meet real-time data processing
requirements.

VI. EXPERIMENTAL RESULTS

We use data recorded during the SPACE08, conducted off
the coast of Martha’s Vineyard, MA, from Oct. 14 to Nov. 1,
2008. The water depth was about 15 meters, the transmitter
was approximately 4 meters from the sea floor, and the top of
the receive arrays were about 3.25 meters above the sea floor,
as shown in Fig. 8.
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TABLE I
THE NUMBER OF UNDECODEDOFDM BLOCKS FOR DIFFERENT VALUES OFDmax IN THE PROGRESSIVE RECEIVER. JULIAN DATES 295-302. 16-QAM,

RATE 1/2 CODING, MMSE BASED ICI EQUALIZATION

System S1 (60 m); 1560 blocks S3 (200 m); 1640 blocks S5 (1000 m); 1600 blocks
# of Phones Dmax=0 1 2 3 Dmax=0 1 2 3 Dmax=0 1 2 3

1 1178 1048 951 877 1229 1141 1090 1046 809 758 743 732
2 731 565 431 298 775 679 630 583 395 337 296 277
3 350 215 123 73 470 368 299 259 179 136 119 104
4 152 77 38 19 213 126 80 57 109 86 76 66
5 70 32 13 5 88 47 24 15 82 65 51 37
6 36 19 8 4 44 17 9 8 68 46 30 23
7 24 12 6 2 16 9 4 0 53 34 21 18
8 19 10 4 1 11 3 0 0 45 22 14 12
9 16 7 3 0 4 2 0 0 37 19 14 13
10 13 6 2 0 2 0 0 0 26 16 14 13
11 11 5 2 0 0 0 0 0 25 17 11 11
12 9 5 2 0 0 0 0 0 23 12 10 9

TABLE II
THE NUMBER OF UNDECODEDOFDM BLOCKS FOR DIFFERENT VALUES OFDmax IN THE PROGRESSIVE RECEIVER. JULIAN DATES 295-302. 16-QAM,

RATE 1/2 CODING, MCMC BASED ICI EQUALIZATION

System S1 (60 m); 1560 blocks S3 (200 m); 1640 blocks S5 (1000 m); 1600 blocks
# of Phones Dmax=0 1 2 3 Dmax=0 1 2 3 Dmax=0 1 2 3

1 1178 1041 933 855 1229 1136 1078 1034 809 758 741 727
2 731 556 397 281 775 673 619 563 395 333 291 265
3 350 202 112 60 470 365 288 242 179 136 114 103
4 152 75 33 16 213 120 72 48 109 85 71 60
5 70 31 11 4 88 42 21 12 82 64 42 30
6 36 19 6 3 44 16 9 5 68 43 24 23
7 24 11 5 2 16 9 3 1 53 30 18 17
8 19 9 4 0 11 3 0 0 45 20 12 10
9 16 7 2 0 4 1 0 0 37 17 13 12
10 13 7 2 0 2 0 0 0 26 16 12 12
11 11 5 2 0 0 0 0 0 25 16 11 11
12 9 5 2 0 0 0 0 0 23 11 10 10

4 m

15 m

Tx
60 m

S1

3
.2

5
 m

1
.2

 m

S3
S5

3
.2

5
 m

1
.2

 m

3
.2

5
 m

1
.2

 m

200 m

1000 m

Fig. 8. Setup of SPACE08 experiment.

The carrier frequency wasfc = 13 kHz, and the sampling
frequency wasfs = 39.0625 kHz. More experiment descrip-
tions can be found in [13], [18]. A transmission occurred every
two hours, resulting in 12 recorded files each day. For each
transmission, there are 20 OFDM blocks with the parameters
specified in the simulation settings. Hence, the data rate is
10.4 kb/s, with 16-QAM and rate-1/2 nonbinary LDPC coding
over a bandwidth of 9.77 kHz.

We report performance results for Julian dates 295 – 302
(Oct. 21 – 28) and consider three receivers, labeled as S1,
S3, and S5, which were 60 m, 200 m, and 1,000 m from
the transmitter, respectively. The Doppler resolution andthe
dictionary size are the same as used in the simulation. The

typical channel responses for SPACE08 experiment can be
found in [13, Fig. 10].

A. Performance Overview

Tables I and II report the number of OFDM blocks thathave
not been decoded correctly asD increases in the progressive
receiver, using the MMSE and MCMC equalizers, respectively,
with different number of phones combined2. The data across
eight days (Julian dates 295-302) is used. Since some recorded
files are corrupted, there are a total of 1560, 1640 and 1600
blocks processed for S1, S3 and S5, respectively. Comparing
Tables I and II, we see that the MCMC equalizer performs
slightly better when only a small number of hydrophones
are combined, and the gap closes when more hydrophones
are available. Combining 12 hydrophones,all blocks in S1
and S3 are decoded correctly using the progressive receiver
when it reachesD = 3. There are 9 (with MMSE) or 10
(with MCMC) blocks that cannot be decoded in S5. Since the
performance difference between MMSE and MCMC is small,
in the following we use the MMSE results for illustration.

2For recorded data, one common practice is to investigate theperformance
as a function of the number of phones combined. Note that withmore phones,
the SNR after combining increases, hence performance improvement is due to
both diversity effect and SNR increase. In this paper, the phones are selected
sequentially across the array, from top to the bottom. The frequency domain
observations are stacked into a longer vector to the equalizer. The extension
from single channel processing to multichannel processingis straightforward.
See also [38] for the extension to MIMO equalization.
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Fig. 9. The block success percentage averaged over Julian dates 295-302, SPACE08, MMSE based ICI equalization.
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Fig. 10. Success level for each transmission of 20 OFDM blocks; four hydrophones. Markers are placed at convenient heights for illustration purposes only.

Fig. 9 shows the block success rate averaged over the eight
consecutive days using the proposed progressive receiver with
the MMSE equalizer. At short (S1) to medium (S3) ranges,
we expect rich multipath and significant Doppler variation
due to the geometry. When the number of hydrophones is
small, the performance of the ICI-ignorant receiver (D = 0)
is limited, and many more OFDM symbols can be decoded
by applying the progressive procedure, with a largerD. When
the number of hydrophones is large, the ICI-ignorant receiver
already achieves excellent results for all the blocks. Checking
the results using four hydrophones, about 90% OFDM blocks
can be decoded at theD = 0 stage, and the success rate
increases to 95% whenDmax = 1, and up to 98.8% when
Dmax = 3.

For S5, we see similar trends as S1 and S3, but the
gap between the ICI-ignorant and progressive receivers gets
smaller. When four hydrophones are combined, over 93%
blocks can be decoded by ignoring the ICI, and the success
rate increases to 96% when the progressive receiver reaches
D = 3.

B. Environmental Impact

Using four hydrophones for combining, Table I shows that
there are 19 out of 1560 blocks with decoding errors in S1,

57 out of 1640 blocks with decoding errors in S3, and 66 out
of 1600 blocks with decoding errors in S5, for the progressive
receiver withDmax = 3. Fig. 10 illustrates the success level
of each transmission of 20 OFDM blocks across the 8-day
period. Each day, we have about 12 files recorded (a few files
are corrupted). “All success” means that all 20 blocks in that
file, of duration20(T + Tg) = 2.59 s, can be decoded, while
“With errors” means that some blocks cannot be decoded out
of 20 blocks in the file.

The significant wave height and average wind speed are
shown in Fig. 11. The significant wave height is calculated as
H = 4

√
m0, wherem0 is the zeroth-moment of the variance

spectrum obtained by integration of the variance spectrum.We
can observe some correlations between Fig. 10 and Fig. 11.
There are two periods that the progressive receiver withD > 0
is used: Julian dates 296-297 and Julian dates 300-301, during
which the wind speed and the wave height are high. For
the rest of the days, the ICI-ignorant receiver can decode
all the blocks. Fig. 10 confirms that the progressive receiver
can self adapt to channel conditions, maintaining both good
performance and low complexity.

C. Progressive versus Iterative ICI-aware receivers

In Fig. 12, we compare the performance between the
proposed progressive receiver and an iterative ICI-aware re-
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Fig. 11. Significant wave height and average wind speed for selected days in SPACE08.

ceiver that fixes the channel model atD = 3, but iterates
several times; we focus on channels with large Doppler spread
(Julian Date 300). Obviously, the latter receiver has much
higher complexity, and is not well-motivated in good channel
conditions. After the first iteration, we see that the ICI-aware
receiver outperforms the ICI-ignorant receiver. As the iteration
continues, the progressive receiver catches up with the iterative
ICI-aware receiver, and the performance difference is negligi-
ble. Hence, the progressive receiver collects the performance
benefits as the iterative ICI-aware receiver, but enjoys much
lower complexity in various channel conditions.

VII. C ONCLUSIONS

In this paper we developed a progressive receiver for OFDM
transmission over time-varying underwater acoustic channels.
During the iterations, it updates thesystem model to account
for channels with large Doppler spreads, while fully utilizing
soft information from the previous iteration for enhanced
sparse channel estimation and inter-carrier interferenceequal-
ization. Extensive tests based on experimental data showed
that the proposed receiver enjoys low complexity in good
channel conditions while maintaining excellent performance
even when the channel deteriorates. Adapting to channel
variations without anya priori information, the proposed
receiver is very promising for practical underwater systems.
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[19] M. Tüchler, A. C. Singer, and R. Koetter, “Minimum meansquared error



HUANG et al.: PROGRESSIVE INTER-CARRIER INTERFERENCE EQUALIZATION FOR OFDM TRANSMISSION OVER TIME-VARYING UWA CHANNELS 13

2 4 6 8 10 12
10

−3

10
−2

10
−1

10
0

phones

B
LE

R

 

 
D = 0, non−iterative
D = 3, non−iterative
D

 max
 = 3, progressive

D = 3, with 4 iterations

(a) S1 (60 m)

2 4 6 8 10 12
10

−3

10
−2

10
−1

10
0

phones

B
LE

R

 

 
D = 0, non−iterative
D = 3, non−iterative
D

 max
 = 3, progressive

D = 3, with 4 iterations

(b) S3 (200 m)

2 4 6 8 10 12
10

−3

10
−2

10
−1

10
0

phones

B
LE

R

 

 

D = 0, non−iterative
D = 3, non−iterative
D

 max
 = 3, progressive

D = 3, with 4 iterations

(c) S5 (1000 m)

Fig. 12. Performance comparisons between progressive and iterative ICI-aware receivers; Julian date 300.

equalization using a priori information,”IEEE Trans. Signal Processing,
vol. 50, no. 3, pp. 673–683, Mar. 2002.
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