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Abstract

Explosive volcanic eruption requires that magma fragments into discrete parcels. Silicic magma can fragment through brittle
failure or other processes that depend on the viscoelasticity of the melt. Owing to the low viscosity of basaltic magmas, however, the
fragmentation mechanism must be different and will be governed by fluid mechanics alone. We perform a series of decompression
experiments on bubbly Newtonian fluids with viscosities and surface tensions similar to those of basaltic magmas. For sufficiently
rapid expansion, the bubbly fluid expands continuously, eventually tearing into several pieces. We find that the fragmentation
threshold is governed by a critical Reynolds number of ∼1, indicating that it is the inertia of the expanding fluid that drives the
continued expansion and ultimate breakup into discrete parcels. Experiments in which the fluid does not fragment allow us to
determine the gas permeability of the bubbly fluid as the bubbles expand. Permeability remains small until the volume fraction of
bubbles exceeds about 70%. We scale the results of the laboratory experiments to basaltic eruptions and find that the predicted
fragmentation threshold is consistent with the exit velocities that characterize effusive and explosive eruptions. Our experimental
results suggest that the mechanism for fragmentation of low viscosity basaltic magma is fundamentally different from that of high-
viscosity silicic magma, and that magma with low viscosities can fragment easily.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The transition between explosive and effusive
eruption is controlled by the ability of magma to break
into discrete pieces (fragmentation) and the rate at which
gases escape from the rising magma (outgassing).
Fragmentation transforms the magma from one with a

continuous melt phase and high viscosity to one with a
continuous gas phase and much lower viscosity. Out-
gassing suppresses explosive eruption because it
removes the gases that drive the eruption.

In silicic magmas there are two commonly invoked
mechanisms and adopted criteria for fragmentation. One
criterion that applies to viscoelastic glasses is that the
strain rate exceeds ∼10−2G /ηs, where ηs is the melt
shear viscosity at low strain rates, G is the shear
modulus, and ηs /G is the structural relaxation time of the
melt (Webb and Dingwell, 1990; Goto, 1999; Papale,
1999; Gonnermann and Manga, 2003; Tuffen et al.,

Available online at www.sciencedirect.com

Journal of Volcanology and Geothermal Research 169 (2008) 48–60
www.elsevier.com/locate/jvolgeores

⁎ Corresponding author. Now at Department of Earth Sciences,
Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
Tel.: +81 76 264 6539; fax: +81 76 264 6545.

E-mail address: a-namiki@earth.s.kanazawa-u.ac.jp (A. Namiki).

0377-0273/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jvolgeores.2007.07.020

mailto:a-namiki@earth.s.kanazawa-u.ac.jp
http://dx.doi.org/10.1016/j.jvolgeores.2007.07.020


2003). A second fragmentation mechanism requires that
the stresses in the films surrounding bubbles exceed the
failure strength of the melt (e.g., McBirney and Murase,
1970; Zhang, 1999). This mechanism requires that the
melt viscosity is high enough to inhibit bubble expansion
so that large over-pressure develops inside the bubbles
(Toramaru, 1995; Proussevitch and Sahagian, 1996;
Navon et al., 1998; Lensky et al., 2004; Koyaguchi and
Mitani, 2005).

Basaltic magmas can erupt both effusively and
explosively. Explosivity of basaltic eruptions ranges
from “weakly” explosive (Strombolian and sustained
fountaining) to Plinian.Owing to the low viscosity of (low
crystallinity) basaltic magmas, however, neither of the
two fragmentation mechanisms that may apply in silicic
magmas can occur during basaltic eruptions. First, the
strain rate will never come close to the inverse relaxation
time, except under exceptional conditions in which the
magma has high viscosity because of low temperature
produced by rapid cooling or high crystallinity (Giordano
and Dingwell, 2003). Second, for typical decompression
rates during explosive eruptions the viscosity required to
retard bubble expansion isN106 Pa s (Thomas et al., 1994;
Barclay et al., 1995; Gardner et al., 2000), and hence is
much greater than the viscosity of basaltic melts. If
magmas have high enough crystallinity that they develop
an interconnected network of crystals (e.g., Saar et al.,
2001), the finite strength of the magma may impede
bubble growth and promote fragmentation in basaltic
magmas (e.g., Houghton et al., 2004; Sable et al., 2006).

To quantify the outgassing process, the permeability of
natural (Eichelberger et al., 1986; Klug and Cashman,
1996; Saar and Manga, 1999; Rust and Cashman, 2004;
Muller et al., 2005), and laboratory (Takeuchi et al., 2005)
magmas has been measured. Finite permeability requires
an interconnected network of bubbles. Prior to eruption,
the magma contains isolated, spherical bubbles and hence
zero permeability. The development of permeability will
be governed by the deformation of the magma and the
expansion of bubbles which permit the rupture of the
films of fluid separating individual bubbles. Outgassing
plays a critical role in the evolution and characteristics of
explosive basaltic eruptions (e.g., Houghton et al., 2004)
and determining whether basaltic eruptions are explosive
or effusive (e.g., Roggensack et al., 1997).

In the present paper we conduct a series of
decompression experiments using bubbly fluids with
viscosities and surface tensions similar to those for
basaltic magma. We first determine the conditions under
which the bubbly fluid fragments. Next we identify when
the bubbly fluid becomes permeable and calculate its
permeability. The experiments allow us to propose a

fragmentation criterion for basaltic magma and a criterion
for an expanding bubbly fluid to become permeable. In
particular we show that if the inertia of the magma
generated by bubble expansion is large enough, the
magma can continue to expand and deform to the point
that it fragments into discrete parcels. Finally, we show
that these criteria are consistent with the conditions that
characterize both explosive and effusive eruptions.

2. Experimental procedure

We conduct decompression experiments in the shock
tube apparatus illustrated in Fig. 1. This is a widely used
method to simulate the rapid decompression of analogue
magmatic materials (e.g., Mader et al., 1997). The high-
viscosity bubbly fluid is contained in the high-pressure
shock tube and is separated from a large low-pressure tank
by diaphragms. The diaphragms are made of either
commercial aluminum foil or 5–20 μm thick polyester
films. When the diaphragms break, a rarefaction wave
propagates into the tube and the bubbly fluid is
decompressed. The shock tube has an inner diameter of
0.05 m and a length of 0.25 m. The volume of the low-
pressure tank is 0.18 m3. The initial pressure in the shock
tube Ph is variable between 7×104 and 3×105 Pa, and
pressure inside the low-pressure tank Pl is approximately
2×104 Pa. The inside high-pressure tube is pressurized by
CO2 gas. The pressure during the decompression is

Fig. 1. Illustration of the experimental apparatus.

49A. Namiki, M. Manga / Journal of Volcanology and Geothermal Research 169 (2008) 48–60



measured by pressure transducers located at the top and
the bottom of the high-pressure tube and is recorded by an
oscilloscope.

For our magma analogue, we use corn syrup solutions.
By varying the water content of the corn syrup, we change
its viscosity from 1 Pa s to 3×103 Pa s, and thus cover the
typical viscosity range of basaltic melts (e.g., Spera,
2000). The shear viscosity of the corn syrup ηs is
measured with a ThermoHaake Rheoscope cone-and-
plate rheometer as a function of temperature and shear
rate. For the range of shear rates in our measurements, the
corn syrup behaves as a Newtonian fluid, and its viscosity
is independent of shear rate. The lights used to illuminate
the high-pressure tube during the experiment can heat the
corn syrup and hence change its viscosity. Owing to the
strong temperature-dependence of the viscosity of corn
syrup, we monitored the temperature of the fluid in the
shock tube and room temperature with thermocouples.
The largest uncertainty in viscosity of our fluid is the
uncertainty in temperature: we assume that the viscosity is
in between the viscosity at the temperature in the high-
pressure tube and room temperature and use this range of
viscosities to define the uncertainty in viscosity.

Bubbles are created through a chemical reaction
between baking soda and citric acid which generates
carbon dioxide. The required time for the chemical
reaction to generate bubbles depends on the fluid
viscosity. Fig. 2 shows an example of bubbles generated
by this reaction. This image is taken through a
microscope and shows bubbles within the high-pressure
tube immediately before the decompression. The
bubbles are distributed homogeneously in the syrup,

and exhibit a range of diameters with a mean close to
100 μm. The water content of the corn syrup, measured
with a refractometer, was almost the same before and
after the experiment, and we thus infer that the baking
soda and citric acid do not affect the viscosity of corn
syrup significantly. No surfactant is added to the corn
syrup.

The experimental procedure is as follows. First, we stir
the mixture of corn syrup, baking soda, and citric acid in a
beaker, then pour it into the high-pressure tube. During this
procedure, small amounts of air bubbles could be entrained
in the corn syrup, however their volume is negligible
compared to that of the carbon dioxide made by the
chemical reaction. Next, we seal the high-pressure tube.
For experiments with initial pressures greater than 1 atm,
we pressurize the high-pressure tube by connecting the
tube to a high-pressure CO2 supply.We thenwait 25min to
2 days until the bubbly corn syrup reaches to the initial
vesicularity at which we desire to run the decompression
experiment. At this point, we use a microscope to take a
picture of the bubbles within the high-pressure tube, and
near the tubewall. This time scale for the chemical reaction
is much longer than the millisecond timescale for
decompression, and we thus assume that the chemical
reaction does not affect the expansion of the bubbly corn

Fig. 2. Picture of bubbles within the fluid in the high-pressure tube that
are generated by the chemical reaction of baking soda and citric acid.
Picture is taken just before the decompression and is taken with a
microscope.

Table 1
Experimental conditions and results. Viscosity is the mean value based
on the temperature at the inside and outside of the high-pressure tube.
In the column labeled “type” crosses and circles indicate that
fragmentation is and is not observed, respectively

ϕi Viscosity (Pa s) Ph (10
5 Pa) Pl (10

5 Pa) Type

0.57 2.7×103 1.0 0.2 ○
0.54 1.9×103 1.0 0.2 ○
0.55 2.7×103 1.7 0.2 ○
0.41 2.9×103 2.8 0.2 ○
0.81 2.9×103 1.0 0.2 ○
0.76 2.6×103 1.7 0.2 ○
0.57 1.5×100 1.0 0.2 ×
0.10 2.1×103 1.0 0.2 ○
0.59 6.0×102 1.0 0.2 ○
0.55 6.1×101 1.0 0.2 ×
0.48 4.9×102 2.9 0.2 ○
0.52 2.0×102 1.0 0.2 ○
0.53 1.9×102 2.8 0.2 ×
0.65 5.1×102 2.7 0.2 ○
0.58 4.2×102 3.0 0.2 ○
0.55 4.9×101 0.7 0.2 ○
0.21 1.6×102 1.0 0.2 ○
0.36 1.9×102 1.0 0.2 ○
0.37 2.8×103 1.0 0.2 ○
0.26 5.7×101 1.0 0.2 ○
0.32 2.9×103 1.0 0.2 ○
0.46 5.2×101 1.0 0.2 ×
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syrup during the decompression. Vesicularity is calculated
from the mass and density of the corn syrup added to the
high-pressure tube and the observed height of the bubbly
corn syrup within the tube. When we pour the corn syrup
into the high-pressure tube, a small fraction of the syrup
(b10%) can adhere to upper parts of the tube wall leading
to an under-estimate of the initial vesicularity. We then
decrease the pressure in the low-pressure tank and the
pressure difference between the low-pressure tank and
high-pressure tube breaks the diaphragms. Following the
rupture of the diaphragms, the bubbly fluid inside the high-
pressure tube is decompressed and we record the
expansion of the bubbly corn syrup with a high speed
camera that can take up to 2000 pictures/s. We vary three
parameters: initial pressure in the high-pressure shock tube
Ph, initial vesicularity ϕi, and viscosity of the corn syrup
ηs. Table 1 summarizes the conditions of the experiments
we performed.

3. Results

3.1. Conditions for fragmentation

The conditions under which the fluid fragments can
be identified by varying ϕi and ηs (Fig. 3). When the
fluid does not fragment, permeable gas flow is
sometimes documented. The height of the surface of
the fluid as a function of time is shown in Fig. 4 for these
two cases: first, when the fluid fragments, and second,
when it becomes permeable. In general, fragmentation is
observed with lower viscosity corn syrup.

In the fragmentation case, the bubbly fluid expands
rapidly and at an approximately constant velocity (Fig. 4).
The bubbly fluid is stretched vertically and finally tears
into several pieces— it is this breakage we use to define

fragmentation in our experiments. The fragmented pieces
have a ragged shape (Fig. 3(a)).

If the fluid does not fragment, the fluid column
expands more slowly than the fragmentation case,
expansion ends at around 0.05 s, and the bubbly fluid
deflates (Fig. 4). Images of the expanding fluid show
vertically-elongated and interconnected bubbles (Fig. 3
(b)). These observations suggest that gas is able to
escape from the bubbly fluid during the decompression.

To confirm whether outgassing occurs when the fluid
does not fragment, we plot in Fig. 5 the ratio of the
observed final height of the bubbly fluid to the theoretical
prediction for the case in which fragmentation does not
occur. The theoretical final height LTF, is calculated by

Fig. 3. Snapshots showing the deformation of the bubbly fluids during their expansion. Vertical and horizontal dimensions are 0.04 and 0.05 m,
respectively. (a) Middle of the flow for a case in which the fluid fragments (t=0.047 s; ϕi =0.55, Ph=10

5 Pa and ηs=61 Pa s). (b) Flow front for an
experiment in which the fluid does not fragment (t=0.042s; ϕi =0.81, Ph=10

5 Pa and ηs=2.9×103 Pa s). The bubbles are elongated in the vertical
direction and are interconnected.

Fig. 4. Height of the top of the bubbly fluid (flow front) as a function of
time. Solid and dashed curves correspond to the experiments shown in
Fig. 3(a) and (b), respectively. Sometimes the upper surface of the fluid
is rough, such as case b. The upper and lower dashed lines indicate the
height of the flow front based on the highest and lowest points along
the rough surface.
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assuming that gas inside bubbles expands under isothermal
condition without outgassing (Namiki and Manga, 2006)

LTF ¼ Li /i
Ph " Pl

Pl

! "
þ 1

# $
; ð1Þ

where Li is the initial height of the bubbly fluid. The
observed final height is measured at the very top of the
bubbly fluid. Because the top of the fluid is sometimes
curved (for example, Fig. 3(b)) the height ratio will be a
maximum and it can occasionally exceed unity. Fig. 5
shows that the ratio is less than 1 inmost cases even if it is a
maximum estimate, suggesting that outgassing has
occurred.

3.2. Expansion velocity

From the time derivative of the flow front height
(Fig. 4), we obtain the expansion velocity of the bubbly
fluid. Fig. 6 summarizes themeasured expansion velocities.
The symbol size is proportional to the product of initial
vesicularity and initial pressure in the high-pressure tube
ϕiPh, a measure of the initial potential energy available to
drive expansion. The symbol type indicates whether or not
the fluid fragmented. To calculate a velocity, we use three
consecutive measurements of the height of the flow front.
Again, we define the flow front as the maximum height of
the fluid. To estimate the uncertainty on this velocity we

also calculate the velocity at the same point during the
expansion using 5 consecutive height measurements.
Measurements are made at 0.5 to 2 ms intervals depending
on the expansion velocity. The error bars on the velocity
measurements we plot in Fig. 6 span the range between
velocities calculated using these 3 and 5 consecutive height
measurements.

Fig. 6 shows that as the viscosity of the fluid
increases, the expansion velocity decreases for a given
ϕiPh. Large ϕi and Ph result in faster expansion for a
given viscosity. We also find that fragmentation is
associated with larger velocity for a given viscosity.

4. Discussion

Fig. 6 suggests that if the expansion velocity is large
enough the bubbly fluid fragments. If the fluid does not
fragment, we sometimes observe outgassing, documen-
ted by a decrease in the height of the bubbly fluid. Here,
we first derive a scaling law for the expansion velocity
of the bubbly fluid, then identify the criterion for
fragmentation. Second, we estimate the permeability for
the case in which the fluid does not fragment.

4.1. A scaling law for the expansion velocity

Fig. 6 shows that the expansion velocity depends on
the viscosity, vesicularity ϕi, and initial pressure in the

Fig. 5. Final height of the bubbly fluid divided by the theoretical
estimate of the maximum possible height, Eq. (1), for experiments in
which the fluid does not fragment. The theoretical estimate assumes
isothermal expansion and no outgassing. Experiments whose height
ratio is less than 1, indicate that outgassing has removed gas from the
bubbly fluid. In the experiment denoted by an arrow, visual
observations end during the expansion of the bubbly fluid. The actual
final height should be larger than that denoted by the circle. The
horizontal bar indicates the range of the viscosity between themeasured
temperature within the high-pressure tube and room temperature.

Fig. 6. Measured flow front velocity as a function of shear viscosity.
Red crosses and black circles indicate experiments with and without
fragmentation, respectively. The area of the symbol represents the
product of initial vesicularity and initial pressure of high-pressure tube,
ϕiPh. The error bars on the velocity indicate the calculated velocity
using either three or five consecutive snapshots taken at 0.5 to 2 ms
intervals. The horizontal error bars indicate the range of the viscosity
between the measured temperature within the high-pressure tube and
room temperature. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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high pressure tube Ph. Visual observation shows that the
vertically-elongated fluid column shrinks radially and
detaches from the tube wall. We thus consider the
elongation of a fluid column with a cylindrical shape.
The expansion velocity is determined by a force balance
between viscous drag to elongate the fluid column and
the pressure difference driving the expansion of bubbles.
Fig. 7 illustrates the geometry of this situation.

The net pressure force acting to expand the bubbly fluid
vertically is given by the product of the pressure difference
between the inside and outside a bubble, (Ph−Pl), and the
cross-sectional area of the bubbles. Here we assume that all
bubbles have same radius and are distributed homoge-

neously, so that the radius ratio of the bubble and the outer
edge of the surrounding fluid film becomes /i

1/3. The
cross-sectional area that consists of bubbles is thusπr2/i

2/3,
where r is the radius of the fluid column. Here we consider
the very beginning of the expansion when the pressure will
be the initial pressure of the high-pressure tube and the
vesicularity is the same as the initial one. The force acting
to elongate the bubbly fluid is thus πr2/i

2/3(Ph−Pl).
Viscous forces will hinder the expansion of the

bubbly fluid. Because of the geometry of the expansion,
rather than use the viscous resistance for a Poiseuille
(pipe) flow, we evaluate the resistance to the elongation
of a fluid column. The viscous force is the product of the
viscous stress, τ=ηev /L, and the cross-sectional area of
the vertically-connected fluid πr2(1−/i

2/3), where ηe is
the elongation viscosity which is three times the shear
viscosity, ηe=3ηs (Webb and Dingwell, 1990), v is the
flow front velocity, L is the vertical length scale of the
bubbly fluid, and the shear rate is v /L. The viscous force
is thus πr2(1−/i

2/3)ηev /L.
If the expansion velocity is governed by the balance

of these two forces, the velocity is

v ¼ C
L Ph " Plð Þ

3gs 1=/2=3
i " 1

% & ; ð2Þ

whereC is a fitting parameter and we useC=1/2. Fig. 8(a)
shows an excellent correlation between the measured and
calculated expansion velocity, indicating that Eq. (2)
explains the measurements well when the flow front
velocity is less than 10 m s−1.

When viscous stresses no longer limit the expansion
velocity, we assume that the conversion of the enthalpy
change accompanying decompression to kinetic energy

Fig. 7. Schematic illustration showing the elongation of the bubbles
and forces that act on the bubbly fluid.

Fig. 8. (a) Measured and calculated velocities from Eq. (2). Crosses and circles indicate experiments with and without fragmentation, respectively.
Thick line shows the correlation between the measured and calculated flow front velocities, given by Eq. (2). Thin line shows the maximum velocity
predicted by Eq. (3) for the case indicated by the arrow. The range of the measured velocity is the same as that used in Fig. 6. The range of the
calculated velocity is based on that of viscosity and the error bars are dominated by the uncertainty in viscosity. (b) Reynolds number as a function of
Weber number calculated from Eqs. (4) and (5), respectively. To calculate the Reynolds and Weber numbers we use the measured flow front velocity.
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governs the expansion velocity (Namiki and Manga,
2005, 2006). Converting enthalpy change to kinetic
energy, we approximately obtain

1
2
q 1" /ið Þv2 ¼ g/iPh

g" 1
; ð3Þ

where ρ is the liquid density and γ is isentropic exponent
assumed to be 1.3. The thin line in Fig. 8(a) shows the
velocity predicted by Eq. (3) for the case denoted by the
arrow. This should be the maximum possible velocity.

We thus conclude that when the viscosity is large
enough, the flow front velocity is determined by Eq. (2),
and when viscosity is small enough to not influence
expansion, the maximum flow front velocity is given by
Eq. (3).

4.2. Threshold for the fragmentation

Because the bubbly fluid continues to expand after
fragmentation, we assume that the threshold is governed
by the ability of viscous forces to limit expansion. This
criterion can be characterized by a Reynolds number.
Using Eq. (2), the Reynolds number is

Re ¼ q 1" /ið ÞvL
ge

¼ q 1" /ið Þ Ph " Plð ÞL2

18g2
s 1=/2=3

i " 1
% & : ð4Þ

Fragmentation of low viscosity liquids also requires
that surface tension forces are not too large (e.g.,
Villermaux, 2007). The ratio of inertial and surface
tension stresses is characterized by the Weber number

We ¼ q 1" /ið Þv2L
r

; ð5Þ

where σ is surface tension and has a value of 0.07 Nm−1

(Manga and Stone, 1995), a value similar to that of
silicate melts (Khitarov et al., 1979; Mangan and Sisson,
2005). Fig. 8(b) shows that Re∼3 separates experiments
in which fragmentation occurs. In all cases We≫1 and
surface tension forces can be neglected, both in our
experiments and in real magmas. That is, inertial forces
are sufficiently large compared to surface tension that
viscous forces determine whether the fluid fragments: if
ReNO(1) the bubbly fluid and magma fragments.

4.3. Permeability

If the fluid does not fragment, we can determine
whether the bubbly fluid becomes permeable, and if it

does, estimate the permeability. The details of the
permeability calculation are described in Appendix A.1.

Fig. 9 shows the calculated permeability as a function of
the time-dependent vesicularity ϕt. In some cases, the
permeability cannot be determined so the maximum
vesicularity is plotted. The bold curve shows the
permeability predicted by a capillary tube model, δ2ϕt /32
(e.g., Bear, 1972), where δ is the bubble diameter. Because
the fluid is confined in the tube and the bubbles elongate in
the vertical direction we use the bubble size prior to
decompression δ∼10−4 m in the capillary tube model.

Fig. 9 shows that when the vesicularity becomes larger
than 0.7, the permeability is close to that of the capillary
tube model implying that the bubbles have become well-
connected. Below a vesicularity around 0.7, the perme-
ability is much smaller implying that there is a critical
vesicularity for the fluid to become permeable, around
0.7. This value is similar to the close-packing volume
fraction of spherical bubbles (e.g., Weaire and Hutzler,
1999). When the bubbles contact each other under the
close-packed condition, the films of fluid surrounding
bubbles become thin enough that bubbles can coalesce.
This condition has been proposed as a fragmentation
criterion (Verhoogen, 1951; Sparks, 1978; Gardner et al.,
1996).

The initial vesicularity for the case shown in Fig. 3(b) is
0.81, which is larger than the proposed 0.7 threshold. The
fact that such high porosity foams can bemade implies that
impermeable foams with vesicularity larger than 0.7 can
exist. The threshold vesicularity required to develop
permeability must depend on the bubble expansion time

Fig. 9. Calculated permeability as a function of the time-dependent
vesicularity for experiments in which the fluid does not fragment. In
some cases, the permeability cannot be calculated so the maximum
vesicularity, after the expansion, is shown. The thick curve shows the
permeability for parallel tubes given by δ2ϕt / 32, where δ is the bubble
diameter and assumed to be 10−4 m.
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scale which in turn is governed by the decompression rate.
For sufficiently slow expansion, the liquid surrounding
bubbles can flow so that a foam with a vesicularity greater
than 0.7 can be made.

The threshold of 0.7 also depends on the type of
deformation experienced by the fluid. Here the flow is
driven by bubble expansion in a laterally confined region.
In an unconfined “parcel” of fluid, this threshold is
presumably much higher, as demonstrated by the high
vesicularity of reticulite (Mangan and Cashman, 1996). In
simple shear flows, in contrast, bubbles can coalesce at
much smaller vesicularities (Okumura et al., 2006) and
magma can become permeable at vesicularities much
smaller than the threshold found in our experiments.

5. Implications for basaltic eruptions

Our analogue experiments allow us to identify a
fragmentation threshold for bubbly fluids with viscos-
ities and surface tensions similar to those of basaltic
magmas. We also determine the critical vesicularity at
which bubble expansion causes the bubbly fluid to
become permeable. As noted in Section 4.3, the nature
of the flow will influence the critical vesicularity.
Because the expansion of bubbles in a conduit is
similar to the flow in the lab experiments, we assume
that the vesicularity threshold is also appropriate for
basaltic magma rising through a conduit (but not for
lava flows).

Fig. 10. (a) Dissolved water content in basaltic melt (Dixon et al., 1995) as a function of pressure. Solid, dashed and dotted curves indicate initial
water fractions in the melt of 0.2, 0.6, and 1 wt.%, respectively. (b) Vesicularity as a function of depth when there is no outgassing. The bold parts of
these curves show depths where the vesicularity is 0bϕb0.7. (c) Vertical velocity as a function of depth. (d) Solid, dashed and dotted thick lines show
calculated Reynolds number as a function of the exit velocity for initial water fractions in the melt of 0.2, 0.6, and 1 wt.%, respectively. Viscosity is
assumed to be 102 Pa s. Horizontal line shows Re=3, the experimentally determined fragmentation threshold. Vertical thin lines show the upper
bound on exit velocity at which the outgassing is effective for indicated initial water content. The arrows indicate observations of exit velocities for
explosive and effusive eruptions.
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Here we consider the implications of these thresholds
for steady eruptions. Do the two thresholds govern the
transition between explosive, e.g., fire fountaining, and
effusive eruptions?

First we determine the conditions under which Re
exceeds ∼1. As in the lab experiments, the expansion
velocity in Re is caused by decompression which
increases vesicularity. Unlike the lab experiments in
which preexisting gas in the bubbles expands in response
to the pressure change, in basalticmagmas, bubble growth
will also occur by exsolution of dissolved volatiles
(assumed here to be only water). We assume an initial
water content of 0.2–1 wt.%, (e.g., Johnson et al., 1994;
Wallace and Anderson, 1998) and the pressure-dependent
water solubility in Dixon et al. (1995).We assume that the
expansion is driven by exsolution of water only, and
neglect the exsolution of other gases such as CO2.

Fig. 10(a) shows the dissolved water content as a
function of pressure for initial water contents of 0.2, 0.6,
and 1 wt.%. If gas bubbles do not separate from the melt,
the vesicularity is given by

/ ¼ 1
1
Ce
" 1

% &
qw
qm

þ 1
; ð6Þ

whereCe is the weight fraction of exsolved water and the
gas density is ρw=1· (P /Pa) kg m

−3, where P is pressure
and Pa=10

5 Pa is atmosphere pressure. Fig. 10(b) shows
vesicularity as a function of depth. To convert pressure to
depth z we integrate dP / dz=ρm(1−ϕ)g with respect
to z, where the density of magma ρm=2800 kg m−3

(Spera, 2000), and g=10 m s− 2 is gravitational
acceleration. If the radius of the conduit does not vary
over the depth interval in which vesiculation and bubble
growth occurs, the vertical velocity can be calculated
from mass conservation

v zð Þ ¼ vo
1" / zð Þ

; ð7Þ

where v(z) is the velocity at a depth z and vo is the
velocity at the bubble-free depth. Fig. 10(c) shows the
depth-variation of velocity.

For the magma to fragment, we will assume Re must
reach the threshold of ∼1 before ϕ reaches the threshold
of∼0.7 for the magma to become permeable. If the gas in
the bubbles can escape by permeable flow, bubbles will
no longer expand and fragmentation caused by expansion
cannot occur. The bold curves in Fig. 10(b) show the
depth range in which fragmentation driven by expansion
is possible. In order to calculate a Reynolds number using
Eq. (4), we need the length scale over which the fluid
expands, and the velocity difference between the top and

bottom of bubbly magma. For water contents of 0.2, 0.6
and 1.0 wt.%, Fig. 10(b) shows that the length scales are
13, 150, and 410m, respectively. The velocity at the depth
where vesicularity becomes 0.7 is 3.3 times that of the
bubble-free region. The eruption velocity at the surface is
3.2, 14, and 26 times that of the bubble-free region for
water contents of 0.2, 0.6, and 1 wt.%, respectively. We
thus can estimate the velocity difference in Eq. (4) as a
function of the exit velocity at the surface. Viscosity of
basaltic magma depends on temperature and water
content (e.g., Spera, 2000; Giordano and Dingwell,
2003); we assume η=102 Pa s, which is appropriate for
dry basalt at 1200 °C.

Fig. 10(d) shows the Reynolds number as a function of
the exit velocity. This figure shows that exit velocities
around 10−2 m s−1 correspond to the threshold for
fragmentation. The exit velocity ve for explosive eruption
can be estimated from the fountain height h by
ve ¼

ffiffiffiffiffiffiffiffi
2gh

p
. Observed fountain heights range from few

tens to several hundred meters (e.g., Swanson et al., 1979;
Wolfe et al., 1989) and the corresponding eruption
velocity exceeds 15 m s−1. For the velocity of effusive
eruptions, we use Vergniolle and Jaupart's compilation
(Vergniolle and Jaupart, 1986): 2.5×10−3 m s−1 for Etna
and 1.2×10−2 m s−1 forMaunaUlu. For a plausible range
of initial water contents, the calculated threshold
governed by a critical Reynolds number is consistent
with the natural observations.

Next, we determine whether outgassing is effective at
removing gases driving the eruption when / exceeds
the permeability threshold /∼0.7. We can compare the
rate at which pressure in the gas is changing with the rate
at which the gases can escape from the magma. For the
exsolution

dP
dt

¼ dP
dz

& dz
dt

¼ qmg 1" /ð Þ & v zð Þ: ð8Þ

For the permeable gas flow (e.g., Ingebritsen and
Sanford, 1998),

/b
AP
At

¼ k
gg

A2P
Az2

; ð9Þ

where k is permeability, ηg is gas viscosity, β is
compressibility of gas, and we neglect compressibility
of the bulk magma. From Eqs. (8) and (9), when

v zð ÞV k
gg/bqmg 1" /ð Þ

d2P
dz2

; ð10Þ

outgassing should be very efficient. We can determine
this condition by using a permeability of 10−11 m2 based

56 A. Namiki, M. Manga / Journal of Volcanology and Geothermal Research 169 (2008) 48–60



on our experiments and measurements on basaltic rocks
(e.g., Saar and Manga, 1999), ηg=5×10

−5 Pa s for gas
at 1000 °C, a critical vesicularity to have permeability of
/=0.7, and d2P / dz2 =−ρmg d/ / dz. The calculated
ascent velocity at the depth where ϕ=0.7 can be con-
verted to exit velocity using Fig. 10(c). The maximum
exit velocity at which the outgassing becomes effective
is shown in Fig. 10(d). The predicted limits for water
contents in the range of 0.2 to 1.0 wt.% fall close to the
threshold for fragmentation (Re∼1), suggesting that
when the magma fails to fragment, the gas trapped in
magma can readily escape by outgassing.

We conclude that the bifurcation of the eruption style
can be explained by the combination of two thresholds.
When Re exceeds the threshold for inertia-driven
fragmentation the eruption style becomes explosive.
On the other hand when Re does not exceed the
threshold, effective outgassing occurs and the eruption
style is effusive. Our experimentally determined frag-
mentation threshold appears to be consistent with
conditions that separate effusive and explosive basaltic
eruptions.

6. Concluding remarks

In our experiments we can identify two thresholds that
should govern the transition between explosive and
effusive eruption of basaltic magmas. The fragmentation
threshold is given by a critical Reynolds number that
characterizes the importance of inertial forces generated by
the expansion of bubbles. We also find a vesicularity
threshold above which bubble expansion causes the
bubbly fluid to become permeable. The ascent velocity
governs the Reynolds number, implying that the explosi-
bility depends on the ascent rate of themagma (Wilson and
Head, 1981; Parfitt et al., 1995; Namiki andManga, 2006).

In the traditional view of fragmentation, high viscosity
promotes fragmentation, either because it hinders bubble
growth which leads to large tensile stress within the melt
surrounding bubbles (Zhang, 1999; Koyaguchi and
Mitani, 2005), or because the deformation rate exceeds
the inverse relaxation time of the melt (Webb and
Dingwell, 1990; Papale, 1999). Our experimental results
show that decreasing viscosity can promote fragmentation
by allowing inertia to become dynamically important.
This result is consistent with the observation that lower
viscosity magma is associated with higher explosion
intensity for basaltic magma (Lautze and Houghton,
2007). Using Eq. (4), we can estimate the viscosity range
in which inertia-driven fragmentation can occur. Assum-
ing general conditions for magma, ρ=2800 kg m−3,
/i=0.6, Ph=10

6 Pa, and L=400 m from Fig. 10, when

the viscosity is less than 106 Pa s, inertia-driven
fragmentation can occur. We thus summarize the
fragmentation regime in Fig. 11. When the viscosity of
magma is N106 Pa s, brittle fragmentation can occur. On
the other hand, when the viscosity of magma is less than
106 Pa s, inertia-driven fragmentation can occur. In this
latter case, the magma is stretched and tears. As a result,
the shape of the magma fragments will differ from that
made by brittle fragmentation (Heiken and Wohletz,
1985; Taddeucci et al., 2007). Pele's hair and tears are
presumably examples of fragments formed in thismanner.
Unfortunately, our current experimental design does not
allow us to characterize clast shape and size distribution
but we might expect clast attributes to be different for
brittle and inertia-driven fragmentation. Characterizing
the shape of these fragments may provide a means to use
field deposits to identify fragmentation mechanisms.
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Appendix A.1. Estimate of the permeability

We use the time-evolution of the height of the bubbly
fluid (Fig. A.1(a)) along with measured pressures to
calculate bounds on the permeability. We assume that the
pressure at the top of the bubbly fluid falls immediately to
the pressure of the low-pressure tank Pl and maintains a
constant value following the rupture of the diaphragms.
The pressure Ph at the bottom of the fluid column is
measured (Fig. A.1(b)).

We estimate the pressure distribution in the bubbly
fluid two ways: (1) a linear decrease fromPh toPl, and (2)
constant value of Ph. These will lead to minimum and
maximum bounds on the calculated permeability, respec-
tively, and we refer to these limits as “linear” and
“maximum” estimates. We also assume that temperature

Fig. 11. Schematic illustration of the fragmentation style as a function
of viscosity. In the brittle fragmentation regime, magma fails as a solid
material. In the inertia-driven regime, magma is stretched and tears.
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in the bubbly fluid remains constant at T0, which is
measured by a thermocouple.

The amounts of gas trapped in the foam for linear and
maximum estimates are given by

nLt ¼ /t
kr2

RT0

Pl þ Pht

2
Lt ð11Þ

nMt ¼ /t
kr2

RT0
PhtLt; ð12Þ

where n is amount of gas in moles, r is the radius of the
high-pressure tube, R is the gas constant, and L is the
height of the bubbly fluid. Subscripts L,M, and t denote
the linear model, maximum model, and time-dependent
value, respectively. The time-dependent vesicularity ϕt

is calculated by assuming that the liquid volume is
constant,

Lt 1" /tð Þ ¼ Li 1" /ið Þ: ð13Þ

The green curve in Fig. A.1(a) shows the calculated
vesicularity.

The volume flux of gas discharged from the top of
the bubbly fluid at time t for each estimate is given by
the time derivative of the gas amount in the bubbly fluid
qt=− (RT0 /Pl)dnt / dt. The velocity of gas discharged
from the bubbly fluid for these two models is

vLt ¼ " 1
2Pl

Lt " Li 1" /ið Þf g
dPht

dt

" Pl þ Pht

2Pl

dLt
dt

ð14Þ

vMt ¼ " 1
Pl

Lt " Li 1" /ið Þf g dPht

dt
" Pht

Pl

dLt
dt

: ð15Þ

Fig. A.1(c) shows the estimated amount of gas trapped
in the bubbly fluid. The red curve shows that the
maximum estimate exceeds the initial value and is clearly
unrealistic. This results from our assumption of constant
pressure within the fluid column, whereas the top part of
the fluid column should be at lower pressure than at the
bottom. The base of the tube is an impermeable plate with
no gas flux, requiring that the pressure gradient at the
bottom of the bubbly fluid is zero. For this reason the
linear model shown in blue provides the lower bound on
the amount of gas in the bubbly fluid.We thus assume that
the total amount of gas in the bubbly fluid lies somewhere
between the red and blue curves, and likely resembles the
(hand drawn) black curve. Because the red curve falls
below the initial value at t=0.04 s, some gas must be
discharged from the bubbly fluid indicating that it is
permeable. If the pressure profile within the bubbly fluid
does not change significantly, the time derivative of the
red and blue curves provide the maximum and minimum
estimates of the discharge rates. We thus regard vMt and
vLt as the maximum and minimum discharge velocities,
respectively.

Next we calculate the permeability from vMt and vLt.
Darcy's equation, modified to account for compress-
ibility of the gas and inertia of the gas, is

gg
k1

vt þ
qo
k2

v2t "
P2
ht " P2

l

2PlLt
¼ 0; ð16Þ

where k1 is the Darcian permeability, k2 is the inertial
permeability which has a dimension of length scale, ρo
is the density of gas at the top of the bubbly fluid, and ηg
is the gas viscosity. We assume ρo=1 kg m−3 at 105 Pa,
isothermal expansion of the gas, ηg=10−5 Pa s, and we
neglect the pressure dependence of viscosity.

Fig. A.1. Measured and estimated properties for the case shown in Fig. 3(b). (a) Blue dots show the measured height of the bubbly fluid. Red curve is
a curve fitted to the data. Green curve is the calculated time-dependent vesicularity given by Eq. (13). (b) Blue and green curves show the measured
pressure change after the diaphragm breaks at the top and the bottom of the bubbly fluid, respectively. Red curve is fitted to the measured bottom
pressure. (c) Blue and red curves show the estimated minimum and maximum amount of gas stored in the bubbly fluid predicted by Eqs. (11) and
(12), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Rust and Cashman (2004) measured k1 and k2 for
obsidian flow and pumice samples, and found a relation
between k1 and k2,

k2 ¼ 4:75' 1014 k1:871 : ð17Þ

Muller et al. (2005) measured the permeability of
dome samples and obtained results consistent with those
of Rust and Cashman (2004). We thus combine Eqs. (16)
and (17) and solve the resulting equation numerically to
obtain the permeability k1.

Fig. 9 shows k1 calculated from vMt and vLt as
maximum and minimum estimates, respectively. We
calculate k1 when the bottom pressure falls to 90% of
Ph−Pl, as indicated by the arrows in Fig. A.1.
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