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GROTHENDIECK DUALITY ON FORMAL SCHEMES

LEOVIGILDO ALONSO TARRÍO, ANA JEREMÍAS LÓPEZ, AND JOSEPH LIPMAN

Abstract. We give several related versions of global Grothendieck Duality for
unbounded complexes on noetherian formal schemes. The proofs, based on a non-
trivial adaptation of Deligne’s method for the special case of ordinary schemes,
are reasonably self-contained, modulo the Special Adjoint Functor Theorem.
(Also described is an alternative approach, inspired by Neeman and based on
recent results about “Brown Representability.”) A section on applications and
examples illustrates how these theorems synthesize a number of different duality-
related results (local duality, formal duality, residue theorems, . . . ).

The final version of this paper will include a flat-base-change theorem.
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1. Preliminaries and main theorems.

We begin with some notation and terminology. Let X be a ringed space, i.e., a
topological space together with a sheaf of commutative rings OX . Let A(X) be the
category of OX -modules, and Aqc(X) (resp. Ac(X), resp. A~c(X)) the full subcat-
egory of A(X) whose objects are the quasi-coherent (resp. coherent, resp. lim

−−→
’s of

coherent) OX -modules.1 Let K(X) be the homotopy category of A(X)-complexes,
and let D(X) be the corresponding derived category, obtained from K(X) by
adjoining an inverse for every quasi-isomorphism (= homotopy class of maps of
complexes inducing homology isomorphisms). For any full subcategory A...(X)
ofA(X), we denote by D...(X) the full subcategory of D(X) whose objects are those
complexes whose homology sheaves all lie in A...(X), and by D+

...(X) (resp. D−...(X))
the full subcategory of D...(X) whose objects are those complexes F ∈ D...(X) such
that the homology Hm(F ) vanishes for all m≪ 0 (resp. m≫ 0).

First two authors partially supported by Xunta de Galicia research project XUGA20701A96.
They also thank the Mathematics Dept. of Purdue University for its hospitality, help and support.

Third author partially supported by the National Security Agency.
1The symbol lim

−→
will always denote the direct limit of a system indexed by a small ordered set

in which any two elements have an upper bound. More general direct limits will be referred to
as colimits.
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The full subcategory A...(X) of A(X) is plump if it contains 0 and for every exact
sequence M1 → M2 → M → M3 → M4 in A(X) with M1, M2, M3 and M4

in A...(X), M is in A...(X) too. If A...(X) is plump then it is abelian, and has a
derived category D(A...(X)). For example, Ac(X) is plump [GD, p. 113, (5.3.5)]. If
X is a locally noetherian formal scheme,2 then A~c(X) ⊂ Aqc(X) (Corollary 3.1.5)—
with equality when X is an ordinary scheme, i.e., when OX has discrete topology
[GD, p. 319, (6.9.9)]—and both of these are plump subcategories of A(X), see
Proposition 3.2.2.

Let K1, K2 be triangulated categories with respective translation functors T1 , T2

[H1, p. 20]. A (covariant) ∆-functor is a pair (F,Θ) consisting of an additive functor
F : K1 → K2 together with an isomorphism of functors Θ : FT1 −→∼ T2F such that
for every triangle A

u−→ B
v−→ C

w−→ T1A in K1, the corresponding diagram

FA
Fu−−→ FB

Fv−−→ FC
Θ ◦Fw−−−−→ T2FA

is a triangle in K2. Explicit reference to Θ is often suppressed—but one should
keep it in mind. (For example, if A...(X) ⊂ A(X) is plump, then each of D...(X)
and D±...(X) carries a unique triangulation for which the translation is the restriction
of that on D(X) and such that inclusion into D(X) together with Θ :=identity
is a ∆-functor; in other words, they are all triangulated subcategories of D(X).)
Compositions of ∆-functors, and morphisms between ∆-functors, are defined in the
natural way.3 A ∆-functor (G,Ψ): K2 → K1 is a right ∆-adjoint of (F,Θ) if G is
a right adjoint of F and the resulting functorial map FG → 1 (or, equivalently,
1→ GF ) is a morphism of ∆-functors.

We use R to denote right-derived functors, constructed e.g., via K-injective res-
olutions [Sp, p. 138, Thm. 4.5].4 For a map f of ringed spaces, the left-derived
functor of f ∗, constructed via K-flat resolutions, is denoted by Lf ∗ [Sp, p. 147,
6.7]. Each derived functor in this paper comes equipped, implicitly, with a Θ mak-
ing it into a ∆-functor (modulo obvious modifications for contravariance), cf. [L4,
Example (2.2.4)].5 Conscientious readers may verify that such morphisms between
derived functors as occur in this paper are in fact morphisms of ∆-functors.

1.1. The first main result of this paper, global Grothendieck Duality for a
map f : X → Y of quasi-compact formal schemes with X noetherian, is that,
j : D(A~c(X))→ D(X) being the natural functor, the ∆-functor Rf∗◦j has a right
∆-adjoint.

A more elaborate—but readily shown equivalent—statement is:

Theorem 1. Let f : X → Y be a map of quasi-compact formal schemes, with X

noetherian, and let j : D(A~c(X)) → D(X) be the natural functor. Then there
exists a ∆-functor f× : D(Y)→ D (A~c(X)) together with a morphism of ∆-functors

2Basic properties of formal schemes can be found in [GD, Chap. 1,§10].
3See also [De, §§0,1] for the multivariate case, where signs come into play—and ∆-functors are

called “exact” functors.
4A complex F in an abelian category A is K-injective if for each exact A-complex G, the

abelian-group complex Hom•
A(G, F ) is again exact. In particular, any bounded-below complex

of injectives is K-injective. If every complex E admits a K-injective resolution E → I(E) (i.e.,
a quasi-isomorphism into a K-injective complex I(E)), then every functor Γ has a right-derived
functor RΓ satisfying RΓ(E) = Γ(I(E)). For example, RHom•

A(E′, E) = Hom•
A(E′, I(E)).

5We do not know, for instance, whether Lf∗—which is defined only up to isomorphism—can
always be chosen so as to commute with translation, i.e., so that Θ = Identity will do.
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τ : Rf∗ jf
× → 1 such that for all G ∈ D(A~c(X)) and F ∈ D(Y), the composed

map (in the derived category of abelian groups)

RHom•A~c(X)(G, f×F )
natural−−−−→ RHom•A(Y)(Rf∗G,Rf∗f×F )

via τ−−−−→ RHom•A(Y)(Rf∗G,F )

is an isomorphism.

Here we think of the A~c(X)-complexes G and f×F as objects in both D(A~c(X))
and D(X). But as far as we know, the natural map HomD(A~c(X)) → HomD(X) need
not always be an isomorphism. It is when X is properly algebraic, i.e., the J-adic
completion of a proper B-scheme with B a noetherian ring and J a B-ideal: then
j induces an equivalence of categories D(A~c(X))→ D~c(X), see Corollary 3.3.4. So
for properly algebraic X, we can replace D(A~c(X)) in Theorem 1 by D~c(X), and
let G be any A(X)-complex with A~c(X)-homology.

We prove Theorem 1 in §4, adapting the argument of Deligne in [H1, Appendix]
(see also [De, §1.1.12]) to the category A~c(X), which for our present purposes and
capabilities is the appropriate generalization to formal schemes of the category
of quasi-coherent sheaves on an ordinary noetherian scheme. For this adaptation
what is needed, mainly, is the plumpness of A~c(X) in A(X), a non-obvious fact
mentioned above. In addition, we need some facts on “boundedness” of certain
derived functors in order to extend the argument to unbounded complexes. (See
section 3.4, which makes use of techniques from [Sp].)

There is another elegant approach to Duality (on a quasi-compact separated or-
dinary scheme X) due to Neeman [N1], in which “Brown Representability” is for-
mulated so as to apply directly to the existence of right adjoints for a ∆-functor F
on D(Aqc(X))—a necessary and sufficient condition being that F commute with
coproducts. In Deligne’s approach the “Special Adjoint Functor Theorem” is used
to ensure existence of right adjoints for certain functors on Aqc(X), and then these
right adjoints are applied to injective resolutions of complexes . . . Both approaches
require a small collection of category-generators—coherent sheaves for Aqc(X) in
Deligne’s, and perfect complexes for D(Aqc(X)) in Neeman’s. Lack of knowl-
edge about perfect complexes over formal schemes discouraged us from pursuing
Neeman’s strategy. Recently, however, (after this paper was essentially written),
Franke showed [Fe] that Brown Repesentability holds for the derived category D(A)
of an arbitrary Grothendieck category (as does the closely related existence of K-
injective resolutions for all A-complexes). Consequently Theorem 1 follows from
the fact that A~c(X) is a Grothendieck category (straightforward to see once we
know it to be abelian), together with the fact that Rf∗ ◦ j commutes with coprod-
ucts (Proposition 3.5.2).

1.2. Two other, possibly more useful, generalizations—from ordinary schemes to
formal schemes—of global Grothendieck Duality are stated below in Theorem 2
and treated in detail in §6. To describe them, and related results, we need some
preliminaries about torsion functors.

1.2.1. Once again let (X,OX) be a ringed space. For any OX-ideal J , set

ΓJM := lim
−−→
n>0

HomOX
(OX/J n,M) (M∈ A(X)),
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and regard ΓJ as a subfunctor of the identity functor on OX -modules. If N ⊂ M
then ΓJN = ΓJM∩N ; and it follows formally that the functor ΓJ is idempotent
(ΓJ ΓJM = ΓJM) and left exact [St, p. 138, Proposition 1.7].

Set AJ (X) := ΓJ (A(X)), the full subcategory of A(X) whose objects are the
J-torsion sheaves, i.e., the OX -modules M such that ΓJM = M. Since ΓJ is
an idempotent subfunctor of the identity functor, therefore it is right-adjoint to
the inclusion i = iJ : AJ (X) →֒ A(X). Moreover, AJ (X) is closed under A(X)-
colimits: if F is any functor intoAJ (X) such that iF has a colimitM∈ A(X), then
the corresponding functorial map from iF to the constant functor with value M
comes from a functorial map from F to the constant functor with value ΓJM,
whence the inclusion ΓJM →֒M has a right inverse, so that it is an isomorphism,
and thus M ∈ AJ (X). In particular, if the domain of a functor G into AJ (X) is
a small category, then iG does have a colimit, which is also a colimit of G; and so
AJ (X) has small colimits, i.e., it is small-cocomplete.

Submodules and quotient modules of J-torsion sheaves are also J-torsion sheaves.
When J is (locally) finitely-generated, if N ⊂M are OX -modules such that N and
M/N are J-torsion sheaves thenM is a J-torsion sheaf too; and hence AJ (X) is
plump in A(X).6 In this case, the stalk of ΓJM at x ∈ X is

(ΓJM)x = lim
−−→
n>0

HomOX,x
(OX,x/J n

x ,Mx).

Let X be a locally noetherian scheme and Z ⊂ X a closed subset, the support
of OX/J for some quasi-coherent OX -ideal J . The functor Γ ′Z := ΓJ does not
depend on the quasi-coherent ideal J determining Z. It is a subfunctor of the left-
exact functor ΓZ which associates to each OX -module M its subsheaf of sections
supported in Z. If M is quasi-coherent, then Γ ′Z(M) = ΓZ(M). (And, for any
complex E ∈ Dqc(X), the derived-category map RΓ ′ZE → RΓZE induced by the
inclusion Γ ′Z →֒ ΓZ is an isomorphism [AJL, p. 25, Corollary (3.2.4)]—so for such E
we will usually identify RΓ ′ZE and RΓZE .) Let AZ(X) (= AJ (X)) be the plump
subcategory of A(X) whose objects are the Z-torsion sheaves, i.e., OX -modulesM
such that Γ ′ZM =M; and AqcZ(X) := Aqc(X) ∩AZ(X) the plump subcategory
of A(X) whose objects are the quasi-coherent OX -modules supported in Z.

For a locally noetherian formal scheme X with ideal of definition J, set Γ ′X := ΓJ,
a left-exact functor which depends only on the sheaf of topological rings OX, not on
the choice of J, because locally any ideal of definition contains a power of any other
[GD, p.409, (10.5.1)]—in fact Γ ′XM is the OX-submodule ofM whose sections are
those ofM which are annihilated locally by an open ideal. Say thatM is a torsion
sheaf if Γ ′XM =M. Denote by At(X) (= AJ (X)) the plump subcategory of A(X)
whose objects are the torsion sheaves; and by Aqct(X) := Aqc(X) ∩ At(X) the full
(in fact plump, see Corollary 5.1.3) subcategory of A(X) whose objects are the
quasi-coherent torsion sheaves. It holds that Aqct(X) ⊂ A~c(X), see Corollary 5.1.4.
If X is an ordinary locally noetherian scheme (i.e., J = 0), then At(X) = A(X) and
Aqct(X) = Aqc(X) = A~c(X).

1.2.2. For any map f : X → Y of locally noetherian formal schemes there ex-
ist ideals of definition I ⊂ OY and J ⊂ OX such that IOX ⊂ J [GD, p. 416,

6Thus the subcategory AJ (X) is a hereditary torsion class in A(X), in the sense of Dickson,
see [St, pp. 139–141].



GROTHENDIECK DUALITY ON FORMAL SCHEMES 5

(10.6.10)]; and correspondingly there is a map of ordinary schemes (= formal
schemes having (0) as ideal of definition) (X,OX/J) → (Y,OY/I) [GD, p. 410,
(10.5.6)]. We say that f is separated (resp. affine, resp. pseudo-proper, resp. pseudo-
finite) if for some—and hence any—such I, J the corresponding scheme-map is sep-
arated (resp. affine, resp. proper, resp. finite), see [GD, §§10.15–10.16, p. 444 ff.]
(keeping in mind [GD, p. 416, (10.6.10)(ii)]). Any affine or pseudo-proper map is
separated. The map f is pseudo-finite ⇔ it is pseudo-proper and affine ⇔ it is
pseudo-proper and has finite fibers [EGA, p. 136, (4.4.2)].

We say that f is adic if for some—and hence any—ideal of definition I ⊂ OY,
IOX is an ideal of definition of X [GD, p. 436, (10.12.1)]. We say that f is proper
(resp. finite) if f is pseudo-proper (resp. pseudo-finite) and adic [EGA, p. 119,
(3.4.1)], [EGA, p. 148, (4.8.11)].

1.2.3. Here is our second main result, Torsion Duality for formal schemes. (See
Theorem 6.1 and Corollary 6.1.4 for more elaborate statements.)

Theorem 2. Let f : X→ Y be a separated map of noetherian formal schemes.

(a) The restriction of Rf∗ takes Dqct(X) to Dqct(Y), and it has a right ∆-adjoint

f×t : D(Y)→ Dqct(X).

(b) There exists a ∆-functor f # : D(Y)→ D(X) and a bifunctorial isomorphism

HomD(X)(G, f #F ) −→∼ HomD(Y)(Rf∗RΓ
′

XG, F ) (G ∈ Dqc(X), F ∈ D(Y)).

Remarks 1.2.4. (1) The functors f # and f×t are connected thus:

f # = RHom•(RΓ ′XOX, f
×
t ), f×t = RΓ ′Xf

#.

(See Corollaries 6.1.4 and 6.1.5(a)).
(2) The proof of Theorem 2 is similar to that of Theorem 1, at least when the

formal scheme X is separated (i.e., the unique formal-scheme map X→ Spec(Z) is
separated), in which case the natural functor D(Aqct(X)) → Dqct(X) is an equiv-
alence of categories (Proposition 5.3.1). (As mentioned before, we know the cor-
responding result with “~c ” in place of “qct” only for properly algebraic formal
schemes.) In addition, replacing separatedness of X by separatedness of f takes a
technical pasting argument.

(3) For an ordinary scheme X (having (0) as ideal of definition), Γ ′X is just the
identity functor of A(X), and Dqct(X) = Dqc(X). In this case, Theorems 1 and 2
both reduce to the usual global (non-sheafified) version of Grothendieck Duality.
In §2 we will describe how Theorem 2 generalizes and ties together various strands
in the literature on local, formal, and global duality. In particular, the behavior of
Theorem 2 vis-à-vis variable f gives compatibility between local and global duality,
at least on an abstract level—i.e., without the involvement of differentials, residues,
etc. (See Corollary 6.1.6.)

1.3. A SHEAFIFICATION OF THEOREM 2 WILL BE IN THE FINAL VER-
SION OF THIS PAPER.

In closing this introductory section, we wish to express our appreciation for
illuminating conversations with Amnon Neeman and Amnon Yekutieli.
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2. Applications and examples.

It was previously noted that Theorem 2 generalizes global Grothendieck Duality
for noetherian schemes. This section illustrates further how Theorem 2 provides
a common home for a number of different duality-related results (local duality,
formal duality, residue theorems, . . . ). For a quick example, see Remark 2.3.7.

In §2.1 we review several forms of local duality. In §2.2 we sheafify these results,
and put them into the context of Theorem 2. In particular, Proposition 2.1.6 is an
abstract version of the Local Duality theorem of [HüK, p. 73, Theorem 3.4]; and
Theorem 2.2.3 (Pseudo-finite Duality) globalizes it to formal schemes.

Paragraph 2.3 relates Theorems 1 and 2 to the central “Residue Theorems”
in [L1] and [HüS] (but does not subsume those results).

Paragraph 2.4 indicates how the Formal Duality theorem of [H2, p. 48 ; Propo-
sition (5.2)]; and the Local-Global Duality theorem in [L3, p. 188] can be deduced
from Theorem 2.

2.1. (Local Duality.) All rings will be assumed commutative, unless otherwise
indicated.

Let ϕ : R → S be a homomorphism of (commutative) rings, with S noetherian,
let J be an S-ideal, and let ΓJ be the functor taking any S-module to its submodule
of elements which are annihilated by some power of J . Let E and E ′ be complexes
in D(S), the derived category of S-modules, and let F ∈ D(R). With ⊗

=
de-

noting derived tensor product in D(S) (defined via K-flat resolutions, [Sp, p. 147,
Proposition 6.5]), there is a natural isomorphism E ⊗

=
RΓJE

′ −→∼ RΓJ(E ⊗= E ′),
see e.g., [AJL, p. 20, Corollary(3.1.2)]. Also, viewing RHom•R(E ′, F ) as a functor
from D(S)op×D(R) to D(S), one has a canonical D(S)-isomorphism

RHom•R(E ⊗
=
E ′, F ) −→∼ RHom•S(E,RHom•R(E ′, F )),

see [Sp, p. 147; 6.6]. Thus, with ϕ#

J : D(R)→ D(S) the functor given by

ϕ#

J (−) := RHom•R(RΓJS,−) ∼= RHom•S(RΓJS,RHom•R(S,−)),

there is a composed isomorphism

RHom•S(E,ϕ
#

JF ) −→∼ RHom•R(E ⊗
=

RΓJS, F ) −→∼ RHom•R(RΓJE,F ).

Application of homology H0 yields the (rather trivial) local duality isomorphism

HomD(S)(E,ϕ
#

JF ) −→∼ HomD(R)(RΓJE,F ).(2.1.1)

“Non-trivial” versions of (2.1.1) include more information about ϕ#

J . For exam-
ple, Greenlees-May duality [AJL, p. 4, (0.3)aff] gives a canonical isomorphism

ϕ#

JF
∼= LΛJRHom•R(S, F ),(2.1.2)

where ΛJ is the J-adic completion functor, and L denotes “left-derived.” In partic-
ular, if R is noetherian, S is a finite R-module, and F ∈ Dc(R) (i.e., each homology
module of F is finitely generated), then as in [AJL, p. 6, Proposition (0.4.1)],

ϕ#

JF = RHom•R(S, F )⊗S Ŝ (Ŝ = J-adic completion ofS).(2.1.3)

More particularly, for S = R and ϕ = id (the identity map) we get

id#

JF = F ⊗R R̂ (F ∈ Dc(R)).
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Hence, classical local duality [H1, p. 278 (modulo Matlis dualization)] is just (2.1.1)
when R is local, ϕ = id, J is the maximal ideal of R, and F is a normalized dualizing
complex—so that, as in Corollary 5.2.3, and by [H1, p. 276, Proposition 6.1],

HomD(R)(RΓJE,F ) = HomD(R)(RΓJE,RΓJF ) = HomD(R)(RΓJE, I)

where I is an R-injective hull of the residue field R/J .

For another example, let S = R[[t]] where t := (t1, . . . , td) is a sequence of vari-
ables, and set J := tS. The standard calculation (via Koszul complexes) gives
an isomorphism RΓJS ∼= ν[−d] where ν is the free R-submodule of the localiza-
tion St1...td generated by those monomials tn1

1 . . . t
nd
d with all exponents ni < 0, the

S-module structure being induced by that of St1...td/S ⊃ ν . The relative canonical
module ωR[[t]]/R := HomR(ν, R) is a free, rank one, S-module. There result, for
finitely-generated R-modules F , functorial isomorphisms

ϕ#

tR[[t]]F
∼= HomR(ν[−d], F ) ∼= ωR[[t]]/R[d]⊗R F ∼= R[[t]]⊗R F [d];(2.1.4)

and when R is noetherian, the usual way-out argument [H1, p. 69, (ii)] yields the
same for any F ∈ D+

c (R).

Next, we give a commutative-algebra analogue of Theorem 2 in §1, in the form
of a “torsion” variant of the duality isomorphism (2.1.1). Proposition 2.2.1 will
clarify the relation between the algebraic and formal-scheme contexts.

With ϕ : R→ S and J an S-ideal as before, letAJ(S) be the category of J-torsion
S-modules, i.e., S-modules M such that

M = ΓJM := {m ∈M | Jnm = 0 for some n > 0 }.
The derived category of AJ(S) is equivalent to the full subcategory DJ(S) of D(S)
with objects those S-complexes E whose homology lies in AJ(S), (or equivalently,
such that the natural map RΓJE → E is an isomorphism), and the functor RΓJ is
right-adjoint to the inclusion DJ(S) →֒ D(S) (cf. Proposition 5.2.1 and its proof).
Hence the functor ϕ×J : D(R)→ DJ(S) defined by

ϕ×J (−) := RΓJRHom•R(S,−) ∼= RΓJS ⊗= RHom•R(S,−)

is right-adjoint to the natural composition DJ(S) →֒ D(S) → D(R): in fact, for
E ∈ DJ(S) and F ∈ D(R) there are natural isomorphisms

RHom•S(E,ϕ
×
J F ) −→∼ RHom•S(E,RHom•R(S, F )) −→∼ RHom•R(E,F ).(2.1.5)

Here is another interpretation of ϕ×J F . For S-modules A and R-modules B set

HomR,J (A,B) := ΓJHomR(A,B),

the S-module of R-homomorphisms α vanishing on JnA for some n (depending
on α), i.e., continuous when A is J-adically topologized and B is discrete. If
E is a K-flat S-complex and F is a K-injective R-complex, then Hom•R(E,F ) is a
K-injective S-complex; and it follows for all E ∈ D(S) and F ∈ D(R) that

RHom•R,J(E,F ) ∼= RΓJRHom•R(E,F ).

Thus,
ϕ×J F = RHom•R,J(S, F ).

A torsion version of local duality is the natural isomorphism, derived from (2.1.5),

HomDJ(S)(E,RHom•R,J(S, F )) −→∼ HomD(R)(E,F ) (E ∈ DJ(S), F ∈ D(R)).
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Apropos of Remark 1.2.4(1), the functors ϕ×J and ϕ#

J are related by

LΛJRHom•R(S,F ) ∼=
(2.1.2)

ϕ#

JF ∼= LΛJϕ
×
J F,

RΓJRHom•R(S,F ) = ϕ×J F ∼= RΓJϕ#

JF.

The first relation is the case E = RΓJS of (2.1.5), followed by Greenlees-May duality. The
second results, e.g., from the sequence of natural isomorphisms, holding for G ∈ DJ(S),
E ∈ D(S), and F ∈ D(R):

HomD(S)(G, RΓJRHom•R(E,F )) ∼= HomD(S)(G, RHom•R(E,F ))
∼= HomD(R)(RΓJ S ⊗

=S
G⊗

=S
E,F )

∼= HomD(S)(G, RHom•R(RΓJ E,F ))
∼= HomD(S)(G,RΓJRHom•R(RΓJ E,F )),

which entail that the natural map is an isomorphism

RΓJRHom•R(E,F ) −→∼ RΓJRHom•R(RΓJE,F ).

Local Duality theorems are often formulated, as in (c) of the following, in terms
of modules and local cohomology (H•J := H•RΓJ) rather than derived categories.

Proposition 2.1.6. Let ϕ : R → S be a homomorphism of noetherian rings, let
J be an S-ideal, and suppose that there exists a sequence u = (u1, . . . , ud) in J
such that S/uS is R-finite. Then for any R-finite module F :

(a) Hnϕ#

JF = 0 for all n < −d, so that there is a natural D(S)-map

h : (H−dϕ#

JF )[d]→ ϕ#

JF.

(b) If τF : RΓJϕ
#

JF → F corresponds in (2.1.1) to the identity map of ϕ#

JF,
7 and∫

=
∫ d
ϕ,J(F ) is the composed map

RΓJ(H
−dϕ#

JF )[d]
RΓ

J
(h)−−−→ RΓJϕ

#

JF
τ
F−→ F,

then (H−dϕ#

JF,
∫
) represents the functor HomD(R)(RΓJE[d], F ) of S-modules E.

(c) If J ⊂
√

uS then there is a bifunctorial isomorphism (with E, F as before):

HomS(E,H
−dϕ#

JF ) −→∼ HomR(Hd
JE,F ).

Proof. If ϕ̂ is the obvious map from R to the u-adic completion Ŝ of S, then
in D(R), ϕ#

JF = ϕ̂#

JF since RΓJS = RΓJ Ŝ. We may therefore assume in prov-
ing (a) that S is u-adically complete, so that ϕ factors as R

ψ→ R[[t]]
χ→ S with

t = (t1, . . . , td) a sequence of indeterminates and S finite over R[[t]]. (ψ is the
natural map, and χ(ti) = ui .) In view of the easily verified transitivity relation
ϕ#

J = χ#

J ◦ψ
#

tR[[t]], (2.1.3) and (2.1.4) yield (a). Then (b) results from the natural
isomorphisms

HomS(E,H
−dϕ#

JF ) −→∼
via h

HomD(S)(E[d], ϕ#

JF ) −→∼
(2.1.1)

HomD(R)(RΓJE[d], F ).

Finally, (c) follows from (b) because H i
JE = H i

uSE = 0 for all i > d (as one sees
from the usual calculation of H i

uSE via Koszul complexes), so that the natural map
is an isomorphism HomD(R)(RΓJE[d], F ) −→∼ HomR(Hd

JE,F ).

7 τF may be thought of as “evaluation at 1”: RHom•
R,J(S, F )→ F .
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2.1.7. Proposition 2.1.6 gives, in particular, that the functor HomR(Hd
JE,R) of

S-modules E is representable. Under suitable conditions (for example, Ŝ a generic

local complete intersection over R[[t]], and J ⊂
√

uS ), Hübl and Kunz repre-
sent this functor by a canonical pair described explicitly via differential forms,
residues, and certain trace maps [HüK, p. 73, Theorem 3.4]. For example, with
S = R[[t]], J = tS, and ν as in (2.1.4), the S-homomorphism from the module Ω̂d

S/R

of universally finite d-forms to the relative canonical module ωR[[t]]/R = HomR(ν, R)
sending the form dt1 . . . dtd to the R-homomorphism ν → R which takes the mono-
mial t−1

1 . . . t−1
d to 1 and all other monomials tn1

1 . . . t
nd
d to 0, is clearly an isomorphism;

and the resulting isomorphism Ω̂d
S/R[d] −→∼ ϕ#

JR does not depend on the d-element
sequence t generating J—it corresponds under (2.1.1) to the residue map

RΓJΩ̂
d
S/R[d] = Hd

J Ω̂d
S/R → R

(see, e.g., [L2, §2.7]). Thus HomR(Hd
JE,R) is represented by Ω̂d

S/R together with the
residue map. The general case reduces to this one via traces of differential forms.

2.2. (Formal sheafification of Local Duality). A slight variant of Theorem 2 in §1
is that for any separated map f : X→ Y of noetherian formal schemes, the functors
Rf∗ : Dqct(X)→ Dqct(Y) and Rf∗RΓ

′
X : D~c(X)→ D~c(Y) have right ∆-adjoints.

In brief, RΓ ′X takes D~c(X) to Dqct(X) (Corollary 3.1.5 and Proposition 5.2.1),
Rf∗ takes Dqct(X) to Dqct(Y) ⊂ D~c(Y) (Proposition 5.2.5 and Corollary 3.1.7), and
the right adjoints f×t (resp. RQXf

# := RQXRHom•(RΓ ′XOX, f
×
t )) are established

by Theorem 6.1 (resp. by Corollary 6.1.4 and Proposition 3.2.3.)
For affine f , these results are closely related to the Local Duality isomor-

phisms (2.1.5) and (2.1.1). Recall that an adic ring is a pair (R, I) with R a
ring and I an R-ideal such that with respect to the I-adic topology R is Hausdorff
and complete. The topology on R having been specified, the corresponding affine
formal scheme is then denoted by Spf(R).

Proposition 2.2.1. Let ϕ : (R, I ) → (S, J ) be a continuous homomorphism of
noetherian adic rings, and let X := Spf(S)

f→ Spf(R) =: Y be the corresponding
(affine) formal-scheme map. Let κX : X → X := Spec(S), κY : Y → Y := Spec(R)
be the completion maps, and let ∼ = ∼S denote the standard exact functor from
S-modules to quasi-coherent OX-modules. Then:

(a) The restriction of Rf∗ takes Dqct(X) to Dqct(Y), and this restricted functor
has a right adjoint f×t : Dqct(Y)→ Dqct(X) given by

f×t F := κ∗X(ϕ×J RΓ(Y, F ))
∼

= κ∗X(RHom•R,J(S,RΓ(Y, F )))
∼

(F ∈ Dqct(Y)).

(b) The restriction of Rf∗RΓ
′

X takes D~c(X) to D~c(Y), and this restricted functor
has a right adjoint f #~c : D~c(Y)→ D~c(X) given by

f #~c F := κ∗X(ϕ#

JRΓ(Y, F ))
∼

= κ∗X(RHom•R(RΓJS,RΓ(Y, F )))
∼

(F ∈ D~c(Y)).

(c) There are natural isomorphisms

RΓ(X, f×t F ) −→∼ ϕ×J RΓ(Y, F ) (F ∈ Dqct(Y)),

RΓ(X, f #~c F ) −→∼ ϕ#

J RΓ(Y, F ) (F ∈ D~c(Y)).
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Proof. The functor ∼ induces an equivalence of categories D(S) → Dqc(X), with
quasi-inverse RΓX := RΓ(X,−) ([BN, p. 225, Thm. 5.1], [AJL, p. 12, Prop. (1.3)]);
and Proposition 3.3.1 below implies that κ∗X : Dqc(X) → D~c(X) is an equivalence,
with quasi-inverse (RΓXκX∗−)∼ = (RΓX−)∼. 8 It follows that the functor taking

G ∈ D(S) to κ∗XG̃ is an equivalence, with quasi-inverse RΓX : D~c(X)→ D(S), and
similarly for Y and R. Moreover, there is an induced equivalence between DJ(S)
and Dqct(X) (see Proposition 5.2.4). In particular, (c) follows from (a) and (b).

Corresponding to (2.1.5) and (2.1.1) there are then functorial isomorphisms

HomD(X)(E, f×t F )−→∼ HomD(Y)(κ
∗
Y(RΓXE)∼R, F ) (E ∈Dqct(X), F ∈Dqct(Y)),

HomD(X)(E, f #~c F )−→∼ HomD(Y)(κ
∗
Y(RΓJRΓXE)∼R, F ) (E ∈D~c(X), F ∈D~c(Y));

and it remains to demonstrate functorial isomorphisms

κ∗Y(RΓXE)∼R −→∼ Rf∗E (E ∈ Dqct(X)),

κ∗Y(RΓJRΓXE)∼R −→∼ Rf∗RΓ
′

XE (E ∈ D~c(X)),

of which the first is a special case of the second. To prove the second, let E := RΓXE ,
let Z := Spec(S/J ) ⊂ X, and let f0 : X → Y be the scheme-map corresponding
to ϕ. The desired isomorphism comes from the sequence of natural isomorphisms

Rf∗RΓ
′

XE ∼= Rf∗RΓ
′

Xκ
∗
XẼ

∼= Rf∗κ
∗
XRΓZẼ (Proposition 5.2.4(b))

∼= κ∗YRf0∗RΓZẼ (Corollary 5.2.6)
∼= κ∗YRf0∗(RΓJE)∼ ([AJL, p. 9, (0.4.5)])
∼= κ∗Y(RΓJE)∼R.

(The last isomorphism—well-known for bounded-below E—can be checked via the
equivalences RΓX and RΓY , which satisfy RΓYRf0∗

∼= RΓX (see [Sp, pp. 142–143,
5.15(b) and 5.17]).

Theorem 2.2.3 below globalizes Proposition 2.1.6. But first some preparatory
remarks are needed. Recall from 1.2.2 that a map f : X→ Y of noetherian formal
schemes is pseudo-finite if it is pseudo-proper and has finite fibers, or equivalently,
if f is pseudo-proper and affine. Such an f corresponds locally to a homomorphism
ϕ : (R, I )→ (S, J ) of noetherian adic rings such that ϕ(I) ⊂ J and S/J is a finite
R-module. This ϕ can be extended to a homomorphism from a power series ring
R[[t]] := R[[t1, t2, . . . , te]] such that the images of the variables ti together with ϕ(I )
generate J, and thereby S becomes a finite R[[t]]-module. Pseudo-finiteness is
preserved under arbitrary (noetherian) base change.

We say that a pseudo-finite map f : X → Y of noetherian formal schemes has
relative dimension ≤ d if each y ∈ Y has an affine neighborhood U such that
the map ϕU : R → S of adic rings corresponding to f−1U → U has a continu-
ous extension R[[t1, . . . , td]] → S making S into a finite R[[t1, . . . , td]]-module, or
equivalently, there is a topologically nilpotent sequence u = (u1, . . . , ud) in S (i.e.,
limn→∞ u

n
i = 0 (1 ≤ i ≤ d)) such that S/uS is finitely generated as an R-module.

The relative dimension dim f is defined to be the least among the integers d such
that f has relative dimension ≤ d.

8In checking this note that κX∗ has an exact left adjoint, hence preserves K-injectivity.
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For any separated map f : X → Y of noetherian formal schemes, we have the
functor f # : D(Y) → D(X) of Corollary 6.1.4, commuting with open base change
on Y (Theorem 1.3).

Lemma 2.2.2. Let f : X→ Y be a pseudo-finite map of noetherian formal schemes.
Then for all F ∈ D+

c (Y), it holds that f #F ∈ D+
c (X).

Proof. Since f # commutes with open base change, the question is local, so we may
assume that f corresponds to ϕ : (R, I )→ (S, J ) as above. Moreover, the transi-
tivity isomorphism (gf)# ∼= f #g# in Corollary 6.1.4 allows us to assume that either
S = R[[t1, . . . , td]] and ϕ is the natural map or S is a finite R-module and J = IS.
In either case f is obtained by completing a proper map f0 : X → Spec(R) along
a closed subscheme Z ⊂ f−1

0 Spec(R/I ). (In the first case, take X to be the pro-
jective space PdR ⊃ Spec(R[t1, . . . , td]), and Z := Spec(R[t1, . . . , td]/(I, t1, . . . , td)).)
The conclusion is given then by Corollary 6.2.3.

Theorem 2.2.3 (Pseudo-finite Duality). Let f : X→ Y be a pseudo-finite map of
noetherian formal schemes, and let F be a coherent OY-module. Then:

(a) Hnf #F = 0 for all n < − dim f .
(b) If dim f ≤ d and X is covered by affine open subsets with d-generated defining

ideals, then with f ′X∗ := f∗Γ
′

X and, for i ∈ Z and J a defining ideal of X,

Rif ′X∗ := H iRf ′X∗ = H iRf∗RΓ
′

X = lim
−−→

n

H iRf∗RHom•(OX/J
n,−), 9

there is, for quasi-coherent OX-modules E, a functorial isomorphism

f∗HomX(E, H−df #F ) −→∼ HomY(Rdf ′X∗E, F ).

(Here H−df #F is coherent (Lemma 2.2.2), and vanishes (by (a)) unless d = dim f .)

Proof. Since f # commutes with open base change we may assume that Y is affine
and that f corresponds to a map ϕ : (R, I )→ (S, J ) as in Proposition 2.1.6. Then
there is an isomorphism of functors

RQXf
# ∼= κ∗X(ϕ#

JRΓ(Y,−))
∼
,

both of these functors being right-adjoint to Rf∗RΓ
′

X : D~c(X) → D~c(Y) (Proposi-
tion 2.2.1(b) and remarks about right adjoints preceding it). Since f #F ∈ D+

c (X)
(Lemma 2.2.2), therefore, by Corollary 3.3.4, the natural map is an isomorphism
RQXf

#F −→∼ f #F; and so, since κ∗X is exact, Proposition 2.1.6 gives (a).
Next, consider the presheaf map associating to each open U ⊂ Y the natural

composition (with V := f−1U):

HomV(E, H−df #F ) −→∼
by (a)

HomD(V)(E [d], f #F ) −→∼
6.1.4

HomD(U)(Rf∗RΓ
′

XE [d],F )

−→ HomU(Rdf ′X∗E, F ).

To prove (b) by showing that the resulting sheaf map

f∗HomX(E, H−df #F )→HomY(Rdf ′X∗E, F )

is an isomorphism, it suffices to show that Rif ′X∗E = 0 for all i > d, a local problem
for which we can (and do) assume that f corresponds to ϕ : R→ S as above.

9The equalities hold because X being noetherian, any lim
−−→

of flasque sheaves is f∗-acyclic, and
lim
−−→

commutes with f∗.
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Now RΓ ′XE ∈ Dqct(X) (Proposition 5.2.1), so Proposition 5.2.4 for X := Spec(S)
and Z := Spec(S/J) gives RΓ ′XE ∼= κ∗XE0 with E0 := κX∗RΓ

′
XE ∈ D+

qcZ(X). Since X

has, locally, a d-generated defining ideal, we can represent RΓ ′XE locally by a lim
−−→

of

Koszul complexes on d elements [AJL, p. 18, Lemma 3.1.1], whence H iRΓ ′XE = 0 for
all i > d, and so, κX∗ being exact, H iE0 = 0. Since the map f0 := Spec(ϕ) is affine,
it follows that H iRf0∗E0 = 0, whereupon, κY being flat, Corollary 5.2.6 yields

Rif ′X∗E ∼= H iRf∗κ
∗
XE0 ∼= H iκ∗YRf0∗E0 ∼= κ∗YH

iRf0∗E0 = 0 (i > d),

as desired. (Alternatively, use Lemmas 3.4.2 and 5.1.4.)

2.3. Our results provide a framework for “Residue Theorems” such as those ap-
pearing in [L1, pp. 87–88] and [HüS, pp. 750-752] (central theorems in those pa-
pers): roughly speaking, Theorems 1 and 2 in section 1 include both local and
global duality, and Corollary 6.1.6 expresses the compatibility between these duali-
ties. But the dualizing objects we deal with are determined only up to isomorphism.
The Residue Theorems run deeper in that they include a canonical realization of
dualizing data, via differential forms. (See the above remarks on the Hübl-Kunz
treatment of local duality.) This extra dimension belongs properly to a theory of
the “Fundamental Class” of a morphism, a canonical map from relative differential
forms to the relative dualizing complex, which will be pursued in a separate paper.

2.3.1. Let us be more explicit, beginning with some remarks about “Grothendieck
Duality with supports” for a map f : X → Y of noetherian schemes with respective
closed subschemes W ⊂ Y and Z ⊂ f−1W . There is a natural equivalence of
categories D(Aqc(X))→ Dqc(X) (see §3.3); and via this equivalence we regard the
functor f× : D(Y )→ D(A~c(X)) = D(Aqc(X)) of Theorem 1 as being right-adjoint
to Rf∗ : Dqc(X)→ D(Y ).10 The functor RΓ ′Z can be regarded as being right-adjoint
to the inclusion DZ(X) →֒ D(X) (cf. Proposition 5.2.1(c)); and its restriction
to Dqc(X) agrees naturally with that of RΓZ , both restrictions being right-adjoint
to the inclusion DqcZ(X) →֒ Dqc(X). Similar statements hold for W ⊂ Y . Since
Rf∗(DqcZ(X)) ⊂ DW(Y ),11 we find that the functors RΓZf

× and RΓZf
×RΓ ′W are

both right-adjoint to Rf∗ : DqcZ(X)→ D(Y ), so are isomorphic.
Define the local integral (a generalized residue map, cf. [HüK, §4]):

ρ(G) : Rf∗RΓZf
×G → RΓ ′WG (G ∈ D(Y ))

to be the natural composition

Rf∗RΓZf
×G −→∼ Rf∗RΓZf

×RΓ ′WG → Rf∗f
×RΓ ′WG → RΓ ′WG.

Noting that for F ∈ DW(Y ) there is a canonical isomorphism RΓ ′WF −→∼ F (proof
similar to that of Proposition 5.2.1(a)), we have then:

Proposition 2.3.2 (Duality with supports). For any E ∈ DqcZ(X), F ∈DW(Y ),
the natural composition

HomDqcZ(X)(E,RΓZf×F ) −→ HomDW (Y )(Rf∗E,Rf∗RΓZf×F )

ρ(F )−−→ HomDW (Y )(Rf∗E, F )

10For ordinary schemes, this functor f× is well-known, and usually denoted f ! when f is
proper. When f is an open immersion, the functors f× and f !(= f∗) need not agree.

11Argue, for example, as in the proof of Proposition 5.2.5.
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is an isomorphism.

This follows from adjointness of Rf∗ and f×, via the natural diagram

Rf∗RΓZf
×G −−−→ Rf∗f

×G
ρ(G)

y
y

RΓ ′WG −−−→ G
(G ∈ D(Y )),

whose (obvious) commutativity is a cheap version of the Residue Theorem of [HüS,
pp. 750-752].

Again, however, to be worthy of the name a Residue Theorem should involve
canonical realizations of dualizing objects. For instance, when V is a proper
d-dimensional variety over a field k and v ∈ V is a closed point, taking X = V ,
Z = {v}, W = Y = Spec(k), G = k, and setting ωV := H−df×k, we get an
OV,v-module ωV,v (commonly called “canonical”, though defined only up to iso-
morphism) together with the k-linear map induced by ρ(k):

Hd
v (ωV,v)→ k,

a map whose truly-canonical realization via differentials and residues is indicated
in [L1, p. 86, (9.5)].

2.3.3. Consider next the completion diagram

X/Z =: X
κ

X−−−→ X

f̂

y
yf

Y/W =: Y −−−→κ
Y

Y

Duality with supports can be regarded more intrinsically—via f̂ rather than f—as
a special case of the Torsion-Duality Theorem 6.1, as follows.

First of all, the local integral ρ is completely determined by κ∗Y(ρ): for G ∈ D(Y),
the natural map RΓ ′WG → κY∗κ

∗
YRΓ

′
WG is an isomorphism (Proposition 5.2.4); and

the same holds for Rf∗RΓZf
×G → κY∗κ

∗
YRf∗RΓZf

×G since as above,

Rf∗RΓZf
×G ∈ Rf∗(DqcZ(X)) ⊂ DW(Y )

—and so ρ = κY∗κ
∗
Y(ρ). Furthermore κ∗Y(ρ) is determined by the duality map

τt : Rf̂∗f
×
t → 1, as per the following natural commutative diagram, whose rows are

isomorphisms:

κ∗YRf∗RΓZf
×G −̃−→

5.2.6
Rf̂∗κ

∗
XRΓZf

×κY∗κ
∗
YG −̃−→

6.1.6
Rf̂∗f

×
t κ
∗
YG −̃−→

6.1.3
Rf̂∗f

×
t RΓ ′Yκ

∗
YG

κ∗
Y
(ρ)

y
yτt

κ∗YRΓ
′
WG ˜←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5.2.4
RΓ ′Yκ

∗
YG

(To see that the natural map RΓZf
×G → RΓZf

×κY∗κ
∗
YG is an isomorphism, re-

place RΓZf
× by the isomorphic functor RΓZf

×RΓ ′W and apply Proposition 5.2.4.)
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Finally, we have isomorphisms (for E ∈ DqcZ(X), F ∈ DW(Y )),

HomD(X)(E,RΓZf×F ) −→∼ HomD(X)(κ
∗
XE, κ∗XRΓZf

×κY∗κ
∗
YF ) (5.2.4)

−→∼ HomD(X)(κ
∗
XE, f̂×t κ∗YF ) (6.1.6)

−→∼ HomD(Y)(Rf̂∗κ
∗
XE, κ∗YF ) (6.1)

−→∼ HomD(Y)(κ
∗
YRf∗E, κ∗YF ) (5.2.6)

−→∼ HomD(Y )(Rf∗E, F ) (5.2.4),

whose composition can be checked, via the preceding diagram, to be the same as
the isomorphism of Proposition 2.3.2.

2.3.4. Proposition 2.3.5 expresses some homological consequences of the foregoing
dualities, and furnishes a general context for [L1, pp. 87–88, Theorem (10.2)].

For any noetherian formal scheme X, E ∈ D(X), and n ∈ Z, set

H′nX(E) := HnRΓ(X,RΓ ′XE).

For instance, if X arises through completion X = X/Z
κ−→ X, as above, then for

F ∈ D(X), Proposition 5.2.4 yields natural isomorphisms

RΓ(X,RΓ ′Xκ
∗F ) = RΓ(X, κ∗RΓ

′
Xκ
∗F )

∼= RΓ(X, κ∗κ
∗RΓ ′ZF ) ∼= RΓ(X,RΓ ′ZF ),

and so if F ∈ Dqc(Y ), then with H•Z the usual (hyper)cohomology with supports
in Z,

H′nX(κ∗F ) ∼= Hn
Z(F ).

Let J ⊂ OX be an ideal of definition. Writing ΓX for the functor Γ(X,−), we
have a functorial map

γ(E) : R(ΓX◦Γ
′

X)E → RΓX◦RΓ
′

XE (E ∈ D(X)),

which is an isomorphism when E is bounded-below, since for any injective OX-
module I, lim

−−→
i of the flasque modules Hom(OX/J

i, I ) is ΓX-acyclic. Whenever
γ(E) is an isomorphism, the induced homology maps are isomorphisms

lim
−−→

i

Extn(OX/J
i, E) −→∼ H′nX(E).

If E ∈ Dqc(X), then RΓ ′XE ∈ Dqct(X) (Proposition 5.2.1), and for any separated
map g : X → Y of noetherian formal schemes, G ∈ D(Y), and R := H0(Y,OY),
there are natural maps

HomD(X)(RΓ
′

XE, g×t G) −→∼ HomD(X)(RΓ
′

XE, g×t RΓ ′YG) ( 6.1.3)

−→∼ HomD(Y)(Rg∗RΓ
′

XE,RΓ ′YG) ( 6.1)

−→ HomR(H′nXE ,H′nYG)
(2.3.4.1)

where the last map arises via the functor HnRΓ(Y,−).

In particular, for g = f̂ in the completion situation of §2.3.3, and for E = κ∗XE0 ,
G = κ∗G0 (E0 ∈ Dqc(X), G0 ∈ Dqc(Y )), preceding considerations show that this
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composed map operates via Duality with Supports for f (Proposition 2.3.2), i.e.,
it can be identified with the natural composition

HomD(X)(RΓZE0,RΓZf×G0) −→∼
2.3.2

HomD(Y )(Rf∗RΓZE0,RΓWG0)

−→ HomH0(Y,OY )(H
n
ZE0,Hn

WG0).

Next, let R be a complete noetherian local ring topologized as usual by its max-
imal ideal I, let (S, J) be a noetherian adic ring, let ϕ : (R, I) → (S, J) be a
continuous homomorphism, and let

Y := Spf(S)
f−→ Spf(R) =: V

be the corresponding formal-scheme map. As before, g : X → Y is a separated
map, and we set h := fg. Since the underlying space of V is a single point, at
which the stalk of OV is just R, therefore the categories of OV-modules and of
R-modules are identical, and accordingly, for any E ∈ D(X) we can identify Rh∗E
with RΓ(X, E) ∈ D(R).

Let K be an injective R-module, and K the corresponding injective OV-module.
There exist integers r, s such that H i(f #K) = 0 for all i < −r (resp. H i(h#K) = 0
for all i < −s) (Corollary 6.1.4). Set ωY := H−r(f #K) (resp. ωX := H−s(h#K)).

Proposition 2.3.5. In the above situation, via the map (2.3.4.1), ωX represents
the functor HomS(H

′s
XE,H′0Y(f #K)) of quasi-coherent OX-modules E. If ωY is the

only non-zero homology of f #K, this functor is isomorphic to HomS(H
′s
XE,H′rYωY).

Proof. There are natural maps

H′rY(ωY) = H′0Y(ωY[r])
h−→ H′0Y(f #K) −→∼ HomR,J(S,K)

where the last isomorphism results from Proposition 2.2.1(a), in view of the identity
RΓ ′Yf

# = f×t (Corollary 6.1.5(a)) and the natural isomorphisms

RΓ(Y, κ∗YG̃) −→∼ RΓ(Y, κY∗κ
∗
YG̃) −→∼

5.2.4
RΓ(Y, G̃) −→∼ G (G ∈ D+

J (S)), 12

applied to G := RHom•R,J(S,RΓ(V,K)). In case ωY is the only non-vanishing
homology of f #K, then h is an isomorphism too.

The assertions follow from the (easily checked) commutativity, for any quasi-
coherent OX-module E, of the diagram

HomX(E, ωX) HomD(X)(E [s], g#f #K) −−→ HomD(X)(RΓ
′

XE [s], g×t f #K)

≃

y
y(2.3.4.1)

HomR(Rh∗RΓ
′

XE [s],K) HomS(H′0X(E [s]),H′0Y(f #K))∥∥∥∥
y≃

HomR(H′sXE,K) −̃−→ HomS(H′sXE,HomR,J (S,K))

2.3.6. Now let us fit [L1, pp. 87–88, Theorem (10.2)] into the preceding setup.
The cited Theorem has both local and global components. The first deals with

maps ϕ : R → S of local domains essentially of finite type over a perfect field k,
with residue fields finite over k. To each such ring T one associates the canonical

12In fact RΓ(Y, κ∗
YG̃) ∼= G for any G ∈ D(S), see Corollary 3.3.2 and the beginning of §3.3.
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module ωT of “regular” k-differentials of degree dimT . Under mild restrictions
on ϕ, the assertion is that the functor

HomR(HdimS
m

Ŝ
G, HdimR

mR
ωR) (m := maximal ideal)

of Ŝ-modules G is represented by the completion ω̂S together with a canonical map,
the relative residue

ρϕ : HdimS
m

Ŝ
ω̂S = HdimS

mS
ωS → HdimR

mR
ωR.

This may be viewed as a consequence of concrete local duality over k (§2.1.7).
The global aspect concerns a proper map of k-varieties g : V → W which is

equidimensional in codimension 1, a closed point w ∈ W, the fiber E := g−1(w),

and the completion V̂ := V/E . The assertion is that the functor

HomR(HdimVRΓ ′
V̂
G, HdimR

mR
ωR) (R := OW,w)

of coherent O
V̂
-modules G is represented by the completion ω̂V along E of the

canonical sheaf ωV of regular differentials, together with a canonical map

θ : HdimVRΓ ′
V̂
ω̂V = HdimVRΓEωV → HdimR

mR
ωR.

Moreover, the local and global representations are compatible in the sense that
if v ∈ E is any closed point and ϕv : R→ S := OV,v is the canonical map, then the
residue ρv := ρϕv factors as the natural map HdimS

mS
ωS → HdimVRΓEωV followed

by θ. This compatibility determines θ uniquely if the ρv (v ∈ E) are given [L1,
p. 95, (10.6)]; and of course conversely.

Basically, all this—without the explicit description of the ω’s and the maps ρv
via differentials and residues—is contained in Proposition 2.3.5, as follows.

In the completion situation of §2.3.3, take X and Y to be finite-type schemes over
an artinian local ring R, of respective pure dimensions s and r, let W = {w} with
w a closed point of Y , write g in place of f , and assume that Z ⊂ g−1W is proper
over R (which is so, e.g., if g is proper and Z is closed). Let K be an injective
hull of the residue field of R, and let K be the corresponding injective sheaf on
Spec(R) = Spf(R). With f : Y → Spec(R) the canonical map, and h = fg, define
the dualizing sheaves

ωX := H−sh!K, ωY := H−rf !K,
where h! is the Grothendieck duality functor (compatible with open immersions,
and equal to h× when h is proper), and similarly for f !. It is well-known (for
example via a local factorization of h as smooth ◦ finite) that h!K has coherent
homology, vanishing in all degrees < −s; and similarly f !K has coherent homology,
vanishing in all degrees < −r.

Let

f̂ : Y := Spf(OW,w)→ Spf(R) =: V

be the completion of f . We may assume, after compactifying f and g—which does

not affect f̂ or ĝ (see [Lü]), that f and g are proper maps. Then, Corollary 6.2.3

shows that ĥ#K = κ∗Xh
!K, so that, κX being flat, we see that

κ∗XωX = ωX(2.3.6.1)

where ωX is as in Proposition 2.3.5; and similarly κ∗YωY = ωY.
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Once again, some form of the theory of the Fundamental Class will enable us
to represent ωX by means of regular differential forms; and then both the local
and global components of the cited Theorem (10.2) become special cases of Propo-
sition 2.3.5 (modulo some technicalities [L1, p. 89, Lemma (10.3)] which allow a

weakening of the condition that ωY be the only non-vanishing homology of f̂ #K).
As for the local-global compatibility, consider quite generally a pair of maps

X1
q−→X

p−→ Y

of noetherian formal schemes. In the above situation, for instance, we could take p
to be ĝ, X1 to be the completion of X at a closed point v ∈ Z, and q to be the
natural map. Theorem 2 gives us the adjunction

Dqct(X)
Rp∗−−→←−−
p×t

Dqct(Y).

The natural isomorphism R(pq)∗ −→∼ Rp∗Rq∗ gives rise then to an adjoint isomor-
phism q×t p

×
t −→∼ (pq)×t ; and for E ∈ Dqct(Y) the natural map R(pq)∗(pq)

×
t E → E

factors as

R(pq)∗(pq)
×
t E −→∼ Rp∗Rq∗q

×
t p
×
t E → Rp∗p

×
t E → E .

This factorization contains the compatibility between the above maps θ and ρv ,
as one sees by interpreting them as homological derivatives of maps of the type
Rp∗p

×
t E → E (with E := RΓ ′Yf̂

#K). Details are left to the reader.

Remark 2.3.7. In the preceding situation, suppose further that Y = Spec(R)
(with R artinian) and f = identity, so that h = g : X → Y is a finite-type separated
map, X being of pure dimension s, and κX : X→ X is the completion of X along
a closed subset Z proper over Y . Again, K is an injective R-module, K is the
corresponding OY -module, and ωX := H−sg!K is a “dualizing sheaf” on X. Now
Proposition 2.3.5 is just the instance i = s of the canonical isomorphisms, for
E ∈ Dqc(X), i ∈ Z (and with H′•X := H•RΓ(X,RΓ ′X), see §2.3.4, and ĝ := g ◦κX):

HomD(X)(E [i], ĝ#K) −→∼
Thm. 2

HomD(Y)(Rĝ∗RΓ
′

XE [i],K) −→∼ HomR(H′iXE, K) =:(H′iXE )̌ .

If X is Cohen-Macaulay then all the homology of g!K other than ωX vanishes, so
all the homology of ĝ#K ∼= κ∗Xg

!K other than ωX = κ∗XωX vanishes (see (2.3.6.1)),
and the preceding composed isomorphism becomes

Exts−iX (E, ωX) −→∼ (H′iXE )̌ .
In particular, when Z = X (so that X = X) this is the usual duality isomorphism

Exts−iX (E, ωX) −→∼ Hi(X, E )̌ .
If X is Gorenstein and F is a locally free OX-module of finite rank, then ωX is

invertible; and taking E := HomX(F , ωX) = F̌ ⊗ ωX we get the isomorphism

Hs−i(X,F ) −→∼ (H′iX(F̌ ⊗ ωX))̌ ,

which generalizes the Formal Duality theorem [H2, p. 48, Proposition (5.2)].
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2.4. Both [H2, p. 48; Proposition (5.2)] (Formal Duality) and the Theorem in [L3,
p. 188] (Local-Global Duality) are contained in Proposition 2.4.1, see [AJL, §5.3].

Let R be a noetherian ring, discretely topologized, and set

Y := Spec(R) = Spf(R) =: Y.

Let g : X → Y be a finite-type separated map, let Z ⊂ X be proper over Y , let
κ : X = X/Z → X be the completion of X along Z, and set ĝ := g ◦κ : X→ Y.

Assume that R has a residual complex R [H1, p. 304]. Then the corresponding
quasi-coherent OY -complex RY := R̃ is a dualizing complex, and RX := g!RY is a
dualizing complex on X [V, p. 396, Corollary 3]. For any F ∈ Dc(X) set

F ′ := RHom•X(F ,RX) ∈ Dc(X),

so that F ∼= F ′′ = RHom•X(F ′,RX).

Proposition 2.4.1. In the preceding situation, and with ΓZ(−) := Γ(X,ΓZ(−)),
there is a functorial isomorphism

RΓ(X, κ∗F ) ∼= RHom•A(RΓZF ′,R) (F ∈ Dc(X)).

Proof. Replacing g by a compactification ([Lü]) doesn’t affect X or RΓZ , so we may
assume g proper, and then Corollary 6.2.3 gives an isomorphism κ∗RX

∼= ĝ#RY .
Now just compose the chain of functorial isomorphisms

RΓ(X, κ∗F ) ∼= RΓ(X, κ∗RHom•X(F ′,RX)) (see above)

∼= RΓ(X,RHom•X(κ∗F ′, κ∗RX)) (Lemma 2.4.2)

∼= RHom•X(κ∗F ′, ĝ#RY )) (see above)

∼= RHom•Y(Rĝ∗RΓ
′

Xκ
∗F ′,RY ) (Theorem 2)

∼= RHom•Y (Rg∗RΓZF ′,RY ) (Proposition 5.2.4)

∼= RHom•Y (R̃ΓZF ′,RY) [AJL, footnote, §5.3]

∼= RHom•A(RΓZF ′,R) [AJL, p. 9, (0.4.4)].

Lemma 2.4.2. Let X be a locally noetherian scheme, and let κ : X → X be its
completion along some closed subset Z. Then for G ∈ Dqc(X) of finite injective
dimension and for F ∈ Dc(X), the natural map is an isomorphism

κ∗RHom•X(F ,G) −→∼ RHom•X(κ∗F , κ∗G).
Proof. By [H1, p. 134, Proposition 7.20] we may assume that G is a bounded com-
plex of quasi-coherent injective OX -modules, vanishing, say, in all degrees > n.

When F is bounded-above the assertion is well-known, easily proved by localizing
to the affine case and applying way-out reasoning [H1, p. 68, Proposition 7.1] to
reduce to the trivial case F = OmX (0 < m ∈ Z). To do the same for unbounded F
we must first show, for fixed G, that the contravariant functor RHom•X(κ∗F , κ∗G)
is bounded-above.13 In fact we will show that if H iF = 0 for all i < i0 then
HjRHom•X(κ∗F , κ∗G) = 0 for all j > n− i0 , or equivalently,

Hjκ∗RHom•X(κ∗F , κ∗G) = HjRHom•X(F , κ∗κ∗G) = 0 (j > n− i0).
13This step is missing from the proof of [AJL, p. 36, Lemma (5.3.3)(b)]. The argument for (2)

on p. 8 of loc. cit suffers a similar—though more easily remedied—deficiency.



GROTHENDIECK DUALITY ON FORMAL SCHEMES 19

The homology in question is the sheaf associated to the presheaf which assigns

HomD(U)(F|U [−j], (κ∗κ∗G)|U) = HomD(U)(F|U [−j],RQU(κ∗κ
∗G)|U)

to each affine open subset U = Spec(A) in X. (See beginning of §3.1 and of §3.3).

Let U := κ−1U , and Â := Γ(U,OX), so that κ|U factors naturally as

U = Spf(Â)
κ1−→ U1 := Spec(Â)

k−→ Spec(A) = U.

The functors RQUk∗ and k∗RQU1 are both right-adjoint to the natural composi-
tion Dqc(U) k∗−→ Dqc(U1) →֒ D(U1), and so are isomorphic. Thus there are natural
isomorphisms

RQU(κ∗κ
∗G)|U = RQUk∗κ1∗κ

∗
1k
∗(G|U) −→∼ k∗RQU1κ1∗κ

∗
1k
∗(G|U) −→∼

3.3.1
k∗k

∗(G|U)

and the presheaf becomes

U 7→ HomD(U)(F|U [−j], k∗k∗(G|U)).

The equivalence of categories Dqc(U) ∼= D(Aqc(U)) = D(A) indicated at the be-
ginning of §3.3 yields an isomorphism

HomD(U)(F|U [−j], k∗k∗(G|U)) −→∼ HomD(A)(F [−j], G⊗A Â)

where F is a complex of A-modules with HiF = 0 for i < i0 , and bothG and G⊗AÂ
are complexes of injective A-modules vanishing in all degrees > n (the latter since

Â is A-flat). Hence the presheaf vanishes, and the conclusion follows.

3. Direct limits of coherent sheaves on formal schemes.

In this section we establish, for a locally noetherian formal scheme X, properties
of A~c(X) needed in §4 to adapt Deligne’s proof of global Grothendieck Duality to
the formal context. The basic result, Proposition 3.2.2, is that A~c(X) is plump (see
opening remarks in §1), hence abelian, and so (being closed under lim

−−→
) cocomplete,

i.e., it has arbitrary small colimits. This enables us to speak about D(A~c(X)), and
to apply standard adjoint functor theorems to colimit-preserving functors onA~c(X).
(See e.g., Proposition 3.2.3, Grothendieck Duality for the identity map of X).

The preliminary paragraph 3.1 sets up an equivalence of categories which allows
us to reduce local questions about the (globally defined) category A~c(X) to corre-
sponding questions about quasi-coherent sheaves on ordinary noetherian schemes.
Paragraph 3.3 extends this equivalence to derived categories. As one immediate
application, Corollary 3.3.4 asserts that the natural functor D(A~c(X)) → D~c(X)
is an equivalence of categories when X is properly algebraic, i.e., the J-adic com-
pletion of a proper B-scheme with B a noetherian ring and J a B-ideal. This
will yield a stronger version of Grothendieck Duality on such formal schemes—for
D~c(X) rather than D(A~c(X)), see Corollary 4.1.1. We do not know whether such
global results hold over arbitrary noetherian formal schemes.

Paragraph 3.4 establishes “boundedness” for some derived functors, a condition
which allows us to apply them freely to unbounded complexes, as illustrated, e.g.,
in Paragraph 3.5.

3.1. For X a noetherian (ordinary) scheme, A~c(X) = Aqc(X) [GD, p. 319, (6.9.9)].
The inclusion jX : Aqc(X) → A(X) has a right adjoint QX : A(X) → Aqc(X),
the “quasi-coherator,” necessarily left exact [I, p. 187, Lemme 3.2]. (See Proposi-
tion 3.2.3 and Corollary 5.1.5 for generalizations to formal schemes.)
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Proposition 3.1.1. Let A be a noetherian adic ring with ideal of definition I, let
f0 : X → Spec(A) be a proper map, Z := f−1

0 Spec(A/I), and κ : X = X/Z → X
the formal completion of X along Z. Let Q := QX be as above. Then κ∗ induces
equivalences of categories from Aqc(X) to A~c(X) and from Ac(X) to Ac(X), both
with quasi-inverse Qκ∗.

Proof. For any quasi-coherent OX -module G and any i ≥ 0, the canonical map is
an isomorphism

Hi(X,G) −→∼ Hi(X, κ∗κ
∗G) = Hi(X, κ∗G).14(3.1.2)

To see this, let (Gλ) be the family of coherent submodules of G, ordered by inclusion.
Then, X and X being noetherian, one checks that (3.1.2) is the composition of the
sequence of natural isomorphisms

Hi(X,G) −→∼ Hi(X, lim
−−→

λ

Gλ) [GD, p. 319, (6.9.9)]

−→∼ lim
−−→

λ

Hi(X,Gλ)

−→∼ lim
−−→

λ

Hi(X, κ∗Gλ) [EGA, p. 125, (4.1.7)]

−→∼ Hi(X, lim
−−→

λ

κ∗Gλ)

−→∼ Hi(X, κ∗lim
−−→

λ

Gλ) −→∼ Hi(X, κ∗G).

Next, for any G and H in Aqc(X) the natural map is an isomorphism

HomX(G,H) −→∼ HomX(κ∗G, κ∗H)(3.1.3)

For, with Gλ as above, (3.1.3) factors as the sequence of natural isomorphisms

HomX(G,H) −→∼ lim
←−−

λ

HomX(Gλ ,H)

−→∼ lim
←−−

λ

H0(X,HomX(Gλ ,H))

−→∼ lim
←−−

λ

H0(X, κ∗HomX(Gλ ,H)) (see (3.1.2))

−→∼ lim
←−−

λ

H0(X,HomX(κ∗Gλ , κ∗H))

−→∼ lim
←−−

λ

HomX(κ∗Gλ , κ∗H)

−→∼ HomX(lim
−−→

λ

κ∗Gλ , κ∗H) −→∼ HomX(κ∗G, κ∗H).

Finally, we show the equivalence of the following conditions, for F ∈ A(X):

(1) The functorial map α(F ) : κ∗Qκ∗F → F (adjoint to the canonical
map Qκ∗F → κ∗F ) is an isomorphism.

(2) There exists G ∈ Aqc(X) together with an isomorphism κ∗G −→∼ F.
(3) F ∈ A~c(X).

14The equality holds because κ∗ transforms any flasque resolution of κ∗G into one of κ∗κ
∗G.
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Clearly (1)⇒ (2); and (2)⇒ (3) because lim
−−→

λκ
∗Gλ −→∼ κ∗G (Gλ as before).

Since κ∗ commutes with lim
−−→

and induces an equivalence of categories fromAc(X)
to Ac(X) [EGA, p. 150, (5.1.6)], we see that (3)⇒ (2).

For G ∈ Aqc(X), let β(G) : G → Qκ∗κ
∗G be the canonical map (the unique one

whose composition with Qκ∗κ
∗G → κ∗κ

∗G is the canonical map G → κ∗κ
∗G). Then

for any H ∈ Aqc(X) we have the natural commutative diagram

Hom(H,G) via β−−−→ Hom(H, Qκ∗κ∗G)
≃

y
y≃

Hom(κ∗H, κ∗G) ˜−−−→ Hom(H, κ∗κ∗G)
where the left vertical arrow is an isomorphism by (3.1.3), the right one is an
isomorphism because Q is right-adjoint to Aqc(X) →֒ A(X), and the bottom arrow
is an isomorphism because κ∗ is right-adjoint to κ∗; so “via β” is an isomorphism
for all H, whence β(G) is an isomorphism. The implication (2)⇒ (1) follows now
from the easily checked fact that α(κ∗G) ◦κ∗β(G) is the identity map of κ∗G.

We see also that Qκ∗(Ac(X)) ⊂ Ac(X), since by [EGA, p. 150, (5.1.6)] every
F ∈ Ac(X) is isomorphic to κ∗G for some G ∈ Ac(X), and β(G) is an isomorphism.

Thus we have the functors κ∗ : Aqc(X) → A~c(X) and Qκ∗ : A~c(X) → Aqc(X),
both of which preserve coherence, and the functorial isomorphisms

α(F ) : κ∗Qκ∗F −→∼ F (F ∈ A~c(X)),

β(G) : G −→∼ Qκ∗κ
∗G (G ∈ Aqc(X)).

Proposition 3.1.1 results.

Since κ∗ is right-exact, we deduce:

Corollary 3.1.4. For any affine noetherian formal scheme X, F ∈ A~c(X) iff F is
a cokernel of a map of free OX-modules (i.e., direct sums of copies of OX).

Corollary 3.1.5. For any locally noetherian formal scheme X, A~c(X) ⊂ Aqc(X),
i.e., any lim

−−→
of coherent OX-modules is quasi-coherent.

Proof. Being local, the assertion follows from Corollary 3.1.4.

Corollary 3.1.6 (cf. [Y, 3.4, 3.5]). Let X be a locally noetherian formal scheme,
and let F , G be quasi-coherent OX-modules.

(a) The kernel, cokernel, and image of any morphism F → G are quasi-coherent.
(b) F is coherent iff F is locally finitely generated.
(c) If F is coherent and G is a sub- or quotient module of F then G is coherent.
(d) If F is coherent then Hom(F,G) is quasi-coherent; and if also G is coherent

then Hom(F,G) is coherent.

Proof. The questions are local, so we may assume that X = Spf(A) (A noetherian
adic), and, by Corollary 3.1.4, that F and G are in A~c(X). Then, κ∗ being exact,
Proposition 3.1.1 with X := Spec(A) and f0 := identity reduces the problem to not-
ing that the corresponding statements about coherent and quasi-coherent sheaves
on X are true. (These statements, and others, are in [GD, p. 217, Cor. (2.2.2)
and p. 228, §(2.7.1)]. Note also that if F is coherent then HomX(κ∗F, κ∗G) ∼=
κ∗HomX(F,G).)
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Corollary 3.1.7. If X is a locally noetherian formal scheme then any F ∈ A~c(X)
is the lim

−−→
of its coherent OX-submodules.

Proof. Note that by Corollary 3.1.6(a) and (b) the sum of any two coherent sub-
modules of F is again coherent. By definition, F = lim

−−→
µFµ with Fµ coherent,

and from Corollary 3.1.6(a) and (b) it follows that the canonical image of Fµ is a
coherent submodule of F, whence the conclusion.

Corollary 3.1.8. For any affine noetherian formal scheme X, any F ∈ A~c(X),
and any i > 0,

Hi(X,F ) = 0.

Proof. Taking f0 in Proposition 3.1.1 to be the identity map, we have F ∼= κ∗G
with G quasi-coherent; and so by (3.1.2), Hi(X,F ) ∼= Hi(Spec(A),G) = 0.

3.2. Proposition 3.1.1 will now be used to show, for locally noetherian formal
schemes X, that A~c(X) ⊂ A(X) is plump, and that this inclusion has a right
adjoint, extending to derived categories.

Lemma 3.2.1. Let X be a locally noetherian formal scheme, let F ∈ Ac(X), and
let (Gα , γαβ : Gβ → Gα)α,β∈Ω be a directed system in Ac(X). Then for every q ≥ 0
the natural map is an isomorphism

lim
−−→

α

Extq(F, Gα) −→∼ Extq(F, lim
−−→

α

Gα).

Proof. For any OX-moduleM, let E(M) denote the standard spectral sequence

Epq
2 (M) := Hp(X, Extq(F,M))⇒ Extp+q(F,M).

It suffices that the natural map of spectral sequences be an isomorphism

lim
−−→

E(Gα) −→∼ E(lim
−−→
Gα) (lim

−−→
:= lim
−−→

α

),

and for that we need only check out the Epq
2 terms, i.e., show that the natural maps

lim
−−→

Hp(X, Extq(F,Gα))→ Hp(X, lim
−−→
Extq(F,Gα))→ Hp(X, Extq(F, lim

−−→
Gα))

are isomorphisms. The first one is, because X is noetherian. So we need only show
that the natural map is an isomorphism

lim
−−→
Extq(F, Gα) −→∼ Extq(F, lim

−−→
Gα).

For this localized question we may assume that X = Spf(A) with A a noetherian
adic ring. By Proposition 3.1.1 (with f0 the identity map ofX := Spec(A)) there is a
coherent OX -module F and a directed system (Gα , gαβ : Gβ → Gα)α,β∈Ω of coherent
OX -modules such that F = κ∗F, Gα = κ∗Gα , and γα,β = κ∗gα,β. Then the well-
known natural isomorphisms (see [EGA, (Chapter 0), p. 61, Prop. (12.3.5)]—or the
proof of Corollary 3.3.2 below)

lim
−−→
ExtqX(F, Gα) −→∼ lim

−−→
κ∗ExtqX(F,Gα) −→∼ κ∗lim

−−→
ExtqX(F,Gα)

−→∼ κ∗ExtqX(F, lim
−−→

Gα) −→∼ ExtqX(κ∗F, κ∗lim
−−→

Gα) −→∼ ExtqX(F, lim
−−→
Gα)

give the desired conclusion.
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Proposition 3.2.2. Let X be a locally noetherian formal scheme. If

F1 → F2 → F → F3 → F4

is an exact sequence of OX-modules and if F1 , F2 , F3 and F4 are all in Aqc(X)
(resp. A~c(X)) then F ∈ Aqc(X) (resp. A~c(X)). Thus Aqc(X) and A~c(X) are
plump—hence abelian—subcategories of A(X), and both Dqc(X) and its subcate-
gory D~c(X) are triangulated subcategories of D(X). Furthermore, A~c(X) is closed
under arbitrary small A(X)-colimits.

Proof. Part of the Aqc case is covered by Corollary 3.1.6(a), and all of it by [Y,
Proposition 3.5]. At any rate, since every quasi-coherent OX-module is locally
in A~c ⊂ Aqc (see Corollaries 3.1.4 and 3.1.5), it suffices to treat the A~c case.

Let us first show that the kernel K of an A~c map

ψ : lim
−−→

βHβ = H → G = lim
−−→

αGα (Gα ,Hβ ∈ Ac(X))

is itself in A~c(X). It will suffice to do so for the kernel Kβ of the composition

ψβ : Hβ
natural−−−−→ H ψ−→ G,

since K = lim
−−→

βKβ . By the case q = 0 of Corollary 3.2.1, there is an α such that
ψβ factors as

Hβ
ψβα−−→ Gα natural−−−−→ G ;

and then with Kβα′ (α′ > α) the (coherent) kernel of the composed map

Hβ
ψβα−−→ Gα natural−−−−→ Gα′

we have Kβ = lim
−−→

α′Kβα′ ∈ A~c(X).

Similarly, we find that coker(ψ) ∈ A~c(X). Being closed under small direct sums,
then, A~c(X) is closed under arbitrary small A(X)-colimits [M1, Corollary 2, p. 109].

Consideration of the exact sequence

0 −→ coker(F1 → F2) −→ F −→ ker(F3 → F4) −→ 0

now reduces the original question to where F1 = F4 = 0. Since F3 is the lim
−−→

of
its coherent submodules (Corollary 3.1.7) and F is the lim

−−→
of the inverse images

of those submodules, we need only show that each such inverse image is in A~c(X).
Thus we may assume F3 coherent (and F2 = lim

−−→
αGα with Gα coherent).

The exact sequence 0→ F2 → F → F3 → 0 represents an element

η ∈ Ext1(F3, F2) = Ext1(F3, lim
−−→

αGα);
and by Corollary 3.2.1, there is an α such that η is the natural image of an element
ηα ∈ Ext1(F3, Gα), represented by an exact sequence 0 → Gα → Fα → F3 → 0.
Then Fα is coherent, and by [M2, p. 66, Lemma 1.4], we have an isomorphism

F −→∼ F2 ⊕Gα Fα .
Thus F is the cokernel of a map in A~c(X), and so as above, F ∈ A~c(X).

Proposition 3.2.3. On a locally noetherian formal scheme X, the inclusion func-
tor jX : A~c(X)→ A(X) has a right adjoint QX : A(X)→ A~c(X); and RQX is right-
adjoint to the natural functor D(A~c(X)) → D(X). In particular, if κ : X → X is
as in Proposition 3.1.1 then QX

∼= κ∗QXκ∗ and RQX
∼= κ∗RQXκ∗ .
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Proof. Since A~c(X) has a small family of (coherent) generators, and is closed under
arbitrary small A(X)-colimits, the existence of QX follows from the Special Adjoint
Functor Theorem ([F, p. 90] or [M1, p. 126, Corollary]).15

In an abelian category A, a complex J is, by definition, K-injective if for each
exact A-complex G, the complex Hom•A(G, J) is exact too. Since jX is exact, it
follows that its right adjoint QX transforms K-injective A(X)-complexes into K-
injective A~c(X)-complexes, whence the derived functor RQX is right-adjoint to the
natural functor D(A~c(X))→ D(X) (see [Sp, p. 129, Proposition 1.5(b)]).

The next assertion is a corollary of Proposition 3.1.1: anyM ∈ A~c(X) is isomor-
phic to κ∗G for some G ∈ Aqc(X), and then for any N ∈ A(X) there are natural
isomorphisms

HomX(jXM,N ) ∼= HomX(jXκ
∗G,N )

∼= HomX(jXG, κ∗N ) ∼= HomAqc(X)(G, QXκ∗N )
∼= HomA~c(X)(κ

∗G, κ∗QXκ∗N ) ∼= HomA~c(X)(M, κ∗QXκ∗N ).

Moreover, since κ∗ has an exact left adjoint (viz. κ∗), therefore, as above, κ∗ trans-
forms K-injective A(X)-complexes into K-injective A(X)-complexes, and it follows
at once that RQX

∼= κ∗RQXκ∗.

3.3. Proposition 3.2.3 applies in particular to any noetherian scheme X. In this
case, jX induces an equivalence of categories jX : D(Aqc(X)) ∼= Dqc(X), with quasi-
inverse RQX |Dqc(X). (See [H1, p. 133, Cor. 7.19] for bounded-below complexes, and
[BN, p. 230, Corollary 5.5] or [AJL, p. 12, Proposition (1.3)] for the general case.)
We do not know if such an equivalence, with“~c ” in place of “qc,” holds for arbitrary
noetherian formal schemes. The next result will at least take care of the “properly
algebraic” case, see Corollary 3.3.4.

Proposition 3.3.1. In Proposition 3.1.1, the functor κ∗ : D(X)→ D(X) induces
equivalences from Dqc(X) to D~c(X) and from Dc(X) to Dc(X), both with quasi-
inverse RQκ∗ (where RQ stands for jX ◦RQX).

Proof. Since κ∗ is exact, Proposition 3.1.1 implies that κ∗(Dqc(X)) ⊂ D~c(X) and
κ∗(Dc(X)) ⊂ Dc(X). So it will be enough to show that:

(1) If F ∈ D~c(X) then the functorial D(X)-map κ∗RQκ∗F → F adjoint to the
natural map RQκ∗F → κ∗F is an isomorphism.

(2) If G ∈ Dqc(X) then the natural map G −→∼ RQκ∗κ
∗G is an isomorphism.

(3) If F ∈ Dc(X) then RQκ∗F ∈ Dc(X).

Since D~c(X) is triangulated (Corollary 3.2.2), we can use way-out reasoning [H1,
p. 68, Proposition 7.1 and p. 73, Proposition 7.3] to reduce to where F or G is a
single sheaf. (For bounded-below complexes we just need the obvious facts that κ∗

and the restriction of RQκ∗ to D~c(X) are both bounded-below (= way-out right)
functors. For unbounded complexes, we need those functors to be bounded-above
as well, which is clear for the exact functor κ∗, and will be shown for RQκ∗|D~c(X)

in Proposition 3.4.4 below.)

15It follows that A~c(X) is closed under all A(X)-colimits (not necessarily small): if F is any
functor into A~c(X) and F ∈ A(X) is a colimit of j

X
◦F, then QXF is a colimit of F, and the

natural map is an isomorphism F −→∼ j
X
QXF . (Proof: exercise, given in dual form in [F, p. 80].)
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Any F ∈ A~c(X) is isomorphic to κ∗G for some G ∈ Aqc(X); and one checks
that the natural composed map κ∗G → κ∗RQκ∗κ

∗G → κ∗G is the identity, whence
(2)⇒ (1). Moreover, if F ∈ Ac(X) then G ∼= Qκ∗F ∈ Ac(X), whence (2)⇒ (3).

Now a map ϕ : G1 → G2 in D+
qc(X) is an isomorphism iff

(∗) : the induced map HomD(X)(E [−n], G1)→ HomD(X)(E [−n], G2) is an
isomorphism for every E ∈ Ac(X) and every n ∈ Z.

(For, if V is the vertex of a triangle with base ϕ, then (∗) says that for all E , n,
HomD(X)(E [−n],V) = 0; but if ϕ is not an isomorphism, i.e., V has non-vanishing
homology, say Hn(V) 6= 0 and H i(V) = 0 for all i < n, then the inclusion map into
Hn(V) of any coherent non-zero submodule E gives a non-zero map E [−n] → V.)
So for (2) it’s enough to check that the natural composition

HomD(X)(E [−n], G) −→ HomD(X)(E [−n],RQκ∗κ
∗G)

−→∼ HomD(X)(E [−n], κ∗κ
∗G) −→∼ HomD(X)(κ

∗E [−n], κ∗G)
is the isomorphism ExtnX(E,G) −→∼ ExtnX(κ∗E, κ∗G) in the following consequence
of (3.1.2):

Corollary 3.3.2. With κ : X → X as in Proposition 3.1.1, for any L ∈ Dqc(X)
the natural map RΓ(X,L) → RΓ(X, κ∗L) is an isomorphism. In particular, for
E ∈ D−c (X) and G ∈ D+

qc(X) the natural map ExtnX(E,G)→ ExtnX(κ∗E, κ∗G) is an
isomorphism.

Proof. After “way-out” reduction to the case where L ∈ Aqc(X) (the RΓ’s
are bounded, by Corollary 3.4.3(a) below), the first assertion is given by (3.1.2).
To get the second assertion, take L := RHom•X(E,G) (which is in D

+

qc(X), [H1,
p. 92, Proposition 3.3]), so that κ∗L ∼= RHom•X(κ∗E, κ∗G) (as one sees easily after
way-out reduction to where E and G are OX-modules, and further reduction to
where X is affine, so that E has a resolution by finite-rank free modules . . . ).

Definition 3.3.3. A formal scheme X is said to be properly algebraic if there exist
a noetherian ring B, a B-ideal J, a proper B-scheme X, and an isomorphism from X

to the J-adic completion of X.

Corollary 3.3.4. On a properly algebraic formal scheme X the natural functor
jX : D(A~c(X)) → D~c(X) is an equivalence of categories, with quasi-inverse RQX;
and therefore jX

◦RQX is right-adjoint to the inclusion D~c(X) →֒ D(X).

Proof. If X is properly algebraic, then with A := J-adic completion of B and
I := JA, it holds that X is the I-adic completion of X⊗BA, and so we may assume
the hypotheses and conclusions of Proposition 3.1.1. We have also, as above, the
equivalence of categories jX : D(Aqc(X)) → Dqc(X); and so the assertion follows
from Propositions 3.3.1 and 3.2.3.

Proposition 3.3.5. For any map g : Z→ X of locally noetherian formal schemes,

Lg∗(D~c(X)) ⊂ Dqc(Z).

If X is properly algebraic, then

Lg∗(D~c(X)) ⊂ D~c(Z).
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Proof. The first assertion, being local on X, follows from the second. Assuming
X properly algebraic we may, as in the proof of Corollary 3.3.4, place ourselves in
the situation of Proposition 3.1.1, so that any G ∈ D~c(X) is, by Corollary 3.3.4
and Proposition 3.1.1, isomorphic to κ∗E for some E ∈ Dqc(X). By [AJL, p. 10,
Proposition (1.1)]), E is isomorphic to a lim

−−→
of bounded-above quasi-coherent flat

complexes (see the very end of the proof of ibid.); and therefore G ∼= κ∗E is iso-
morphic to a K-flat complex of A~c(X)-objects. Since Lg∗ agrees with g∗ on K-flat
complexes, and g∗(A~c(X)) ⊂ A~c(Z), we are done.

Remarks 3.3.6. (a) Let X be a properly algebraic formal scheme (necessarily
noetherian) with ideal of definition I, and set I := H0(X, I) ⊂ A := H0(X,OX).
Then A is a noetherian I-adic ring, and X is Spf(A)-isomorphic to the I-adic
completion of a proper A-scheme. (The canonical map X → Spf(A) is given by
[GD, p. 407, (10.4.6)].)

Indeed, with B, J and X as in Definition 3.3.3, [EGA, p. 125, Theorem (4.1.7)]
implies that the topological ring

A = lim
←−−
n>0

H0(X,OX/I
nOX) = lim

←−−
n>0

H0(X,OX/InOX)

is the J-adic completion of the noetherian B-algebra A0 := H0(X,OX), and that
the J-adic and I-adic topologies on A are the same; and then X is the I-adic
completion of X ⊗A0 A.

(b) It follows that a quasi-compact formal scheme X is properly algebraic iff so is
each of its connected components.

(c) While (a) provides a less relaxed characterization of properly algebraic formal
schemes than Definition 3.3.3, Corollary 3.3.8 below provides a more relaxed one.

Lemma 3.3.7. Let X be a locally noetherian scheme, I1 ⊂ I2 two quasi-coherent
OX-ideals, Zi the support of OX/Ii , and Xi the completion X/Zi

(i = 1, 2). Suppose
that I1OX2 is an ideal of definition of X2. Then X2 is a union of connected
components of X1 (with the induced formal-subscheme structure).

Proof. We need only show that Z2 is open in Z1. Locally we have a noetherian
ring A and A-ideals I ⊂ J equal to their own radicals such that with Â the J-adic
completion, JnÂ ⊂ IÂ for some n > 0; and we want the natural map A/I ։ A/J
to be flat.16 It suffices that the localization (A/I )1+J → (A/J )1+J = A/J by the
multiplicatively closed set 1+J be an isomorphism, i.e., that its kernel J(A/I )1+J

be nilpotent (hence (0), since A/I is reduced.) But this is so because the natural

map A1+J → Â is faithfully flat, and therefore JnA1+J ⊂ IA1+J .

Corollary 3.3.8. Let A be a noetherian ring, let I be an A-ideal, and let Â be the
I-adic completion of A. Let f0 : X → Spec(A) be a separated finite-type scheme-
map, let Z be a closed subscheme of f−1

0 (Spec(A/I)), let X = X/Z be the completion

16If A is a ring, and L a finitely generated A-ideal such that the natural surjection A→ A/L

is flat, then L/L2 = TorA
1 (A/L, A/L) = 0, whence (1− ℓ)L = (0) for some ℓ ∈ L, whence ℓ = ℓ2

and L = ℓA, so that A ∼= L×A/L and Spec(A/L) →֒ Spec(A) is open.
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of X along Z, and let f : X→ Spf(Â) be the formal-scheme map induced by f0 :

X := X/Z −−−→ X

f

y
yf0

Spf(Â) −−−→ Spec(A)

If f is proper (see §1.2.2) then X is properly algebraic.

Proof. Consider a compactification of f0 (see [Lü, Theorem 3.2]):

X →֒
open

X
f̄0−→

proper
Spec(A).

Since f is proper, therefore Z is proper over Spec(A), hence closed in X. Thus we
may replace f0 by f̄0 , i.e., we may assume f0 proper. Since f, being proper, is adic,
Lemma 3.3.7, with Z2 := Z and Z1 := f−1

0 (Spec(A/I)), shows that X is a union of
connected components of the properly algebraic formal scheme X/Z1

. Conclude by
Remark 3.3.6(b).

3.4. To deal with unbounded complexes we need the following boundedness results
on certain derived functors. (See, e.g., Propositions 3.5.1 and 3.5.3 below.)

3.4.1. Refer to §1.2.2 for the definitions of separated, resp. affine, maps.
A formal scheme X is separated if the natural map fX : X→ Spec(Z) is separated,

i.e., for some—hence any—ideal of definition J, the scheme (X,OX/J) is separated.
For example, any locally noetherian affine formal scheme is separated.

A locally noetherian formal scheme X is affine if and only if the map fX is affine,
i.e., for some—hence any—ideal of definition J, the scheme (X,OX/J) is affine.
Hence the intersection V ∩ V′ of any two affine open subsets of a separated locally
noetherian formal scheme Y is again affine. In other words, the inclusion V →֒ Y is
an affine map. More generally, if f : X → Y is a map of locally noetherian formal
schemes, if Y is separated, and if V and V′ are affine open subsets of Y and X

respectively, then f−1V ∩ V′ is affine [GD, p. 282, (5.8.10)].

Lemma 3.4.2. If g : X→ Y is an affine map of locally noetherian formal schemes,
then every M∈ A~c(X) is g∗-acyclic, i.e., Rig∗M = 0 for all i > 0. More generally,
if G ∈ D~c(X) and e ∈ Z are such that H i(G) = 0 for all i ≥ e, then H i(Rg∗G) = 0
for all i ≥ e.

Proof. Rig∗M is the sheaf associated to the presheaf U 7→ Hi(g−1(U),M), (U open
in Y) [EGA, Chap. 0, (12.2.1)]. If U is affine then so is g−1(U) ⊂ X, and Corol-
lary 3.1.8 gives Hi(g−1(U),M) = 0 for all i > 0.

Now consider in K(X) a quasi-isomorphism G → I where I is a “special” inverse
limit of injective resolutions I−e of the truncations τ≥eG, so that H i(Rg∗G) is the
sheaf associated to the presheaf U 7→ Hi(Γ(g−1U, I)), see [Sp, p. 134, 3.13]. If C−e is
the kernel of the split surjection I−e → I1−e then C−e[e] is an injective resolution of
He(G) ∈ A~c(X), and so for any affine open U ⊂ Y and i > e, Hi(Γ(g−1U, C−e)) = 0.
Applying [Sp, p. 126, Lemma], one finds then that for i ≥ e the natural map
Hi(Γ(g−1U, I))→ Hi(Γ(g−1U, I−e)) is an isomorphism. Consequently if H i(G) = 0
for all i ≥ e (whence I−e ∼= τ≥eG = 0 in D(X)) then Hi(Γ(g−1U, I)) = 0.
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Proposition 3.4.3. Let X be a noetherian formal scheme. Then:
(a) The functor RΓ(X,−) is bounded-above on D~c(X). In other words, there

is an integer e ≥ 0 such that if G ∈ D~c(X) and H i(G) = 0 for all i ≥ i0 then
Hi(RΓ(X,−)) = 0 for all i ≥ i0 + e.

(b) For any formal-scheme map f : X → Y with Y quasi-compact, the func-
tor Rf∗ is bounded-above on D~c(X), i.e., there is an integer e ≥ 0 such that
if G ∈ D~c(X) and H i(G) = 0 for all i ≥ i0 then H i(Rf∗G) = 0 for all i ≥ i0 + e.

Proof. Let us prove (b). (The proof of (a) is the same, mutatis mutandis.) Suppose
first that X is separated. Since Y has a finite affine open cover and Rf∗ commutes
with open base change, we may assume that Y itself is affine. Let n(X) be the least
positive integer n such that there exists a finite affine open cover X = ∪ni=1Xi , and
let us show by induction on n(X) that e := n(X)− 1 will do.

The case n(X) = 1 is covered by Lemma 3.4.2. So assume that n := n(X) ≥ 2,
let X = ∪ni=1Xi be an affine open cover, and let u1 : X1 →֒ X, u2 : ∪ni=2 Xi →֒ X,
u3 : ∪ni=2 (X1 ∩ Xi) →֒ X be the respective inclusion maps. Note that X1 ∩ Xi

is affine because X is separated, see §3.4.1. So by the inductive hypothesis, the
assertion holds for the maps fi := f ◦ ui (i = 1, 2, 3). Apply the ∆-functor Rf∗ to
the “Mayer-Vietoris” triangle

G −→ Ru1∗u
∗
1G ⊕Ru2∗u

∗
2G −→ Ru3∗u

∗
3G

+1−→
(derived from the standard exact sequence

0→ E → u1∗u
∗
1E ⊕ u2∗u

∗
2E → u3∗u

∗
3E → 0

where G → E is a K-injective resolution) to get the D(Y)-triangle

Rf∗G −→ Rf1∗u
∗
1G ⊕Rf2∗u

∗
2G −→ Rf3∗u

∗
3G

+1−→
whose associated long exact homology sequence yields the assertion for f .

The general case can now be disposed of with a similar Mayer-Vietoris induction
on the least number of separated open subsets needed to cover X.

Proposition 3.4.4. Let X be a separated noetherian scheme, Z ⊂ X a closed sub-
scheme, and κ = κX : X = X/Z → X the completion map. Then the functor RQXκ∗
is bounded-above on D~c(X).

Proof. Let n(X) be the least number of affine open subschemes needed to cover X.
When X is affine, QX is the sheafification of the global section functor, and since
κ∗ is exact and, being right adjoint to the exact functor κ∗ , preserves K-injectivity,
we find that for any F ∈ D(X), RQXκ∗F is the sheafification of the complex
RΓ(X, κ∗F ) = RΓ(X,F ). Thus Proposition 3.4.3(a) yields the desired result for
n(X) = 1.

Proceed by induction when n(X) > 1, using a “Mayer-Vietoris” argument as in
the proof of Proposition 3.4.3. The enabling points are that if v : V →֒ X is an open
immersion with n(V ) < n(X), giving rise to the natural commutative diagram

V/Z∩V =: V
κ

V−−−→ V

v̂

y
yv

X −−−→κ
X

X
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then there are natural isomorphisms, for F ∈ D~c(X) and vqc
∗ : Aqc(V ) → Aqc(X)

the restriction of v∗ :

RQXκX∗Rv̂∗v̂
∗F ∼= RQXRv∗κV∗v̂

∗F ∼= Rvqc
∗ RQV κV∗v̂

∗F ,
and the functor RQV κV∗v̂

∗ is bounded-above, by the inductive hypothesis on
n(V ) < n(X), as is Rvqc

∗ , by the proof of [AJL, p. 12, Proposition (1.3)].

3.5. Here are some examples of how boundedness is used.

Proposition 3.5.1. Let f : X→ Y be a proper map of noetherian formal schemes.
Then

Rf∗Dc(X) ⊂ Dc(Y) and Rf∗D~c(X) ⊂ D~c(Y).

Proof. For any coherent OX-module M, Rf∗M ∈ Dc(Y) [EGA, p. 119, (3.4.2)].
Since X is noetherian, the homology functors H iRf∗ commute with lim

−−→
on OX-

modules, whence Rf∗N ∈ D~c(Y) for all N ∈ A~c(X). Rf∗ being bounded on D~c(X)
(Proposition 3.4.3(b)), way-out reasoning [H1, p. 74, (iii)] completes the proof.

Proposition 3.5.2. Let f : X → Y be a map of quasi-compact formal schemes,
with X noetherian. Then the functor Rf∗|D~c(X) commutes with small direct sums,
i.e., for any small family (Eα) in D~c(X) the natural map

⊕α(Rf∗Eα)→ Rf∗(⊕αEα)
is a D(Y)-isomorphism.

Proof. It suffices to look at the induced homology maps in each degree, i.e., setting
Rif∗ := H iRf∗ (i ∈ Z), we need to show that the natural map

⊕α(Rif∗Eα) −→∼ Rif∗(⊕αEα).
is an isomorphism.

For any F ∈ D~c(X) and any integer e ≥ 0, the vertex G of a triangle based
on the natural map ti−e from F to the truncation F≥i−e (see (4.1.3)) satisfies
Hj(G) = 0 for all j ≥ i − e− 1; so if e is the integer in Proposition 3.4.3(b), then
Ri−1f∗G = Rif∗G = 0, and the map induced by ti−e is an isomorphism

Rif∗F −→∼ Rif∗F≥i−e.

We can therefore replace each Eα by E≥i−e
α , i.e., we may assume that the Eα are

uniformly bounded below.
We may assume further that each complex Eα is injective, hence f∗-acyclic (i.e.,

the canonical map is an isomorphism f∗Eα −→∼ Rf∗Eα). Since X is noetherian the
Rif∗ commute with direct sums, and so each component of ⊕αEα is an f∗-acyclic
OX-module. This implies that the bounded-below complex ⊕αEα is itself f∗-acyclic.
Thus in the natural commutative diagram

⊕α(f∗Eα) ˜−−−→ f∗(⊕αEα)
≃

y
y≃

⊕α(Rf∗Eα) −−−→ Rf∗(⊕αEα)
the top and both sides are isomorphisms, whence so is the bottom.

The following Proposition generalizes [EGA, p. 92, Theorem (4.1.5)].
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Proposition 3.5.3. Let f0 :X → Y be a proper map of locally noetherian schemes,
W ⊂ Y a closed subset, Z := f−1

0 W, κY : Y = Y/W → Y and κX : X = X/Z → X
the respective (flat) completion maps, and f : X→ Y the map induced by f0 . Then
for E ∈ Dqc(X) there is a natural functorial isomorphism

θE : κ∗YRf0∗E −→∼ Rf∗κ
∗
XE.

Proof. Let θE be the map adjoint to the natural composition

Rf0∗E −→ Rf0∗κX∗κ
∗
XE −→∼ κY∗Rf∗κ

∗
XE .

To verify that θE is an isomorphism we may assume Y affine, say Y = Spec(A),

and then W = Spec(A/I) for some A-ideal I. Let Â be the I-adic completion of A,
so that there is a natural cartesian diagram

X ⊗A Â =:X1
kX−−−→ X

f1

y
yf0

Spec(Â) =: Y1 −−−→
kY

Y

Here kY is flat, and the natural map is an isomorphism k∗YRf0∗E −→∼ Rf1∗k
∗
XE :

since Rf0∗ (resp. Rf1∗) is bounded-above on Dqc(X) (resp. Dqc(X1)), see Propo-
sition 3.4.3(b), way-out reasoning reduces this assertion to the well-known case
where E is a single quasi-coherent OX -module. Simple considerations show then
that we can replace f0 by f1 and E by k∗XE ; in other words, we can assume A = Â.

From Proposition 3.5.1 it follows that Rf0∗E ∈ Dqc(Y ) and Rf∗κ
∗
XE ∈ D~c(Y).

Recalling the equivalences in Proposition 3.3.1, we see that any F ∈ D~c(Y) is
isomorphic to κ∗YF0 for some F0 ∈ Dqc(Y ) (so that Lf ∗0F0 ∈ Dqc(X)), and that
there is a sequence of natural isomorphisms

HomY(F, κ∗YRf0∗E) −→∼ HomY (F0 ,Rf0∗E)
−→∼ HomX(Lf ∗0F0 , E)
−→∼ HomX(κ∗XLf ∗0F0 , κ

∗
XE)

−→∼ HomX(Lf ∗κ∗YF0 , κ
∗
XE) −→∼ HomY(F,Rf∗κ∗XE).

The conclusion follows.

4. Global Grothendieck Duality on formal schemes.

Theorem 4.1. Let f : X → Y be a map of quasi-compact formal schemes, with
X noetherian, and let j : D(A~c(X)) → D(X) be the natural functor. Then the
∆-functor Rf∗ ◦ j has a right ∆-adjoint. In fact there is a bounded-below ∆-functor
f× : D(Y) → D (A~c(X)) and a map of ∆-functors τ : Rf∗jf

× → 1 such that for
all G ∈ D(A~c(X)) and F ∈ D(Y), the composed map (in the derived category of
abelian groups)

RHom•A~c(X)(G, f×F )
natural−−−−→ RHom•A(Y)(Rf∗jG,Rf∗jf×F )

via τ−−−−→ RHom•A(Y)(Rf∗jG, F )

is an isomorphism.

With Corollary 3.3.4 this gives:
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Corollary 4.1.1. If X is properly algebraic then the restriction of Rf∗ to D~c(X)
has a right ∆-adjoint (also to be denoted f× when no confusion results).

Remarks. 1. Recall that over any abelian category A in which each complex F has
a K-injective resolution ρ(F ), we can set

RHom•A(G,F ) := Hom•A(G, ρ(F )) (G,F ∈ D(A));

and there are natural isomorphisms

HiRHom•A(G,F ) ∼= HomD(A)(G,F [i]) (i ∈ Z).

2. Application of homology to the second assertion in the Theorem reveals that
it is equivalent to the first one.

3. We do not know in general (when X is not properly algebraic) that the functor j

is fully faithful—j has a right adjoint (identity)× ∼= RQX (see Proposition 3.2.3),
but it may be that for some E ∈ A~c(X) the natural map E → RQXjE is not an
isomorphism.

4. For proper f it is customary to write f ! instead of f×.
5. Theorem 4.1 includes the case where X and Y are ordinary noetherian schemes.

The next Corollary relates the formal situation to the ordinary one.

Corollary 4.1.2. Let A be a noetherian adic ring with ideal of definition I, set
Y := Spec(A) and W := Spec(A/I) ⊂ Y . Let f0 : X → Y be a proper map and
set Z := f−1

0 W, so that there is a commutative diagram

X := X/Z

κ
X−−−→ X

f

y
yf0

Y := Spf(A) −−−→κ
Y

Y

with κX and κY the respective (flat) completion maps, and f the (proper) map
induced by f0 . Then the map adjoint to the natural composition

Rf∗κ
∗
Xf

!
0κY∗

3.5.3−−→ κ∗YRf∗f
!
0κY∗ −→ κ∗YκY∗ −→ 1

is an isomorphism of functors—from D(Y) to D~c(X), see Corollary 4.1.1—

κ∗Xf
!
0κY∗ −→∼ f !.

Proof. For any E ∈ D~c(X) set E0 := RQXκX∗E ∈ Dqc(X). Using Proposition 3.3.1
we have then for any F ∈ D(Y) the sequence of natural isomorphisms

HomX(E , κ∗Xf !
0κY∗F ) −→∼ HomX(E0 , f !

0κY∗F )

−→∼ HomY (Rf0∗E0 , κY∗F )

−→∼ HomY(κ∗YRf0∗E0 , F )

−→∼
3.5.3

HomY(Rf∗κ
∗
XE0 , F ) −→∼ HomY(Rf∗E , F ).

Thus κ∗Xf
!
0κY∗ is right-adjoint to Rf∗|D~c(X) , whence the conclusion.

Proof of Theorem 4.1. 1. Following Deligne [H1, p. 417, top], we begin by consid-
ering forM∈ A(X) the functorial flasque Godement resolution

0→M→ G0(M)→ G1(M)→ · · · .
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Here, with G−2(M) := 0, G−1(M) := M, and for i ≥ 0, Ki(M) the cokernel of
Gi−2(M)→ Gi−1(M), the sheaf Gi(M) is specified inductively by

Gi(M)(U) :=
∏

x∈U

Ki(M)x (U open in X).

One shows by induction on i that all the functors Gi and Ki (from A(X) to itself)
are exact. Moreover, for i ≥ 0, Gi(M), being flasque, is f∗-acyclic, i.e.,

Rjf∗G
i(M) = 0 for all j > 0.

The category A~c(X) has small colimits (Proposition 3.2.2), and is generated by
its coherent members, of which there exists a small set containing representa-
tives of every isomorphism class. So the Special Adjoint Functor Theorem ([F,
p. 90] or [M1, p. 126, Corollary]) guarantees that a right-exact functor F from A~c
into an abelian category A′ has a right adjoint iff F is continuous in the sense
that it commutes with filtered direct limits, i.e., for any small directed system
(Mα , ϕαβ :Mβ →Mα) in A~c , with lim

−−→
α

Mα = (M, ϕα :Mα →M) it holds that

(F (M), F (ϕα)) = lim
−−→

α

(F (Mα), F (ϕαβ)).

Accordingly, for constructing right adjoints we need to replace the restrictions of Gi

and Ki to A~c(X) by continuous functors.

Lemma 4.1.3. Let X be a locally noetherian formal scheme and let G be a func-
tor from Ac(X) to a category A′ in which direct limits exist for all small directed
systems. Let j : Ac(X) →֒ A~c(X) be the inclusion functor. Then:

(a) There exists a continuous functor G~c : A~c(X) → A′ and an isomorphism
of functors ε : G −→∼ G~c ◦j such that for any map of functors ψ : G → F ◦j with
F continuous, there is a unique map of functors ψ~c : G~c → F such that ψ factors as

G
ε−→ G~c ◦j

via ψ~c−−−→ F ◦j .

(b) Assume that A′ is abelian, and has exact filtered direct limits (i.e., satisfies
Grothendieck’s axiom AB5). Then if G is exact, so is G~c .

Proof. (a) For M ∈ A~c(X), let (Mα) be the directed system of coherent OX-
submodules of M, and set

G~c(M) := lim
−−→

α

G(Mα).

For any A~c(X)-map ν : M → N and any α, there exists a coherent submod-
ule Nβ ⊂ N such that ν|Mα factors as Mα → Nβ →֒ N (Corollary 3.1.7 and
Lemma 3.2.1, with q = 0); and the resulting composition

ν ′α : G(Mα)→ G(Nβ)→ G~c(N )

does not depend on the choice of Nβ . We define the map

G~c(ν) : G~c(M) = lim
−−→

α

G(Mα)→ G~c(N )

to be the unique one whose composition with G(Mα) → G~c(M) is ν ′α for all α.
Verification of the rest of assertion (a) is straightforward.

(b) Let 0 → M → N π−→ Q → 0 be an exact sequence in A~c(X). Let (Nβ)
be the filtered system of coherent submodules of N , so that N = lim

−−→
Nβ (Corol-

lary 3.1.7). Then (M∩Nβ) is a filtered system of coherent OX-modules whose lim
−−→
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isM, and (πNβ) is a filtered system of coherent OX-modules whose lim
−−→

is Q (see
Corollary 3.1.6). The exactness of G~c is then made apparent by application of lim

−−→
β

to the system of exact sequences

0→ G(M∩Nβ)→ G(Nβ)→ G(πNβ)→ 0.

Now for M ∈ A~c(X), the lim
−−→

of the system of Godement resolutions of all the
coherent submodules Mα ⊂M is a functorial resolution

0→M→ G0
~c(M)→ G1

~c(M)→ · · · ;
and similarly we see that Ki

~c(M) is the cokernel of Gi−2
~c (M)→ Gi−1

~c (M). By (b)
above, the continuous functors Gi

~c and Ki
~c are exact; and Gi

~c(M) = lim
−−→

Gi(Mα)
is f∗-acyclic since Gi(Mα) is, and—X being noetherian—the functors Rjf∗ com-
mute with lim

−−→
. Proposition 3.4.3(b) implies then that there is an integer e ≥ 0

such that for all M ∈ A~c(X), Ke
~c (M) is f∗-acyclic. So if we define the exact

functors Di : A~c(X)→ A(X) by

Di(M)=





Gi
~c(M) (0 ≤ i < e)

Ke
~c (M) (i = e)

0 (i > e)

then forM∈ A~c(X), each Di(M) is f∗-acyclic and the natural sequence

0 −→M δ(M)−−−→ D0(M)
δ0(M)−−−→ D1(M)

δ1(M)−−−→ D2(M) −→ · · · −→ De(M) −→ 0

is exact. In short, the sequence D0 → D1 → D2 → · · · → De → 0 is an exact,
continuous, f∗-acyclic, finite resolution of the inclusion functor A~c(X) →֒ A(X).

2. We have then a ∆-functor (D•, Id) : K(A~c(X)) → K(X) which assigns an
f∗-acyclic resolution to each A~c(X)-complex G = (Gp)p∈Z :

(D•G)m :=
⊕

p+q=m

Dq(Gp) (m ∈ Z, 0 ≤ q ≤ e),

the differential (D•G)m → (D•G)m+1 being defined on Dq(Gp) (p + q = m) to be
d′ + (−1)pd′′ where d′ : Dq(Gp) → Dq(Gp+1) comes from the differential in G and
d′′ = δq(Gp) : Dq(Gp)→ Dq+1(Gp).

It is elementary to check that the natural map δ(G) : G → D•G is a quasi-
isomorphism. The canonical maps are D(Y)-isomorphisms

f∗D•(G) −→∼ Rf∗D•(G) ←−∼
Rf∗δ(G)

Rf∗G,(4.1.3)

i.e., the natural map αi : H i(f∗D•(G)) → H i(Rf∗D•(G)) is an isomorphism for
all i ∈ Z : this holds for bounded-below G because D•(G) is a complex of f∗-acyclic
objects; and for arbitrary G since for any n ∈ Z, with G≥n denoting the truncation

· · · → 0→ 0→ coker(Gn−1 → Gn)→ Gn+1 → Gn+2 → · · ·(4.1.3)

there is a natural commutative diagram

H i(f∗D•(G)) αi−−−→ H i(Rf∗D•(G))
βi

n

y
yγi

n

H i(f∗D•(G≥n)) −−−→
αi

n

H i(Rf∗D•(G≥n))
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in which, when n ≪ i, βin is an isomorphism (since G and G≥n are identical in all
degrees > n), γin is an isomorphism (by Proposition 3.4.3(b) applied to the map-
ping cone of the natural map D•(G) −→∼ G −→ G≥n −→∼ D•(G≥n)), and αin is an
isomorphism (since G≥n is bounded below).

Thus we have realized Rf∗ ◦ j at the homotopy level, via the functor C• := f∗D• ;
and our task is now to find a right adjoint at this level.

3. Each functor Cp = f∗Dp : A~c(X)→ A(Y) is exact, since R1f∗(Dp(M)) = 0 for
allM∈ A~c(X). Cp is continuous, since Dp is and, X being noetherian, f∗ commutes
with lim

−−→
. As before, the Special Adjoint Functor Theorem yields that Cp has a

right adjoint Cp : A(Y)→ A~c(X).
For each A(Y)-complex F = (Fp)p∈Z let C•F be the A~c(X)-complex with

(C•F )m :=
∏

p−q=m

CqFp (m ∈ Z, 0 ≤ q ≤ e),

and with differential (C•F )m → (C•F )m+1 the unique map making the following
diagram commute for all r, s with r−s = m+1:

∏
p−q=m

CqF p −−−−−−→ ∏
p−q=m+1

CqF p

y
y

CsF r−1 ⊕ Cs+1F r −−−−−−→
d′+(−1)rd′′

CsF r

where the vertical arrows come from projections, where d′ : CsF r−1 → CsF r corre-
sponds to the differential in F , and where, with δs : Cs+1 → Cs corresponding by
adjunction to f∗(δ

s) : Cs → Cs+1,

d′′ := (−1)sδs(F r) : Cs+1F r → CsF r.

This construction leads naturally to a ∆-functor (C• , Id) : K(Y)→ K(A~c(X)). The
adjunction isomorphism

HomA~c(X)(M, CpN ) −→∼ HomA(Y)(CpM,N ) (M ∈ A~c(X), N ∈ A(Y))

applied componentwise produces an isomorphism of complexes of abelian groups

Hom•A~c(X)(G, C•F ) −→∼ Hom•A(Y)(C•G, F )(4.1.4)

for all A~c(X)-complexes G and A(Y)-complexes F.

4. The isomorphism (4.1.4) suggests that we use C• to construct f×, as follows.
Recall that a complex J ∈ K(A~c(X)) is K-injective iff for each exact complex
G ∈ K(A~c(X)), the complex Hom•A~c(X)(G, J) is exact too. By (4.1.3), C•G is exact
if G is; so it follows from (4.1.4) that if F is K-injective in K(Y) then C•F is
K-injective in K(A~c(X)). Thus if KI(−) ⊂ K(−) is the full subcategory of all
K-injective complexes, then we have a ∆-functor (C• , Id) : KI(Y)→ KI(A~c(X)).
Associating a K-injective resolution to each complex in A(Y) leads to a ∆-functor
(ρ,Θ): D(Y)→ KI(Y).17 This ρ is bounded below: an A(Y)-complex E such that
H i(E) = 0 for all i < n is quasi-isomorphic to the truncated complex E≥n, which

17In fact (ρ, Θ) is an equivalence of ∆-categories, see [L4, §1.7]. But note that Θ need not be the
identity morphism, i.e., one may not be able to find a complete family of K-injective resolutions
commuting with translation. For example, we do not know that every periodic complex has a
periodic K-injective resolution.
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is in turn quasi-isomorphic to an injective complex F which vanishes in all de-
grees below n. (Such an F is K-injective.) Finally, one can define f× to be the
composition of the functors

D(Y)
ρ−→ KI(Y)

C•−→ KI(A~c(X))
natural−−−−→ D(A~c(X)),

and check, via (4.1.3) and (4.1.4) that Theorem 4.1 is satisfied. (This involves some
tedium with respect to ∆-details.)

5. Torsion sheaves.

Refer to §1.2 for notation and first sorites regarding torsion sheaves.
In Paragraphs 5.1 and 5.2 we develop basic properties of quasi-coherent torsion

sheaves and their derived categories on locally noetherian formal schemes—see for
example Propositions 5.2.1, 5.2.4, 5.2.5, and 5.2.7. (There is some overlap here with
§4 in [Y].) Such properties will be used in section 6 to prove Theorem 2 of section 1,
and some of its consequences. In particular, in Paragraph 5.3 we establish, for a sep-
arated noetherian scheme X, an equivalence of categories D(Aqct(X)) −→≈ Dqct(X),
thereby enabling the use of Dqct(X)—rather than D(Aqct(X))—in Theorem 6.1
(∼= Theorem 2).

5.1. This paragraph treats categories of quasi-coherent torsion sheaves on locally
noetherian formal schemes.

Proposition 5.1.1. Let f : X → Y be a morphism of noetherian formal schemes,
and let M ∈ Aqct(X). Then f∗M ∈ Aqct(Y). Moreover, if f is pseudo-proper
(see §1.2.2) and M is coherent then f∗M is coherent.

Proof. Let J ⊂ OX and I ⊂ OY be ideals of definition such that IOX ⊂ J, and let

X[n] := (X,OX/J
n)

f[n]−−→ (Y,OY/I
n) =: Y[n] (n > 0)

be the scheme-maps induced by f, so that if jn and in are the canonical closed
immersions then fjn = inf[n]. LetMn := Hom(OX/J

n,M), so that

M = Γ ′XM = lim
−−→

n

Mn = lim
−−→

n

jn∗j
∗
nMn .

Since Jn is a coherent OX-ideal [GD, p. 427], thereforeMn is quasi-coherent (Corol-
lary 3.1.6(d)), and it is straightforward to check that in∗f[n]∗j

∗
nMn ∈ Aqct(Y). Thus,

X being noetherian, and by Corollary 5.1.3 below,

f∗M = f∗ lim
−−→

n

Mn
∼= lim
−−→

n

f∗jn∗j
∗
nMn = lim

−−→
n

in∗f[n]∗j
∗
nMn ∈ Aqct(Y).

When f is pseudo-proper then every f[n] is proper; and ifM∈ Aqct(X) is coherent
then so is f∗M, because for some n, f∗M = f∗jn∗j

∗
nM = in∗f[n]∗j

∗
nM.

Proposition 5.1.2. Let Z be a closed subset of a locally noetherian scheme X,
and let κ : X→ X be the completion of X along Z. Then the functors κ∗ and κ∗
restrict to inverse isomorphisms between the categories AZ(X) and At(X), and
between the categories AqcZ(X) and Aqct(X); and if M ∈ Aqct(X) is coherent,
then so is κ∗M.
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Proof. Let J be a quasi-coherent OX -ideal such that the support of OX/J is Z.
Applying lim

−−→
n

to the natural isomorphisms

κ∗HomX(OX/J n, N ) −→∼ HomX(OX/J nOX, κ
∗N ) (N ∈ A(X), n > 0)

we get a functorial isomorphism κ∗Γ ′Z −→∼ Γ ′Xκ
∗, and hence κ∗(AZ(X)) ⊂ At(X).

Applying lim
−−→

n

to the natural isomorphisms

HomX(OX/J n, κ∗M) −→∼ κ∗HomX(OX/J nOX,M) (M ∈ A(X), n > 0)

we get a functorial isomorphism Γ ′Zκ∗ −→∼ κ∗Γ
′

X, and hence κ∗(At(X)) ⊂ AZ(X).
As κ is a pseudo-proper map of locally noetherian formal schemes ((0) be-

ing an ideal of definition of X), we see as in the proof of Lemma 5.1.1 that
for M∈ Aqct(X), κ∗M is a lim

−−→
of quasi-coherent OX -modules, so is itself quasi-

coherent, and κ∗M is coherent whenever M is.18

Finally, examining stalks (see §1.2) we find that the natural transformations
1→ κ∗κ

∗ and κ∗κ∗ → 1 induce isomorphisms

Γ ′ZN −→∼ κ∗κ
∗Γ ′ZN (N ∈ A(X)),

κ∗κ∗Γ
′

XM −→∼ Γ ′XM (M ∈ A(X)).

Corollary 5.1.3. If X is a locally noetherian formal scheme then Aqct(X) is plump
in A(X) and closed under small A(X)-colimits.19

Proof. The assertions are local, and so, since At(X) is plump (§1.2.1), Proposi-
tion 5.1.2 (where κ∗ commutes with lim

−−→
) enables reduction to well-known facts

about AqcZ(X) ⊂ A(X) with X an affine noetherian (ordinary) scheme.

Lemma 5.1.4. Let X be a locally noetherian formal scheme. If M is a quasi-
coherent OX-module then Γ ′XM∈ Aqct(X) is the lim

−−→
of its coherent submodules. In

particular, Aqct(X) ⊂ A~c(X).

Proof. Let J be an ideal of definition of X. For any positive integer n, let X[n] be
the scheme (X,OX/J

n), let jn : X[n] → X be the canonical closed immersion, and
letMn := Hom(OX/J

n,M) ⊂ Γ ′X(M), so thatMn ∈ Aqct(X) (Corollary 3.1.6(d)).
Then the quasi-coherent OX[n]

-module j∗nMn is the lim
−−→

of its coherent submodules
[GD, p. 319, (6.9.9)], hence so isMn = jn∗j

∗
nMn (since j∗n and jn∗ preserve both lim

−−→

and coherence [GD, p. 115, (5.3.13) and (5.3.15)]), and hence so is Γ ′XM = lim
−−→

n

Mn .
That lim

−−→
n

Mn ∈ Aqct(X) results from Corollary 5.1.3.

Corollary 5.1.5. If X is a locally noetherian formal scheme then the inclusion
functor jt

X : Aqct(X) →֒ A(X) has a right adjoint Qt
X.

Proof. In view of Corollary 5.1.3 and Lemma 5.1.4, one could just apply the Special
Adjoint Functor theorem. More specifically, since Γ ′X is right-adjoint to the inclusion
At(X) →֒ A(X), andA~c(X) ⊂ Aqc(X) (Corollary 3.1.5), it follows from Lemma 5.1.4
that the restriction of Γ ′X to A~c(X) is right-adjoint to Aqct(X) →֒ A~c(X); and by
Proposition 3.2.3, A~c(X) →֒ A(X) has a right adjoint QX; so Qt

X := Γ ′X ◦QX is
right-adjoint to jt

X. (Similarly, QX ◦Γ
′

X is right-adjoint to jt
X.)

18The noetherian assumption in Lemma 5.1.1 is needed only for commutativity of f∗ with lim
−→

,
a condition clearly satisfied by f = κ in the present situation.

19Actually, Aqct(X) is closed under all A(X)-colimits—see footnote under Proposition 3.2.3.
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Remark. For an ordinary noetherian scheme X we have Qt
X = QX (see §3.1).

More generally, if κ : X → X is as in Proposition 5.1.2, then Qt
X = κ∗ΓZQXκ∗.

Hence Proposition 5.1.1 (applied to open immersions X →֒ Y with X affine) lets
us construct the functor Qt

Y for any noetherian formal scheme Y by mimicking the
construction for ordinary schemes (cf. [I, p. 187, Lemme 3.2].)

5.2. The preceding results carry over to derived categories.
From Corollary 5.1.3 it follows that on a locally noetherian formal scheme X,

Dqct(X) is a triangulated subcategory of D(X), closed under direct sums.

Proposition 5.2.1. Let X be a locally noetherian formal scheme. Set At := At(X),
the category of torsion OX-modules, and let j : D(At) → D(X) be the natural
functor. Then:

(a) An OX-complex E is in Dt(X) iff the natural map jRΓ ′XE → E is a D(X)-
isomorphism.

(b) If E ∈ Dqc(X) then RΓ ′XE ∈ Dqc(At).
(c) The functor j and its right adjoint RΓ ′X induce quasi-inverse equivalences

between D(At) and Dt(X) and between Dqc(At) and Dqct(X).

Proof. (a) For F ∈ D(At) (e.g., F := RΓ ′XE), any complex isomorphic to jF is
clearly in Dt(X).

Suppose conversely that E ∈ Dt(X). The assertion that jRΓ ′XE ∼= E is local, so
we may assume that X = Spf(A) where A = Γ(X,OX) is a noetherian adic ring,
and that J is generated by a finite sequence in A. Then RΓ ′XE ∼= K•∞⊗E , where K•∞
is a bounded flat complex—a lim

−−→
of Koszul complexes on powers of the generators

of J—see [AJL, p. 18, Lemma 3.1.1]. So RΓ ′X is a bounded functor, and the usual
way-out argument reduces the question to where E is a single torsion sheaf. But
then it is immediate from the construction of K•∞ that K•∞ ⊗ E = E .

(b) Again, we can assume that X = Spf(A) and RΓ ′X is bounded, and since
Aqc(X) is plump (Corollary 3.1.6) we can reduce to where E is a single quasi-
coherent OX-module, though it is better to assume only that E ∈ D+

qc(X), for then
we may also assume E injective, so that

RΓ ′XE ∼= Γ ′XE = lim
−−→
n>0

Hom(O/Jn, E).

From Corollary 3.1.6(d) it follows thatHom(O/Jn , E) ∈ Dqct(X)—for this assertion
another way-out argument reduces us again to where E is a single quasi-coherent
OX-module—and since homology commutes with lim

−−→
and Aqct is closed under lim

−−→

(Corollary 5.1.3), therefore RΓ ′XE ∈ Dqct(X).

Assertion (c) results now from the following simple lemma.

Lemma 5.2.2. Let A be an abelian category, let j : A♭ → A be the inclusion of
a plump subcategory such that j has a right adjoint Γ, and let j : D(A♭)→ D(A)
be the derived-category extension of j. Suppose that every A-complex has a K-
injective resolution, so that the derived functor RΓ : D(A)→ D(A♭) exists. Then
RΓ is right-adjoint to j. Furthermore, the following conditions are equivalent:

(1) j induces an equivalence of categories from D(A♭) to D♭(A), with quasi-
inverse R♭Γ := RΓ |D♭(A).

(2) For every E ∈ D♭(A) the natural map jRΓE → E is an isomorphism.
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(3) The functor R♭Γ is bounded, and for E0 ∈ A♭ the natural map jRΓE0 → E0
is a D(A)-isomorphism.

When these conditions hold, every A♭-complex has a K-injective resolution.

Proof. Since Γ has an exact left adjoint, it takes K-injective A-complexes to K-
injective A♭-complexes, whence there is a bifunctorial isomorphism in the derived
category of abelian groups

RHom•A(jG, E) −→∼ RHom•A♭
(G,RΓE) (G ∈ D(A♭), E ∈ D(A)).

(To see this, one can assume E to be K-injective, and then drop the R’s . . .) Apply
homology H0 to this isomorphism to get adjointness of j and RΓ.

The implications (1)⇒ (3)⇒ (2) are straightforward. For (2)⇒ (1), one needs
that for G ∈ D(A♭) the natural map G → RΓjG is an isomorphism, or equivalently
(look at homology), that the corresponding map jG → jRΓjG is an isomorphism.
But the composition of this last map with the isomorphism jRΓjG −→∼ jG (given
by (2)) is the identity, whence the conclusion.

Finally, if G is an A♭-complex and jG → J is a K-injective A-resolution, then as
before ΓJ is a K-injectiveA♭-complex; and (1) implies that the natural composition

G → ΓjG → ΓJ (∼= RΓjG)
is a D(A♭)-isomorphism, hence an A♭-K-injective resolution.

Corollary 5.2.3. For any E ∈ Dt(X) and F ∈ D(X) the natural map RΓ ′XF → F
induces an isomorphism

RHom•(E ,RΓ ′XF ) −→∼ RHom•(E ,F ).

Proof. Consideration of homology presheaves shows it sufficient that for each affine
open U ⊂ X, the natural map

HomD(U)(E|U, (RΓ ′XF )|U)→ HomD(U)(E|U, F|U)
be an isomorphism. But since RΓ ′X commutes with restriction to U,20 that is a
direct consequence of Proposition 5.2.1(c) (with X replaced by U).

Proposition 5.2.4. Let Z be a closed subset of a locally noetherian scheme X,
and let κ : X→ X be the completion of X along Z. Then:

(a) The exact functors κ∗ and κ∗ restrict to inverse isomorphisms between the
categories DZ(X) and Dt(X), and between the categories DqcZ(X) and Dqct(X);
and if M∈ Dqct(X) has coherent homology, then so does κ∗M.

(b) There are natural derived-category isomorphisms

RΓ ′Zκ∗E −→∼ κ∗RΓ
′

XE (E ∈ D(X)),

κ∗RΓ ′ZF −→∼ RΓ ′Xκ
∗F (F ∈ D(X)).

Proof. The assertions in (a) follow at once from Proposition 5.1.2.
Since κ∗ has an exact left adjoint (viz. κ∗), therefore κ∗ transforms K-injective
A(X)-complexes into K-injective A(X)-complexes, and so the first isomorphism
in (b) results from the isomorphism Γ ′Zκ∗ −→∼ κ∗Γ

′
X in the proof of Proposition 5.1.2.

20If i : U →֒ X is the inclusion then clearly Γ ′ commutes with i∗; and furthermore i∗ preserves
K-injectivity since it has the exact left adjoint “extension by 0.”
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We have then the natural composed map

κ∗RΓ ′ZF → κ∗RΓ ′Zκ∗κ
∗F −→∼ κ∗κ∗RΓ

′
Xκ
∗F → RΓ ′Xκ

∗F .
Showing this map to be an isomorphism is a local problem, so we can assume
that X = Spec(A) where A is a noetherian adic ring. Let K•∞ be the usual lim

−−→
of

Koszul complexes on powers of a finite system of generators of an ideal of definition

of A (see [AJL, §3.1]); and let K̃•∞ be the corresponding quasi-coherent complex
on Spec(A), so that the complex K•∞ in the proof of Proposition 5.2.1(a) is just

κ∗K̃•∞. Then one checks via [AJL, p. 18, Lemma (3.1.1)] that the map in question
is isomorphic to the natural isomorphism of complexes

κ∗(K̃•∞ ⊗OX
F ) −→∼ κ∗K̃•∞ ⊗OX

κ∗F .

Proposition 5.2.5. Let f : X → Y be a morphism of noetherian formal schemes.
Then Rf∗|Dqct(X) is bounded, and

Rf∗(Dqct(X)) ⊂ Dqct(Y).

Moreover, if f is pseudo-proper and F ∈ Dt(X) has coherent homology, then so
does Rf∗F ∈ Dt(Y).

Proof. Since Dqct(X) ⊂ D~c(X) (Lemma 5.1.4), the boundedness assertion is given
by Proposition 3.4.3(b). (It is clear that Rf∗ is bounded-below.) It suffices then for
the next assertion (by the usual way-out arguments [H1, p. 73, Proposition 7.3]) to
show for anyM∈ Aqct(X) that Rf∗M∈ Dqct(Y).

Let E be an injective resolution of M, let J be an ideal of definition of X, and
let En be the flasque complex En := Hom(O/Jn, E). Then by Proposition 5.2.1(a),
M∼= RΓ ′XM∼= lim

−−→
nEn . Since X is noetherian, lim

−−→
’s of flasque sheaves are f∗-acyclic

and lim
−−→

commutes with f∗ ; so with notation as in the proof of Proposition 5.1.1,

Rf∗M∼= Rf∗RΓ
′

XM∼= f∗ lim
−−→

n

En ∼= lim
−−→

n

f∗jn∗j
∗
nEn ∼= lim

−−→
n

in∗f[n]∗j
∗
nEn .

Since E ∈ D+
qc(X), therefore

jn∗j
∗
nEn = Hom(O/Jn, E) ∈ Dqc(X),

as we see by way-out reduction to where E is a single quasi-coherent sheaf and
then by Corollary 3.1.6(d); and hence j∗nEn ∈ Dqc(X[n]) (see [GD, p. 115, (5.3.15)]).
Now j∗nEn is a flasque bounded-below OX[n]

-complex, so by way-out reduction to

(for example) [Ke, p. 643, corollary 11],

f[n]∗j
∗
nEn ∼= Rf[n]∗j

∗
nEn ∈ Dqc(Y[n]);

and finally, in view of Corollary 5.1.3,

Rf∗M∼= in∗ lim
−−→

n

f[n]∗j
∗
nEn ∈ Dqct(Y).

For the last assertion, we reduce as before to showing for each coherent torsion
OX-moduleM and each p ≥ 0 thatRpf∗M is a coherent OY-module. With E and En
as above, for n≫ 0 the inclusion map En →֒ E induces homology isomorphisms in
all degrees ≤ p+1, that is, the third vertex of a triangle T based on this inclusion is
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exact in all degrees ≤ p. E and En being flasque, it follows from the exact homology
sequence of the triangle Rf∗T that

Rpf∗M = Hpf∗E ∼= Hpf∗En ∼= Hpf∗jn∗j
∗
nEn ∼= Hpin∗f[n]∗j

∗
nEn ∼= in∗H

pf[n]∗j
∗
nEn.

Arguing as before, we see that the flasque complex j∗nEn has coherent homology;
and since f[n] is proper, we conclude that Rpf∗M is indeed coherent.

Corollary 5.2.6 (cf. Corollary 3.5.3). Let f0 : X → Y be a map of locally noether-
ian schemes, let W ⊂ Y and Z ⊂ f−1

0 W be closed subsets, let κY : Y = Y/W → Y
and κX : X = X/Z → X be the respective (flat) completion maps, and let f : X→ Y

be the map induced by f0 . Then for E ∈ DqcZ(X) the map adjoint to the natural
composition

Rf0∗E −→ Rf0∗κX∗κ
∗
XE −→∼ κY∗Rf∗κ

∗
XE

is a functorial isomorphism.

θE : κ∗YRf0∗E −→∼ Rf∗κ
∗
XE.

Proof. θE is the composition of the natural maps

κ∗YRf0∗E → κ∗YRf0∗κX∗κ
∗
XE −→∼ κ∗YκY∗Rf∗κ

∗
XE → Rf∗κ

∗
XE .

By Proposition 5.2.4, the first map and (in view of Proposition 5.2.5) the third map
are both isomorphisms.

Proposition 5.2.7. Let f : X → Y be an adic map of locally noetherian formal
schemes. Then:

(a) Lf ∗(Dt(Y)) ⊂ Dt(X).

(b) Lf ∗(Dqct(Y)) ⊂ Dqct(X).

(c) If X is noetherian then there is a functorial isomorphism

RΓ ′YRf∗G −→∼ Rf∗RΓ
′

XG (G ∈ D+(X) or G ∈ Dqc(X)).

Proof. (a) Let I be an ideal of definition of Y, so that IOX is an ideal of definition
of X. Let F ∈ Dt(Y). To show that Lf ∗F ∈ Dt(X) we may assume that F
is K-injective and, by Proposition 5.2.1(a), that the canonical map is a D(Y)-
isomorphism

Γ ′XF = lim
−−→

n

Hom•(OY/I
n, F ) −→∼ F .

Let x ∈ X, set y := f(x), and let Px be a flat resolution of the OY,y-module OX,x .
Then for any i the stalk at x of the homology H iLf ∗F is

Hi(Px ⊗OY,y
Fy) = lim

−−→
n

Hi(Px ⊗OY,y
Hom•OY,y

(OY,y/I
n
y , Fy)).

Hence each element of the stalk is annihilated by a power of IOX,x , and (a) results.

(b) Since Dqct(Y) = D~c(Y)∩Dt(Y) (Corollary 3.1.5 and Lemma 5.1.4), (b) follows
from (a) and Proposition 3.3.5.

(c) First of all, Rf∗RΓ
′

XG ∈ Dt(Y). Indeed, Propositions 5.2.1 and 5.2.5 give

Rf∗RΓ
′

X(Dqc(X)) ⊂ Rf∗(Dqct(X)) ⊂ Dqct(Y),



GROTHENDIECK DUALITY ON FORMAL SCHEMES 41

taking care of the case G ∈ Dqc(X); while for arbitrary G ∈ D+(X), which may be
assumed to be bounded-below and injective, the complex Gn := Hom•(OX/I

nOX, G)
(with I as above) is flasque, as is lim

−−→
nGn , so

Rf∗RΓ
′

XG ∼= f∗ lim
−−→

n

Gn ∼= lim
−−→

n

f∗Gn ∈ Dt(Y).

It suffices then to note, using (a) and Corollary 5.2.3, that for any E ∈ Dt(Y) the
natural maps are isomorphisms

HomY(E ,RΓ ′YRf∗G) −→∼ HomY(E,Rf∗G) −→∼ HomX(Lf ∗E, G)
−→∼ HomX(Lf ∗E,RΓ ′XG) −→∼ HomY(E,Rf∗RΓ ′XG).

5.3. From the following key Proposition 5.3.1 there will result, for complexes with
quasi-coherent torsion homology, a stronger version of the Duality Theorem 4.1,
see Section 6.

Recall from Corollary 5.1.5 that the inclusion functor jt
X : Aqct(X) →֒ A(X) has

a right adjoint Qt
X.

Proposition 5.3.1. For a separated noetherian formal scheme X, the extension
of jt

X induces an equivalence of categories

jt
X : D(Aqct(X)) −→≈ Dqct(X),

with bounded quasi-inverse RQt
X|Dqct(X).

Proof. The proof will use an induction, to begin which we need:

Lemma 5.3.2. Let X be a separated noetherian scheme, and let Z ⊂ X be a
closed subset. Then the natural functors

D(AqcZ(X))
j1−→ Dqc(AZ(X))

j2−→ DqcZ(X)

are both equivalences of categories.

Proof. The proof that j2 is an equivalence, being quite similar to that of Proposi-
tion 5.2.1(c), is left to the reader.

It will be enough then to show that j := j2 ◦ j1 is an equivalence. We write A...

for A...(X), D... for D...(X), and so on. Now j factors naturally as

D(AqcZ)
j′−→ DZ(Aqc)

j′′−→ DqcZ .

Here j ′′ is induced by the natural equivalence of categories jX : D(Aqc) → Dqc

(see e.g., [AJL, p. 12, Proposition (1.3)]), whose quasi-inverse RQX takes DqcZ

to DZ(Aqc), since jRQX ∼= 1; and therefore j ′′ is an equivalence. The inclusion
AqcZ →֒ Aqc has the right adjoint Γ qc

Z := Γ ′Z |Aqc = ΓZ |Aqc , and Lemma 5.2.2 gives
that the derived functor RΓ qc

Z : D(Aqc) → D(AqcZ) induces a right adjoint of j ′.
(Note that every Aqc-complex has an Aqc-K-injective resolution [AJL, p. 12, Corol-
lary (1.3.1)].) By [AJL, p. 22, Proposition (3.1.7)] for the first, and by an obvious
analogue of Proposition 5.2.1(a) for the second, the natural maps

j ′′j ′RΓ qc
Z E −→∼ j2RΓ

′
Zj ′′E −→∼ j ′′E (E ∈ DZ(Aqc))

are isomorphisms, whence the natural map is an isomorphism j ′RΓ qc
Z E −→∼ E, so

that by Lemma 5.2.2, j ′ is an equivalence, and therefore so is j.
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Corollary 5.3.3. With Z ⊂ X as above, let κ : X→ X be the formal completion
along Z. Then the natural functors

D(Aqct(X))
̂1−→ Dqc(At(X))

̂2−→ Dqct(X)

are both equivalences of categories. Moreover, the equivalence jt
X := ̂2 ◦ ̂1 is quasi-

inverse to the bounded functor RQt
X|Dqct.

Proof. By Lemma 5.2.2, RQt
X : D → D(Aqct) is right-adjoint to jt

X, and its re-
striction to Dqct is bounded. That ̂2 is an equivalence is an instance of Proposi-
tion 5.2.1(c). That ̂1 is an equivalence reduces via the isomorphisms in Proposi-
tion 5.1.2 to the corresponding statement for j1 in Lemma 5.3.2.

The rest of the proof of Proposition 5.3.1 is similar in spirit to that of [AJL, p. 12,
Proposition (1.3)] (which is the case where X is an ordinary scheme), mutatis mu-
tandis, namely substitute “X” for “X,” “qct” for “qc,” “Qt” for “Q,” and recall that
for a map v : V → X of noetherian formal schemes we have v∗(Aqct(V)) ⊂ Aqct(X)
(Proposition 5.1.1), and furthermore if v is affine then v∗|Aqct(V) is exact (Lem-
mas 5.1.4 and Lemma 3.4.2).

According to Lemma 5.2.2 it suffices to show that the functor RQt
X is bounded

on Dqct(X) and that for each E ∈ Aqct(X) the natural map η : jt
XRQt

XE → E
is an isomorphism. We proceed by induction on n(X), the least among natural
numbers n such that X can be covered by n affine open subsets, the case n(X) = 1
being settled by Corollary 5.3.3.

The argument for boundedness proceeds as in loc. cit. As for η, we need to say
more because the reference in loc. cit to [I] does not apply here.

Assuming then that n := n(X) > 1, let X = X1 ∪ . . .∪Xn , with each Xi an affine
open subset. Set U := X1, V := X2 ∪ . . . ∪ Xn, W := U ∩ V, and let u : U →֒ X,
v : V →֒ X, w : W →֒ X be the inclusion maps. Then n(U) = 1, n(V) < n, and
n(W) < n (because X being separated, X1 ∩ Xi is affine, see § 3.4.1). So we may
assume that Proposition 5.3.1 holds for the formal schemes U, V, and W. The
inductive hypothesis and Lemma 5.2.2 give that every complex in K(Aqct(V)) has
a K-injective resolution, so that the functor vqct

∗ := v∗|Aqct(V) : Aqct(V) → Aqct(X)
has a derived functor Rvqct

∗ . (Similar statements hold here and below for U and W.)
For the remainder of this proof we write “Q” for “Qt” and “j” for “jt.” As in

loc. cit. there is a natural functorial isomorphism RQXRv∗ −→∼ Rvqct
∗ RQV.

One proves by induction on n(V) that the map jXRvqct
∗ E → Rv∗jVE adjoint to

the canonical map v∗jXRvqct
∗ E = jVv

∗Rvqct
∗ E → jVE is an isomorphism for every

E ∈ D(Aqct(V)). Indeed, when n(V) = 1 the map v : V → X is affine (§3.4.1), so
vqct
∗ is exact, and hence

jXRvqct
∗ E ∼= jXv

qct
∗ E ∼= v∗jVE ∼= Rv∗jVE ,

where the last isomorphism follows, again, from Lemmas 5.1.4 and 3.4.2; and then
for n(V) > 1 the argument is analogous to the “Mayer-Vietoris” induction in the
last paragraph of the proof of [AJL, p. 12, Proposition (1.3)]. It is a purely formal
exercise to show that the following functorial diagram commutes:

jXRQXRv∗ ˜−−−→ jXRvqct
∗ RQV

ηv

y
y≃

Rv∗
η

V←−−− Rv∗jVRQV
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Here ηV is an isomorphism by the inductive hypothesis, so ηv is an isomorphism.
Now, given E ∈ Aqct(X), apply jXRQX to the Mayer-Vietoris triangle

E → Ru∗u
∗E ⊕Rv∗v

∗E → Rw∗w
∗E +−→ E [1]

to get the map of triangles

jXRQXE −−→ jXRQXRu∗u
∗E ⊕ jXRQXRv∗v

∗E −−→ jXRQXRw∗w
∗E +−−→

η
y ηu⊕

yηv

yηw

E −−→ Ru∗u
∗E ⊕Rv∗v

∗E −−→ Rw∗w
∗E +−−→

Since as above, ηu , ηv , and ηw are isomorphisms, therefore so is η.

6. Duality for torsion sheaves.

Paragraph 6.1 contains the proof of Theorem 2 (section 1), i.e., of two essentially
equivalent forms of Torsion Duality on formal schemes—Theorem 6.1 and Corol-
lary 6.1.4. The rest of the paragraph deals with numerous relations among the
functors which have been introduced, and with compatibilities between dualizing
functors occurring before and after completion of maps of ordinary schemes.

More can be said for complexes with coherent homology, thanks to Greenlees-
May duality. This is done in paragraph 6.2.

Paragraph 6.3 discusses additional relations involving RΓ ′X : D(X) → D(X) and
its right adjoint RHom•(RΓ ′XOX,−) on a locally noetherian formal scheme X.

Theorem 6.1. Let f : X→ Y be a separated map of noetherian formal schemes.

(a) The ∆-functor Rf∗ : Dqct(X)
5.2.5−−→ Dqct(Y) →֒ D(Y) has a right ∆-adjoint.

In fact there is a bounded-below ∆-functor f×t : D(Y) → Dqct(X) and a map of
∆-functors τt : Rf∗f

×
t → 1 such that for all G ∈ Dqct(X) and F ∈ D(Y), the

composed map (in the derived category of abelian groups)

RHom•X(G, f×t F )
natural−−−−→ RHom•Y(Rf∗G,Rf∗f×t F )

via τt−−−→ RHom•Y(Rf∗G,F )

is an isomorphism.

(b) If g : Y → Z is another separated map of noetherian formal schemes then
there is a natural isomorphism (gf)×t −→∼ f×t g

×
t .

Proof. Assertion (b) follows from (a), which easily implies that (gf)×t and f×t g
×
t

are both right-adjoint to the restriction of R(gf)∗ = Rg∗Rf∗ to Dqct(X).
As for (a), assuming first that X is separated, we can replace Dqct(X) by the equiv-

alent category D(Aqct(X)) (Proposition 5.3.1). The inclusion i : Aqct(X) →֒ A~c(X)
has the right adjoint Γ ′X. (To check that Γ ′X(A~c(X)) ⊂ Aqct(X), see Lemma 5.1.4
and Corollary 3.1.5.) So for all Aqct(X)-complexes G′ and A~c(X)-complexes F ′
there is a natural isomorphism of abelian-group complexes

Hom•Aqct
(G′, Γ ′XF ′) −→∼ Hom•A~c

(iG′, F ′).
Note that if F ′ is K-injective over A~c(X) then Γ ′XF ′ is K-injective over Aqct(X),
because Γ ′X has an exact left adjoint. Combining this isomorphism with the iso-
morphism (4.1.4) in the proof of Theorem 4.1, we can conclude just as in part 4 at
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the end of that proof, with the functor f×t defined to be the composition

D(Y)
ρ−→ KI(Y)

C•−→ KI(A~c(X))
Γ ′
X−→ KI(Aqct(X))

natural−−−−→ D(Aqct(X)).

(What we have in mind here is simply that the natural functor D(Aqct(X)) →
D(A~c(X)) has a right adjoint. That is easily seen to be true once one knows
the existence of K-injective resolutions in D(A~c(X)); but we don’t know how to
prove the latter other than by quoting the generalization to arbitrary Grothendieck
categories [Fe, Theorem 2]. The preceding argument avoids this issue.

One could also apply Brown Representability directly, as in the proof of Theo-
rem 1 described in the Introduction.) Now suppose only that the map f is sepa-

rated. If Y is affine, X is separated and the preceding argument holds. For arbitrary
noetherian Y, the existence of a bounded-below right adjoint for Rf∗ : Dqct(X) →
D(Y) results then by an obvious induction from the following Mayer-Vietoris past-
ing argument. Finally, apply homology to the assertion about the RHom• ’s to
reduce it to f×t being a right adjoint.

To reduce clutter, we will abuse notation—but only in the rest of the proof of
Theorem 6.1—by writing “f×” in place of “f×t .”

Lemma 6.1.1. Let f : X → Y = Y1 ∪ Y2 (Yi open in Y) be a map of formal
schemes, with X noetherian. Consider the commutative diagrams

X12 := X1 ∩ X2
qi−−−→ Xi

xi−−−→ X

f12

y fi

y
yf (i = 1, 2)

Y12 := Y1 ∩ Y2 −−−→
pi

Yi −−−→
yi

Y

where Xi := f−1Yi and all the horizontal arrows represent inclusions. Suppose that
for i = 1, 2, 12, the functor Rfi∗ : Dqct(Xi)→ D(Yi) has a right adjoint f×i . Then
Rf∗ : Dqct(X)→ D(Y) has a right adjoint f×; and with the inclusions y12 := yi ◦ pi ,
x12 := xi ◦ qi , there is for each F ∈ D(Y) a natural D(X)-triangle

f×F → Rx1∗f
×
1 y
∗
1F ⊕Rx2∗f

×
2 y
∗
2F

λF−→ Rx12∗f
×
12y
∗
12F → (f×F )[1] .

Remark. If we expect f× to exist, and the natural maps x∗i f
× → f×i y

∗
i to be

isomorphisms, then there should be such a triangle—the Mayer-Vietoris triangle
of f×F . This suggests we first define λF , then let f×F be the vertex of a triangle
based on λF , and verify . . .

Proof. There are natural maps

τ1 : Rf1∗f
×
1 → 1, τ2 : Rf2∗f

×
2 → 1, τ12 : Rf12∗f

×
12 → 1.

For i = 1, 2, define the “base-change” map βi : q
∗
if
×
i → f×12p

∗
i to be adjoint under

Theorem 6.1 to the map of functors

Rf12∗q
∗
i f
×
i ˜−−−→

natural
p∗iRfi∗f

×
i

τi−→ p∗i .

This βi corresponds to a functorial map β ′i : f
×
i → Rqi∗f

×
12p
∗
i , from which we obtain

a functorial map

Rxi∗f
×
i y
∗
i −→ Rxi∗Rqi∗f

×
12p
∗
i y
∗
i −→∼ Rx12∗f

×
12y
∗
12 ,
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and hence a natural map, for any F ∈ D(Y):

Ď0(F ) := Rx1∗f
×
1 y
∗
1F ⊕Rx2∗f

×
2 y
∗
2F

λF−→ Rx12∗f
×
12y
∗
12F =: Ď1(F ).

Embed this map in a triangle Ď(F ), and denote the third vertex by f×(F ):

Ď(F ) : f×F → Ď0(F )
λF−→ Ď1(F )→ (f×F )[1].

Since Ď0(F) and Ď1(F) are in Dqct(X) (see Proposition 5.2.5), therefore so is f×F
(Corollary 5.1.3).

This is the triangle in Lemma 6.1.1. Of course we must still show that this f×

is functorial, and right-adjoint to Rf∗. (Then by uniqueness of adjoints such a
triangle will exist no matter which right adjoint f× is used.)

Let us next construct a map

τF : Rf∗f
×F → F (F ∈ D(Y)).

Set
Č0(F ) = Ry1∗y

∗
1F ⊕Ry2∗y

∗
2F , Č1(F ) = Ry12∗y

∗
12F .

We have then the Mayer-Vietoris D(Y)-triangle

Č(F ) : F → Č0(F )
µF−→ Č1(F )→ F [1],

arising from the usual exact sequence (Čech resolution)

0→ F → y1∗y
∗
1F ⊕ y2∗y

∗
2F → y12∗y

∗
12F → 0,

where F may be taken to be K-injective.
Checking commutativity of the following natural diagram is a purely category-

theoretic exercise (cf. [L4, Lemma (4.8.1.2)] :

Rf∗Ď
0(F )

Rf∗λF−−−−−−−−−−−−−−→ Rf∗Ď
1(F )∥∥∥∥

∥∥∥∥
Rf∗(Rx1∗f

×
1 y
∗
1F ⊕Rx2∗f

×
2 y
∗
2F ) Rf∗Rx12∗f

×
12y
∗
12F

≃

y
y≃

Ry1∗Rf1∗f
×
1 y
∗
1F ⊕Ry2∗Rf2∗f

×
2 y
∗
2F Ry12∗Rf12∗f

×
12y
∗
12F

τ1⊕τ2

y
yτ12

Ry1∗y
∗
1F ⊕Ry2∗y

∗
2F Ry12∗y

∗
12F∥∥∥∥

∥∥∥∥

Č0(F ) −−−−−−−−−−−−−−→
µF

Č1(F )

This commutative diagram extends to a map τ̌F of triangles:

Rf∗f
×F −−−→ Rf∗Ď

0(F ) −−−→ Rf∗Ď
1(F ) −−−→ Rf∗f

×F [1]

τF

y
y

y
yτF [1]

F −−−→ Č0(F ) −−−→ Č1(F ) −−−→ F [1]

The map τF is not necessarily unique. But the next Lemma will show, for fixed F,
that the pair (f×F , τF) represents the functor HomD(Y)(Rf∗E ,F ) (E ∈ Dqct(X)).
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It follows formally that one can make f× into a functor and τ : Rf∗f
× → 1 into

a morphism of functors in such a way that the pair (f×, τ) is a right adjoint for
Rf∗ : Dqct(X) → D(Y) (cf. [M1, p. 83, Corollary 2]); and that there is a unique
isomorphism of functors Θ: f×T2 −→∼ T1f

× (where T1 and T2 are the respective
translations on Dqct(X) and D(Y)) such that (f×,Θ) is a ∆-functor ∆-adjoint to Rf∗
(cf. [L4, Proposition (3.3.8)]). That will complete the proof of Theorem 6.1.

Lemma 6.1.2. For E ∈ Dqct(X), and with f×F , τF as above, the composition

HomDqct(X)(E , f×F )
natural−−−−→ HomD(Y)(Rf∗E ,Rf∗f×F )
via τF−−−−→ HomD(Y)(Rf∗E , F )

is an isomorphism.

Proof. In the following diagram, to save space we have written HX for HomDqct(X),
HY for HomD(Y), and f∗ for Rf∗ :

HX(E , (Ď0F )[−1]) −−−→ HY(f∗E , f∗((Ď0F )[−1])) −−−→ HY(f∗E , (Č0F )[−1])y
y

y

HX(E , (Ď1F )[−1]) −−−→ HY(f∗E , f∗((Ď1F )[−1])) −−−→ HY(f∗E , (Č1F )[−1])y
y

y

HX(E , f×F) −−−→ HY(f∗E , f∗f×F) −−−→ HY(f∗E , F)y
y

y

HX(E , Ď0F) −−−→ HY(f∗E , f∗Ď0F) −−−→ HY(f∗E , Č0F)y
y

y

HX(E , Ď1F) −−−→ HY(f∗E , f∗Ď1F) −−−→ HY(f∗E , Č1F)

The first column maps to the second via functoriality of f∗ , and the second to
the third via the above triangle map τ̌F ; so the diagram commutes. The columns
are exact [H1, p. 23, Prop. 1.1 b)], and thus if each of the first two and last two rows
is shown to compose to an isomorphism, then the same holds for the middle row,
proving Lemma 6.1.2.

Let’s look at the fourth row. With notation as in Lemma 6.1.1 (and again, with
all the appropriate R’s omitted), we want the left column in the following natural
diagram to compose to an isomorphism:

HX(E , xi∗f×i y∗iF ) ˜−−−→ HXi
(x∗iE , f×i y∗iF )y

y
HY(f∗E , f∗xi∗f×i y∗iF ) HYi

(fi∗x
∗
i E , fi∗f×i y∗iF )

≃

y
y≃

HY(f∗E , yi∗fi∗f×i y∗iF ) ˜−−−→ HYi
(y∗i f∗E , fi∗f×i y∗iF )

via τi

y
yvia τi

HY(f∗E , yi∗y∗iF ) ˜−−−→ HYi
(y∗i f∗E , y∗iF )
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Here the horizontal arrows represent adjunction isomorphisms. Checking that the
diagram commutes is a straightforward category-theoretic exercise. By hypothesis,
the right column composes to an isomorphism. Hence so does the left one.

The argument for the fifth row is similar. Using the (easily checked) fact that
the morphism f∗Ď

0 → Č0 is ∆-functorial, we find that the first row is, up to
isomorphism, the same as the fourth row with F [−1] in place of F , so it too
composes to an isomorphism. Similarly, isomorphism for the second row follows
from that for the fifth.

Remark 6.1.3. For a locally noetherian formal scheme Y, RΓ ′Y is a right adjoint 1×t
of the inclusion Dqct(Y) →֒ D(Y) (see Proposition 5.2.1(c)). Hence in Theorem 6.1
(with Y noetherian), we have f×t ∼= f×t ◦RΓ

′
Y. Moreover, if f : X → Y is a map of

quasi-compact formal schemes with X properly algebraic, and f× is the right adjoint
given by Corollary 4.1.1, then f×t := RΓ ′X ◦f

× is a right adjoint for the restriction
of Rf∗ to Dqct(X).

Corollary 6.1.4. Let f : X→ Y be a separated map of noetherian formal schemes.
Let ΛX : D(X)→ D(X) be the ∆-functor

ΛX(−) := RHom•(RΓ ′XOX,−),

and let f # : D(Y)→ D(X) be the ∆-functor

f # := ΛXf
×
t .

(a) The functor f # is bounded-below, and there is a map of ∆-functors

τ # : Rf∗RΓ
′

Xf
# → 1

such that for all G ∈ Dqc(X) and F ∈ D(Y), the composed map

RHom•X(G, f #F )
natural−−−−→ RHom•Y(Rf∗RΓ

′
XG,Rf∗RΓ ′Xf #F )

via τ#−−−→ RHom•Y(Rf∗RΓ
′

XG,F )

is an isomorphism. In particular, with j : D(A~c(X))→ D(X) the natural functor,
Rf∗RΓ

′
Xj : D(A~c(X))→ D(Y) has the bounded-below right adjoint RQXf

#.

(b) If g : Y → Z is another separated map of noetherian formal schemes then
there is a natural isomorphism (gf)# −→∼ f #g#.

Proof. (a) We know from Theorem 6.1 that f×t is bounded-below. For ΛX—and
hence f #—to be bounded-below, it suffices that the complex RΓ ′XOX be homolog-
ically bounded-above, which it is, being locally isomorphic to the bounded com-
plex K•∞ in the proof of Proposition 5.2.1(a).

Now there are natural functorial isomorphisms, for (E ,F ∈ D(X)),

HomD(X)(RΓ
′

XE, F ) −→∼ HomD(X)(E ⊗= RΓ ′XOX, F )

−→∼ HomD(X)(E ,RHom•(RΓ ′XOX, F ))
(6.1.4.1)

(Whether the natural map E ⊗
=

RΓ ′XOX −→∼ RΓ ′XE is an isomorphism is a local
question, dealt with e.g., in [AJL, p. 20, Corollary (3.1.2)]). By Proposition 5.2.1,
RΓ ′XG ∈ Dqct(X), and hence (a) follows from Theorem 6.1.

Since RQX is right-adjoint to j (Proposition 3.2.3), the last assertion results.
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(b) From Propositions 5.2.5 and 5.2.1(a) we see that for G ∈ Dqct(X), RΓ ′YRf∗G ∼=
Rf∗G, whence the functors f×t ΛY and f×t are both right-adjoint to Rf∗|Dqct(X), and
so are isomorphic. Using Theorem 6.1(b), we have then functorial isomorphisms

(gf)# = ΛX(gf)×t −→∼ ΛXf
×
t g
×
t −→∼ ΛXf

×
t ΛYg

×
t = f #g#.

Here are some “identities” involving the dualizing functors f× (Theorem 4.1),
f×t (Theorem 6.1), and f # := ΛXf

×
t (Corollary 6.1.4).

Note that ΛX is right-adjoint to RΓ ′X, see (6.1.4.1). Simple arguments show
that the natural maps are isomorphisms ΛX −→∼ ΛXΛX, RΓ ′X −→∼ RΓ ′XΛX, see
(b) and (d) in Remark 6.3.1(i).

Corollary 6.1.5. With the notation of Corollary 6.1.4:

(a) There are natural isomorphisms

RΓ ′Xf
# −→∼ f×t , f # −→∼ ΛXf

×
t ,

RΓ ′Xf
×
t −→∼ f×t , f # −→∼ ΛXf

#.

(b) The natural functorial maps RΓ ′Y → 1→ ΛY induce isomorphisms

f×t RΓ ′Y −→∼ f×t −→∼ f×t ΛY,

f #RΓ ′Y −→∼ f # −→∼ f #ΛY.

(c) There are natural pairs of maps

f×t
α1−→ RΓ ′Xjf×

α2−→ f×t ,

f #
β1−→ ΛXjf×

β2−→ f #,

each of which composes to an identity map. If X is properly algebraic then all of
these maps are isomorphisms.

(d) If f is adic, the functorial isomorphism RΓ ′YRf∗j −→∼ Rf∗RΓ
′

Xj of Propo-
sition 5.2.7 induces an isomorphism between the respective left adjoints

f×ΛY −→∼ RQXf
#.

Proof. (a) The second isomorphism (first row) is the identity map. Proposition 5.2.1
yields the third. The first is the composition

RΓ ′Xf
# = RΓ ′XΛXf

×
t −→∼ RΓ ′Xf

×
t −→∼ f×t .

The fourth is the composition

f # = ΛXf
×
t −→∼ ΛXΛXf

×
t −→∼ ΛXf

#.

(b) The first isomorphism was given in Remark 6.1.3. For the second, check that
f×t and f×t ΛY are both right-adjoint to Rf∗|Dqct(X) . . . (Or, consider the composition
f×t −→∼ f×t RΓ ′Y −→∼ f×t RΓ ′YΛY −→∼ f×t ΛY.) Then apply ΛX to the first row to get
the second row.

(c) With k : D(Aqct(X))→ D(A~c(X)) the natural functor, let α : kRQt
Xf
×
t → f×

be adjoint to Rf∗jkRQt
Xf
×
t

5.3.1
= Rf∗f

×
t

τt−→ 1. By Corollary 5.2.3, j(α) : f×t → jf×

factors naturally as

f×t
α1−→ RΓ ′Xjf× → jf×.
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Let α2 be the map adjoint to the natural composition Rf∗RΓ
′

Xjf× → Rf∗jf
× → 1.

One checks that τt ◦Rf∗(α2α1) = τt (τt as in Theorem 6.1), whence α2α1 = identity.
The pair β1 , β2 is obtained from α1 , α2 by application of the functor ΛX—see

Corollary 5.2.3. (Symmetrically, the pair α1 , α2 is obtained from β1 , β2 by appli-
cation of the functor RΓ ′X.)

When X is properly algebraic, the functor j is fully faithful (Corollary 3.3.4);
and it follows that RΓ ′Xjf× and f×t are both right-adjoint to Rf∗|Dqct(X).

(d) Straightforward.

The next two corollaries deal with compatibilities between formal (local) and
algebraic (global) duality.

Corollary 6.1.6. Let f0 : X → Y be a map of noetherian schemes, W ⊂ Y
and Z ⊂ f−1

0 W closed subsets, κY : Y = Y/W → Y and κX : X = X/Z → X
the respective (flat) completion maps, and f : X→ Y the map induced by f0.

X := X/Z

κ
X−−−→ X

f

y
yf0

Y := Y/W −−−→κ
Y

Y

Let τt be the functorial composition

Rf∗κ
∗
XRΓZf

×
0 κY∗ −→∼5.2.6 κ∗YRf0∗RΓZf

×
0 κY∗ −→ κ∗YRf0∗f

×
0 κY∗ −→ κ∗YκY∗ −→ 1.

Then for all E ∈ Dqct(X) and F ∈ D(Y), the composed map

α(E,F ) : HomX(E, κ∗XRΓZf
×
0 κY∗F ) −→ HomX(Rf∗E,Rf∗κ∗XRΓZf

×
0 κY∗F )

−→
via τt

HomX(Rf∗E, F )

is an isomorphism.
In particular, if f0—and hence f—is separated, then the map adjoint to τt is an

isomorphism of functors (from D(Y) to Dqct(X)):

κ∗XRΓZf
×
0 κY∗ −→∼ f×t .

Proof. For any E ∈ Dqct(X), set E0 := κX∗E ∈ DqcZ(X) (see Proposition 5.2.4). By
Proposition 5.2.4 and [AJL, p. 7, Lemma (0.4.2)], there are natural isomorphisms

HomX(E , κ∗XRΓZG) −→∼ HomX(E0 ,RΓZG) −→∼ HomX(E0 , G) (G ∈ Dqc(X)).

(In other words, κ∗XRΓZG = (κX)×t G.) One checks then that the map α(E,F )
factors as the sequence of isomorphisms

HomX(E , κ∗XRΓZf
×
0 κY∗F ) −→∼ HomX(E0 , f×0 κY∗F )

−→∼ HomY (Rf0∗E0 , κY∗F )

−→∼ HomY(κ∗YRf0∗E0 , F )

−→∼ HomY(Rf∗κ
∗
XE0 , F ) (Corollary 5.2.6)

−→∼ HomY(Rf∗E , F ).

Remark. Using Lemma 6.1.1, we find now that Theorem 6.1 and Corollary 6.1.4
hold for any map f : X→ Y—not necessarily separated—which fits locally (over Y)
into Corollary 6.1.6. We call such maps “locally algebraizable.”
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Corollary 6.1.7. With hypotheses as in Corollary 6.1.6 (see preceding Remark):
(a) There are natural isomorphisms

RΓ ′Xκ
∗
Xf
×
0 κY∗ = (κX)×t f

×
0 κY∗ −→∼ f×t ,

ΛXκ
∗
Xf
×
0 κY∗ = κ#Xf

×
0 κY∗ −→∼ f #,

and if f0 is proper, Y = Spec(A) (A adic) and Z = f−1
0 W,

κ∗Xf
×
0 κY∗ −→∼ f×.

(b) The functor
f×0,Z := RΓZf

×
0 : D(Y )→ DqcZ(X)

is right-adjoint to Rf∗|DqcZ(X) ; and there is an isomorphism

κ∗Xf
×
0,ZκY∗ −→∼ f×t .

(c) The functor

f #0,Z := RQXRHom•X(RΓZOX , f×0 −) : D(Y )→ Dqc(X)

is right-adjoint to Rf∗RΓZ |Dqc(X) ; and when X is properly algebraic—so that the
categories D(A~c(X)) and D~c(X) are equivalent, see Corollary 3.3.4)—there is an
isomorphism

κ∗Xf
#

0,ZκY∗ −→∼ RQXf
#.

Proof. (a) The first isomorphism combines Corollary 6.1.6 (in proving which we
noted that κ∗XRΓZG = (κX)×t G for G ∈ Dqc(X)) an Proposition 5.2.4. The second
follows from f # = ΛXf

×
t . The third is Corollary 4.1.2.

(b) The first assertion is easily checked; and the isomorphism is given by Corol-
lary 6.1.6.

(c) The first assertion is easily checked. From Corollary 6.1.6 and Proposi-
tion 5.2.4 we get an isomorphism

RΓZf
×
0 κY∗ −→∼ κX∗f

×
t .

As in Corollary 5.2.3, the natural map is an isomorphism

RHom•X(RΓZOX ,G) −→∼ RHom•X(RΓZOX ,RΓZG) (G ∈ Dqc(X)).

When X is properly algebraic, RQX
∼= κ∗XRQXκX∗ (Proposition 3.2.3). So then

there is a sequence of natural isomorphisms

κ∗Xf
#

0,ZκY∗ κ∗XRQXRHom•X(RΓZOX , f×0 κY∗−)

−→∼ κ∗XRQXRHom•X(RΓZOX ,RΓZf×0 κY∗−)

−→∼ κ∗XRQXRHom•X(RΓZOX , κX∗f
×
t −)

−→∼ κ∗XRQXκX∗RHom•X(κ∗XRΓZOX , f×t −)

−→∼ RQXRHom•X(RΓ ′XOX, f
×
t −)

RQXf
#.

6.2. The next Proposition is a special case of Greenlees-May Duality for formal
schemes. It provides, in particular, information about the behavior of the du-
ality functors f× and f # on complexes with coherent homology (Corollary 6.2.2,
Corollary 6.2.3).
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Proposition 6.2.1. Let X be a locally noetherian formal scheme, and E ∈ D(X).
Then for all F ∈ Dc(X) the natural map RΓ ′XE → E induces an isomorphism

RHom•(E , F ) −→∼ RHom•(RΓ ′XE , F ).

Proof. The canonical isomorphism (cf. (6.1.4.1))

RHom•(RΓ ′XE, F ) −→∼ RHom•(E ,RHom•(RΓ ′XOX, F ))

reduces the question to where E = OX. It suffices then—as in the proof of Corol-
lary 5.2.3—that for affine X = Spf(A), the natural map be an isomorphism

HomD(X)(OX, F ) −→∼ HomD(X)(RΓ
′

XOX, F ) (F ∈ Dc(X)).

Let I be an ideal of definition of the adic ring A, set Z = Supp(A/I), and let
κ : X→ X := Spec(A) be the completion map. Via the categorical equivalences in
Proposition 3.3.1 and the isomorphism κ∗RΓ ′ZOX −→∼ RΓ ′XOX in Proposition 5.2.4,
the question becomes whether for F0 ∈ Dc(X) the natural map is an isomorphism

HomD(X)(OX , F0) −→∼ HomD(X)(RΓZOX ,RQXκ∗κ∗F0).

But given the isomorphism κ∗κ
∗F0 −→∼ LΛZF0 of [AJL, p. 6, Proposition (0.4.1)],

this is just one form of the Greenlees-May duality isomorphism (see [AJL, p. 5,
Remark (0.4)(a)]).

Corollary 6.2.2. Let f : X → Y be a separated adic map of noetherian formal
schemes. Then for all F ∈ Dc(Y) the map corresponding to the natural composition
Rf∗RΓ

′
Xjf×F → Rf∗jf

×F → F (see Corollary 6.1.4 and Theorem 4.1) is an
isomorphism

f×F −→∼ RQXf
#F .

Proof. By Proposition 6.2.1, F ∼= ΛYF := RHom•(RΓ ′YOY, F ); so this Corollary
is a special case of Corollary 6.1.5(d).

Corollary 6.2.3. In Corollary 6.1.6, suppose Y = Spec(A) (A adic) and that the
the map f0 is proper. Then with the customary notation f !

0 for f×0 we have, for
any F ∈ D+

c (Y), a natural isomorphism

κ∗Xf
!
0κY∗F −→∼ f #F ∈ D+

c (X).

Proof. The natural map f !
0RQY κY∗ → f !

0κY∗ is an isomorphism of functors from
D(Y) to Dqc(X), both being right-adjoint to κ∗YRf0∗. Proposition 3.3.1 gives
RQY κY∗F ∈ D+

c (Y ); so by [V, p. 396, Lemma 1], f !
0κY∗F ∈ D+

c (X).21 Hence
Proposition 6.2.1 and Corollary 6.1.7(a) yield isomorphisms

κ∗Xf
!
0κY∗F −→∼ RHom•(RΓ ′XOX, κ

∗
Xf

!
0κY∗F ) =:ΛXκ

∗
Xf

!
0κY∗F −→∼ f #F.

6.3. More relations, involving the functors RΓ ′X and ΛX := RHom•(RΓ ′XOX,−) on
a locally noetherian formal scheme X, will now be summarized.

21For G ∈ D+

c (Y ) we have f !
0G ∈ D+

c (X): The question being local on X one reduces
to where either X is the projective space Pn

Y for some n and f0 is the projection—so that
f !
0G = f∗

0G ⊗ Ωn
X/Y [n] ∈ D+

c (X)—or f is a closed immersion and f0∗f
!
0G = RHom•

Y (f0∗OX ,F ) ∈
D+

c (Y ) [H1, p. 92, Proposition 3.3] whence, again, f !
0G ∈ D+

c (X) [GD, p. 115, (5.3.13)].
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Remarks 6.3.1. Let X be a locally noetherian formal scheme, and j : D(At(X))→ D(X)
the natural functor.

(i) The functor Γ := jRΓ ′X : D(X) → D(X) admits a natural map Γ
γ−→ 1, which

induces a functorial isomorphism

Hom(Γ E ,ΓF ) −→∼ Hom(Γ E ,F ) (E ,F ∈ D(X)),(A)

see Proposition 5.2.1(c). Moreover Γ has a right adjoint, viz. Λ := ΛX (see (6.1.4.1)).
The rest of (i) consists of (well-known) formal consequences of these properties.22

Since γ is functorial, it holds that γ(F ) ◦ γ(ΓF ) = γ(F ) ◦Γ (γ(F )) : ΓΓF → F, so
injectivity of the map in (a) (with E = ΓF ) yields γ(ΓF ) = Γ (γ(F )) : ΓΓF → ΓF ;
and one finds after setting F = ΓG in (a) that this functorial map is an isomorphism

γ(Γ ) = Γ (γ) : Γ Γ −→∼ Γ .(a)

Conversely, given (a) one can deduce that the map in (A) is an isomorphism, whose

inverse takes α : ΓE → F to the composition ΓE −→∼ ΓΓE Γα−−→ ΓF .

The functorial map 1
λ−→ Λ “right-conjugate” to γ induces an isomorphism

Hom(ΛE ,ΛF ) −→∼ Hom(E ,ΛF ) (E ,F ∈ D(X)),(B)

or equivalently (as above), λ induces an isomorphism

λ(Λ) = Λ(λ) : Λ −→∼ ΛΛ.(b)

Moreover, the isomorphism (A) transforms via adjointness to an isomorphism

Hom(E ,ΛΓF ) −→∼ Hom(E ,ΛF ) (E ,F ∈ D(X)),

whose meaning is that γ induces an isomorphism

ΛΓ −→∼ Λ.(c)

Similarly, (B) means that λ induces the conjugate isomorphism

ΓΛ ←−∼ Γ .(d)

Similarly, that Λ(λ(F ))—or γ(Γ (E))—is an isomorphism (respectively that λ(Λ(F ))—
or Γ (γ(E))—is an isomorphism) is equivalent to the first (respectively the second) of the
following maps (induced by λ and γ respectively) being an isomorphism:

Hom(Γ E,F ) −→∼ Hom(Γ E,ΛF ) ←−∼ Hom(E,ΛF ).(AB)

That (c) is an isomorphism also means that the “homology localization” functor Λ

factors, via Γ , through the essential image Dt(X) of Γ (i.e., the full subcategory Dt(X)
whose objects are isomorphic to Γ E for some E); and similarly (d) being an isomor-
phism means that the “cohomology colocalization” functor Γ factors, via Λ, through
the essential image D̂ (X) of Λ; and the isomorphisms ΓΛΓ ∼= Γ and ΛΓΛ ∼= Λ de-
duced from (a)–(d) signify that Λ and Γ induce quasi-inverse equivalences between the
categories Dt(X) and D̂ (X).

22The idempotence of Γ , expressed by (a), can be interpreted as follows. Set D := D(X),

S := { E ∈ D | Γ (E) = 0 }, so that Γ factors uniquely as D
q−→ D/S

Γ ′

−→ D where q is the “Verdier
quotient” functor. Then Γ ′ is left-adjoint to q, so that S ⊂ D admits a “Bousfield colocalization.”
It follows from (c) and (d) below that S = { E ∈ D | Λ(E) = 0 }, and (b) below means that the
functor Λ′ : D/S → D defined by Λ = Λ′

◦ q is left-adjoint to q ; thus S ⊂ D also admits a
“Bousfield localization.” And D/S is equivalent, via Γ ′ and Λ′ respectively, to the categories
Dt ⊂ D and D̂ ⊂ D introduced below—categories denoted by S⊥ and ⊥S in [N2, Chapter 8].
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(ii) If X is properly algebraic, the natural functor j~c : D(A~c(X))→ D~c(X) is an equiv-
alence, and the inclusion D~c(X) →֒ D(X) has a right adjoint Q := j~cRQX (see Corol-
lary 3.3.4.) Then (easy check, given Corollary 3.1.5 and Proposition 5.2.1) all of (i) holds
with D, Dt, and Λ replaced by D~c , Dqct , and Λ~c := QΛ, respectively.

(iii) As in (i), Λ induces an equivalence from Dqct(X) to Dqcˆ (X), the essential image of
Λ|Dqct(X)—or, since Λ ∼= ΛΓ , of Λ|Dqc(X) (Proposition 5.2.1). So for any separated map
f : X→ Y of noetherian formal schemes, the functor

ΛYRf∗RΓ ′X : Dqcˆ (X)→ Dqcˆ (Y)

has the right adjoint ΛXf×t RΓ ′Y = ΛXf×t = f# (see Corollaries 6.1.5 and 6.1.4). Hence
we get two “parallel” adjoint pseudofunctors [L4, (3.6.7)(d)] (where “3.6.6” = “3.6.2”):

(Rf∗ , f×t ) (on Dqct) and (ΛRf∗RΓ ′, f#) (on Dqcˆ ).

(Both of these correspond to the same adjoint pseudofunctor on the quotient Dqc/Sqc,
see footnote under (i)).

(iv) Let F ∈ Dc(X). Proposition 6.2.1 (for E := OX) shows that F ∼= ΛF ; and
so Dc(X) ⊂ Dqcˆ (X). If X is noetherian and f : X → Y is proper then Rf∗F ∈ Dc(Y)
(Proposition 3.5.1), and, by Propositions 5.2.7 and 6.2.1,

ΛYRf∗RΓ ′XF ∼= ΛYRΓ ′YRf∗F ∼= ΛYRf∗F ∼= Rf∗F .

Moreover, under the hypotheses of Corollary 6.2.3, it holds that f#(D+
c (Y)) ⊂ D+

c (X).
In this case, X being properly algebraic (Corollary 3.3.8), it follows from Corollary 6.2.2
that f# coincides on D+

c (Y) with the functor f× of Corollary 4.1.1. So the second ad-
junction in (iii)—or the one from Corollary 4.1.1—restricts to an adjunction

D+
c (X)

Rf∗−−−→←−−−
f#=f×

D+
c (Y).
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