NetMedia: A Client-Server Distributed M ultimedia Database
Environment

Sreenivas Gollapudi and Aidong Zhang
Department of Computer Science
State University of New York at Buffalo
Buffalo, NY 14260
{gollars, azhang} @cs.buffalo.edu

Abstr act

Advances in multimedia computing technol ogies offer new approachesto support on-line accesses to infor-
mation from a variety of sources such as video clips, audio, images, and books. A client-server distributed
multimedia system would be a practical approach to support such functionalities. In this paper, we present
the design and implementation of a client-server distributed multimedia database environment that can be
used to support large digital libraries. System architecture and design are described. Server functionalities,
including client scheduling, data buffering and admission control, are investigated. A client request can only
be admitted if both the quality-of-service (QoS) requirements from the client and the upper bound on total
buffer consumption at the server are maintained.

1 Introduction

Increased networking capabilities have made it easier and less expensive to tie together different types of
computers and personal workstations. In addition, current computer technology supports many multimedia
standards for software and hardware to uniformly handle multimedia data. These technologies have made
it possible to establish a distributed multimedia database environment which supports on-line accesses to
variousmultimediadataresources. A distributed multimediadatabase systemintegratesmultiplelocal media
database sitesinto asingleglobal unit. Each site hasits own media database management system, connected
viaoneor more LANs (Local Area Network) and/or aWAN (Wide Area Network). In such a system, auser
at any network node can log on and access data anywherein the global system asthough all dataresided right
at theuser’slocal site.

New issuesappear in such distributed multimediaenvironments. Many multimediaapplications, such as
recording and playback of motion video and audio, slide presentations, and video conferencing, require con-
tinuous presentation of a media data stream and the synchronized display of multiple media data streams.

Because of these time-related requirements, the allocation of various system resources becomes the most
important aspect of the system design. Specifically, a successful system must maintain balanced tradeoffs
between granting client requests and the overall performance of the system. On the one hand, the participat-
ing clients make their requests and expect these requests to be granted by the server. On the other hand, the
server wants to maintain balance among all clients and maximally utilizes all system resources.

New system architecture and protocol s must be designed to achieve the above goals. Some similar func-
tions may need be implemented at both client and server sides to achieve the best system performance. At
the client side, the synchronized presentation of multiple media streams must be maintained. A client may
have to make decisions on skipping or dropping some data to maintain the synchronization of presentations.
Buffer management at the local side may be needed to ensure hiccup-free presentationsin case of network
delays. In addition, clients are responsible to send data delivery requests along with the quality-of-service
(QoS) requirements. A client may also periodically send data delivery rate information to the server to vary
therate at which dataare sent if achangeisneeded in the presentation schedule. At the server side, protocols
to address scheduling of multipleclient requests, buffer management for dataall ocation and repl acement, and
admission control of clients must be carefully designed.

In this paper, we will focus our attention on the design of the entire system and the server functionalities.
The design and implementation of a client-server distributed multimedia database environment that can be
used to support large digital libraries will be presented. We will describe the details on the system architec-
ture and design. Protocolsto achieve server functionalities, including client scheduling, data buffering and
admission control, areinvestigated. A client request can only be admitted if both the quality-of-service(QoS)
requirements from the client and the upper bound on total buffer consumption at the server are reserved.

Theremainder of thispaper isorganized asfollows. Section 2 introducesthe system architecture. 1n Sec-
tion 3, we present the system design strategies, including the data model, QoS parameter specification and
buffer model. In Sections 4, we investigate the approaches for the server to schedule client request, main-
tain upper bound of buffer consumption and control the number of client requests. Concluding remarks are
offered in Section 5.

2 System Architecture

Thesystem architecture under considerationisillustratedin Figure 1. Thisarchitectureincludesadistributed
multimediaserver, aset of multimediadatabases, and aset of clientswhich accessthe server. Themultimedia
system server is distributedly superimposed on top of a set of database management systems (DBMSs) and
file systems. As certain media streams may be represented and stored in different formats, the underlying
DBM Ss or file systems can be heterogeneous. The main function of each client at aworkstationisto display
multiple media data to the user in the specified format. Such an architecture can provide adequate database
support for multimedia applications demanding script-based interactive multimedia presentations[TK 95].

| Client 1 I Client 2 . Client n

Figure 1: NetMedia system architecture

Asshownin Figure 1, the distributed multimedia database management system containstwo main mod-
ules: a multimedia task language (MTL) interpreter and a media manager (MM). At each client site, the
multimediatask language MTL interpreter allows users to specify a set of tasks associated with a multime-
diatask, including synchronization requirements on component tasks. A multimediatask specified in MTL
isthen processed by the interpreter, and data accesses are sent to both the MM and the underlying DBM S or
file system for processing.

TheMM component at each server site supportsthe multi-user aspect of mediadata caching and schedul -
ing. It maintains real-time retrieval of media data from the multimedia database and transfer the data to
the client sites through network. The MM at a client site ensures that media data stored in the multimedia
database will be available on demand in thelocal buffer and the synchronous presentation of multiple media
streams.

The detailed design of these system components are offered in the foll owing subsections.

2.1 Multimedia Server

Theclient-server architecture consistsof multimediaservers and multimediaclients. The multimediaserver,
henceforth referred asthe server, sitson top of afile or database system. The server isan event driven process
that uses atime-ordered prioritized query queue to service requests. Figure 2 shows the organization of the
server.

The server is client-driven [LD93], that is, al datatransmitted from the server to the client is explicitly
requested. It isthejob of the server to guarantee sufficient bandwidth. The clients have to read data at the
samerateasthetransfer rate to minimizethebuffer requirementsat theclient. Theinterpretation of themedia
datafalsontheclientsasdatais presented at the client workstations. At present, threetypes of data, images,

Service
M anager

1 I
Buffer
M anager

=3
L

OODBMS

Figure 2: Server configuration

iz

Communication M anager
] [
NETWORK

it

digital video and audio are supported.

The server has three components, namely, a communication manager, a buffer manager, and a service
manager. Thereceiving of queries and sending of datato the clientsis handled by the communication man-
ager. It isthe responsibility of the communication manager to transfer data at the rate requested by each
client. Thisensuresthat al datais scheduled to meet the deadline requirements of clients. The communica-
tion manager ismulti-threaded. It startsadifferent servicethread for every concurrent stream being serviced.
The service manager handles the scheduling of service threads. The retrieval of media data and storage of
data in the buffer is the responsibility of the buffer manager. The handling of multiple client requests and
buffer management are detailed in Section 4.

The server and the clients exchange information via a virtual circuit connection (TCP). At present the
server and theclientssit on an LAN (Loca AreaNetwork). Clients control the rate at which the server must
transmit data to the clients. Clients set the rate at the beginning of each connection and can change it at the
beginning of a new request.

2.2 Multimedia Client

A client is responsible for synchronizing the images, audio and video packets and delivering them to the
output devices on the client workstation. A client makes decisions to skip or drop frames to maintain the
synchronization of presentations. In addition, a client sendsrate information to the server to vary therate at
which data are sent if a change is needed in the presentation schedule.

Each client has four components: a service manager, a scheduler, a buffer manager, and a communica-

tion manager. The communication manager receives the datafrom the server, unpacksit and sendsit to the
buffer manager. The communication manager also sends any rate information it receives from the schedul er

to the server. The service manager deals with the reading of data from the buffer and delivering it to the
appropriate output device. This serviceis multi-threaded. The service manager starts a different thread for
every media stream that is to be presented. The scheduler is responsible for synchronizing the delivery of
media objectsin al the participating media streams. The buffer manager, as before, deals with the manage-
ment of datain the buffer. A buffer model that is the basis for buffer management at the client and server
sitesis presented in the next section. Figure 3 showsthelogical layout of clients. Both scheduling and buffer
management at the client site will not be discussed in this paper [?, ?].

Scheduler

T

gl Audo]
%DF

Service Manager

display @
| I

Buffer Manager

audio device

Communication M anager
£

N ETW O R K

Figure 3: Client configuration

3 System Design

In this section, wewill introduce the system and datamodel sthat will be usedin therest of the paper. Quality
of service (QoS) parameters and a buffer model will be introduced.

3.1 DataModd

A media stream can be viewed abstractly at severa levels. At the lowest level, a media stream isviewed as
an unstructured BLOB (binary large objects) into several higher-level object classes. Objects from different
media streams may also be spatio-temporally combined into multimedia objects. Several conceptual data
models which follow this general scheme have been proposed. However, few efforts have been made to
formalize a multimedia data model at the task management level for the purpose of scheduling media data
operations.

In the proposed data model, we assume that each media stream is broken into a set of atomic objects.
Higher levelsof object classification need not to be considered in thiscontext. Each atomic object represents
aminimum chunk of the media stream that bears some semantic meaning. Atomic objectsin different media
streams may have different internal structures. For exampl e, a continuous video stream can be segmented

into a set of atomic objects, each of which contains a set of video frames with specific semantic meaning.
Similarly, a continuous audio stream can be segmented into a set of atomic objects, each of which contains
a set of audio samples with specific semantic meaning.

The atomic objects within a media stream are linked together through intra-synchronization time con-
straints. These constraints may specify discrete, continuous, overlapping, or step-wise constant time flow
rel ationships among the atomic objects. For example, some multimedia streams, such as audio and video,
are continuous in nature, in that they flow across time; other data streams, such as slide presentations and
animation, have discrete, overlapping, or step-wise time constraints. It may, for example, be necessary to
display two distinct slide objects jointly within a single slide presentation stream. In general, the tempora
rel ationship between two atomic objects in a single stream may conform to any of the thirteen temporal re-
lationshipsdescribed in [AlI83]. In our representation, each atomic object is associated with arelative start
time and a time interval which specifies the duration of its retrieval, with the initial atomic objectsin the
media stream assumed to start at time zero. The actual start time of a media object is usually dynamically
determined. Once a media stream is invoked, it is associated with an actual start time; each media object
within that stream will similarly be associated with an actual start time. We use < o,t, /At > to denote that
object 0 isto be delivered at timet and will last time period At.

3.2 QoS Specification

Littleand Ghafoor [?] have proposed several parameters to measure the QoS for mul timedia data presenta-
tion. The following parameters have been listed: (1) average delay, (2) speed ratio, (3) utilization, (4) jitter,
and (5) skew. Theaverage delayistheaverage presentation delay of each object inatimeinterval. The speed
ratio is the actual presentation rate to the nomina presentation rate. The utilization equals the ratio of the
actual presentation rateto the available delivery rate of a set of abjects. Ideally, both the speed and utilization
ratios should equal 1. During the presentation of avideo stream, frame duplicationleadsto utilization values
greater than 1, while dropping frames would lead to values lessthan 1. Thejitter isthe instantaneousdiffer-
ence between two synchronized streams. The skew is the average difference in presentation times between
two synchronized objects over n synchronization points. Clearly, average delay, speed ratio, and utilization
are used to measure the quality of individual media stream presentations, whereas jitter and skew are used
to measure the quality of presentation among multiple media streams.

Whilethe delivery of each media stream would ideally minimize the average delay and hold the parame-
tersof speed ratio and utilizationcloseto 1, the achievement of thesethree goalsisactually in conflict. There
must therefore be trade-offs between these goal s during scheduling. Consider a synchronous presentation of
audio and video streams. If the scheduler attempts to minimize the average delay of audio objects, it must
respond to the delay of an audio object by dropping some frames in the corresponding video object. If the
scheduler triesto hold the utilization of video objectscloseto 1 when delays occur, it must decrease the speed
ratio of these objects, and, consequently, increase the average delay. Thus, it is generally impossiblefor all

parameters to achieve an ideal state for all applications. There must be trade-offs among different QoS pa-
rameters.

Different application domains may have different QoS requirements. The specific QoS requirements for
the domain of education or training in educational digital librarieswere discussedin[?]. Wewill not discuss
here the QoS specification for specific application domains. We assume that maximum allowable delays for
individual mediastreams are pre-specified. These measures providethe permissiblerangesfor average delay
and speed ratio. 1n addition, we assume that maximum allowabl e skipsfor individual media streamsare also
pre-specified. These measures provide the permissible ranges for utilization.

3.3 Buffer Modd

We now present a framework which generates the required start times for media objects. This framework
guarantees the continuity of mediastream presentation while minimizing buffer utilization at both client and
server sites.

3.3.1 Media Streams

Buffer management is needed in both client and server sitesto ensure that the loading of media objectswill
not cause the delay of their presentation. At the client sites, to facilitate a hiccup-free presentation, we must
ensure that an object is present in local memory before it is delivered. At the server sites, we must ensure
that once a media stream is started to be retrieved and transmitted, this retrieval and transmission will be
performed in adesirablerate.

Attheserver site, theloading of amediastream from disk to memory ismuch faster than the transmission
of the media stream across the network to the client site. However, at the client site, the rate at which data
is received from the servers could be comparable to the display rate of the media streams. Therefore, both
network and storage delays must be considered in determining the prel oading time of a media stream at the
client sites.

We will now define a general model that can be used at both the client and server sites. For the sake of
brevity, we will use delivery/consumptioninterchangeably to refer to delivery of amediastream at the client
site as well as the transmission of a media stream from the server site. Similarly, loading will be used to
refer to loading of media datafrom the disk into the buffer at the server site aswell asloading of media data
into the buffer at the client site. Delays at the client siteinclude network delays during transmission and the
storage delays at the servers. Multiple streams at the client site refers to the streams that are involved in a
presentation at the client site, while multiple streams at a server refer to the multiple requests a server can
service simultaneously.

Let t{:‘ be the time at which the loading of media stream m begins and loading function Lm(t,t{:) be the
total number of mediaobjectsof mread at timet. Lett bethetime at which the consumption of datastream

m begins and consuming function C(t,t) be the total number of media objects consumed at timet. The
number of media objectsthat must be buffered at any given timeis then given by

0 ift< t{:,
Bm(t,te) = Ln(t, 17 ift <t <td, (D
Lm(t,4T) = Cm(t,t0) ift >t
Given Dpax as the amount of buffer for delay recovery in the delivery of media stream m, this amount
must be added to consumption to determine the start time of delivering the stream.
Suppose that a solution is to begin delivery at time x. That is, By(t,X) is at least zero for any time x <
t <7, wheret[? isthetime at which theloading of datastream mis completed. If we compare Bry(t,x) with
Bm(t,t{:) intherangex <t < t{:‘, we see that

Bn(t,X) = Lm(t,t™ — (Cm(t,X) + Dirax)

(t,5.)
= Lm(tvtlr:) - Cm(t,X) — Drmax
= Bm(tvtlr:) + Cm(tvtlr:) - Cm(t,X) — Drmax
= Bm(tvtlr:) - Dmax + Cm(t,t|T) - Cm(t,X). (2)

If Bm(t,t{:‘) > Dmax in the range t{:‘ <t< t{:‘, then B(t,x) > O for x > t{:. Thus, the start time of stream m
can bet™. We now consider thesituationthat Bm(t,t|T") — Dmax may be negativeintheranget” <t <t/ Let
Bm(t, ") — Dmax > —k(k > 0) and Br(t,x) > 0. Thus, x must be the minimum start time such that

Crm(t. i) — Cm(t, %) > k. 3

Thus, x can be determined when both consuming function and theloading time are given. Thisstart time
assumes that the entire stream will be continuously loaded. However, in our context, we assume that the
data unit to be accessed is media object rather than the entire stream. Thus, after the display or deliver time
of stream m is determined, the deliver time of each media object within the stream must also be precisely
determined.

3.3.2 MediaObjects

In order to ensure a hiccup-free presentation based on pre-determined time, the loading of each media object
must guarantee that there is enough object data to be consumed at its consuming time. The presentation of
each object can thus be divided into two phases: (a) aloading phase and (b) a consumption phase. Let tff‘ be
the time at which the loading of object o, of stream m begins and loading function Lim(t,tlism) be the amount
of object o, of streeam mread at timet. Let thS“ be the time at which the consumption of object ojy, of stream

m begins and consuming function Cim(t, tf{sn) be the amount of object 0;, consumed at timet. The amount of
buffer space that must be allocated for object o, at any given timet is given by

0 ift <™,
Bim(t,t) = { Lim(t,t{™) if (<t <, 4)
Lim(t,t™) — Cim(t,te) if t >t
In similar manner to the derivation given above, we can derivethe rel ationshi psbetween the loading and
consuming times for each media object o;, as follows:

Bm(t.te) = Lim(t,t) — (Gim(t,t&7) + Diyia)
= Lim(t,{™ — Cim(t, ") — Djmax
= Bim(t,t{") + Gim(t,t]") — Gim(t,t¢") — Dimay
= Bim(t,t{™) — Djax+ Cim(t,t!™) — Cim(t, t1). (5)

Let kim be determined by Bim(t,tff‘) — DM > —kim(kim > 0), where DI isthe amount of buffer for delay
recovery in the presentation of the object 0;,,. We then have

Gim(t. ™) — Cim(t,t&) > Kim. (6)
Thus, for each object 0;, in stream mto be successfully presented at time x = tf{sn, it must be loaded into
memory at a time satisfying Formula (6).

In case that the consuming functionislinear, that is,

0 ift <x,
Cm(t,x):{ rf(t—x) ift>x "

where r" is the consuming rate of stream m. We then have the start time of the first object of the stream m
based on Formula (3):

k
X 2 tIT—I_ @7 (8)
and the prel oading times for the rest of the media objects based on Formula (6):

m_ m Km
tlsmgt(lzrsn_@v (9)

Depending on the loading delays and the amount of data that has to be loaded, tff‘ can belong to any of the
time periods in which previous media objects are consumed.

9

4 Multimedia Server Functionalities

In thissection, wewill investigateprotocol sfor the scheduling of client requests, buffer management for data
allocation and replacement, and admission control of clients.

The distributed multimedia server plays a central role in the delivery of continuous mediain distributed
systems. The server handle the retrieval, storage and delivery of media data to clients across the network.
Playback of digital video and audio requires high data delivery rate. Continuous playback of such media
data necessitates hiccup-free presentation and is usually coupled with the delivery of another media stream
viasynchronization. Thus, thedelivery of continuousmediacan be thought of asasequence of periodictasks
with deadlines.

Since the fetching rate of continuous media is much higher than the delivery rate, it is conceivable to
have systems that fetch data just before playback. However, owing to the bursty nature of retrieval, infor-
mation retrieved may have to be buffered before playback. It isthe function of the server to store enough
datain the buffers so as to alow for a continuousplayback at the client process. Having a modest amount of
buffering would be enough to meet the deadline requirements for singleclient requests. In practice, however,
a distributed multimedia server has to process more than one client request simultaneously. This puts more
constraints on shared resources like the server cache. Guaranteeing the deadline constraints of a client can
be achieved by simply dedicating a connection to the disk per client. However, this can seriously limit the
number of client requestsat any time owing to limited number of disk access channelsavailable. More client
requests can be schedul ed by multiplexing disk access across multipleclient requests. This requires efficient
buffer management and admission control by the server to maximize the number of client requests serviced.
In fact, it can be shown that the maximum number of client requests can be serviced simultaneously by the
server when the amount of dataretrieved for each client is proportional to the consumption rate of the client
[GC92, LDI3, HGP94].

4.1 Scheduling MultipleClients

Consider a distributed multimedia server servicing n client requests simultaneously (say Ri, Ry, ... Ry, re-
spectively). At theoutset, let usassumethat arequest R identifiesamediaobject Obj; that aclient wishesto
present. Furthermore, this object could be stored as a number of segmentsin alocal DBMS. The segments
are assumed to be of the same size. It isthe responsibility of the server to identify al the relevant segments
and load them into the buffer before transmitting them to the client.

The service time of the server is divided into fixed size of intervals. Each interval isthen dynamically
divided into n rounds, assuming that there are currently n client requests. The server services all current n
requests in terms of periodic rounds [HGP24], retrieving a fraction of the segments for each client request
in each round. Thus, interval || consistsof round,;, j = 1,...,n. The number of segmentsto be retrieved in

10

each round can be calculated asfollows. Let re,,rc,, . .., bethe playback or consumption rates! specified
by the n client requests, respectively. Without loss of generality, let the duration of each interval bet. The
duration of each round in an interval with n client requests would then be

d=t/n.
The number of segmentsto be retrieved for request R; in each round would be
N| = rcid.

Note that with increase in the number of clients being serviced in each interval, the duration of each round
decreases. Increasing the number of client requests would reduce the QoS at each client as the data each
client can access in each round becomes less and | ess.

Dueto difference in compression techniques of media data and differencesin relative placement of seg-
ments on the disk, the actual time T; taken to retrieve N; segments in round; could be different in any two
rounds. Vin and co-workers [HGP94] define overflow and underflow roundsif Tjx > d and Tjx < d respec-
tively. In an underflow round, the server can read more segmentsinto the buffer so long as the duration of
the round does not exceed d. This, termed read-ahead, helpsin reducing delaysin the retrieval of objectsin
the future rounds. On the other hand, in the case of an overflow round, the server delaysthe retrieval of the
rest of the segmentsuntil the next round, i.e., round;y, 1. Notethat this delay need not necessarily reduce the
QoS parameters for each client when data of each stream is retrieved before the start of presentation of each
stream.

Let N&* be the actual number of segments read in round for request R;. Given that the average seek
time of segmentsin roundix isAix = N3%/d, the maximum seek time for asegment belonging to arequest R
can be calculated as

A =max{Aij [1< j <ni}, (10)

where n; isthe number of rounds completed so far.

4.2 Buffer Management

This Section will devel op aframework which generates requi red minimum buffer space for media objects at
the server site. Theframework guarantees both continuity and synchrony in the presentationsat one or more
client sites and smooth retrieval and transmission of objects at the server site.

In the above analysis of scheduling multiple clients, multiple requests are simultaneously supported by
assuming that, for each request R;, enough segments of R; are loaded into memory to allow smooth transmis-
sion of the segmentsto the client. Buffers are needed to satisfy thiscriterion. It isclear from (1) that thesize
of buffer at any pointin atimeinterval [a, b] depends on external factors and cannot be predetermined. This

1\We assume here that the consumption rate is defined to be the number of segments per unit time.

11

problem may be circumvented by all ocating maximum buffer required for each object presentedin [a,b]. The
precise definition of interval would be made clear later.

Wewill limit the analysi sto a case where both thel oading function L;, and the consuming function Gy, of
segment s, belonging to request R; are linear. The underlying assumptionin the case of theloading function
isthat the seek timeis much lessthan theload time. Besides, |oading of aV BR stream can be segmented into
interval sduring which theloading rate can be considered essentially constant. Thus, L, can be approximated
asalinear function _
0 ift< tl'sm,

. o ; (11)
A —tm) it > fm

Lim(t,t™) = {

where r}m istheloading rate of segment s, belongingto request R;. A linear case of the consuming function
isshownin (7). Without loss of generality, let us assume that the loading rate of all segmentsin stream R,
is constant and that the consumption rate of all segments belonging to request R, is aso constant; that is,
Vil<i<n,

im m
I’| = I’| 5

rmo— M (12)

However, segments belonging to different client requests need not have uniform loading or consumption
rates. For adetailed analysisof buffer consumptionwith streamswith identical consumptionrates, thereader
isreferred to [NY 94].

Clearly, if theloading rate of a segments belongingto request R; is greater than the consumption rate, all
segments belonging to request R; attain their maximum buffer requirement at the end of 1oading phase, that
is at= tff‘, provided tff‘ € [a,b]. In contrast, if the consumption rate is higher than the loading rate, then all
segments belonging to request R; attain their maximum buffer requirement at the beginning of consumption
phase, at timet = thST‘, given thS“ € [a,b]. Let usdenote thetime at which segment s, belonging to request R
attainsits maximum buffer requirement ast!M. . If tiM ¢ [a, b], the maximum buffer requirement could occur
at one of thebounds of theinterval. For thecase r{" > r{', we define the time at which segment s, belonging
to request R, attainsits maximum buffer requirement as
™ ifa<tM™<b,
thx=9 a iftM<a, (13)
b if tff‘ > b.

On the other hand, if rg" > ",
t' ifa<t"<b,

Cs
tax=14 a iftM<a, (14)
b iftim> b,

Given that each segment sy, belonging to request R needs the maximum buffer space at t = t'™ in the
interval [a, b], the maximum buffer requirement for all segmentsloaded in the interval is simply the sum of

12

al maximum buffers over al the objects presented in interval [a,b]. Let B denote the maximum buffer
requirement over al the segments belonging to request R; that are presented in the interval [a,b]. Itisgiven
by

Bio: = ZlBlm tlm tlm (15)

where n; isthe total number of segments belonging to request R; in the interval. Therefore, the total buffer
requirement over all the requestsis

=}

9
g

Btot =

=2
it
=

(|
=
(|
1

where nisthetotal number of requests and n; isthetotal number of segments belongingto request R; inthe
interval.

Inadifferent study [GZ96], the authorshave shown the advantage of buffer sharing over the simplebuffer
management strategy shown above. A full analysis of buffer sharing would involve finding the maximum
buffer requirement applicableto all the segmentspresentedinaninterval. Fromtheresult obtainedin[GZ96],
we have

Corollary 1 The maximum buffer requirement over all the segmentsininterval [a, b] occursat a timewhen
at least one of the segments attainsits maxi mum buffer requirement in that interval and is given by

n Nnj

Bear = Max{) ZlBij(t,'ﬂax,tg)Hglgn, 1<k<n}. (17)
J=1li=

Figure 4 shows a typical delivery schedule of two media media streams. The increasing slope refers to
the loading of the data from the disk while the decrease rel ates to the transmission of datafrom the buffer to
theclient.

A multimedia server can organize the storage of media data from the disk in terms of fixed size media
blocks[HGP24] that correspond to the media segments. Thus, the buffer can be segmented into slotsto hold
the media blocks. Without loss of generality, let us assume that the size of media segmentsis equal to the
size of abuffer slot. Let us denote the buffer requirement for retrieving a segment in round;y by Bik(t,tﬂ;).
Since the disk access rate is usually higher than the transmi ssion rate, the communication manager can start
sending data to the client as soon as data is loaded into the buffer by the buffer manager. This also means
that the maximum buffer requirement for each media segment would occur at the end of the loading phase
in each round. Let t’k denote the time at which the maximum buffer requirement occurs in round;,, and ts
and tiL as the starting and finishing times of round;y respectively. The maximum buffer requirement would
occur at the end of theround, i.e,, t%, = ti, and is equal to Biy(t;, t).

13

- - - mediastream 1
—— mediastream 2

buffer consumption

Figure 4: Typica delivery of media streams.

Figure 6 shows the buffer consumption profile for two simultaneous requests. In round O, the server
loads in the data for client O, whilein round 1 data for client 1 isloaded. Note that in round 1, whatever
isleft of the dataread for client O inround O is aso transmitted by the communication manager. Using the
buffer consumption model defined in Section 2, onecan very easily determine the maxi mum amount of buffer
required in each interval. This maximum isthen used to define an admission control policy. Note that the
maximum buffer requirement ininterval 0 in Figure 6 occurs at ty and occurs at t; intheinterval 1.

Buffers : PR

round 01 ‘ round 11 ‘ round 02 round 12 round 03 ‘ round 13 Time
Figure 5: Buffer consumption for two client requests

From azhangMon Apr 22 09:42 EDT 1996 Return-Path: azhang Received: from merope.cs.Buffalo.EDU
(azhang@merope.cs.Buffalo.EDU [128.205.34.19]) by hadar.cs.Buffalo.EDU (8.6.10/8.6.4) withESMTPid
JAA11952for jgolla-s@hadar.cs.Buffalo.EDU¢; Mon, 22 Apr 1996 09:42:37-0400 Received: (azhang@Il ocal host)
by merope.cs.Buffalo.EDU (8.6.10/8.6.4) id JAA09762 for golla-s; Mon, 22 Apr 1996 09:42:22 -0400 Date:
Mon, 22 Apr 1996 09:42:22 -0400 From: AidongZhang jazhang¢, Message-1d: {199604221342.JA A09762@merope.cs.Buffe
To: golla-s Content-Type: text Content-Length: 8647 Status: RO

14

4.3 Buffer Management

This section will devel op aframework which generates required minimum buffer space for media objectsat
the server site. Theframework guarantees both continuity and synchrony in the presentationsat one or more
client sites and smooth retrieval and transmission of objects at the server site.

In the above analysis of scheduling multiple clients, multiple requests are simultaneously supported by
assuming that, for each request R;, enough segments of R; are loaded into memory to allow smooth transmis-
sion of the segmentsto the client. Buffers are needed to satisfy thiscriterion. It isclear from (1) that the size
of buffer at any pointin atimeinterval [a, b] depends on external factors and cannot be predetermined. This
problem may be circumvented by all ocating maximum buffer required for each object presentedin [a,b]. The
precise definition of interval would be made clear later.

Wewill limit the analysi sto acase where both theloading function L;, and the consuming function Gy, of
segment s, belonging to request R; are linear. The underlying assumptionin the case of theloading function
isthat the seek time ismuch lessthan theload time. Besides, loading of a data stream can be segmented into
interval sduring which theloading rate can be considered essentially constant. Thus, L, can be approximated
asalinear function _
0 ift< tl'sm,

. o ; (18)
A —tm) it > fm

Lim(t,t™) = {
where r}m istheloading rate of segment s, belongingto request R;. A linear case of the consuming function
isshownin (7). Without loss of generality, let us assume that the loading rate of all segments belonging to
client request R; is constant and that the consumption rate of all segments belonging to request R; is aso
constant; that is, Vi 1 < i < nj,

im

rmo— M (19)

However, segments belonging to different client requests need not have uniform loading or consumption
rates. For adetailed analysisof buffer consumptionwith streamswithidentical consumptionrates, thereader
isreferred to [NY 94].

Clearly, if theloading rate of a segments belongingto request R; is greater than the consumption rate, all
segments belonging to request R; attain their maximum buffer requirement at the end of 1oading phase, that
is,att = tff‘, provided tf:“ € [a,b]. In contrast, if the consumption rate is higher than the loading rate, then all
segments belonging to request R; attain their maximum buffer requirement at the beginning of consumption
phase, at timet = té’s", given thS“ € [a,b]. Let usdenote thetime at which segment s, belonging to request R
attainsits maximum buffer requirement ast!™,.. If '™ ¢ [a, b], the maximum buffer requirement could occur
at one of thebounds of theinterval. For thecaser" > r, we define the time at which segment s, belonging

15

to request R, attainsits maximum buffer requirement as

™ ifa<tM™<b,

thx=9 a iftM<a, (20)
b if tff‘ > b.

On the other hand, if rg" > ",
th ifa<ti™<b,

=34 a ift"<a, (21)
b if thS“ > b.

Given that each segment s, belonging to request R; needs the maximum buffer space at t = t'T. in the
interval [a, b], the maximum buffer requirement for all segmentsloaded in the interval is simply the sum of
al maximum buffers over al the objects presented in interval [a,b]. Let B denote the maximum buffer
requirement over al the segments belonging to request R; that are presented in the interval [a,b]. Itisgiven

by
Biot = Z Bim(tlm tlm (22)

where n; isthe total number of segments belonging to request R; in the interval. Therefore, the total buffer
requirement over all the requestsis

=}

9
g

Btot =

=2
it
=

= Bij(tHatd), (23)

(|
=
(|
1

where nisthetotal number of requests and n; isthetotal number of segments belongingto request R; inthe
interval.

In adifferent study [?], the authors have shown the advantage of buffer sharing over the simple buffer
management strategy shown above. A full analysis of buffer sharing would involve finding the maximum
buffer requirement applicable to al the segments presented in an interval. From the result obtained in [7?],
we have

Corollary 2 The maximum buffer requirement over all the segmentsininterval [a, b] occursat a timewhen
at least one of the segments attainsits maxi mum buffer requirement in that interval and is given by

n Nj

Behar = max{) ZlBij(t,'ﬂax,tg)Hglgn, 1<k<n}. (24)
J=1li=

Figure 4 shows a typical delivery schedule of two media media streams. The increasing slope refers to
the loading of the data from the disk while the decrease rel ates to the transmission of datafrom the buffer to
theclient.

16

- - - mediastream 1
—— mediastream 2

buffer consumption

Figure 6: Typica delivery of media streams.

A multimedia server can organize the storage of media data from the disk in terms of fixed size media
blocks[HGP24] that correspond to the media segments. Thus, the buffer can be segmented into slotsto hold
the media blocks. Without loss of generality, let us assume that the size of media segmentsis equal to the
size of abuffer slot. Let us denote the buffer requirement for retrieving a segment in round;y by Bik(t,té':).
Since the disk access rate is usually higher than the transmi ssion rate, the communication manager can start
sending data to the client as soon as data is loaded into the buffer by the buffer manager. This also means
that the maximum buffer requirement for each media segment would occur at the end of the loading phase
in each round. Let t’k denote the time at which the maximum buffer requirement occurs in round;,, and ta
and tiL as the starting and finishing times of round;y respectively. The maximum buffer requirement would
occur at the end of theround, i.e, tX, = ti, and is equal to Biy(t;, t).

Figure 6 shows the buffer consumption profile for two simultaneous requests. In round 01, the server
loadsin the datafor client request 0, whilein round 11 datafor client request 1 isloaded. Notethat in round
11, whatever isleft of the dataread for client request O in round 01 is also transmitted by the communication
manager. Using the buffer consumption model defined above, one can very easily determine the maximum
amount of buffer required in each interval. Thismaximum isthen used to define an admission control policy.
Notethat the maximum buffer requirement ininterval 0in Figure 6 occurs at tg and occursat t; intheinterval
1.

44 Admission Control

Guaranteeing continuous playback for each client request requires that the retrieval time of datain around
does not exceed the playback time of the dataretrieved in that round. This necessitates the server to employ
admission control to decide whether anew client request can be admitted without violating the deadline re-
guirements of the current client requests. The formulation of an admission control strategy would depend on
the QoS requirements of each client and the shared resources at the server site.

Different clients would have varying QoS parameters. The multimedia server should exploit thisvaria-

17

Buffers : BN

1 I [
round 01 round 11 round 02 round 12 round 03 round 13 Time

Figure 7: Buffer consumption for two client requests

tion while servicing the client requests. Let o embody the QoS associated with each client request. A strict
servicing policy would set a to 1, thereby requiring the server to meet al the deadline requests of the client.
A flexible request would have avaluein the range [0,1] suggesting that the server can drop some segmentsif
it cannot meet a deadline requirement. In such acase, the server can also delay the transmission of segments
so long as the new deadline requirements are within the QoS specifications set by the client. Thus, the frac-
tion of data, such as framesin avideo clip, that can be dropped or time through which the server can delay
the transmission of segmentsis set by a.

Another important parameter in admission control isthe buffer l[imitation. Servicing anew request would
mean increasein the buffer requirements. Admitting of anew request should not viol atethe deadlinerequire-
ments of the current requests being serviced. A simple strategy would be to make sure that the total buffer
consumption in next m successive intervals does not exceed the maximum buffer size Bax. To do this, one
needs an upper bound on the seek times for each request. The upper bounds on the seek times for the current
requests can be found using the analysisgivenin Section 4.1. To find the upper bound on the seek time for a
new request, we can find such abound (say, Amax) by running a calibration program. The minimum number
of segmentsretrieved in around can be cal culated by uniformly spacing the segments across the disk thereby
maximizing the seek times [GDN95].

Calculation of m proceeds as follows. Let X = {Ry,...,R,} denote the set of current requests being
serviced. Each request R, hasamaximum seek time A/™ cal cul ated as described in Section 4.1. Let s denote
thesizeof each request R; € R that isleft to beread from the disk. The maximum number of roundsthat are
required for each request R; € R is ﬁ Note that the value of d isnow t/(n+ 1). The value of mwould
then be

m:max{ﬁugign} (25)

Addinganew request to the current set of requestswould decrease the duration of each roundin an inter-
val. Let Ny, and Ni'k denote the number of segmentsread for request R, in round;, when therearenand n+ 1
requeststo be serviced respectively. Thus, Nix — Ni'k segmentsare delayed in their retrieval to the next round

18

round;, 1. Note that delaying the retrieval to the next round does not necessarily result in a discontinuity in
the playback for client request R depending on the amount of read-ahead N:!, which determines the number
of segmentsread from thedisk prior to playback initiation[HGP94]. Therefore, the number of segments that
can be dropped or delayed without causing a discontinuity is given by therelation

Nix — N, < N2+ Ni(1—). (26)

A simple admission control policy would be a greedy policy that calculates the buffer requirement for
each new request and then admits the request if the total buffer consumption in next m successiveintervals
does not exceed the maximum buffer size Bax and the QoS specifications (set by equation 19) of al the
current clientsrequestsare not violated. The goal of the admission control agorithm, under such conditions,
would be to maximize the number of client requests admitted. The greedy admission control algorithm takes
inasinputarequest ({Ry,...,Rn}, Rat1), that consistsof aset of current requests being serviced and the new
request R, ; that needs to be admitted, along with the QoS parameter for each client request, and produces
as output the decision whether to admit the new request or not.

Greedy admission
Input: ({Ry,...,Ra},Rat1)s Bmax, 0 (1< i< n+1)

m« max{sA™/d, 1<i<n}

fori=1tomdo
/ICheck if QoS specificationsof each client isviolated
for k=1tondo

if Nig — N > N7 4Ny (1— @) then return FALSE

/ICalculate the maximum buffer requirement in each interval
Bl = Max{ 3 M1 Bji(tha) [1< 1 <041}
if By, > Bmax then return FALSE

endfor

return TRUE

Using buffer sharing doesincreasethe number of client requestsadmitted over non-shared buffer schemes.
Thisis because more clients can be admitted without overflowing the buffer.

5 Conclusions

We have presented the design and implementation of a client-server distributed multimedia database envi-
ronment that can be used to support large digital libraries. Several main system architecture and design fea-
ture have been provided. In the system design, we have described a data model, QoS specification and a
buffer model for supporting both the client and server functionalities. Server functionalities, including client
scheduling, databuffering and admission control, areinvestigated, and the protocol sto implement thesefunc-
tionalitiesare offered. A client request can only be admitted if both the QoS requirementsfrom theclient and
the upper bound on total buffer consumption at the server are satisfied.

19

References

[AD9O]

[Al183]

[GCY2]

[GDNOS]

[GZ96]

[HGP94]

[LDO3]

[NY94]

[TK95]

A.Dan and D.Towsley. An Approximate Analysis of the LRU and FIFO Buffer Replacement
Strategies. In ACM SGMETRICS, pages 143-152, Denver, CO, May 1990.

James F. Allen. Maintaining K nowledge about Temporal Intervals. Communications of ACM,
26(11), 1983.

Jim Gemmell and Stavros Christodoulakis. Principles of delay-sensitive multimediadata storage
and retrieval. ACM Transactions on Information Systems, 10(1):51-90, January 1992.

G.Neufeld, D.Makaroff, and N.Hutchinson. The Design of a Variable Bit Rate ContinuousMedia
Server. Technica Report TR-95-06, Dept. of Computer Science, University of British Columbia,
Vancouver, Canada, March 1995.

Sreenivas Gollapudi and Aidong Zhang. Buffer Management in Multimedia Database Systems.
In Proc. of IEEE Multimedia Systems’ 96, Hiroshima, Japan, June 1996.

H.M.Vin, A. Goyal, and PGoya. Algorithmsfor Designing Multimedia Servers. In First IEEE
Intl. Conf. Multimedia Computing and Systems (ICMCS 94), pages 234—243, Boston, 1994.

P. Lougher and D.Shepard. The Design of a Storage Server for Continuous Media. The Computer
Journal, 36(1):32—42, 1993.

R. T. Ng and J. Yang. Maximizing Buffer and Disk Utlilizationsfor News On-Demand. In Pro-
ceedings of the 20th VLDB Conference, pages 451462, Santiago, Chile, 1994.

Heiko Thimm and Wolfgang Klas. Playout Management — An Integrated Service of aMultimedia
Database Management System, 1995. (Technical Report, GMD-IPSI).

20

