
NetMedia: A Client-Server Distributed Multimedia Database
Environment

Sreenivas Gollapudi and Aidong Zhang
Department of Computer Science

State University of New York at Buffalo
Buffalo, NY 14260fgolla-s, azhangg@cs.buffalo.edu

Abstract

Advances in multimedia computing technologies offer new approaches to support on-line accesses to infor-

mation from a variety of sources such as video clips, audio, images, and books. A client-server distributed

multimedia system would be a practical approach to support such functionalities. In this paper, we present

the design and implementation of a client-server distributed multimedia database environment that can be

used to support large digital libraries. System architecture and design are described. Server functionalities,

including client scheduling, data buffering and admission control, are investigated. A client request can only

be admitted if both the quality-of-service (QoS) requirements from the client and the upper bound on total

buffer consumption at the server are maintained.

1 Introduction

Increased networking capabilities have made it easier and less expensive to tie together different types of

computers and personal workstations. In addition, current computer technology supports many multimedia

standards for software and hardware to uniformly handle multimedia data. These technologies have made

it possible to establish a distributed multimedia database environment which supports on-line accesses to

various multimedia data resources. A distributed multimedia database system integrates multiple local media

database sites into a single global unit. Each site has its own media database management system, connected

via one or more LANs (Local Area Network) and/or a WAN (Wide Area Network). In such a system, a user

at any network node can log on and access data anywhere in the global system as though all data resided right

at the user’s local site.

New issues appear in such distributed multimedia environments. Many multimedia applications, such as

recording and playback of motion video and audio, slide presentations, and video conferencing, require con-

tinuous presentation of a media data stream and the synchronized display of multiple media data streams.

1

Because of these time-related requirements, the allocation of various system resources becomes the most

important aspect of the system design. Specifically, a successful system must maintain balanced tradeoffs

between granting client requests and the overall performance of the system. On the one hand, the participat-

ing clients make their requests and expect these requests to be granted by the server. On the other hand, the

server wants to maintain balance among all clients and maximally utilizes all system resources.

New system architecture and protocols must be designed to achieve the above goals. Some similar func-

tions may need be implemented at both client and server sides to achieve the best system performance. At

the client side, the synchronized presentation of multiple media streams must be maintained. A client may

have to make decisions on skipping or dropping some data to maintain the synchronization of presentations.

Buffer management at the local side may be needed to ensure hiccup-free presentations in case of network

delays. In addition, clients are responsible to send data delivery requests along with the quality-of-service

(QoS) requirements. A client may also periodically send data delivery rate information to the server to vary

the rate at which data are sent if a change is needed in the presentation schedule. At the server side, protocols

to address scheduling of multiple client requests, buffer management for data allocation and replacement, and

admission control of clients must be carefully designed.

In this paper, we will focus our attention on the design of the entire system and the server functionalities.

The design and implementation of a client-server distributed multimedia database environment that can be

used to support large digital libraries will be presented. We will describe the details on the system architec-

ture and design. Protocols to achieve server functionalities, including client scheduling, data buffering and

admission control, are investigated. A client request can only be admitted if both the quality-of-service (QoS)

requirements from the client and the upper bound on total buffer consumption at the server are reserved.

The remainder of this paper is organized as follows. Section 2 introduces the system architecture. In Sec-

tion 3, we present the system design strategies, including the data model, QoS parameter specification and

buffer model. In Sections 4, we investigate the approaches for the server to schedule client request, main-

tain upper bound of buffer consumption and control the number of client requests. Concluding remarks are

offered in Section 5.

2 System Architecture

The system architecture under consideration is illustrated in Figure 1. This architecture includes a distributed

multimedia server, a set of multimedia databases, and a set of clients which access the server. The multimedia

system server is distributedly superimposed on top of a set of database management systems (DBMSs) and

file systems. As certain media streams may be represented and stored in different formats, the underlying

DBMSs or file systems can be heterogeneous. The main function of each client at a workstation is to display

multiple media data to the user in the specified format. Such an architecture can provide adequate database

support for multimedia applications demanding script-based interactive multimedia presentations [TK95].

2

MTL MM MTL MM MTL MM

Media DB

 OODBMS

Media DB

 OODBMS

Client 1 Client 2 Client n

Network

MTL MM MTL MM MTL MM

 Server Server Server

 Media DB

 OODBMS

Figure 1: NetMedia system architecture

As shown in Figure 1, the distributed multimedia database management system contains two main mod-

ules: a multimedia task language (MTL) interpreter and a media manager (MM). At each client site, the

multimedia task language MTL interpreter allows users to specify a set of tasks associated with a multime-

dia task, including synchronization requirements on component tasks. A multimedia task specified in MTL

is then processed by the interpreter, and data accesses are sent to both the MM and the underlying DBMS or

file system for processing.

The MM component at each server site supports the multi-user aspect of media data caching and schedul-

ing. It maintains real-time retrieval of media data from the multimedia database and transfer the data to

the client sites through network. The MM at a client site ensures that media data stored in the multimedia

database will be available on demand in the local buffer and the synchronous presentation of multiple media

streams.

The detailed design of these system components are offered in the following subsections.

2.1 Multimedia Server

The client-server architecture consists of multimedia servers and multimedia clients. The multimedia server,

henceforth referred as the server, sits on top of a file or database system. The server is an event driven process

that uses a time-ordered prioritized query queue to service requests. Figure 2 shows the organization of the

server.

The server is client-driven [LD93], that is, all data transmitted from the server to the client is explicitly

requested. It is the job of the server to guarantee sufficient bandwidth. The clients have to read data at the

same rate as the transfer rate to minimize the buffer requirements at the client. The interpretation of the media

data falls on the clients as data is presented at the client workstations. At present, three types of data, images,

3

Manager
Service

C
om

m
un

ic
at

io
n

M
an

ag
er

N

E

T

W

O

R

K

 OODBMS

Manager
Buffer

Figure 2: Server configuration

digital video and audio are supported.

The server has three components, namely, a communication manager, a buffer manager, and a service

manager. The receiving of queries and sending of data to the clients is handled by the communication man-

ager. It is the responsibility of the communication manager to transfer data at the rate requested by each

client. This ensures that all data is scheduled to meet the deadline requirements of clients. The communica-

tion manager is multi-threaded. It starts a different service thread for every concurrent stream being serviced.

The service manager handles the scheduling of service threads. The retrieval of media data and storage of

data in the buffer is the responsibility of the buffer manager. The handling of multiple client requests and

buffer management are detailed in Section 4.

The server and the clients exchange information via a virtual circuit connection (TCP). At present the

server and the clients sit on an LAN (Local Area Network). Clients control the rate at which the server must

transmit data to the clients. Clients set the rate at the beginning of each connection and can change it at the

beginning of a new request.

2.2 Multimedia Client

A client is responsible for synchronizing the images, audio and video packets and delivering them to the

output devices on the client workstation. A client makes decisions to skip or drop frames to maintain the

synchronization of presentations. In addition, a client sends rate information to the server to vary the rate at

which data are sent if a change is needed in the presentation schedule.

Each client has four components: a service manager, a scheduler, a buffer manager, and a communica-

tion manager. The communication manager receives the data from the server, unpacks it and sends it to the

buffer manager. The communication manager also sends any rate information it receives from the scheduler

4

to the server. The service manager deals with the reading of data from the buffer and delivering it to the

appropriate output device. This service is multi-threaded. The service manager starts a different thread for

every media stream that is to be presented. The scheduler is responsible for synchronizing the delivery of

media objects in all the participating media streams. The buffer manager, as before, deals with the manage-

ment of data in the buffer. A buffer model that is the basis for buffer management at the client and server

sites is presented in the next section. Figure 3 shows the logical layout of clients. Both scheduling and buffer

management at the client site will not be discussed in this paper [?, ?].

���
���
���
���
���

���
���
���
���
���

Buffer Manager

C
om

m
un

ic
at

io
n

M
an

ag
er

Scheduler

Service Manager

Video

 Audio

display

 audio device

N

 E

 T

 W

 O

 R

 K

Figure 3: Client configuration

3 System Design

In this section, we will introduce the system and data models that will be used in the rest of the paper. Quality

of service (QoS) parameters and a buffer model will be introduced.

3.1 Data Model

A media stream can be viewed abstractly at several levels. At the lowest level, a media stream is viewed as

an unstructured BLOB (binary large objects) into several higher-level object classes. Objects from different

media streams may also be spatio-temporally combined into multimedia objects. Several conceptual data

models which follow this general scheme have been proposed. However, few efforts have been made to

formalize a multimedia data model at the task management level for the purpose of scheduling media data

operations.

In the proposed data model, we assume that each media stream is broken into a set of atomic objects.

Higher levels of object classification need not to be considered in this context. Each atomic object represents

a minimum chunk of the media stream that bears some semantic meaning. Atomic objects in different media

streams may have different internal structures. For example, a continuous video stream can be segmented

5

into a set of atomic objects, each of which contains a set of video frames with specific semantic meaning.

Similarly, a continuous audio stream can be segmented into a set of atomic objects, each of which contains

a set of audio samples with specific semantic meaning.

The atomic objects within a media stream are linked together through intra-synchronization time con-

straints. These constraints may specify discrete, continuous, overlapping, or step-wise constant time flow

relationships among the atomic objects. For example, some multimedia streams, such as audio and video,

are continuous in nature, in that they flow across time; other data streams, such as slide presentations and

animation, have discrete, overlapping, or step-wise time constraints. It may, for example, be necessary to

display two distinct slide objects jointly within a single slide presentation stream. In general, the temporal

relationship between two atomic objects in a single stream may conform to any of the thirteen temporal re-

lationships described in [All83]. In our representation, each atomic object is associated with a relative start

time and a time interval which specifies the duration of its retrieval, with the initial atomic objects in the

media stream assumed to start at time zero. The actual start time of a media object is usually dynamically

determined. Once a media stream is invoked, it is associated with an actual start time; each media object

within that stream will similarly be associated with an actual start time. We use < o; t;4t > to denote that

object o is to be delivered at time t and will last time period 4t.

3.2 QoS Specification

Little and Ghafoor [?] have proposed several parameters to measure the QoS for multimedia data presenta-

tion. The following parameters have been listed: (1) average delay, (2) speed ratio, (3) utilization, (4) jitter,

and (5) skew. The average delay is the average presentation delay of each object in a time interval. The speed

ratio is the actual presentation rate to the nominal presentation rate. The utilization equals the ratio of the

actual presentation rate to the available delivery rate of a set of objects. Ideally, both the speed and utilization

ratios should equal 1. During the presentation of a video stream, frame duplication leads to utilization values

greater than 1, while dropping frames would lead to values less than 1. The jitter is the instantaneous differ-

ence between two synchronized streams. The skew is the average difference in presentation times between

two synchronized objects over n synchronization points. Clearly, average delay, speed ratio, and utilization

are used to measure the quality of individual media stream presentations, whereas jitter and skew are used

to measure the quality of presentation among multiple media streams.

While the delivery of each media stream would ideally minimize the average delay and hold the parame-

ters of speed ratio and utilization close to 1, the achievement of these three goals is actually in conflict. There

must therefore be trade-offs between these goals during scheduling. Consider a synchronous presentation of

audio and video streams. If the scheduler attempts to minimize the average delay of audio objects, it must

respond to the delay of an audio object by dropping some frames in the corresponding video object. If the

scheduler tries to hold the utilization of video objects close to 1 when delays occur, it must decrease the speed

ratio of these objects, and, consequently, increase the average delay. Thus, it is generally impossible for all

6

parameters to achieve an ideal state for all applications. There must be trade-offs among different QoS pa-

rameters.

Different application domains may have different QoS requirements. The specific QoS requirements for

the domain of education or training in educational digital libraries were discussed in [?]. We will not discuss

here the QoS specification for specific application domains. We assume that maximum allowable delays for

individual media streams are pre-specified. These measures provide the permissible ranges for average delay

and speed ratio. In addition, we assume that maximum allowable skips for individual media streams are also

pre-specified. These measures provide the permissible ranges for utilization.

3.3 Buffer Model

We now present a framework which generates the required start times for media objects. This framework

guarantees the continuity of media stream presentation while minimizing buffer utilization at both client and

server sites.

3.3.1 Media Streams

Buffer management is needed in both client and server sites to ensure that the loading of media objects will

not cause the delay of their presentation. At the client sites, to facilitate a hiccup-free presentation, we must

ensure that an object is present in local memory before it is delivered. At the server sites, we must ensure

that once a media stream is started to be retrieved and transmitted, this retrieval and transmission will be

performed in a desirable rate.

At the server site, the loading of a media stream from disk to memory is much faster than the transmission

of the media stream across the network to the client site. However, at the client site, the rate at which data

is received from the servers could be comparable to the display rate of the media streams. Therefore, both

network and storage delays must be considered in determining the preloading time of a media stream at the

client sites.

We will now define a general model that can be used at both the client and server sites. For the sake of

brevity, we will use delivery/consumption interchangeably to refer to delivery of a media stream at the client

site as well as the transmission of a media stream from the server site. Similarly, loading will be used to

refer to loading of media data from the disk into the buffer at the server site as well as loading of media data

into the buffer at the client site. Delays at the client site include network delays during transmission and the

storage delays at the servers. Multiple streams at the client site refers to the streams that are involved in a

presentation at the client site, while multiple streams at a server refer to the multiple requests a server can

service simultaneously.

Let tm
ls

be the time at which the loading of media stream m begins and loading function Lm(t; tm
ls
) be the

total number of media objects of m read at time t. Let tm
cs

be the time at which the consumption of data stream

7

m begins and consuming function Cm(t; tm
cs
) be the total number of media objects consumed at time t. The

number of media objects that must be buffered at any given time is then given by

Bm(t; tm
cs
) =8>><>>: 0 if t < tm

ls
,

Lm(t; tm
ls
) if tm

ls
� t < tm

cs
,

Lm(t; tm
ls
)�Cm(t; tm

cs
) if t � tm

cs
.

(1)

Given Dmax as the amount of buffer for delay recovery in the delivery of media stream m, this amount

must be added to consumption to determine the start time of delivering the stream.

Suppose that a solution is to begin delivery at time x. That is, Bm(t;x) is at least zero for any time x �
t � tm

l f
, where tm

l f
is the time at which the loading of data stream m is completed. If we compare Bm(t;x) with

Bm(t; tm
ls
) in the range x� t � tm

l f
, we see that

Bm(t;x) = Lm(t; tm
ls)� (Cm(t;x)+Dmax)= Lm(t; tm
ls)�Cm(t;x)�Dmax= Bm(t; tm
ls)+Cm(t; tm

ls)�Cm(t;x)�Dmax= Bm(t; tm
ls)�Dmax +Cm(t; tm

ls)�Cm(t;x): (2)

If Bm(t; tm
ls
) � Dmax in the range tm

ls
� t � tm

l f
, then Bm(t;x)� 0 for x � tm

ls
. Thus, the start time of stream m

can be tm
ls

. We now consider the situation that Bm(t; tm
ls
)�Dmax may be negative in the range tm

ls
� t � tm

l f
. Let

Bm(t; tm
ls
)�Dmax ��k(k � 0) and Bm(t;x)� 0. Thus, x must be the minimum start time such that

Cm(t; tm
ls)�Cm(t;x)� k: (3)

Thus, x can be determined when both consuming function and the loading time are given. This start time

assumes that the entire stream will be continuously loaded. However, in our context, we assume that the

data unit to be accessed is media object rather than the entire stream. Thus, after the display or deliver time

of stream m is determined, the deliver time of each media object within the stream must also be precisely

determined.

3.3.2 Media Objects

In order to ensure a hiccup-free presentation based on pre-determined time, the loading of each media object

must guarantee that there is enough object data to be consumed at its consuming time. The presentation of

each object can thus be divided into two phases: (a) a loading phase and (b) a consumption phase. Let t im
ls

be

the time at which the loading of object oim of stream m begins and loading function Lim(t; t im
ls
) be the amount

of object oim of stream m read at time t. Let t im
cs

be the time at which the consumption of object oim of stream

8

m begins and consuming function Cim(t; t im
cs
) be the amount of object oim consumed at time t. The amount of

buffer space that must be allocated for object oim at any given time t is given by

Bim(t; t im
cs
) =8>><>>: 0 if t < t im

ls
,

Lim(t; t im
ls
) if t im

ls
� t < t im

cs
,

Lim(t; t im
ls
)�Cim(t; t im

cs
) if t � t im

cs
.

(4)

In similar manner to the derivation given above, we can derive the relationships between the loading and

consuming times for each media object oim, as follows:

Bim(t; t im
cs
) = Lim(t; t im

ls)� (Cim(t; t im
cs
)+Dim

max)= Lim(t; t im
ls)�Cim(t; t im

cs
)�Dim

max= Bim(t; t im
ls)+Cim(t; t im

ls)�Cim(t; t im
cs
)�Dim

max= Bim(t; t im
ls)�Dim

max +Cim(t; t im
ls)�Cim(t; t im

cs
): (5)

Let kim be determined by Bim(t; t im
ls
)�Dim

max � �kim(kim � 0), where Dim
max is the amount of buffer for delay

recovery in the presentation of the object oim. We then have

Cim(t; t im
ls)�Cim(t; t im

cs
)� kim: (6)

Thus, for each object oim in stream m to be successfully presented at time x = t im
cs

, it must be loaded into

memory at a time satisfying Formula (6).

In case that the consuming function is linear, that is,

Cm(t;x) =(0 if t < x,

rm
c (t�x) if t � x.

(7)

where rm
c is the consuming rate of stream m. We then have the start time of the first object of the stream m

based on Formula (3):

x � tm
ls + k

rm
c
; (8)

and the preloading times for the rest of the media objects based on Formula (6):

t im
ls � t im

cs
� kim

rm
c
; (9)

Depending on the loading delays and the amount of data that has to be loaded, t im
ls

can belong to any of the

time periods in which previous media objects are consumed.

9

4 Multimedia Server Functionalities

In this section, we will investigate protocols for the scheduling of client requests, buffer management for data

allocation and replacement, and admission control of clients.

The distributed multimedia server plays a central role in the delivery of continuous media in distributed

systems. The server handle the retrieval, storage and delivery of media data to clients across the network.

Playback of digital video and audio requires high data delivery rate. Continuous playback of such media

data necessitates hiccup-free presentation and is usually coupled with the delivery of another media stream

via synchronization. Thus, the delivery of continuous media can be thought of as a sequence of periodic tasks

with deadlines.

Since the fetching rate of continuous media is much higher than the delivery rate, it is conceivable to

have systems that fetch data just before playback. However, owing to the bursty nature of retrieval, infor-

mation retrieved may have to be buffered before playback. It is the function of the server to store enough

data in the buffers so as to allow for a continuous playback at the client process. Having a modest amount of

buffering would be enough to meet the deadline requirements for single client requests. In practice, however,

a distributed multimedia server has to process more than one client request simultaneously. This puts more

constraints on shared resources like the server cache. Guaranteeing the deadline constraints of a client can

be achieved by simply dedicating a connection to the disk per client. However, this can seriously limit the

number of client requests at any time owing to limited number of disk access channels available. More client

requests can be scheduled by multiplexing disk access across multiple client requests. This requires efficient

buffer management and admission control by the server to maximize the number of client requests serviced.

In fact, it can be shown that the maximum number of client requests can be serviced simultaneously by the

server when the amount of data retrieved for each client is proportional to the consumption rate of the client

[GC92, LD93, HGP94].

4.1 Scheduling Multiple Clients

Consider a distributed multimedia server servicing n client requests simultaneously (say R1;R2; : : :Rn, re-

spectively). At the outset, let us assume that a request Ri identifies a media object Ob ji that a client wishes to

present. Furthermore, this object could be stored as a number of segments in a local DBMS. The segments

are assumed to be of the same size. It is the responsibility of the server to identify all the relevant segments

and load them into the buffer before transmitting them to the client.

The service time of the server is divided into fixed size of intervals. Each interval is then dynamically

divided into n rounds, assuming that there are currently n client requests. The server services all current n

requests in terms of periodic rounds [HGP94], retrieving a fraction of the segments for each client request

in each round. Thus, interval Il consists of roundl j; j = 1; : : : ;n: The number of segments to be retrieved in

10

each round can be calculated as follows. Let rc1;rc2; : : : ;rcn be the playback or consumption rates1 specified

by the n client requests, respectively. Without loss of generality, let the duration of each interval be t. The

duration of each round in an interval with n client requests would then be

d = t=n:
The number of segments to be retrieved for request Ri in each round would be

Ni = rcid:
Note that with increase in the number of clients being serviced in each interval, the duration of each round

decreases. Increasing the number of client requests would reduce the QoS at each client as the data each

client can access in each round becomes less and less.

Due to difference in compression techniques of media data and differences in relative placement of seg-

ments on the disk, the actual time τik taken to retrieve Ni segments in roundik could be different in any two

rounds. Vin and co-workers [HGP94] define overflow and underflow rounds if τik > d and τik < d respec-

tively. In an underflow round, the server can read more segments into the buffer so long as the duration of

the round does not exceed d. This, termed read-ahead, helps in reducing delays in the retrieval of objects in

the future rounds. On the other hand, in the case of an overflow round, the server delays the retrieval of the

rest of the segments until the next round, i.e., roundik+1. Note that this delay need not necessarily reduce the

QoS parameters for each client when data of each stream is retrieved before the start of presentation of each

stream.

Let Nact
ik be the actual number of segments read in roundik for request Ri. Given that the average seek

time of segments in roundik is λik = Nact
ik =d, the maximum seek time for a segment belonging to a request Ri

can be calculated as

λmax
i = maxfλi j j 1 � j � nrg; (10)

where nr is the number of rounds completed so far.

4.2 Buffer Management

This Section will develop a framework which generates required minimum buffer space for media objects at

the server site. The framework guarantees both continuity and synchrony in the presentations at one or more

client sites and smooth retrieval and transmission of objects at the server site.

In the above analysis of scheduling multiple clients, multiple requests are simultaneously supported by

assuming that, for each request Ri, enough segments of Ri are loaded into memory to allow smooth transmis-

sion of the segments to the client. Buffers are needed to satisfy this criterion. It is clear from (1) that the size

of buffer at any point in a time interval [a;b] depends on external factors and cannot be predetermined. This

1We assume here that the consumption rate is defined to be the number of segments per unit time.

11

problem may be circumvented by allocating maximum buffer required for each object presented in [a;b]. The

precise definition of interval would be made clear later.

We will limit the analysis to a case where both the loading function Lim and the consuming functionCim of

segment sim belonging to request Ri are linear. The underlying assumption in the case of the loading function

is that the seek time is much less than the load time. Besides, loading of a VBR stream can be segmented into

intervals during which the loading rate can be considered essentially constant. Thus, Lim can be approximated

as a linear function

Lim(t; t im
ls) =(0 if t < t im

ls
,

rim
l (t� t im

ls
) if t � t im

ls
.

(11)

where rim
l is the loading rate of segment sim belonging to request Ri. A linear case of the consuming function

is shown in (7). Without loss of generality, let us assume that the loading rate of all segments in stream Ri

is constant and that the consumption rate of all segments belonging to request Ri is also constant; that is,8i 1 � i � ni,

rim
l = rm

l ;
rim

c = rm
c : (12)

However, segments belonging to different client requests need not have uniform loading or consumption

rates. For a detailed analysis of buffer consumption with streams with identical consumption rates, the reader

is referred to [NY94].

Clearly, if the loading rate of a segments belonging to request Ri is greater than the consumption rate, all

segments belonging to request Ri attain their maximum buffer requirement at the end of loading phase, that

is, at t = t im
l f

, provided t im
l f
2 [a;b]. In contrast, if the consumption rate is higher than the loading rate, then all

segments belonging to request Ri attain their maximum buffer requirement at the beginning of consumption

phase, at time t = t im
cs

, given t im
cs
2 [a;b]. Let us denote the time at which segment sim belonging to request Ri

attains its maximum buffer requirement as t im
max. If t im

max 62 [a;b], the maximum buffer requirement could occur

at one of the bounds of the interval. For the case rm
l > rm

c , we define the time at which segment sim belonging

to request Ri attains its maximum buffer requirement as

t im
max =8>><>>: t im

l f
if a � t im

l f
� b,

a if t im
l f
< a,

b if t im
l f
> b.

(13)

On the other hand, if rm
c > rm

l ,

t im
max =8>><>>: t im

cs
if a � t im

cs
� b,

a if t im
cs
< a,

b if t im
cs
> b.

(14)

Given that each segment sim belonging to request Ri needs the maximum buffer space at t = t im
max in the

interval [a;b], the maximum buffer requirement for all segments loaded in the interval is simply the sum of

12

all maximum buffers over all the objects presented in interval [a;b]. Let Bm
tot denote the maximum buffer

requirement over all the segments belonging to request Ri that are presented in the interval [a;b]. It is given

by

Bm
tot = ni

∑
i=1

Bim(t im
max; t im

cs
); (15)

where ni is the total number of segments belonging to request Ri in the interval. Therefore, the total buffer

requirement over all the requests is

Btot = n

∑
j=1

B j
tot ;= n

∑
j=1

n j

∑
i=1

Bi j(t i j
max; t i j

cs
); (16)

where n is the total number of requests and n j is the total number of segments belonging to request R j in the

interval.

In a different study [GZ96], the authors have shown the advantage of buffer sharing over the simple buffer

management strategy shown above. A full analysis of buffer sharing would involve finding the maximum

buffer requirement applicable to all the segments presented in an interval. From the result obtained in [GZ96],

we have

Corollary 1 The maximum buffer requirement over all the segments in interval [a;b] occurs at a time when

at least one of the segments attains its maximum buffer requirement in that interval and is given by

Bshar = maxf n

∑
j=1

n j

∑
i=1

Bi j(tkl
max; t i j

cs
) j 1� l � n; 1 � k � nlg: (17)

Figure 4 shows a typical delivery schedule of two media media streams. The increasing slope refers to

the loading of the data from the disk while the decrease relates to the transmission of data from the buffer to

the client.

A multimedia server can organize the storage of media data from the disk in terms of fixed size media

blocks [HGP94] that correspond to the media segments. Thus, the buffer can be segmented into slots to hold

the media blocks. Without loss of generality, let us assume that the size of media segments is equal to the

size of a buffer slot. Let us denote the buffer requirement for retrieving a segment in roundik by Bik(t; t ik
cs
).

Since the disk access rate is usually higher than the transmission rate, the communication manager can start

sending data to the client as soon as data is loaded into the buffer by the buffer manager. This also means

that the maximum buffer requirement for each media segment would occur at the end of the loading phase

in each round. Let t ik
max denote the time at which the maximum buffer requirement occurs in roundik, and ts

ik

and t f
ik as the starting and finishing times of roundik respectively. The maximum buffer requirement would

occur at the end of the round, i.e., t ik
max = t f

ik, and is equal to Bik(t f
ik; t ik

cs
).

13

time

media stream 1
media stream 2

t = t t = t t = t
0 1 2

bu
ff

er
 c

on
su

m
pt

io
n

Figure 4: Typical delivery of media streams.

Figure 6 shows the buffer consumption profile for two simultaneous requests. In round 0, the server

loads in the data for client 0, while in round 1 data for client 1 is loaded. Note that in round 1, whatever

is left of the data read for client 0 in round 0 is also transmitted by the communication manager. Using the

buffer consumption model defined in Section 2, one can very easily determine the maximum amount of buffer

required in each interval. This maximum is then used to define an admission control policy. Note that the

maximum buffer requirement in interval 0 in Figure 6 occurs at t0 and occurs at t1 in the interval 1.

Buffers

 Time

t = t

t = t

0

1

round 01 round 11 round 02 round 12 round 03 round 13

Figure 5: Buffer consumption for two client requests

From azhang Mon Apr 22 09:42 EDT 1996 Return-Path: azhang Received: from merope.cs.Buffalo.EDU

(azhang@merope.cs.Buffalo.EDU [128.205.34.19]) by hadar.cs.Buffalo.EDU (8.6.10/8.6.4) with ESMTP id

JAA11952 for ¡golla-s@hadar.cs.Buffalo.EDU¿; Mon, 22 Apr 1996 09:42:37-0400 Received: (azhang@localhost)

by merope.cs.Buffalo.EDU (8.6.10/8.6.4) id JAA09762 for golla-s; Mon, 22 Apr 1996 09:42:22 -0400 Date:

Mon, 22 Apr 1996 09:42:22 -0400 From: Aidong Zhang ¡azhang¿ Message-Id: ¡199604221342.JAA09762@merope.cs.Buffalo.EDU¿

To: golla-s Content-Type: text Content-Length: 8647 Status: RO

14

4.3 Buffer Management

This section will develop a framework which generates required minimum buffer space for media objects at

the server site. The framework guarantees both continuity and synchrony in the presentations at one or more

client sites and smooth retrieval and transmission of objects at the server site.

In the above analysis of scheduling multiple clients, multiple requests are simultaneously supported by

assuming that, for each request Ri, enough segments of Ri are loaded into memory to allow smooth transmis-

sion of the segments to the client. Buffers are needed to satisfy this criterion. It is clear from (1) that the size

of buffer at any point in a time interval [a;b] depends on external factors and cannot be predetermined. This

problem may be circumvented by allocating maximum buffer required for each object presented in [a;b]. The

precise definition of interval would be made clear later.

We will limit the analysis to a case where both the loading function Lim and the consuming functionCim of

segment sim belonging to request Ri are linear. The underlying assumption in the case of the loading function

is that the seek time is much less than the load time. Besides, loading of a data stream can be segmented into

intervals during which the loading rate can be considered essentially constant. Thus, Lim can be approximated

as a linear function

Lim(t; t im
ls) =(0 if t < t im

ls
,

rim
l (t� t im

ls
) if t � t im

ls
.

(18)

where rim
l is the loading rate of segment sim belonging to request Ri. A linear case of the consuming function

is shown in (7). Without loss of generality, let us assume that the loading rate of all segments belonging to

client request Ri is constant and that the consumption rate of all segments belonging to request Ri is also

constant; that is, 8i 1 � i� ni,

rim
l = rm

l ;
rim

c = rm
c : (19)

However, segments belonging to different client requests need not have uniform loading or consumption

rates. For a detailed analysis of buffer consumption with streams with identical consumption rates, the reader

is referred to [NY94].

Clearly, if the loading rate of a segments belonging to request Ri is greater than the consumption rate, all

segments belonging to request Ri attain their maximum buffer requirement at the end of loading phase, that

is, at t = t im
l f

, provided t im
l f
2 [a;b]. In contrast, if the consumption rate is higher than the loading rate, then all

segments belonging to request Ri attain their maximum buffer requirement at the beginning of consumption

phase, at time t = t im
cs

, given t im
cs
2 [a;b]. Let us denote the time at which segment sim belonging to request Ri

attains its maximum buffer requirement as t im
max. If t im

max 62 [a;b], the maximum buffer requirement could occur

at one of the bounds of the interval. For the case rm
l > rm

c , we define the time at which segment sim belonging

15

to request Ri attains its maximum buffer requirement as

t im
max =8>><>>: t im

l f
if a � t im

l f
� b,

a if t im
l f
< a,

b if t im
l f
> b.

(20)

On the other hand, if rm
c > rm

l ,

t im
max =8>><>>: t im

cs
if a � t im

cs
� b,

a if t im
cs
< a,

b if t im
cs
> b.

(21)

Given that each segment sim belonging to request Ri needs the maximum buffer space at t = t im
max in the

interval [a;b], the maximum buffer requirement for all segments loaded in the interval is simply the sum of

all maximum buffers over all the objects presented in interval [a;b]. Let Bm
tot denote the maximum buffer

requirement over all the segments belonging to request Ri that are presented in the interval [a;b]. It is given

by

Bm
tot = ni

∑
i=1

Bim(t im
max; t im

cs
); (22)

where ni is the total number of segments belonging to request Ri in the interval. Therefore, the total buffer

requirement over all the requests is

Btot = n

∑
j=1

B j
tot ;= n

∑
j=1

n j

∑
i=1

Bi j(t i j
max; t i j

cs
); (23)

where n is the total number of requests and n j is the total number of segments belonging to request R j in the

interval.

In a different study [?], the authors have shown the advantage of buffer sharing over the simple buffer

management strategy shown above. A full analysis of buffer sharing would involve finding the maximum

buffer requirement applicable to all the segments presented in an interval. From the result obtained in [?],

we have

Corollary 2 The maximum buffer requirement over all the segments in interval [a;b] occurs at a time when

at least one of the segments attains its maximum buffer requirement in that interval and is given by

Bshar = maxf n

∑
j=1

n j

∑
i=1

Bi j(tkl
max; t i j

cs
) j 1� l � n; 1 � k � nlg: (24)

Figure 4 shows a typical delivery schedule of two media media streams. The increasing slope refers to

the loading of the data from the disk while the decrease relates to the transmission of data from the buffer to

the client.

16

time

media stream 1
media stream 2

t = t t = t t = t
0 1 2

bu
ff

er
 c

on
su

m
pt

io
n

Figure 6: Typical delivery of media streams.

A multimedia server can organize the storage of media data from the disk in terms of fixed size media

blocks [HGP94] that correspond to the media segments. Thus, the buffer can be segmented into slots to hold

the media blocks. Without loss of generality, let us assume that the size of media segments is equal to the

size of a buffer slot. Let us denote the buffer requirement for retrieving a segment in roundik by Bik(t; t ik
cs
).

Since the disk access rate is usually higher than the transmission rate, the communication manager can start

sending data to the client as soon as data is loaded into the buffer by the buffer manager. This also means

that the maximum buffer requirement for each media segment would occur at the end of the loading phase

in each round. Let t ik
max denote the time at which the maximum buffer requirement occurs in roundik, and ts

ik

and t f
ik as the starting and finishing times of roundik respectively. The maximum buffer requirement would

occur at the end of the round, i.e., t ik
max = t f

ik, and is equal to Bik(t f
ik; t ik

cs
).

Figure 6 shows the buffer consumption profile for two simultaneous requests. In round 01, the server

loads in the data for client request 0, while in round 11 data for client request 1 is loaded. Note that in round

11, whatever is left of the data read for client request 0 in round 01 is also transmitted by the communication

manager. Using the buffer consumption model defined above, one can very easily determine the maximum

amount of buffer required in each interval. This maximum is then used to define an admission control policy.

Note that the maximum buffer requirement in interval 0 in Figure 6 occurs at t0 and occurs at t1 in the interval

1.

4.4 Admission Control

Guaranteeing continuous playback for each client request requires that the retrieval time of data in a round

does not exceed the playback time of the data retrieved in that round. This necessitates the server to employ

admission control to decide whether a new client request can be admitted without violating the deadline re-

quirements of the current client requests. The formulation of an admission control strategy would depend on

the QoS requirements of each client and the shared resources at the server site.

Different clients would have varying QoS parameters. The multimedia server should exploit this varia-

17

Buffers

 Time

t = t

t = t

0

1

round 01 round 11 round 02 round 12 round 03 round 13

Figure 7: Buffer consumption for two client requests

tion while servicing the client requests. Let α embody the QoS associated with each client request. A strict

servicing policy would set α to 1, thereby requiring the server to meet all the deadline requests of the client.

A flexible request would have a value in the range [0,1] suggesting that the server can drop some segments if

it cannot meet a deadline requirement. In such a case, the server can also delay the transmission of segments

so long as the new deadline requirements are within the QoS specifications set by the client. Thus, the frac-

tion of data, such as frames in a video clip, that can be dropped or time through which the server can delay

the transmission of segments is set by α.

Another important parameter in admission control is the buffer limitation. Servicing a new request would

mean increase in the buffer requirements. Admitting of a new request should not violate the deadline require-

ments of the current requests being serviced. A simple strategy would be to make sure that the total buffer

consumption in next m successive intervals does not exceed the maximum buffer size Bmax. To do this, one

needs an upper bound on the seek times for each request. The upper bounds on the seek times for the current

requests can be found using the analysis given in Section 4.1. To find the upper bound on the seek time for a

new request, we can find such a bound (say, λmax) by running a calibration program. The minimum number

of segments retrieved in a round can be calculated by uniformly spacing the segments across the disk thereby

maximizing the seek times [GDN95].

Calculation of m proceeds as follows. Let R = fR1; : : :;Rng denote the set of current requests being

serviced. Each request Ri has a maximum seek time λmax
i calculated as described in Section 4.1. Let si denote

the size of each request Ri 2 R that is left to be read from the disk. The maximum number of rounds that are

required for each request Ri 2 R is siλmax
i
d . Note that the value of d is now t=(n+ 1). The value of m would

then be

m = maxfsiλmax
i

d
j 1 � i � ng (25)

Adding a new request to the current set of requests would decrease the duration of each round in an inter-

val. Let Nik and N
0
ik denote the number of segments read for request Ri in roundik when there are n and n+1

requests to be serviced respectively. Thus, Nik�N
0
ik segments are delayed in their retrieval to the next round

18

roundik+1. Note that delaying the retrieval to the next round does not necessarily result in a discontinuity in

the playback for client request Ri depending on the amount of read-ahead NAik , which determines the number

of segments read from the disk prior to playback initiation [HGP94]. Therefore, the number of segments that

can be dropped or delayed without causing a discontinuity is given by the relation

Nik�N
0
ik � NAik +Nik(1�αi): (26)

A simple admission control policy would be a greedy policy that calculates the buffer requirement for

each new request and then admits the request if the total buffer consumption in next m successive intervals

does not exceed the maximum buffer size Bmax and the QoS specifications (set by equation 19) of all the

current clients requests are not violated. The goal of the admission control algorithm, under such conditions,

would be to maximize the number of client requests admitted. The greedy admission control algorithm takes

in as input a request (fR1; : : : ;Rng;Rn+1), that consists of a set of current requests being serviced and the new

request Rn+1 that needs to be admitted, along with the QoS parameter for each client request, and produces

as output the decision whether to admit the new request or not.

Greedy admission
Input: (fR1; : : : ;Rng;Rn+1), Bmax, αi (1� i� n+1)

m maxfsiλmax
i =d; 1� i� ng

for i = 1 to m do
//Check if QoS specifications of each client is violated
for k = 1 to n do

if Nik�N
0
ik > NAik +Nik(1�αi) then return FALSE

//Calculate the maximum buffer requirement in each interval
Bi

shar = maxf∑n+1
j=1 B ji(t jl

max;t ji
cs) j 1� l � n+1g

if Bi
shar > Bmax then return FALSE

endfor
return TRUE

Using buffer sharing does increase the number of client requests admitted over non-shared buffer schemes.

This is because more clients can be admitted without overflowing the buffer.

5 Conclusions

We have presented the design and implementation of a client-server distributed multimedia database envi-

ronment that can be used to support large digital libraries. Several main system architecture and design fea-

ture have been provided. In the system design, we have described a data model, QoS specification and a

buffer model for supporting both the client and server functionalities. Server functionalities, including client

scheduling, data buffering and admission control, are investigated, and the protocols to implement these func-

tionalities are offered. A client request can only be admitted if both the QoS requirements from the client and

the upper bound on total buffer consumption at the server are satisfied.

19

References

[AD90] A.Dan and D.Towsley. An Approximate Analysis of the LRU and FIFO Buffer Replacement

Strategies. In ACM SIGMETRICS, pages 143–152, Denver, CO, May 1990.

[All83] James F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of ACM,

26(11), 1983.

[GC92] Jim Gemmell and Stavros Christodoulakis. Principles of delay-sensitive multimedia data storage

and retrieval. ACM Transactions on Information Systems, 10(1):51–90, January 1992.

[GDN95] G.Neufeld, D.Makaroff, and N.Hutchinson. The Design of a Variable Bit Rate Continuous Media

Server. Technical Report TR-95-06, Dept. of Computer Science, University of British Columbia,

Vancouver, Canada, March 1995.

[GZ96] Sreenivas Gollapudi and Aidong Zhang. Buffer Management in Multimedia Database Systems.

In Proc. of IEEE Multimedia Systems ’96, Hiroshima, Japan, June 1996.

[HGP94] H.M.Vin, A. Goyal, and P.Goyal. Algorithms for Designing Multimedia Servers. In First IEEE

Intl. Conf. Multimedia Computing and Systems (ICMCS’94), pages 234–243, Boston, 1994.

[LD93] P. Lougher and D.Shepard. The Design of a Storage Server for Continuous Media. The Computer

Journal, 36(1):32–42, 1993.

[NY94] R. T. Ng and J. Yang. Maximizing Buffer and Disk Utlilizations for News On-Demand. In Pro-

ceedings of the 20th VLDB Conference, pages 451–462, Santiago, Chile, 1994.

[TK95] Heiko Thimm and Wolfgang Klas. Playout Management – An Integrated Service of a Multimedia

Database Management System, 1995. (Technical Report, GMD-IPSI).

20

