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AbstractData communication and fault tolerance are important issues in multiprocessor systems. One way toachieve fault tolerant communication is by exploiting and e�ectively utilizing the disjoint paths that existbetween pairs of source, destination nodes. In this paper we construct a structure, called the multiple edge-disjoint spanning trees, on the star network, denoted by Sn. This is used for the derivation of an optimalsingle node broadcasting algorithm, which o�ers a speed up of n� 1 compared to the straightforward singlenode broadcasting algorithm that uses a single breadth �rst spanning tree. It is also used for the derivationof fault tolerant communication algorithms. As a result, fault tolerant algorithms are presented for fourbasic communication problems: the problem of a single node sending the same message to all other nodesor single node broadcasting, the problem of simultaneous single node broadcasting from all nodes or multin-ode broadcasting, the problem of a single node sending distinct messages to each one of the other nodesor single node scattering and �nally the problem of simultaneous single node scattering from all nodes ortotal exchange. Fault tolerance is achieved by sending multiple copies of the message through a number ofdisjoint paths. These algorithms operate successfully in the presence of up to n � 1 faulty nodes or edgesin the system. They also o�er the exibility of controlling the degree of fault tolerance, depending on howreliable the network is. As pointed out in [28], the importance of these algorithms lies in the fact thatno knowledge of the faulty nodes or edges is required in advance. All of the algorithms presented makethe assumption that each node can exchange messages of �xed length with all of its neighbors simultane-ously at each time step, i.e. the all-port communication assumption, and that communication is bidirectional.Key words and phrases: communication algorithm, edge-disjoint, fault tolerance, interconnection net-work, optimality, parallel algorithm, spanning tree, star network.
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Figure 1: (a) The S3 network. (b) The S4 network: 4 interconnected S3 networks.1 IntroductionThe star network was proposed in [1] as \an attractive alternative to the n-cube" topology for interconnectingprocessors in parallel computers. Since its introduction, the network received considerable attention. Letus denote by Vn the set of n! permutations of symbols f1; 2; :::; ng. A star interconnection network onn symbols, denoted by Sn = (Vn; ESn), is an undirected graph with n! nodes. Each node i = i1i2:::inis connected to n � 1 nodes that are obtained by transposing the �rst with the kth symbols of i, i.e.(i1i2:::ik�1ikik+1:::in; iki2:::ik�1i1ik+1:::in) 2 ESn , for 2 � k � n, Fig.1. We call these n � 1 connectiondimensions. Thus each node is an endpoint of n�1 edges through dimensions 2; 3; :::; n. Sn enjoys a numberof properties desirable in interconnection networks. These include node and edge symmetry, maximal faulttolerance, and strong resilience. Because of its symmetry, the network is easily extensible, can be decomposedin various ways and allows for simple routing algorithms. In addition Sn is superior to Cn (the n-cube) withrespect to two key properties: degree (number of edges at each node), and diameter (maximum distancebetween any two nodes) [1]. The degree of Sn is n� 1, i.e. sublogarithmic to the number of its nodes while ahypercube with �(n!) nodes has degree �(logn!) = �(n logn), i.e. logarithmic to the number of its nodes.The same can be said for the diameter of Sn which is b3(n�1)2 c. The network was shown to be Hamiltonian[24], and e�cient algorithms for sorting [23] and Fourier transform computation [10, 11], were developed onit. Data communication and fault tolerance are important issues in multiprocessor systems, in which pro-cessors are connected to each other according to a speci�c topology. In order for a network of processors tobe candidate for parallel processing, it must lend itself to the derivation of optimal communication and faulttolerant algorithms. Working towards this direction in this paper, we construct the multiple edge-disjointspanning trees structure on the star interconnection network. We say that a node h of Sn is the root ofmultiple edge-disjoint spanning trees, denoted by EDTh, if each of the nodes adjacent to h is the root of atree that spans all nodes of Sn except h and all of these trees are edge-disjoint. This structure is useful for3



the construction of optimal communication and fault tolerant communication algorithms and has been usedbefore for other popular interconnection networks such as the hypercube [16, 18] and the cube connectedcycles [15] networks.Using the multiple edge-disjoint spanning trees structure we derive an optimal algorithm for the singlenode broadcasting problem and optimal fault tolerant algorithms for the single node broadcasting, multinodebroadcasting, single node scattering and total exchange problems under the all-port communication assump-tion on Sn. Single node broadcasting is the problem where a node wishes to transmit the same message toall other nodes. Multinode broadcasting is the problem of simultaneous single node broadcasting of the samemessage from every node to all other nodes. Single node scattering is the problem of a single node sendingdistinct messages to each one of the other nodes. Finally, total exchange is the problem of each node sendingdistinct messages to every other node. The optimal single node broadcasting algorithm derived o�ers a speedup of n� 1 over the straightforward algorithm that uses a single breadth �rst spanning tree. The basic ideais to split the original message into n � 1 packets of equal size, each of which is broadcast independentlythrough a di�erent edge-disjoint spanning tree. Each node receives part of the message through a di�er-ent disjoint path from the source node and as a consequence the network resources are fully utilized. Toachieve fault tolerant communication multiple copies of the same message are send through the edge-disjointspanning trees. As a consequence each node receives a copy of the message through a number of disjointpaths from the source node and the reliability of the algorithm is increased. The algorithms presented canoperate successfully in the presence of up to n � 1 faulty nodes or edges in the system. They also o�er theexibility of controlling the degree of fault tolerance depending on the required reliability, by forcing thesame message through a speci�c number of edge-disjoint subtrees. As pointed out in [28], the importanceof these algorithms lies in the fact that no knowledge of the faulty nodes or edges is required in advance.In all of the algorithms the assumption that each node can exchange messages of �xed length with all ofits neighbors at each time step, i.e. the all-port communication assumption, is adapted. Communication isassumed to be bidirectional. Other data communication algorithms and properties on Sn can be found in[1, 4, 5, 13, 14, 22, 25, 26, 27]. Fault tolerant algorithms and properties on Sn using di�erent approachescan be found in [2, 8, 9, 17, 19, 29].This paper is organized as follows: Following the introduction to the subject in section 1, notations andde�nitions that are used throughout the paper are introduced in section 2. Section 3 presents the multipleedge-disjoint spanning trees structure on the star network. In section 4 we demonstrate several applicationsof this structure in the areas of data communication and fault tolerance. More speci�cly, lower bounds for allthe algorithms presented are derived in subsection 4:1. The optimal single node broadcasting algorithm ofMmessages under the all-port assumption is presented in subsection 4:2. Finally, the fault tolerant algorithmsfor the single node broadcasting, multinode broadcasting, single node scattering and total exchange problems,under the all-port assumption again, are presented in subsections 4:3 to 4:6 respectively. We conclude insection 5, along with a summary of the results and some suggestions for further research.4



2 Notations and de�nitionsIn what follows, node i is labeled by permutation i1i2:::in. By In we denote the sorted permutation on the nsymbols f1; 2; :::; ng. Calligraphic letters are used for sets. We denote by N the set of symbols f1; 2; :::; ng.Symbols i, j and h are used for nodes of Sn. By dim(i; j) we denote the dimension of edge (i; j). Two pathsbetween a pair of nodes are parallel if they are node (and as an extension edge) disjoint. A misplaced symbolof a node is a symbol that does not occupy its correct position.Skn�1, 2 � k � n, is the subnetwork induced by all nodes of Sn with symbol 1, in the kth position of theirlabel. It is well known that Skn�1, 2 � k � n, is an Sn�1 de�ned on symbols f2; :::; ng, [1]. For notationpurposes, in what follows, we use the symbol S1n�1, to denote the set of (n � 1)! nodes of Sn with symbol 1in the �rst position of their label. It is known that S1n�1 is a collection of (n � 1)! isolated nodes.De�nition 1: In the cycle notation of a node each symbols position is that occupied by the next symbol(cyclically) in the cycle (the position of a symbol is de�ned with respect to the sorted permutation In) [20].Cycles with only one symbol are excluded from the cycle notation of a node. For example node 341526 hascycle notation (13)(245).In what follows for node i, we denote by ci, si, the number of cycles and the number of symbols thatbelongs to those cycles, respectively, in the cycle notation of i. The minimumdistance of a node i from nodeIn has been shown to be [1]: dIn(i) = � ci + si; if i1 = 1;ci + si � 2; otherwiseWe now de�ne two operations on nodes of the star network, namely the translation and the rotationoperations, that will be of primary importance for the construction of the multiple edge-disjoint spanningtrees on Sn and the description of the fault tolerant communication algorithms.De�nition 2: Consider a node h of the star network. We de�ne Th, the translation with respect to h, ofa node i as: Th(i) = h � i(this operation is often referenced as permutation composition). By translation of a network with respect to hwe mean that each node of the network is translated with respect to h. The inverse translation with respectto h, denoted by T�1h , of a node i, is de�ned as:T�1h (i) = h�1 � iLemma 1: Let i, j and h represent nodes of Sn. Then (i; j) and (Th(i); Th(j)) are edges of the samedimension.Proof: This becomes obvious if we analytically express (i; j) and (Th(i); Th(j)) as:(i1i2:::ik�1ikik+1:::in; iki2:::ik�1i1ik+1:::in)(hi1hi2 :::hik�1hikhik+1 :::hin; hikhi2 :::hik�1hi1hik+1 :::hin)Clearly if (i; j) is an edge of dimension k then (Th(i); Th(j)) is also an edge of dimension k. 2De�nition 3: Let us de�ne the function r from N to N as:r(k) = � k; if k = 1(k � 1)mod(n � 1) + 2; otherwise5



(notice that r maps f1; 2; 3; :::; n� 1; ng to f1; 3; 4; :::; n; 2g). The rotation of a node i 2 Sn, denoted by R,is de�ned as: R(i) = r(i1)r(in)r(i2):::r(in�1)or equivalently i0 = R(i) so that i0r(k) = r(ik). By Rk = R �Rk�1 we denote k applications of rotation. Byrotation of a network we mean that rotation is applied to each node of the network.Lemma 2: Let i and j be nodes of Sn and i0 = R(i) and j0 = R(j) be the nodes obtained from i and j,respectively, by application of a rotation:1. If (i; j) is an edge of dimension k, 2 � k � n, then (i0; j0) is an edge of dimension r(k). As anextension to this, the edges obtained after 1; 2; :::; n�2 applications of rotation on (i; j) have dimensionsk+ 1; k+2; :::; n; 2; :::k� 1, respectively. With this observation we conclude that the n� 1 edges, eachobtained as a rotation of its previous one, are all of di�erent dimensions.2. If i 2 Skn�1, 1 � k � n, then i0 2 Sr(k)n�1.3. The rotation operation preserves the distance between nodes of Sn, or equivalently, dIn(i) = dIn(i0).Proof: We'll prove each part separately:1. If we analytically express (i; j) and (i0; j0) as:(i1i2:::ik�1ikik+1:::in; iki2:::ik�1i1ik+1:::in)(r(i1)r(in):::r(ik�2)r(ik�1)r(ik):::r(in�1); r(ik)r(in):::r(ik�2)r(ik�1)r(i1):::r(in�1))we notice that if (i; j) is an edge of dimension k, then (i0; j0) is an edge of dimension r(k). This is truebecause from the de�nition of rotation the position of symbol r(ik) in i0 is r(k).2. If i 2 Skn�1, 1 � k � n, then ik = 1. From the de�nition of r, if ik = 1 then i0r(k) = r(ik) = r(1) = 1.As a result i0 2 Sr(k)n�1.3. We must prove the following: (a) if i1 = 1 then i01 = 1, else if i1 6= 1 then i01 6= 1, (b) si = si0 , and(c) ci = ci0 . From part 2 of this lemma (a) is easily derived. We know from the de�nition of rotationthat i0r(k) = r(ik). This means that if symbol ik occupies position k in i then symbol r(ik) occupiesposition r(k) in i0. As a consequence if cycle (ik1 ; ik2; :::; ikl) belongs to the cycle notation of i thencycle (r(ik1); r(ik2); :::; r(ikl)) belongs to the cycle notation of i0 and we conclude that si = si0 andci = ci0 . 2To summarize, the translation and the rotation operations preserve the distance between nodes of Sn.The rotation operation maps every edge in dimension d to an edge in dimension r(d) = (d�1)mod(n�1)+2.Application of rotation k times, or Rk, maps every edge in dimension d to an edge in dimension rk(d) =(d � 2 + k)mod(n � 1) + 2. The translation operation preserves the dimension of every edge. Finally thetopology of Sn, or a subgraph of Sn, remains unchanged under translation or rotation.De�nition 4: A group of nodes for which each one is derived from its previous one by application of arotation is called a necklaceLemma 3: Necklaces have the following properties:6



1. Each node i 2 Skn�1, 2 � k � n, belongs to a necklace that includes n� 1 distinct nodes.2. Each node i 2 S1n�1 belongs to a necklace that includes at most n � 1 distinct nodes.3. All nodes of a necklace have the same minimum distance from In.Proof: We prove each part separately.1. Node i 2 Skn�1, 2 � k � n, has i1 6= 1. From the de�nition of r, the n � 1 nodes derived from i byconsecutive rotations have �rst symbols i1; i1 + 1; :::; n; 2; :::; i1� 1. So the n� 1 nodes that belong toa necklace of this type start with di�erent symbols and as a consequence are di�erent. Also a necklaceof this type contains exactly n � 1 nodes. From the de�nition of r, it is true that rn�1(k) = k. Ifi0 is produced by i after n � 1 rotations then i0k = rn�1(ik) = ik, 1 � k � n, and we conclude thati0 = Rn�1(i) = i. For example node 4123 of S4 belongs to necklace ( 4123; 2413; 3421 ).2. Node i 2 S1n�1 has i1 = 1. From the de�nition of r, all nodes derived from i by consecutive rotationsstart with symbol 1. If i0 is produced by i after n�1 rotations then i0k = rn�1(ik) = ik, 1 � k � n, andwe conclude that i0 = Rn�1(i) = i. However it is possible that i0 = Rk(i) = i, after k < n�1 rotations.For example node 13254 of S5 is mapped to itself after only two and not n � 1 = 4 applications ofrotation, R2(13254) = 13254, and belongs to a necklace that contains only two nodes ( 13254; 15432 ),while node 12435 belongs to a necklace that contains n� 1 = 4 nodes ( 12435; 12354; 15342; 13245 ).3. From part 3 of lemma 2 this is easily derived. 2From part 3 of lemma 3 we conclude that the nodes of Sn at each distance from In are grouped intonecklaces. For example, the necklaces of S4 at each distance from I4 are given below enclosed in parentheses:dI4 = 0 : ( 1234 )dI4 = 1 : ( 2134; 3214; 4231 )dI4 = 2 : ( 3124; 4213; 2431 ) ( 4132; 2314; 3241 )dI4 = 3 : ( 3142; 4312; 2341 ) ( 4123; 2413; 3421 ) ( 1243; 1432; 1324 )dI4 = 4 : ( 2143; 3412; 4321 ) ( 1342 ) ( 1423 )The size of a necklace of Sn is always a divisor of n � 1.De�nition 5: An unfolded necklace is a group of exactly n � 1 nodes, each obtained as a rota-tion of its previous one. Unfolded necklaces can contain the same node more than once. For example( 13254; 15432; 13254; 15432 ) is an unfolded necklace of S5.The de�nitions of the rotation operation and the necklace will be of primary importance for the con-struction of the multiple edge-disjoint spanning trees and for the description of the fault tolerant algorithmson Sn. Both of these de�nitions have been developed in analogy to de�nitions with similar properties thatexist for the hypercube interconnection network. The application of rotation on a node of Sn is analogousto the application of a right cyclic shift operation on a node of the hypercube. The de�nition of necklace fornodes of Sn is analogous to similar groups de�ned for nodes of the hypercube in [18]. The term necklace wasinitially used in [21] for similar groups of nodes in the shu�e-exchange graph. An interesting observation isthat although the de�nitions in [18] were motivated by speci�c properties of the hypercube topology, similarde�nitions, with the same properties, can be derived for other networks, like the star network, which has astructure that is fundamentally di�erent from that of the hypercube.7
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Figure 2: (a) A schematic representation of SPTIn . (b) The SPTI4 .3 Construction of the multiple edge-disjoint spanning treesWe say that node h of Sn is the root of multiple edge-disjoint spanning trees, denoted by EDTh , if each ofthe nodes adjacent to h is the root of a tree that spans all nodes of Sn except h and all of these trees areedge-disjoint. In this section we construct EDTIn rooted at node In of Sn. The EDTh, rooted at any othernode h of Sn, will be obtained by applying the operation of translation with respect to h on EDTInBefore we proceed to the construction of the EDTIn , we construct a balanced shortest path tree, rootedat node In, that includes all nodes of Skn�1, 2 � k � n, denoted by SPTIn . For the de�nition of the SPTInwe need the following: Denote by Ck, 1 � k � n, the set of dimensions f2; 3; :::; ng� fkg (C1 is the set ofdimensions f2; 3; :::; ng). Assume node i 2 Skn�1, 2 � k � n. If we move from i along any of the dimensionsin Ck, the resulting node belongs to the same substar Skn�1 that i belongs. We split Ck into two subsetsC1k;i = fc 2 Ck : ic = cg [8<: fc : ic = kg; if k is the �rst misplaced symbol cyclicallyto the right of symbol 1 in i (excluding i1),;; otherwiseand C2k;i = Ck � C1k;i. Also let pi = i1 if i1 6= k, else let pi be such that ipi is the �rst misplaced symbolcyclically to the right of symbol 1 in i (excluding i1).In what follows the kth subtree of a spanning tree STh rooted at node h, is de�ned to be the subtreerooted at the neighbor of h over dimension k, and is denoted by T SThk .De�nition 6: The shortest path tree SPTIn rooted at node In of Sn is de�ned through the followingparent and children functions:parentSPT (i; In) = � ;; if i = In,ipii2:::ipi�1i1ipi+1:::in; if i 2 Skn�1; 2 � k � nchildrenSPT (i; In) = � ici2:::ic�1i1ic+1:::in; 8c 2 C1; if i = In;ici2:::ic�1i1ic+1:::in; 8c 2 C1k;i; if i 2 Skn�1; 2 � k � nIt can be easily seen that the parentSPT and childrenSPT functions are consistent. A schematical repre-sentation of SPTIn along with SPTI4 can be seen in Fig. 2.Lemma 4: The SPTIn has the following characteristics:8



1. All nodes of Skn�1, 2 � k � n, belong to subtree T SPTInk .2. It is a shortest path tree.Proof: We prove each part separately.1. We'll prove that if i 2 Skn�1, 2 � k � n, then its parent ipi i2:::in also belongs to Skn�1, except if i is anode adjacent to In in which case its parent is In. To show this we must prove that pi 6= k for all nodesthat are not adjacent to In, which is true from the de�nition of pi. If i1 6= k then pi = i1(6= k). Ifi1 = k then pi is such that ipi is the �rst misplaced symbol cyclically to the right of symbol 1 (positionk) in i, excluding symbol i1. In this case pi = k if the only misplaced symbols in i are symbols i1 = kand ik = 1, which concludes that node i is adjacent to In.2. We'll prove that if i 2 Skn�1, 2 � k � n, then dIn(ipi i2:::in) = dIn(i)�1, or that the parent of each nodein SPTIn is closer to In than the node itself. This can be veri�ed from a close look to the de�nition ofpi. If i1 6= k then pi = i1, and the �rst symbol of i is moved to its correct position. If i1 = k then pi issuch that ipi is the �rst misplaced symbol (excluding i1) cyclically to the right of symbol 1 in i, whichhas the e�ect of merging cycle (1k) with the cycle that includes symbol pi in the cycle notation of i.From the de�nition of dIn the above follows. 2.We now extend the de�nition of SPTIn , to include nodes of S1n�1. SPTIn is extended so that each oneof its nodes has a child that belongs to S1n�1 (except nodes that are adjacent to In). The resulting structureis no more a spanning tree but a directed graph denoted by SPGIn .De�nition 7: The shortest path graph SPGIn , rooted at node In of Sn is de�ned through the followingparent and children functions. By parentSPG(i; l; In) and childrenSPG(i; l; In), we denote the parent andchildren nodes, respectively, of node i in subtree T SPGInl .parentSPG(i; l; In) = � parentSPT (i; In); if i = In or i 2 Sln�1;ili2:::il�1i1il+1:::in; if i 2 S1n�1 � InchildrenSPG(i; l; In) =8<: childrenSPT (i; In); if i = In or i is adjacent to In;childrenSPT (i; In) [ f1i2:::ing; if i 2 Sln�1but i is not adjacent to In;;; if i 2 S1n�1 � InIt can be easily seen that the parentSPG and childrenSPG functions are consistent. The SPGI4 can beseen in Fig. 3.Lemma 5: The SPGIn has the following characteristics:1. Each node of S1n�1, except In, belongs n � 1 times in SPGIn , once in each of the subtrees T SPGInl ,2 � l � n.2. For each i 2 S1n�1 � In, there are n� 1 parallel paths that lead to node In through SPGIn , and thesepaths have minimum lengths [8].Proof: We prove each part separately.1. According to the de�nition of parentSPG, each node i 2 S1n�1 � In is connected to T SPGInl , 2 � l � n,through dimension l. 9
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4. Node i 2 S1n�1, i 6= In (nodes that start with symbol 1).parentEDT (i; l; In) = fili2:::il�11il+1:::ing (11)childrenEDT (i; l; In) = fli2:::ing [� i0 = (ici2:::ic�11ic+1:::in); if ic = c and l = i0pi0 ,;; otherwise5. Finally, the parent and children nodes of In are:parentEDT (In) = ;childrenEDT (In) = fici2:::ic�1i1ic+1:::in; 8c 2 C1gThe parentEDT and childrenEDT functions that de�ne EDTIn are consistent. The EDTI4 can be seen inFig. 4. Notice that each edge belongs twice in EDTIn , once in each direction, since communication isbidirectional.Lemma 6: The EDTIn has the following characteristics:1. Subtrees TEDTInl , 2 � l � n, are all edge-disjoint.2. Subtree TEDTInr(l) is a rotation of subtree TEDTInl , 2 � l � n (its previous subtree cyclically).3. For each node i 2 Skn�1, 1 � k � n, there are n�1 parallel paths of almost minimum lengths that leadto node In through EDTIn .4. The depth of EDTIn is at most b3(n�1)2 c + 4.Proof: See Appendix. 2The multiple edge-disjoint spanning trees, EDTh, rooted at any other node h of Sn can be obtained fromEDTIn , using the operation of translation with respect to h (see de�nition 1). Node i of Sn is connected toits parent, children nodes in subtree TEDThl along the same dimensions that node T�1h (i) is connected to itsparent, children nodes in subtree TEDTInl . This is easily derived because connectivity and the dimension ofeach edge are preserved under translation in Sn (lemma 1).We need to pose an ordering to the children of each node in each of the subtrees TEDTInk , 2 � k � n.This will be useful in the construction of the algorithms described in the following section. We de�ne the kthordering of numbers f2; 3; :::; ng, denoted by �k to be such that: k + 1 �k k + 2 �k ::: �k n �k 2 �k ::: �kk � 1 �k k. Each node arranges its children in each subtree TEDTInk according to the kth ordering of thedimensions of the edges it is connected to them. This guarantees that if node i is connected to its childrenin subtree TEDTInk through dimensions c1; c2; :::cl in order, then node R(i) is connected to its children insubtree TEDTInr(k) , through dimensions r(c1); r(c2); :::; r(cl) again in order. This ordering in combination withthe fact that subtrees TEDTInk , 2 � k � n, are rotations of each other guarantees that corresponding nodesof the subtrees form unfolded necklaces. For example the nodes enclosed in rectangulars of the same kind inFig. 4 form unfolded necklaces. Also corresponding edges of the subtrees are rotations of each other and asconsequence all of di�erent dimensions (lemma 6). For example the dotted edges in Fig. 4 are rotations ofeach other and of di�erent types. The ordering is carried by translation to EDTh rooted at any other nodeh of Sn. 12



4 ApplicationsThe multiple edge-disjoint spanning trees structure, de�ned in the previous section is used to derive optimalcommunication and fault tolerant communication algorithms on the star network. More speci�cly we derivean optimal single node broadcasting algorithm. We also derive optimal fault tolerant algorithms for fourbasic communication problems in interconnection networks, namely the single node broadcasting, multinodebroadcasting, single node scattering and total exchange problems. All of the algorithms operate under theall-port communication assumption. Before we proceed to the description of the algorithms, we derive lowerbound for the time and the number of message transmissions required for each of them.4.1 Lower BoundsBroadcasting on an interconnection network is the problem where a node wishes to send the same message toall other nodes in the network. To broadcastM messages from a node of Sn, by pipelining the communicationfrom the root towards the leaves along any b3(n�1)2 c depth, breadth �rst spanning tree, under the all-port communication assumption, the number of time steps required is M + b3(n�1)2 c � 1, which is notoptimal. Since Sn is a regular network with degree n� 1, the lower bound for the single node broadcastingalgorithm of M messages assuming all ports of a node can be used simultaneously for message transmissionis d Mn�1e + b3(n�1)2 c. To achieve this lower bound the M messages are grouped into n � 1 packets ofequal size, each of which is communicated over a di�erent edge of the source node and is pipelined downa di�erent edge-disjoint subtree rooted at a node adjacent to the source node. Since each node receiveseach of the M messages once, the minimum number of message transmissions required for an optimal singlenode broadcasting algorithm is M (n!� 1). In the fault tolerant single node broadcasting algorithm the Mmessages are pipelined down each one of the of the n � 1 edge-disjoint spanning trees rooted at the nodesadjacent to the source node. The time required for this algorithm is M + b3(n�1)2 c. Since each node receiveseach of theM messages through n�1 parallel paths, the minimumnumber of message transmissions requiredis M (n!� 1)(n� 1).Multinode broadcasting on an interconnection network is the problem where each node of the networkwishes to send a message to all other nodes. If each node wishes to broadcast M messages, then each nodemust receive a total ofM (n!�1) messages. As a consequence the minimumnumber of message transmissionsrequired is Mn!(n!� 1). Under the all-port assumption all n!(n � 1) edges of the network can be used formessage transmissions at each time step. Thus the minimum time required for the algorithm to completeis dM(n!�1)n�1 e. The lower bounds for the fault tolerant multinode broadcasting algorithm are easily derivedfrom the lower bounds for the multinode broadcasting with a multiplication by factor n � 1.Single node scattering on an interconnection network is the problem where a node wishes to send adi�erent message to each one of the other nodes. If the source node wishes to send M messages to each oneof the other nodes, M (n!�1) di�erent messages must be transmitted by the source node. Under the all-portassumption all the n � 1 edges incident to the source node can be used for message transmissions at eachtime step and as a consequence the minimum time required for the algorithm to complete is dM(n!�1)n�1 e. Thenumber of message transmissions required can be found as follows: A message destined to a speci�c nodemust travel as many edges as the shortest distance from the source to this node. If we sum the shortest13



distances from the source to each node, this will be the minimumnumber of message transmissions requiredfor this problem: b 3(n�1)2 cXk=1 kjNkj = n!Pb 3(n�1)2 ck=1 kjNkjn! = n!djNkj is the number of nodes at a distance k from the source and d has been shown to be [3]:d = n+ 2n +Hn � 4Hn is the nth harmonic number: Hn = 1+ 12+ 13+:::+ 1n . Thus the minimumnumber of message transmissionsrequired for a single node scattering algorithm on Sn is:Mn!(n+ 2n +Hn � 4)In the fault tolerant single node scattering algorithm the source node transmits the M (n!�1) messages to allof its neighbors simultaneously. Each of the n� 1 edge-disjoint spanning trees rooted at the nodes adjacentto the source node are used for a single node scattering algorithm. The number of message transmissionsrequired isM (n!�1)(n�1)+Mn!(n+ 2n+Hn�4)(n�1). Since the source node must transmitM (n!�1)(n�1)messages the time required for this algorithm is M (n!� 1).Total exchange on an interconnection network is the problem where each node wishes to send a distinctmessage to every other node, in other words, every possible pair of nodes exchange distinct messages. Thefault tolerant total exchange algorithm is equivalent to n! di�erent fault tolerant single node scatteringalgorithms, one from each node of Sn. Thus the minimum number of message transmissions required isMn!(n!� 1)(n� 1) +M (n!)2(n+ 2n +Hn� 4)(n� 1). Under the all-port assumption n!(n� 1) edges can beused for message transmission at each time step simultaneously. Thus the minimum time required for thealgorithm to complete is M (n!� 1) +Mn!(n+ 2n +Hn � 4).All the lower bounds were derived for degree of fault tolerance n�2. This means that each node receiveseach message through n � 1 parallel paths. The lower bounds for the algorithms with controlled degree offault tolerance will be derived in the following sections along with the description of the algorithms.Table 1 below summarizes the lower bounds for all of the above problems, with degree of fault tolerancen� 2, and M messages transmitted to each node. By tn we denote the quantity n!(n+ 2n +Hn � 4).problem time number of transmissionssingle node broadcasting d Mn�1e + b3(n�1)2 c M (n!� 1)fault tolerant single node broadcasting M + b3(n�1)2 c M (n � 1)(n!� 1)fault tolerant multinode broadcasting M (n!� 1) M (n� 1)n!(n!� 1)fault tolerant single node scattering M (n!� 1) M (n� 1)(n!� 1) +M (n� 1)tnfault tolerant total exchange M (n!� 1) +Mtn M (n� 1)n!(n!� 1) +M (n� 1)n!tnTable 1: Lower bounds on the star network.The algorithms derived here for all of the above problems are optimal in terms of time and number ofmessage transmissions. Some of the methods used in this sections to derive lower bounds for the commu-nications problems under consideration are similar to the methods used in [7] to derive lower bounds forsimilar problems on the hypercube network. 14



4.2 Optimal single node broadcastingIn a single node broadcasting algorithmone node wishes to transmit a single message or a group of messages toeach other node. To broadcastM messages from a node of Sn, by pipelining the communication from the roottowards the leaves along any b3(n�1)2 c depth, breadth �rst spanning tree, under the all-port communicationassumption, the number of time steps required is M + b3(n�1)2 c � 1, which is not optimal. Since Sn is aregular network with degree n�1, the lower bound for the single node broadcasting algorithm ofM messagesassuming all ports of a node can be used simultaneously for message transmission is d Mn�1e+ b3(n�1)2 c. Thislower bound can be achieved if the M messages are grouped into n � 1 packets, each of size Mn�1 . Each ofthe packets is communicated over a di�erent edge of the source node h and is pipelined down a di�erentedge-disjoint subtree of the EDTh rooted at the source node. As soon as a node receives a message fromits parent node in subtree TEDThk , 2 � k � n, saves a copy, and forwards the message to its childrennodes in the same subtree. The result is that each node receives each of the n � 1 packets of the messagethrough a di�erent parallel path from the source node. The time required for this algorithm to complete isat most d Mn�1e+b3(n�1)2 c+3, which is almost optimal, since the depth of the multiple edge-disjoint spanningtrees structure is at most b3(n�1)2 c + 4. The number of message transmissions required for the algorithm isM (n! � 1), since each node receives each of the M messages once, which is the minimum possible. Usingthis algorithm the resources of the network are fully utilized since all communication edges contribute to thedistribution of the information.4.3 Fault tolerant single node broadcastingThe multiple edge-disjoint spanning trees structure can be used to derive a fault tolerant single node broad-casting algorithm under the all-port communication assumption. Assume that the source node h, wishes tobroadcast M messages to all the other nodes. Node h sends the messages it wishes to broadcast throughall its incident edges simultaneously and these are pipelined down each of the n � 1 edge-disjoint subtreesrooted at the nodes adjacent to h. As soon as a node receives a message from its parent node in subtreeTEDThk , 2 � k � n, saves a copy and forwards the message to its children nodes in the same subtree. Usingthis algorithm each of the nodes of Sn receives the same message through n�1 parallel paths. If up to n�2node or edge faults occur in the system that block the message from passing we are still guaranteed that eachnode receives a copy of the message and as a consequence the algorithm is n� 2 fault tolerant. If we assumethat the system has faults that alter the contents of the messages instead of just blocking or destroying it,the fault tolerance degree of the algorithm decreases since an election algorithm is required at each node inorder to select the intact message. A brief discussion on the election algorithms can be found in [28]. Thetime required for this algorithm to complete using the multiple edge-disjoint spanning trees structure is atmostM + b3(n�1)2 c+3, which is almost optimal, since the depth of the multiple edge-disjoint spanning treesis at most b3(n�1)2 c+ 4. The number of message transmissions required is M (n!� 1)(n� 1) since each nodereceives each of the M messages n� 1 times, which is the minimum possible.Using a similar technique we can control the degree of fault tolerance of the single node broadcastingalgorithm. Assume that the required degree of fault tolerance is x� 1 � n� 2. This means that each nodemust receive each message through x parallel paths, or in other words that each message must be pipelined15



down at least x edge-disjoint subtrees rooted at the nodes adjacent to the source node. However the numberof available edge-disjoint subtrees is n�1. In order to achieve maximumutilization of the network resourcesthe M messages are grouped into n�1x packets, each of size M(n�1)=x = Mxn�1 (x must divide n � 1 for this towork properly). Each of the n�1x packets is pipelined down x edge-disjoint subtrees. As a consequence, allof the n � 1 (xn�1x = n � 1) edge-disjoint subtrees are used for message transmission. The result is thateach node receives each of the n�1x packets through x of its incident edges, and as an extension throughx parallel paths from the source node, and as a consequence the fault tolerance degree of the algorithm isx � 1. The time required for the algorithm is at most Mxn�1 + b3(n�1)2 c + 3 which is almost optimal, sincethe depth of the multiple edge-disjoint spanning trees is at most b3(n�1)2 c + 4, and in addition we havethe exibility of controlling the degree of fault tolerance based on how reliable the system is. The numberof message transmissions required is M (n! � 1)x which is again optimal, since each node receives each ofthe M messages x times. To illustrate the algorithm assume that node 12345 of S5, which is the root ofn � 1 = 4 edge-disjoint subtrees TEDTI5k , 2 � k � 5, whishes to broadcast M = 4 messages with degreeof fault tolerance x � 1 = 1 (this means that up to one faulty node or edge should be tolerated by thealgorithm). The message of size M is split into n�1x = 42 = 2 packets m1 and m2, each of size Mxn�1 = 2. Eachof the packets is pipelined down x = 2 edge-disjoint subtrees i.e. m1 down TEDTI52 , TEDTI53 and m2 downTEDTI54 , TEDTI55 . As a consequence, each node receives each packet through two parallel paths and the faulttolerance degree of the algorithm is one.4.4 Fault tolerant multinode broadcastingIn a multinode broadcasting algorithm, each node wishes to transmit a single message, or a group of messagesto each one of the other nodes. As a consequence each of the nodes should be the root of multiple edge-disjoint spanning trees. The EDTIn can be replicated at any other node h of Sn using the operation oftranslation with respect to h, as it was explained at the end of section 3 (see de�nition 1). Fault tolerancecan be achieved if each node receives each message through n � 1 parallel paths. However in this case wehave to guarantee that no conicts arise during the execution of the algorithm, since all nodes are sources ofmessages. Under the all-port assumption n(n � 1) edges are available on Sn at each time step for messagetransmission. This means that the messages originating from a speci�c node should be transmitted throughat most n�1 edges, at each time step. Let us denote by Lk(h) the set of edges on which messages originatingat node h are transmitted at time step k of the algorithm. For each k, Lk(h) is obtained from Lk(In) usingthe operation of translation with respect to h (if (i; j) 2 Lk(In) then (Th(i); Th(j)) 2 Lk(h)) (see de�nition1). The following lemma is enough to guarantee that no conicts arise during the execution of the algorithm.Lemma 7: If for each k, the edges in Lk(In) are all of di�erent dimensions, then for each k, the setsLk(h), where h ranges over all nodes of Sn, are disjoint.Proof: Assume two di�erent edges (i; j) 6= (i0; j0) 2 Lk(In) for some k, and take the edges (Th(i); Th(j)) 2Lk(h) and (Th0 (i0); Th0 (j0)) 2 Lk(h0) which are obtained by (i; j) and (i0; j0), respectively, under translationwith respect to two di�erent nodes of Sn, h and h0. Also assume that (Th(i); Th(j)) = (Th0 (i0); Th0 (j0)).Since the dimension of each edge is preserved under translation (lemma 1), this means that dim(i; j) =dim(Th(i); Th(j)) = dim(Th0 (i0); Th0 (j0)) = dim(i0; j0) which contradicts our assumption that (i; j) and16



(i0; j0) are two di�erent edges of Lk(In). 2The fault tolerant multinode broadcasting algorithm on Sn, assuming each node wishes to broadcast Mmessages, proceeds as follows:1. Each source node sends the M messages it wishes to broadcast to all of its neighbors simultaneously.2. As soon as a node receives a group of M messages from its parent in subtree TEDThk , it saves a copy,and forwards the messages to its leftmost child in the same subtree. However, if the node is a leaf ofsubtree TEDThk , it sends an acknowledgement to its parent node in the subtree.3. When a node receives an acknowledgement from one of its children nodes in subtree TEDThk , it forwardstheM messages it received from its parent in this subtree to its next child node in the subtree. However,if the node has no more children in this subtree, it sends an acknowledgement to its parent node in thesubtree.The algorithm terminates when each source node receives acknowledgements from all its neighbors. Thisalgorithm corresponds to a depth �rst traversal of the edges in each of the edge-disjoint subtrees. This meansthat at each time step of the algorithm corresponding edges of the subtrees, TEDThk , 2 � k � n, rooted atthe nodes adjacent to h, are used simultaneously for message transmission. Since corresponding edges of then � 1 subtrees of EDTIn are all rotations of each other, they are all of di�erent dimensions (lemma 6) andthe requirement of lemma 7 for conict avoidance is satis�ed by the algorithm.The time required for this algorithm to complete is M (n!� 1) which is optimal. The number of messagetransmissions required is Mn!(n!�1)(n�1) which is the minimumpossible, since each node receives each ofthe M (n!� 1) messages n� 1 times. The way the algorithm was constructed, the degree of fault toleranceis n � 2 which means that each message is transmitted through all of the edge-disjoint subtree rooted atthe nodes adjacent to each source node. Controlling the degree of fault tolerance is possible by a techniquesimilar to the one described in subsection 4.3.4.5 Fault tolerant single node scatteringIn a single node scattering algorithm one node wishes to transmit distinct messages to each one of the othernodes. The single node scattering algorithm on Sn, under the all-port assumption, can become fault tolerantusing the multiple edge-disjoint spanning trees. A message destined to a speci�c node is transmitted througheach of the edge-disjoint subtrees rooted at the nodes adjacent to the source node. In each subtree, messagesdestined to nodes that are the furthest from the source are transmitted �rst.If each node is the destination ofM messages, the time required for this algorithmto complete isM (n!�1),which is optimal, since each edge incident to the source node constitutes a bottleneck forM (n!�1) messages.The number of message transmissions required is M (n!� 1)(n� 1)+O(Mtn(n� 1)) which is asymptoticallyoptimal, because the lengths of the n�1 parallel paths between two nodes of Sn are not all equal the lengthof a shortest path between the two nodes [8]. Controlling the degree of fault tolerance is possible using atechnique similar to the one described in subsection 4.3.17



4.6 Fault tolerant total exchangeIn a total exchange algorithm each node wishes to transmit distinct messages to each other node. As aconsequence, each of the nodes should be the root of multiple edge-disjoint spanning trees. The EDTIn canbe replicated at any other node h of Sn using the operation of translation with respect to h (see de�nition1). Fault tolerance can be achieved if each node receives each message through n � 1 parallel paths. As inthe fault tolerant multinode broadcasting algorithm, we have to guarantee that no conicts arise during theexecution of the algorithm, since all nodes are sources of messages, or in other words we have to guaranteethat the requirement of lemma 7 is satis�ed.The way node In transmits the messages through the edge-disjoint subtrees rooted at its neighbors is thefollowing: For each node i of Sn, In sends the messages destined to nodes Rk�2(i), 2 � k � n, respectivelythrough subtrees TEDTInk , 2 � k � n, simultaneously. As soon as a group of messages reaches its destinationanother group is send from In. Nodes Rk�2(i), 2 � k � n, form an unfolded necklace of nodes (see de�nition5) at a speci�c level of EDTIn , since subtrees TEDTInk , 2 � k � n, are all rotations of each other (lemma6). As a consequence the n� 1 paths that lead from In to nodes Rk�2(i), 2 � k � n, respectively throughsubtrees TEDTInk , 2 � k � n, are all rotations of each other. This means that the n � 1 edges at each levelof the paths are of di�erent dimensions and the requirement of lemma 7 for conict avoidance is satis�ed. Ifat a speci�c instance of the algorithm node In transmits messages to nodes Rk�2(i), 2 � k � n, respectivelythrough subtrees TEDTInk , 2 � k � n, simultaneously, then any other node h of Sn transmits messages tonodes Th(Rk�2(i)), 2 � k � n, respectively through subtrees TEDThk , 2 � k � n, simultaneously. This is asimple application of the operation of translation with respect to h.IfM messages must be transmitted to each node from each other node the time required for the algorithmto compete is M (n!� 1) +O(Mtn) which is asymptotically optimal. The number of message transmissionsrequired is Mn!(n!� 1)(n � 1) + O(Mn!tn(n � 1)) which is again asymptotically optimal. This algorithmis only asymptotically optimal because the lengths of the n � 1 parallel paths between two nodes of Snare not all equal to the length of a shortest path between the two nodes [8]. The way the algorithm wasdescribed the degree of fault tolerance is n� 2 which means that each message is transmitted through eachdi�erent edge-disjoint subtree rooted at the nodes adjacent to each source node. Controlling the degree offault tolerance is possible by a technique similar to the one described in subsection 4.3.5 ConclusionsWe presented several algorithms on the star interconnection network, in the areas of data communicationand fault tolerance. New de�nitions like that of the rotation operation and the necklace for nodes of Sn wereintroduced to facilitate the construction of multiple edge-disjoint spanning trees on Sn. As a result a multipleedge-disjoint spanning trees structure of optimal depth was constructed on the star interconnection network.Using this structure an optimal single node broadcasting algorithm and optimal fault tolerant algorithms forthe single node broadcasting, multinode broadcasting, single node scattering and total exchange problemson the star network were presented. All of the algorithms operate under the all-port assumption and areoptimal in terms of time and number of message transmissions. Constructing multiple edge-disjoint spanningtrees on the star network that would o�er optimal solutions to the above problems under the assumption18



that each node can exchange a message of �xed length with only one of its neighbors at each time step, i.e.the one-port communication assumption, is a problem that remains open.We now provide a comparison of the algorithms presented in this paper for the four communicationproblems under consideration on the star network, with algorithms for the same problems, under exactly thesame assumptions, on the popular hypercube network. Tables 2 and 3 below give the number of messagetransmissions and the communication time required for each of the problems on the Sn and the hypercubenetwork of dimension k, denoted by Ck, respectively. For the fault tolerant communication algorithms thedegree of fault tolerance is assumed to be x.problem time number of transmissionssingle node broadcasting d Mn�1e+ b3(n�1)2 c M (n!� 1)fault tolerant single node broadcasting d Mxn�1e+ b3(n�1)2 c Mx(n!� 1)fault tolerant multinode broadcasting dMx(n!�1)n�1 e Mxn!(n!� 1)fault tolerant single node scattering dMx(n!�1)n�1 e Mx(n!� 1) +Mxtnfault tolerant total exchange dMx(n!�1)n�1 e+ dMxtnn�1 e Mxn!(n!� 1) +Mxn!tnTable 2: Lower bounds on the star network of dimension n.problem time number of transmissionssingle node broadcasting dMk e + k M (2k � 1)fault tolerant single node broadcasting dMxk e + k Mx(2k � 1)fault tolerant multinode broadcasting dMx(2k�1)k e Mx2k(2k � 1)fault tolerant single node scattering dMx(2k�1)k e Mx(2k � 1) +Mx2k�1kfault tolerant total exchange dMx(2k�1)k e +Mx2k Mx2k(2k � 1) +Mx22k�1kTable 3: Lower bounds on the hypercube network of dimension k.In table 4 below the performances of the two networks are compared. Since the star network is de�nedfor numbers of nodes which are factorials, while the hypercube is de�ned for powers of two, the comparisoncannot be exact. In the comparison below a hypercube network with O(2k) = O(n!) nodes and degreeO(k) = O(logn!) = O(n logn) is assumed.From table 4 we notice that whenever the performance of an algorithm depends on the degree of thenetwork, as for example the communication times of the fault tolerant multinode broadcasting, single nodescattering and total exchange algorithms, the hypercube network performs better than the star network bya factor of logn. On the other hand, whenever the performance of an algorithm depends on the diameterof the network, or the lengths of the shortest paths between nodes, as for example the number of messagetransmissions of the fault tolerant single node scattering and total exchange algorithms, the star networkperforms better by a factor of logn. The communication times of the single node broadcasting and the faulttolerant single node broadcasting algorithms depend on both the degree and the diameter of the networksand this is reected at the comparison of their performances. In any other case the performance of the two19
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(a) If node i 2 Skn�1, then node i0 = R(i) 2 Sr(k)n�1 (lemma 2, part 2).(b) pi0 = r(pi).If i 2 Skn�1 and i1 6= k then pi = i1. In this case i0 2 Sr(k)n�1 and i01 = r(i1) 6= r(k), and we concludethat pi0 = i01 = r(i1) = r(pi).If i 2 Skn�1 and i1 = k then pi is such that ipi is the �rst misplaced symbol cyclically to the rightof symbol 1 (position k) in i (excluding i1). In this case i0 2 Sr(k)n�1 and i01 = r(i1) = r(k), then pi0is such that i0pi0 is the �rst misplaced symbol cyclically to the right of symbol 1 (position r(k))in i0 (excluding i01). From the de�nition of pi, im = m for all m cyclically between positions kand pi in i. From the de�nition of rotation i0r(m) = r(im) = r(m) for all r(m) cyclically betweenpositions r(k) and r(pi) in i0. So the �rst misplaced symbol cyclically to the right of symbol 1 ini0 is in position r(pi), and we conclude that pi0 = r(pi).(c) i0pi0 = i0r(pi) = r(ipi).In what follows we use the notation k0 = r(k) and l0 = r(l). We now show how the parent nodes of iand i0 (j and j0 respectively) in subtrees l and l0, respectively, can be obtained from the de�nition ofthe parentEDT function. For clarity we distinguish again among di�erent kinds of nodes.(a) If i 2 Skn�1 with ipi = k, then i0 2 Sk0n�1 with i0pi0 = k0 (i0pi0 = r(ipi ) = r(k) = k).parentEDT (i; l; In) =8<: j = (ipi i2:::in); if l = k;j = (1i2:::in); if l = i1;j = (li2:::in); otherwise ))) parentEDT (i0; l0; In) =8<: j0 = (i0pi0 i02:::i0n); if l0 = k0;j0 = (1i02:::i0n); if l0 = i01;j0 = (l0i02:::i0n); otherwise (l0 = r(l) = r(k) = k0)(i01 = r(i1) = r(l) = l0)(b) If i 2 Skn�1 with i1 6= k and ipi 6= k, then i0 2 Sk0n�1 with i01 6= k0 (i01 = r(i1) 6= r(k) = k) andi0pi0 6= k0 (i0pi0 = r(ipi ) 6= r(k) = k).parentEDT (i; l; In) =8>><>>: j = (ipi i2:::in); if l = k;j = (1i2:::in); if l = i1;j = (ki2:::in); if l = ipi ;j = (li2:::in); otherwise )))) parentEDT (i0; l0; In) =8>><>>: j0 = (i0pi0 i02:::i0n); if l0 = k0;j0 = (1i02:::i0n); if l0 = i01;j0 = (k0i02:::i0n); if l0 = i0pi0 ;j0 = (l0i02:::i0n); otherwise (l0 = r(l) = r(k) = k0)(i01 = r(i1) = r(l) = l0)(i0pi0 = r(ipi ) = r(l) = l0)(c) If i 2 Skn�1 with i1 = k, then i0 2 Sk0n�1 with i01 = k0 (i01 = r(i1) = r(k) = k0).parentEDT (i; l; In) =8<: j = (ipi i2:::in); if l = k;j = (1i2:::in); if l = ipi ;j = (li2:::in); otherwise ))) parentEDT (i0; l0; In) =8<: j0 = (i0pi0 i02:::i0n); if l0 = k0;j0 = (1i02:::i0n); if l0 = i0pi0 ;j0 = (l0i02:::i0n); otherwise (l0 = r(l) = r(k) = k0)(i0pi0 = r(ipi ) = r(l) = l0)(d) If i 2 S1n�1, i 6= In, then i0 2 S1n�1 and i0 6= In.parentEDT (i; l; In) = (j = ili2:::in) ) parentEDT (i0; l0; In) = (j0 = i0l0 i02:::i0n)We should now prove that j0 = R(j). Another way to prove this is that if edge (i; j) is of dimension dthen edge (i0; j0) is of dimension r(d). We have the following cases:23



(a) j = ipi i2::in, and j0 = i0pi0 i02:::i0n.Edge (i; j) is of dimension pi and edge (i0; j0) is of dimension pi0 . However pi0 = r(pi) and weconclude that j0 = R(j).(b) j = 1i2:::in, and j0 = 1i02:::i0n.The dimension of edge (i; j) is k because i 2 Skn�1. The dimension of edge (i0; j0) is k0 becausei0 2 Sk0n�1. But k0 = r(k) and we conclude that j0 = R(j).(c) j = ki2:::in, and j0 = k0i02:::i0n.The dimension of edge (i; j) is d so that id = k. The dimension of (i0; j0) is d0 such that i0d0 = k0.From the de�nition of rotation we know that i0d0 = k0 = r(k) = r(id) = i0r(d) ) d0 = r(d) and weconclude that j0 = R(j).(d) j = li2:::in, and j0 = l0i02:::i0n.The proof is the same as in (c).3. In what follows we characterize the paths that lead from node i of Sn to In through each of the subtreesTEDTInl , 2 � l � n. For clarity we distinguish again among di�erent kinds of nodes. The labels abovethe arrows show which parts of the parentEDT function could be applied each time (de�nition 8).(a) For node i 2 Skn�1, 2 � k � n, with ipi = k, the paths have the following forms:i (1)! ipii2:::in (4)! shortest path through nodes Skn�1 of TEDTInk (4)! Ini (2)! 1i2:::in (11)! shortest path through nodes Si1n�1 of TEDTIni1 (4)! Ini (3)! li2:::in (2;8)�! 1i2:::in (11)! shortest path through nodes Sln�1 of TEDTInl (4)! In (l 6= i1; l 6= (ipi = k))All of these paths are parallel since they go through di�erent substars Sn�1 of Sn and of minimumlengths.(b) For nodes i 2 Skn�1, 2 � k � n, with i1 = k, the paths have the following forms:i (4)! ipii2:::in (7)! shortest path through nodes Skn�1 of TEDTInk (4)! Ini (5)! 1i2:::in (11)! shortest path through nodes Sipin�1 of TEDTInipi (4)! In (i not adjacent to In)i (6)! li2:::in (2;8)�! 1i2:::in (11)! shortest path through nodes Sln�1 of TEDTInl (4)! In (l 6= ipi ; l 6= (i1 = k))All of these paths are parallel since they go through di�erent substars Sn�1 of Sn and of minimumlengths.(c) For node i 2 Skn�1, 2 � k � n, with i1 6= k and ipi 6= k, the paths have the following forms:i (7)! ipi i2:::in (1;7)�! shortest path through nodes Skn�1 of TEDTInk (4)! Ini (8)! 1i2:::in (11)! shortest path through nodes Si1n�1 of TEDTIni1 (4)! InThe path through neighbor i0 = ki2:::in of i has one of the following forms:If ipi = i0pi0 then (parent nodes of i and i0 start with the same symbol)i (9)! ki2:::in (5)! 1i2:::in (11)!,! shortest path through nodes Sipin�1 of TEDTInipi (4)�! In (path 1)24



If ipi 6= i0pi0 then (parent nodes of i and i0 start with di�erent symbols)i (9)! ki2:::in (6)! ipi i2:::in (2;8)�! 1i2:::in (11)!,! shortest path through nodes Sipin�1 of TEDTInipi (4)�! In (path 2)Finally,i (10)! li2:::in (2;8)! 1i2:::in (11)! shortest path through nodes Sln�1 of TEDTInl (4)! In (l 6= i1; ipi ; k)All these paths are parallel since they go through di�erent substars Sn�1 of Sn and are of minimumpossible lengths. Path 2 has length two more than path 1 which is the minimum length path thatgoes through nodes Sipin�1 of TEDTInipi . However in some cases path 2 must be used to guaranteethat all subtrees are edge-disjoint.(d) Finally, for nodes i 2 S1n�1, i 6= In, the paths have the following forms:i (11)! li2:::in (1;4;7)�! shortest path through nodes Sln�1 of TEDTInl (4)! InAll of these paths are parallel since they go through di�erent substars Sn�1 of Sn and of minimumlengths.4. The depth of SPTIn is b3(n�2)2 c + 1. This is because each of the subtrees T SPTInk , 2 � k � n, is ashortest path tree in Skn�1 and b3(n�2)2 c is the diameter of Sn�1 [1]. The depth of SPGIn , which isde�ned as an extension of SPTIn , is b3(n�2)2 c + 2 for obvious reasons. The EDTIn is constructed asan extension of SPGIn . From part 3 of this lemma, each node of Skn�1, 2 � k � n, is connected to Inthrough subtree TEDTInl (k 6= l) with a path of the form i! : : :! 1i2:::in ! : : :! In. From part 3 ofthis lemma we know that the path from i to 1i2:::in has length at most three (path 2). So the depth ofEDTIn is less or equal to the depth of SPGIn+3 = b3(n�2)2 c+2+3 � b3(n�1)2 c�1+2+3 � b3(n�2)2 c+4.This depth is almost optimal because it is greater only by one from the best up to now estimate of thefault diameter of Sn [2] which is the lower bound for the depth of EDTIn .Form this lemma we notice that not only the EDTIn is of almost minimumdepth but that the n�1 parallelpaths that lead from each one of the nodes of Sn to In are also of minimum length except in one case. Inthis case n� 2 of the paths are of minimum length and one of the paths (path 2) has length two more thanthe corresponding minimum path. This structure leads to algorithms that are optimal not only in terms ofcommunication time, but also in term of message transmissions as we will see in section 4. 2.
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