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Abstract
Those of us who seek to build better refactoring tools need
empirical data collected from real refactoring sessions. The
literature reports on different methods for capturing this
data, but little is known about how the method of data cap-
ture affects the quality of the results. This paper describes
4 methods for drawing conclusions about how programmers
refactor, characterizes the assumptions made by each, and
presents a family of experiments to test those assumptions.
We hope that the results of the experiments will help future
researchers choose a data-collection method appropriate to
the question that they want to investigate.

Categories and Subject Descriptors D.2.0 [Software En-
gineering]: General

General Terms Design, Experimentation, Measurement

Keywords refactoring, methodology, research, empirical
software engineering

1. Introduction
Researchers seeking to improve refactoring tools frequently
collect empirical data about refactoring sessions to motivate
and evaluate these improvements. For example, a researcher
may wish to find evidence that some refactorings are per-
formed frequently, or that programmers prefer one tool’s
user interface over another, or that programmers would ben-
efit from some new kind of refactoring. Empirical data can
be a powerful motivator for new refactoring tools, and is vi-
tal for their evaluation.

At least four sources have been used for such data: com-
mit logs, code history, programmers, and refactoring tool us-
age logs. Corresponding to each source is a mechanism for
extracting the information from the raw data; we call the
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combination of source and mechanism a research method.
In the next section, we discuss the assumptions, benefits and
disadvantages of each research method.

2. The Four Methods and their Assumptions
2.1 Mining the Commit Log
A fairly straightforward way of identifying refactorings is to
look in the commit logs of versioned repositories for men-
tion of the word “refactor.” Most commonly maintained by
cvs or subversion, commit logs are updated when a program-
mer commits a change to the repository. By searching for
the word “refactor,” and possibly for related words such as
“rename” or “extract,” a researcher can find periods in the
development history when a programmer noted that refac-
toring took place. This method is appealing because commit
logs for a large number of open source projects are available.

Several researchers have used commit logs as indica-
tors for refactoring. Stroggylos and Spinellis [18] used this
method to conclude that classes become less coherent as a
result of refactoring. Ratzinger and colleagues [16] used 13
keywords to find refactorings, and concluded that an increase
in refactoring tends to be followed by a decrease in soft-
ware defects. Hindle and colleagues [9] classified source-
code commits based on their log messages, concluding that
refactorings are common in commits that affect many files.

One of the authors (Parnin) has previously presented
preliminary evidence that commit logs are incomplete in-
dicators of refactoring activity, noting that in one project,
only 7 revisions were logged as refactoring even though
55 revisions contained evidence of refactoring [14, §7.1.3].
This is perhaps unsurprising: there are several reasons why
commit log messages might be poor indicators of refactor-
ing. Programmers may simply be careless when creating
log messages; it is also possible that commits that contain
refactorings mixed with other changes may not be tagged
as refactorings. Moreover, log messages that do contain
the word “refactor” may be biased toward certain kinds of
refactorings, possibly sweeping refactorings like RENAME
CLASS. The limitations of this data-collection method color
the inferences that can be drawn from the data. For exam-
ple, Ratzinger and colleagues’ [16] results may indicate that



large refactorings like RENAME CLASS correlate inversely
with defects, but the data may not speak to the correlation
between smaller refactorings like EXTRACT METHOD and
defects. In general, we see that the method chosen to collect
refactoring data influences the generality of the conclusions.

The mining commit of logs assumes that the programmer
both recalls performing the refactoring and describes the
refactoring accurately.

2.2 Analyzing Code Histories
Another method for uncovering past refactorings is by an-
alyzing a sequence of versions of the source code. Re-
searchers have taken a window of two (not necessarily ad-
jacent) versions of the code from a source repository and
inferred where refactorings had been performed either by
manual comparison or by automating the comparison using
a software tool.

Opdyke [13] manually compared 12 versions of the
Choices file system, and concluded that refactoring resulted
in increasing abstraction of interfaces over time. Weißger-
ber and Diehl [20] automatically processed CVS data for
refactorings, concluding that programmers did not spend
time just refactoring. Xing and Stroulia [21] processed the
Eclipse code base and concluded that reducing the visibility
of class members is a frequently-performed refactoring that
development environments do not currently support. De-
meyer and colleagues [4] use a set of object-oriented change
metrics and heuristics to detect refactorings such as MERGE
CLASSES or SPLIT CLASS) that will serve as markers for
the reverse engineer. Antoniol and colleagues [1] use a tech-
nique inspired by Information Retrieval to detect discontinu-
ities (e.g., SPLIT CLASS) in classes. Godfrey and Zou [8]
implemented a tool for detecting refactorings in procedu-
ral code. Another of the authors (Dig) developed Refactor-
ingCrawler [5], which combines static and semantic analysis
to detect API refactorings in frameworks and libraries. The
follow-up tool, RefacLib [19], combines syntactic analysis
with a set of change-metrics to detect API refactorings in
libraries. They concluded that automated detection of API
refactorings is both practical and accurate for the purpose
of automated migration of client applications toward newer
library APIs. Dig and Johnson have used manual compar-
ison of versions to find API changes [6]. They guided their
inspection using the change documents (e.g., version release
notes) that usually accompany major software versions, and
concluded that more than 80% of API-breaking changes are
caused by refactorings.

Code history analysis can be problematic as a method for
finding refactorings. Examining non-adjacent versions can
speed up the process, but fine-grained refactorings can be
lost in the process. For example, if a programmer adds a new
method in an existing class and then performs an EXTRACT
LOCAL VARIABLE refactoring inside the new method, a
comparison of the first and final versions will fail to produce
any evidence of the EXTRACT LOCAL VARIABLE (since

the first version does not contain the method enclosing the
extracted variable).

Manual history inspection is slow, and researchers may
inadvertently miss some refactorings when comparing ver-
sions. Automatic history inspection is faster, but refactoring
detectors are typically limited in the kinds of refactorings
that they can detect. For example, the tools described in this
subsection focus on detecting high-level, architectural refac-
torings (e.g., MERGE CLASSES) or medium-level refactor-
ings (e.g., API refactorings like RENAME METHOD). None
of the current detection tools focuses on detecting low-level
refactorings like REPLACE TEMP WITH QUERY. To extend
the set of refactorings automatically detected, it would be
necessary to implement new detection strategies. Two of
the most serious challenges for automatic detection tools
are scalability, and noise introduced by several overlapping
refactorings (e.g., a method was renamed and the class that
defines the method was also renamed). To cope with such
challenges, current tools are heuristic; however, the param-
eters of the heuristics can dramatically affect the accuracy
of the results. Thus, using these tools requires some experi-
mentation.

Xing and Stroulia’s [21] UMLDiff tool helped them find
high-level refactorings like MOVE CLASS, but was not capa-
ble of finding lower level refactorings like REPLACE TEMP
WITH QUERY. Thus, while their conclusion that a particular
refactoring is performed frequently is certainly valid, they
cannot address the question of whether other, undetected,
refactorings are performed even more frequently. This is an
important question to be able to ask if one’s goal is to direct
one’s tool-bulding efforts where they will have most benefit.

Code history analysis assumes that there is adequate
granularity in the history, that an appropriate window of
observation is chosen, and that any automatic refactoring
detection heuristics are appropriately parameterized1.

2.3 Observing Programmers
A third method of collecting information about refactoring
is for researchers to observe developers working on a soft-
ware project, and to characterize their refactoring behavior.
Such observation may take the form of direct observation (a
controlled experiment or ethnography) or indirect observa-
tion (a survey or a project post-mortem). This method has
the advantage that observations can be directed towards the
specific aspects of the refactoring task that is of interest.

Using direct observation, Boshernitsan and colleagues [2]
observed 5 programmers use their refactoring tool in a lab-
oratory setting, and concluded that the tool is intuitive.
Murphy-Hill and Black observed programmers perform EX-
TRACT METHOD in a laboratory [11], concluding that pro-
grammers had difficulty in selecting code and understanding
error messages. Using indirect observation, Pizka [15] de-
scribed a case study in which a project was refactored for 5

1 Note that choosing the “appropriate” tool settings may be project-specific.



months; they concluded that refactoring without a concrete
goal is not useful. Bourqun and Keller [3] described a 6-
month refactoring case study; they observed that the average
number of lines per class decreased by about 10%.

Programmer observation also has limitations. If the re-
searcher uses indirect observation, the accuracy of the re-
sults depends on the programmer’s ability to accurately re-
call their refactorings. When researchers observe refactor-
ing over long-term programming projects, results may be
affected by uncontrolled, external factors. For example, a
project that refactors frequently may be successful because
of the refactoring, or for some other reason, such as experi-
enced management. Researchers who watch programmers in
the wild may observe very little refactoring over the span of
a few hours. Controlled experiments are expensive, as they
require time commitments both on the part of the researchers
and programmers. Controlled experiments also may not be
valid outside the context of the experiment (external va-
lidity), as the tasks that researchers assign to programmers
may not be representative of common programming tasks.
For example, while Murphy-Hill and Black observed that
programmers had difficulty in selecting code for EXTRACT
METHOD [11], programmers may have little difficulty in se-
lecting code for other refactorings.

This research method relies on the assumption that a pro-
grammer can accurately recall refactorings, the assumption
of frequent refactoring activity, and the assumption that a
controlled experiment is externally valid.

2.4 Logging Refactoring Tool Use
Some development environments automatically record pro-
grammer activity in a log file. Such an environment can
record general programming events, or can be specialized to
collect just refactoring tool events. A chief advantage of this
approach is that it can be highly accurate, because it records
every use of a refactoring tool.

Murphy and colleagues observed 99 users of the Eclipse
IDE using a logging tool [10] and noted that about twice
as many people used the RENAME tool as used the EX-
TRACT METHOD tool. Dig and colleagues recorded refac-
torings from two programmers using the Eclipse IDE [7],
and note that their MolhadoRef tool reduces refactoring-
induced merge conflicts compared to CVS. Robbes observed
two programmers in the Squeak environment using the Spy-
ware logging tool [17] and notes that programmers did not
use any refactoring tool during most programming sessions.

Refactoring tool logs are limited in two ways. First,
logged refactorings may not contain sufficient detail to
recreate what happened during a refactoring; Murphy and
colleagues’ data [10], for instance, do not tell us if most
RENAMES were of variables, methods, or classes. Second,
refactoring tool usage logs always omit manual refactorings.
As a consequence, for instance, while Robbes’ study [17]
provides evidence that programmers use refactoring tools
infrequently, we cannot infer that refactoring itself was in-

context fidelity

explicit commit log mining tool usage logs

implicit programmer observation analyzing histories

Table 1. The research methods vary both in how they
identify refactorings and the detail they capture about that
event. When deciding which method to use, a researcher can
choose a property from the top and property from the left to
decide which method is most appropriate for the hypothesis.

frequent: it may be that programmers preferred to refactor
manually.

Finally, we observe that this research method inherently
assumes that a programmer uses tools for refactoring.

2.5 Summary of Methods
Each of the research methods described above has its own
strengths and weaknesses (Table 1). The methods that rely
on explicit identification of refactorings (commit logs and
tool logs) precisely identify refactoring activity, but can be
inaccurate because they ignore implicit refactorings (those
that are not tagged or that are performed without a tool).
In contrast, the implicit methods may be more accurate be-
cause they discover manual refactorings and refactorings
that the programmer considered incidental to other changes,
but may lack precision because of the variance between ob-
servers and the efficacy of analysis techniques. Commit Logs
and Programmer Observation both provide more context ex-
plaining a refactoring event (context), whereas history anal-
ysis and tool logs may more faithfully capture the details of
the refactoring event (fidelity).

Finally, researchers can conduct experiments to comple-
ment the strengths of research methods. For example, meth-
ods allowing collection of rich context may be more appro-
priate for exploratory analysis, striving to discover the rea-
sons and motivations of programmers during refactoring ac-
tivity. On the other hand, a research study wishing to gather
reliable data on the occurrence of refactoring may want to
choose methods with higher fidelity. Moreover, it is impor-
tant to weigh the results of implicit and explicit methods,
which may capture only specific types of refactoring.

3. Hypotheses and Experiments
As we emphasized when we described them, each method
for finding refactorings relies on assumptions that the re-
search community has not yet validated. In Table 2, we pro-
pose several hypotheses related to these assumptions, and
outline experiments for testing those hypotheses. For each
hypothesis, we state why we suspect that the hypothesis is
true, briefly describe how we plan to conduct an experiment
to test the hypothesis, and note what effect the confirmation
of the hypothesis will have on future research.
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4. Conclusions
We encourage and applaud researchers who gather empirical
data to inform and validate their work. However, this does
not mean that all methods of data collection are equally
appropriate; as we have seen, each method colors the data
that it produces.

There are two ways to reduce the likelihood that limita-
tions in your research method will invalidate the conclusions
of your research. First, choose a method whose limitations
are orthogonal to the conclusions you wish to draw. For ex-
ample, if you would like to show that programmers use a
PULL UP refactoring tool more than a PUSH DOWN tool, the
fact that tool usage logs omit manual refactorings is irrele-
vant. Second, use data gathered using several different meth-
ods with orthogonal limitations. If the data all tell the same
story, then the effect of the limitations is reduced. For exam-
ple, if a researcher used both tool logs and history analysis
to show that refactoring tools are underused, the conclusion
is stronger than if only one method were used.
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