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Abstract—Recent years have seen increasing deployment of
Plug-in Electric Vehicles (PEVs) for personal transportation,
which can lead to energy cost savings as well as reduce our
carbon footprint. However, the bursty nature of PEV demand
implies that the aggregate PEV load can impart significant stress
on the distribution grid unless PEV charging is coordinated
through efficient control mechanisms. In this paper, we study
the energy supplier’s problem of selling energy to the PEVs —
while buying the same from the generators (market) — through
an auction. In this context, we analyze the properties of an elastic-
supply Progressive Second Price (es-PSP) auction mechanism,
which requires each PEV agent to submit a desired energy
quantity and a per-unit willingness-to-pay value. We establish that
social efficiency is attained at Nash equilibria, and PEV agents
acting in self-interest have no incentive to untruthfully declare
their willingness-to-pay value for the quantity they choose to
declare. We also validate some of our theoretical results through
simulations in a specific distribution network scenario.

I. INTRODUCTION

The deployment of Plug-in Electric Vehicles (PEVs) has
been increasing steadily in recent years. PEVs (which include
hybrid vehicles or PHEVs) draw their energy in full or part
from the electric grid, charging their batteries at times they
are “plugged in”. Use of PEVs for personal transportation can
not only reduce greenhouse gas emissions, but also result in
lowering our individual energy bills. Large-scale deployment
of PEVs could cause major overloading problems in the distri-
bution grid, however, due to the PEVs typically connecting to
the grid and attempting to charge all at the same times. This
motivates the need for electricity aggregators or utilities to de-
vise smart charging protocols that would provide incentives to
PEV owners (agents) to spread their energy demand over time,
and preferably charge at times when the grid is underloaded
[1]-[3]. A growing body of literature has attempted to solve the
problem of optimal scheduling of PEV charging in the smart
grid through different techniques like dynamic programming,
sequential quadratic optimization, queuing theory, game theory
and other heuristic methods [4]-[12].

Since PEVs can differ in terms of their charging time
constraints and energy needs, it is desirable that energy is
given to the PEVs based on their needs (or valuations) and
constraints, while at the same time minimizing the cost on the
electric grid due to the PEV load. This goal can be posed as
that of maximizing the economic surplus in the grid, where
the economic surplus (or social value) of a charging solution
(schedule) corresponds to the aggregate valuation of the PEV
agents for the energy supplied to them, minus the total cost

of supplying the energy. It is worth noting that the cost of
energy supply (which can partly reflect the generation cost of
energy) can differ in time, depending on the aggregate load at
that time, and minimizing the total supply cost also tends to
flatten the peaks in the total load curve.

The valuations of the PEV agents (users) being private in-
formation, there is a need for designing mechanisms that would
result in the PEV agents declaring (implicitly or explicitly)
their valuation functions truthfully, so that the goal of maxi-
mizing the social valuation (or the “social optimality”) of the
charging schedule can be realized. This can be attained through
the classical Vickrey-Clark-Groves (VCG) auction mechanism
[13] that requires agents participating in the auction to pay
according to the social opportunity cost that the agent imposes
on the system. However the high message complexity of
declaring the entire valuation function by the agents is a
deterrent in applying the VCG mechanism in practice. These
have led researchers to look into mechanisms where the bid
message complexity is limited [16], [17], [18], [19], mostly in
the communications/networking application context.

The auction mechanism for PEV charging that we analyze
in this paper is based on the Progressive Second Price (PSP)
auction mechanism proposed and analyzed for a single divisi-
ble good by Semret and Lazar in [15], [16]. In this mechanism
the agents are required to declare a simple two-dimensional
bid: the amount of energy it wants to obtain and the per-unit
price it is willing to pay for the energy desired. Based on this
bid, the aggregator computes the optimal charging schedule for
the PEVs. The payments made by the agents are “VCG like”,
in that they capture the “externality” that the agent causes to
the system through its own presence in the auction.

The contributions of our work are summarized as follows.
Under the reasonable assumptions that user (PEV agent)
valuation functions are increasing and strictly concave, and
the supply cost curves are increasing and strictly convex,
we show the existence of an efficient (or “socially optimal”)
Nash equilibrium of the game implied by the chosen auction
mechanism. Secondly, we show that all Nash equilibria of
this game must result in efficient energy allocation. Finally,
we show that given a particular bidding strategy of the other
agents, and whether the system is in equilibrium or not, a
PEV agent acting in self-interest does not have any incentive
for untruthfully declaring its willingness-to-pay value for the
quantity of energy it wishes to obtain.

Existing literature has analyzed the properties of the PSP



mechanism for a fixed amount of resources [16], [17], which
we have applied to the PEV charging problem in our recent
work [14]. In the current work, however, we consider the
case of elastic supply (energy resource) which provides a
model that is better grounded in practical realities of the
PEV charging context. We not only provide parallels of the
full suite of results in [16] and a key result in [17] in the
PEV charging context, but also obtain stronger results by
taking into account the elastic supply model (instead of the
fixed resource model). In particular, we show that the energy
allocation at all Nash equilibria of the auction mechanism is
efficient, a result that does not hold for the fixed resource
model. We also provide a new and fairly general analysis
technique that combines modeling via “ramp functions” and
using subgradient optimality conditions for analyzing the PSP
mechanism. Recently, Suli er al. [24] have studied the PSP
auction mechanism for a model and application that is closely
related to ours. However, we our model is more general in
that it considers heterogeneous charging (time) constraints
across PEVs, and we prove two additional, important results
(Propositions 2 and 3), which have not been shown in [24].
Furthermore, we also provide a different and general analysis
method which will likely be useful in analyzing the PSP
auction in broader classes of network models and convex
environments. More detail on our contributions with respect
to existing work on the analysis of the PSP mechanism is
provided in Section II-C.

The remainder of the paper is organized as follows. Section
IT describes the system model we analyze for the rest of
the paper. Section III describes the es-PSP (PSP with elastic
supply) auction mechanism that we analyze, and then provides
our theoretical analysis and results. Section IV describes the
results of a limited simulation study exploring/validating some
of the properties of the es-PSP mechanism.

II. SYSTEM MODEL

Consider an auction window comprising of 7' time slots,
denoted by T = {1,2,...,T}. Let K = {1,2, ..., K'} be the set
of all PEVs in the distribution network under consideration.
The set of charging constraints (preferences) can differ across
PEVs; for PEV £ it is given by a set T), C T at which it can
charge (i.e., it is connected to the grid). Also, let each PEV
k € K have a remaining battery capacity of «y at the start
of the auction window. We assume that the non-PEV based
inelastic demand is given by D; for ¢t = 1,...7T. The cost
of supplying electricity in any time slot ¢, denoted by C%, is
assumed to be an increasing, strictly convex function of the
total load (sum of PEV load and non-PEV load) in the}% time

slot. The supply cost at time ¢ is thus given by C;(D; +Z k)
k=1
where ¢ represents the energy allotted to PEV agent k in
time slot ¢. Let the vector q, = (g}, 42, ...,q} ) represent the
charging schedule for PEV k. We call q = (q1,92, ...,k )
the schedule vector for all PEVs in a feasible solution. Let
Q. represent the total energy received by the PEV k over
all accessible time slots. We call Q = (Q1,Q2, ..., Qk) the

allocation vector for all PEVs. Note that Q = Z qr., and

teTy
therefore Q can be expressed as Q = Mq, where M is an

appropriately defined matrix of dimension K x KT' containing

either 0 or 1 as elements. The total energy allocated for PEV
charging at time ¢, denoted by Q?, is then expressed as Q* =

Dt+ZqZ-

kek

Every PEV (agent) k is associated with a (privately known)
valuation function v (-) for the energy obtained. We assume
vk (0) = 0, and v (Qy) is increasing, twice differentiable and
strictly concave in Q) in the range [0, ay].

Time
PEVs Slots

Fig. 1.  Graph theoretic model for auction of electricity to PEVs in the
different time slots covered by the auction window.

A. Graph-theoretic representation

The PEV charging problem across multiple contiguous
time slots can be translated into a graph theoretic setting as
shown in Figure 1, where the (possibly incomplete) bipartite
graph comprises of two sets of nodes: one representing the set
of PEVs IC and the other representing the set of time slots
T . Note that the edges correspond to the timing constraints of
the PEVs, i.e. an edge (k,t) exists in the bipartite graph iff
t € Ty,. Also note that the direction of the edges as shown in
the figure is same as that of the actual energy flow. (A source
node S and a sink node T have been added for convenience,
and does not have any physical significance.)

B. VCG mechanism for PEV charging with elastic supply

The socially optimal goal of PEV charging is that of max-
imizing the “economic surplus”, defined as the total valuation
of the energy allocated minus the total cost of supply, subject
to the the charging constraints. This is expressed as,

max S(q) = Y o(D_ qb) = D CDi+ Y ab), ()

ke teTy, teT ke
st. > gy <ap keK, )
teTy
q.=0,t¢Ty; q.>0,t€Ty; kek. 3)

Let Dy, = {qL,t =1,...,T,subject to (2) and (3)} be the
feasibility constraint set for the charging of PEV k. Then all
feasible schedule vectors (for all PEVs) that satisfy (2) and (3)
must be contained in D = D; X Dy X ... X Dg. Therefore,
(2) and (3) can be replaced by a single constraint q € D.
Specifically, the VCG mechanism requires the user (PEV
agent) k£ to make a payment based on the social opportunity

(4@ ) = (@) +

cost, expressed as, T = Z
JER\{k}



Z (Ct(Q*’t) - Ct(Qi’Z)). Here Q% (Q*") represents the

teT
energy allocation to user j (total load at time ¢, resp.) under

socially optimal energy allocation (one that solves (1)-(3))
when all users (including user k) are present. Also Q7 _,

(Qi’tk) represents the energy allocation to user j (total load
at time ¢, resp.) under socially optimal energy allocation when
user k is absent from the auction. The VCG payment policy
ensures that rational users (acting in self-interest) do not have
any incentive to declare their valuation functions untruthfully.

There are practical difficulties however in implementing
a VCG mechanism as is, since it requires users to declare
their entire valuation functions. Firstly, users (PEV agents in
our case) themselves may not be fully aware of their entire
valuation functions. Furthermore, communicating the entire
valuation function (which is a continuous function) within
a close approximation degree requires very high message
complexity. These factors motivate the need to look at VCG-
like mechanisms that require users to submit their bids in some
simple form that is both convenient to users and requires low
message complexity. When the bid space is restricted, however,
the challenges are (i) How can the auction mechanism be
designed so that rational users do not have any incentive to
declare the bids untruthfully? ii) How can the socially optimal
allocation be computed based on the submitted bids?

C. PSP auctions and Related work

When the bid message complexity is restricted, dominant
strategy implementation of socially optimal allocation is not
possible any more in general settings [16], [19], [18], [17].
The Progressive Second Price (PSP) auction mechanism pro-
posed in [15], [16], which requires each user to submit a 2-
dimensional (quantity and price) bid however retains incentive
compatibility in a limited yet meaningful sense (i.e., in the
price dimension, for the chosen quantity), while attaining
social optimality at Nash equilibrium. The simplicity of the
PSP mechanism is also appealing, which has led to sev-
eral extensions and applications of this approach in multiple
contexts [22], [21], [20], [17], [14], [23]. In this paper, we
analyze the PSP mechanism in the context of PEV charging,
taking into account the elasticity of the energy supply; we
naturally term it as elastic-supply Progressive Second Price
(es-PSP) auction. The consideration of heterogeneous charging
time constraints across users makes the analysis of the PSP
mechanism substantially more complex than that for a single-
resource model [15], [16], [22], [23].

While our bipartite network model is still a special case
of the more general network model in [17] (which however
considers fixed quantities of resources being auctioned off),
we provide a broader and stronger set of results than [17]
for our model, while exploiting the elasticity of the resource
and strict convexity of the associated cost curve. In particular,
while Proposition 1 of our paper reflects a similar result shown
in [17], results similar to Proposition 2 and 3 have not been
claimed in [17]. In fact, Proposition 2 does not seem to hold
for the fixed-quantity resource (inelastic supply) model (see
Example 1 in [17]), or likely requires additional restrictions on
the equilibrium such as all users bid truthfully (see Proposition
3 in [16]).

PSP auctions for scheduling of PEV (more generally,
elastic) loads has been recently considered in [23], [24], which
also consider flexible resource supplies associated with convex
costs functions. Compared to our PEV charging model, [23]
considers a single time slot (single resource); [24] considers
multiple time slots (resources) but all PEVs having homoge-
neous charging time constraints. We not only consider a more
general and realistic model where PEVs can have different
charging (time) constraints (reflecting the true multi-resource
aspect of the model where each agent can access/use only a
certain set of resources), but also prove stronger results. In
particular, the main result in [24] parallels Proposition 1 of
our paper, but for homogeneous charging time constraints; in
addition, we prove two important results (Propositions 2 and
3), parallels of which have not been shown before for this
model and context.

Finally, while our consideration of the PEV charging prob-
lem implies that our network model is a (possibly incomplete)
bipartite graph (Figure 1), most of our analysis does not
explicitly use the specific network model, but relies more
on general convexity assumptions/conditions. Therefore, we
believe our theoretical results (as outlined in the next section)
would extend to a broader set of network models (topologies),
although an exploration of that is deferred to future work.

III. ELASTIC-SUPPLY PROGRESSIVE SECOND PRICE
(es-PSP) AUCTION MECHANISM
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Fig. 2. Schematic diagram of es-PSP auction mechanism.

A. Auction mechanism and Dispatch rules

‘We first describe the auction mechanism, based on the PSP
auction as proposed in [15], [16], but extending it to our con-
text by considering heterogeneous charging time constraints of
the PEVs and elastic supply cost curves. A schematic diagram
describing our elastic-supply PSP (es-PSP) auction mechanism
is provided in Figure 2. In this mechanism, the bid of any user
(PEV agent) k € K is given by by = (a, pr) where ay, is the
amount of energy demanded by user k, and py, is the price per
unit of electricity it is willing to pay. Let By, C ]Rf_ to be the set
of all possible bids by user k. Let B} C By, denote the set of all
truthful bids where the bid price reflects the marginal valuation



of the bid quantity, i.e. the 2-d bid is of the form (ay, v}, (ax)).
A general bid vector (truthful or untruthful) b is then defined as
b = (b1,b,...,bk). Also let b_j, denote the set of bids of all
users other than k, i.e. b_y = (b1, b2, ... bg—1,bk41,...bK).
In our es-PSP mechanism, once the bid b, and time constraints
T}, are reported to the auctioneer (PEV load serving entity in
our case), it solves the following optimization problem for
optimal allocation of the energy for charging the PEVs,

max S(q) = Z ( Z q;i)pk — ZCt(Dt + Z a.), @

keK teTy teT ke
Uy gt
s.t. Z q <ay, k€K, o)
teTy,
qeD. (6)

Note that the constraint (6) just captures the feasibility con-
straints (2)-(3)." The part Z l;; represents the revenue ob-

kek
tained by the auctioneer (supplier, representing the EV load

serving entity) through sale of the resource (electric energy)
to the users (PEV agents). The part th represents the

teT
cost incurred by the auctioneer (PEV load serving entity)
in purchasing the same resource from the energy genera-
tion companies (market). In effect, the objective function

Z Iy — Z g+ can be viewed as the profit of the auctioneer

keEX teT | L. . L.
based on the bids declared by the users. Similar in principle

to the VCG mechanism, payments that need to be made by
any user k reflects its “social opportunity cost”, expressed as,
™= (Qj,fk - Qj)Pj +> (Ct(Qt) - Ct(Q%))
_];E’C\{lﬂ} teT

Here @Q); (Qj,—&) represents the energy allocation to user j
when all users including (except) user %k are present in the
auction. The time-dependent load terms Q' and Q' , are
similarly defined.

For a given schedule (and corresponding payments) as
computed by the es-PSP auctioneer, the utility of any user
k is a function of its own bid as well as the bids of others,
and is expressed as

up (b, bog) = kb, bog) — i (b, b-y) @)
= vk(@k)— Z (Qj,fk_Qj)pj
JER\{k}
=Y (G@) - Q) ®)
teT
Uk (br,b_1)
= wl(@Q)+ Y, Qipi— Y, C(Q"
JeER\{k} teT
= Y Qipi Y ClQL). O
JER\{k} teT
hk(b,k)

INote that (2) is subsumed by (5): it is easy to argue that a user would not
have any incentive to demand an energy quantity a larger than ay. Similarly,
it can be argued that a user does not have any incentive to declare its constraint
set T} untruthfully to the auctioneer.

Note that in (9), the term hj(b_j) depends only on the bids
of the other users. Therefore, given the bids of others b_y, a
rational user k would look towards choosing its bid by so as
to maximize the term Uy (b, b_) subject to (5) and (6), and
the given tie-breaking rule (as discussed later). Since this term
depends on the allocation of the es-PSP mechanism (when all
users including k is present), with slight abuse of notation we
refer to this term later in this paper simply as a function of
the corresponding schedule (q) or allocation vector (Q), as
Uk(q) or Ur(Q). In this paper, we look at the properties of
the game in which each user k, who is assumed to be aware
of the es-PSP payment and allocation policy, and the bids and
constraints of the other users, attempts to choose its 2-d bid
by so as to maximize Uy (bg,b_g).

B. Preliminaries

Definition 1. For a two-dimensional bid by = (ay,px) €
By, an equivalent ramp function Wy, : Ry — Ry is defined
as Wy p, (z) = pr min(z, ay,).

Note: For any “truthful” bid b, € B with bid quantity
ay, the ramp function can be represented as 0y o, which
is same as earlier, but with pr = v (ag), i.e. Vpq,(z) =
v}, (ak) min(z, ag). This is illustrated in Figure 3.
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Fig. 3.  Ramp function representation of 2-d bid by: here wy p, (Qr)
represents a (possibly untruthful) bid, and Oy o, (Qk) represents a rruthful
bid, corresponding to bid quantity ag.

Note that replacing the terms [;, in the es-PSP allocation
objective S(q) in (4) by their corresponding ramp functions,
allows us to ignore (5) and optimize only with respect to
(6), i.e. the feasibility constraints (2)-(3). It is easy to see
that any schedule vector that optimizes S (with [;’s replaced
by their ramp functions) under q € D, will not realize an
allocation vector Q such that Q)i > ay for any k. Since the
supply cost functions are (strictly) increasing in the load, if
Qr > ay, for any k, then the objective S(q) could be increased
by adjusting the corresponding schedule vector q so as to
reduce Q) to ap. Due to the nature of the ramp functions,

such adjustment would not change Z I but reduces Z gt

_ keK teT
in (4) thus improving S. Hence q cannot be optimal. Therefore,
the energy allocation problem in the es-PSP mechanism can
be equivalently expressed as

max S(q) = Y ks, (Y ah) = > Co(Di+ Y qf), (10)

ke teTy, teT ke
st. q€D. (11)



Note that constraints (5) are implied by the definition of the
ramp functions, and therefore only constraint (6), i.e. q € D
need to be accounted for in the optimization.

Recall from the analysis in (7)-(9) that each rational
user seeks to maximize Uy (bg,b_j) subject to (5) and (6)
and the tie-breaking rule (which we will describe shortly).
Expressed in terms of ramp functions, this becomes equivalent
to maximizing U (q) (where q is a schedule vector resulting
from the es-PSP auction for the bid vector by), given by

Ur(@ = on(@Q) + D 1y, (Qg) = Y Ci(@"), (12)

FjeER\{k} teT
where q satisfies q € D.

Finally, note that the allocation resulting from the es-PSP
mechanism may not be unique, when two users bid the same
price. To resolve this, we assume that the auctioneer utilizes
a tie-breaking rule which is known to every user participating
in the auction. This tie-breaking rule allows the auctioneer to
determine a unique allocation for the users even if some of the
price bids are equal. Any fixed tie-breaking rule works for our
purpose; for definiteness, we assume that the users submitting
the the same price bids are prioritized in increasing order of
their indices: a higher PEV index gets the user (PEV agent) a
higher priority in allocation.

Lemma 1: Assuming a fixed tie-breaking rule, the alloca-
tion vector Q in any solution of the es-PSP mechanism is
unique.

Proof: Consider a given bid vector b, for which g is an
optimal schedule vector (possibly non-unique) resulting from
(4)-(6) (or equivalently, (10)-(11)) and the fixed tie:breaking
rule. We want to show that the allocation vector Q = M@
is unique, even though the optimal schedule vector § may be
non-unique.

It is easy to see from the strict convexity of Cy(Q") in Q°,
that Q' Vt € T is unique for all optimal schedule vectors q.
Therefore, it follows that the total flow (of energy) given by
fl@ = Z Q' is a constant under any optimal schedule.

teT

Now, for the sake of contradicti(zn let us assume that Q
is not unique i.e. there exists some Q which is realized by a
scheduling vector g, such that Q # Q. Let us order the users
(from top to bottom in the bipartite graph representation) in
increasing order of their price bids; users with the same price
bids are ordered in the increasing order of their indices. Let us
renumber the indices of the users (PEVs) now according to this
new order. Let m be the smallest index user (in this new order
just defined) in which the two allocations differ. Without loss
of generality, let us assume @, > Q. Since f(Qq) = f(q)
(as argued before, the total energy allocation is the same in
any optimal schedule), there must exist an index r > m, with
@, > @, such that we can direct some positive flow § > 0
flow from m to r in the solution ¢ (see Figure 4). (Note that
the flow g — g can be resolved into a set of path flows, each
of which start and end at a PEV node, such as the one shown
in Figure 4.) Note that r is such that either (i) p,. > py,, or (ii)
Dr = Dpy and user r has a higher priority than m according
to the tie-breaking rule. In case (i) the flow redirection from
m to r improves the objective S(q); in case (ii) the solution

q could not have satisfied the tie-breaking rule. In either case,
we arrive at a contradiction to our assumption that § optimizes
S subject to the tie-breaking rule, thereby proving the result.

|

Pn

Dr
Time
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Fig. 4. Flow redirection that i) either increases the objective value S, or ii)
directs flow from a low priority user to a higher priority user as defined by
the tie-breaking rule.

C. Relation between Nash equilibrium and Social optimality

In this section we provide the main results stating the
relationship between the Nash equilibrium and Social opti-
mality of the es-PSP mechanism. Let q* = (q7,q3, ..., q})
be the socially optimal schedule vector that realizes a socially
optimal allocation vector Q* = (Q%,Q5%, ..., Q%) Note that
the optimal schedule q* can be non-unique, but due to the
strict concavity of vg(Qg) in Q, it follows that the optimal
allocation vector Q* is unique.

Proposition 1: Truthful bidding at the socially optimal
allocations is a Nash equilibrium of the es-PSP mechanism,
i.e., the bids b} = (Q5,v;.(Q%)) for k € K, constitute a Nash
equilibrium of the es-PSP mechanism.

Proof: Consider the bid vector b* = (b],b5,...,b%)
where b; = (Qf,v,(QF)) Yk € K. The allocation problem
solved by the auctioneer in this case is

max S(q) = Y iko:(Qr) — > C(@QY),  (13)
ke teT
subject to q € D (and the tie-breaking rule), where

Ok, (Qr) = v}, (QF) min(Qk, Q) is the truthful ramp func-
tion corresponding to the socially optimal allocation for user
k. Since q* optimizes S(q) in (1) subject to q € D, from [25]

we can say,

9S(q") NT*(a") # ¢ (14)
Here, 0S(q*) is the set of sub-gradients of the function S(q)
at ¢ = q*; in our case, since S(q) is differentiable for

all q, 9S(q*) will just consist of the gradient of S(q) at
q = g*. Also, ' (q*) represents the conjugate to the cone
of feasible directions in D, at the point q = q*. We can see
that the only difference in (1) and (13) is that v (Qy) has
been replaced by 9 q: (Qr). Also, note that 0y, o+ (Qx) is non-
differentiable with respect to @), at Q. Further, the component
corresponding to ¢, (for any ¢ € Tj) in any sub-gradient of
S(q) at q = q* is given by \v,(Q}) for 0 < A < 1, which
contains vy (Q5) (A = 1) case. Thus, we can argue that,

9S(q*) C 95(q"). (15)
From (14) and (15), we can write,
0S(q*) NTH(q") # ¢ (16)



which implies that q* also optimizes S(q) subject to q € D.

Now for any q = q that optimizes S (q) subject to q € D
and the tie-breaking rule, the corresponding allocation vector
Q is unique (from Lemma 1). We claim that Q = Q*. To
see this, let us assume for the sake of contradiction, Q ;é
Q*. Note that any optimal allocation Q must satisfy @) <
Q%> Vk € K. Also note that oy, or, (Qr) = v, (Q})Q for all

such allocations. Since S(q*) = S’(q) we have
Y ik0p Q)= Cl@) =Y k0 (Qn) 2 Ci(Q
kek teT keK
)

From the strict convexity of Cy(-), it follows that Q*, Vt € T
must be unique in any optimal solution. Therefore Q" =

Q', ¥t e T. Thus, Y Co(Q"") = Cy(Q"). Thus,
teT teT
Z br,Q; (Qr) = Z ir,Q; (Q)
kex ke
= Q)@ —Qr) = 0. (18)

ke

Since vj,(-) > 0 at all points (we have assumed the val-
uation functions to be (strictly) increasing), it follows that
Qr = Qr, Yk € K. Thus, Q* = Q. This shows that given
the bid vector b* ,, i.e. when every other agent j € IC\ {k}
bids the ramp function v; ¢ (+), the allocation is Q* provided
agent k bids 0 q: (Qk).

Now from (12), glven b* ,, a rational (selfish) user k’s
objective is to maximize U (q), given by
=) _G(@"). (19

Ug(a) = ve(Qr) + Z bj,0:(Q5)

JeER\{k} teT

Comparing U} (q) and S(q) (defined in (1)), we see that
the only differences are the replacement of v;(Q;) by
05,0:(Q;), Vj € K\{k}. Using similar arguments as provided
earlier in this proof (when comparing the sub-gradients of S(q)
and S(q) at q = q*), it follows that

95(q*) C oU;(a"). (20)
From (14) and (20), we can write,
U (q") NI (q") # ¢ (€3}

This shows that U} (q) is maximized at q = q* subject to (11)
and the tie-breaking rule, provided b_; = b* .. Now suppose
that given the bids of other users remains fixed at b* ,, user k
deviates by bidding b}, which realizes in a schedule vector q’
(and corresponding allocation vector Q’), as a result of the es-
PSP auction. Since q* optimizes U (q) subject to (11) and the
tie-breaking rule, U;(q’) < U;(q*). Thus we see that given
b_; = b*,, agent k has no incentive to change its bid from
Ok,q; or equivalently by = (Qj,v,(Qj)). Therefore the bid
vector b* = (b7, b* ) is a Nash equilibrium of the es-PSP
mechanism. u

Proposition 2 shows that truthful biding at socially optimal
allocations is a Nash equilibrium of the es-PSP auction. From
the proof of Proposition 2, it can also be seen that for this
bidding strategy, each user k get the quantity @); that its
asks for, i.e., the optimal energy allocation resulting from the

auction when the bid vector is b* is Q*. This still keeps open
the possibility of inefficient Nash equilibria. The next result
however shows that the allocation at any Nash equilibria of
the es-PSP mechanism is efficient.

Proposition 2: The allocation at any Nash equilibrium of
the es-PSP mechanism is socially efficient.

Proof: Consider a bid vector b that is at Nash equilibrium,
and let wy, (), Yk € K be the corresponding ramp functions.
(We know from Proposition 1 that a Nash equilibrium to the es-
PSP mechanism exists.) Let q to be a schedule vector resulting
from the es-PSP mechanism for this bidding strategy, and the
corresponding allocation vector be Q.

Now from (12), given the bids of other users b_y, user k
seeks to maximize Uy(q), given by

U(a) = ve(Qu) + D =) QY. 2
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We first argue that Uy(q) is maximized by §, Vk € K
subject to q € D and the tie-breaking rule. To see this, for
sake of contradiction, suppose that for any k € K, Uk(q) is
not maximized at §. In other words, there exists some schedule
vector g # ¢ that maximizes U}, subject to q € D and the
tie-breaking rule; let Q (# Q) be the corresponding allocation
vector. Let 90Uy (q) be the set of sub-gradients of the function
Ui (q) at g, and T (q) be the conjugate to the cone of feasible
directions in D at q. Then since q = § optimizes Ux(q),
from [25] we can write (sub-gradient constrained optimality
condition):

dUL(@) NT*(q) # ¢. (23)

Now let user % unilaterally change its bid from by, to b, =
(Qr,v;,(Qr)), and let ¥y, 5, (-) be the corresponding (truthful)
ramp function. We will show that user k gains for this
deviation. Since the bids of the other users are kept fixed
at b_y, allocation will be determined by the auctioneer by

maximizing S(q) given by
S(q) = by,0,(Qk)+ > W )= CHQY), 24
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subject to (11) and the tie-breaking rule. Note that the only
difference in S(q) and Uy (q) is the replacement of vy (Q%)
in Ug(q) by 0, Qk(Qk) in S(q). Using arguments as before,

thus we have, OU(q) C 95(q). This fact and (23) gives
05(@) NT™ (@) # ¢. (25)

This implies that q also optimizes S(q).

From Lemma 1, we know that the corresponding allocation
Q is unique. This implies that when the other users’ bids
are remain fixed at b_, and user £ changes its bid to
by = (Qr, v}, (Qr)) # bk, the allocation resulting from the
es-PSP auction must be Q, which improves Ux(q) beyond
its value at Nash equilibrium Uy(§ ). This provides incentive
for user k to change its bid from by, contradicting the fact
that the bid vector b is at Nash equilibrium. Therefore, our
supposition was wrong, implying that Uy (q) is maximized at
q for all k£ € K.



Define C(q Z C (@

teT 3
sary) conditions for optimality of Ux(q) at q = q along the

. From the first order (neces-

direction of qy, and identifying the fact that Z W; 5, (@)
. . o deRN{k}
in (22) is independent of qj, we can write

[Vavor(Qk) = Va,C(@)]p, = 0. (26)

Note that (26) holds for all k¥ € K. Now consider S(q)
in (1) for computing the social optimum subject to (11). The
corresponding first order conditions for optimality (which are
both necessary and sufficient in this case, due to the convexity
of S(q) in q) of S(q) subject to (11) are given as,

Va,0r(@r) ~ Vo, C(@)lp, =0, Vk K. 27)

Note that (26) when considered for all & € IC, is the same as
the conditions in (27). Therefore the schedule vector q (which
realizes an allocation vector of Q) also maximizes S(q), and
is there socially optimal. This also implies that the allocation
vector Q at any Nash equilibrium of the es-PSP mechanism
equals the unique socially optimal allocation Q*. ]

Proposition 2 should not be interpreted as the uniqueness of
the Nash equilibrium bids. It can be shown that there may exist
multiple (many) bid vectors b that are at Nash equilibrium;
some examples will be provided in the full version of the
paper. Proposition 2 only implies that the allocation vector
at all Nash equilibria is the same, and is socially optimal.
Note however that this (socially optimal) allocation vector is
in general realizable by multiple schedule vectors.

D. Truthful price-bid declaration

Recall that Proposition 1 shows the existence of a truthful
bid that is a Nash equilibrium. In the proof of Proposition 2,
we have also used truthful bidding in constructing potentially
better bids for a user, given the bids of others. These are not
accidental, as can be seen from Proposition 3, stated below.
The result shows that given the bids of other users (which
need not be at Nash equilibrium or result in socially optimal
allocation), any user cannot be worse of by declaring its price
bid truthfully for the quantity bid it declares (the quantity bid
that optimizes its individual utility, given other users’ bids).

Proposition 3: Given the bids of other users, b_y, there
exists a truthful best bid for user k, by(b_y) € BY.

Proof: From (12), given the bids of other users b_y, user

k seeks to maximize
Ur(@) =on(Q)+ D> 1, (Q5) — D Ce(@Q"), (28)

jeR\{k} teT

subject to q € D and the tie-breaking rule. Let an optimal
schedule vector (that maximizes Uy(q)) be q = g which
realizes an allocation vector Q = (Q1,Q2, . - -, QK) While q
can be non-unique, owing to strict concavity of vy (Q}) with
respect to Q, it follows that ), is unique. From an argument
similar to that in the proof of Lemma 1, we can show that
Qj, Vj € K\ {k} are unique as well, when the tie-breaking
rule is taken into account. Thus, Q is unique. Note that for
optimality of (28) at q, it follows from [25] that,

k(@ NTH(Q) # ¢ (29)

Now let us define the following “truthful” bid for user k:
bk( k) = (Qk,vk(Qk)) Then by, can be regresented as the
ramp function v, 5 . (). Now when user k bids by, in the es-PSP
mechanism, while the bids of other users remain fixed at b_,
the auctioneer computes the energy allocation by maximizing

S(q) given by
=0,0,(@Qr)+ Y wi(Q) =Y CiQY, (0

JER\{k} teT

S(a)

subject to (11) and the tie-breaking rule. Compare Uy(q) and
S(q). The only differences are replacement of v (Q) in
Uk(a) by 9 5, (Qk) in S(q). Hence, arguing as before (see
proofs of Propositions 1 and 2), U (§) C 95(§). Combining
this with (29) we get 95(q)NI'*(q) # ¢, which implies that §
also optimizes S(q). Since the allocation vector correspond to
any optimum solution of S (q) subject to the tie-breaking rule
is unique (Lemma 1), it follows that if user k& submits a bid of
bk when the other bids are kept at b_, the resulting allocation
is Q. Since Q maximizes Uy (q), therefore the truthful bid
b = (kak(Qk)), which depends on b_j, represents the
user’s best bid given b_j. The result follows. ]

IV. NUMERICAL STUDY

In our simulation study, we consider a simple residential
distribution network having a single distribution transformer
of rating 200 kVA, and shared by 24 PEVs each having a
valuation function of the form vy (z) = k(1 — e~ ") where &
and r are constants that define the concavity of the valuation
function. We assume that the PEVs are classified into four
types: each type 7 being represented by a unique set of x; and
r; values. For our study, we chose k1 = 10;k2 = 9;k3 =
11;k4 = 7 and r; = 0.1;7 = 0.11;73 = 0.12;7r4 = 0.09.
We assume that all PEVs are available to charge in all time

slots. The supply cost functions are taken as Cy = C(Z )

kex
where c is an increasing function of D;. In this setting, we first

compute the socially optimal energy allocation; Figure 5 shows
the overall load (over time) resulting from this allocation,
along with the base (non-PEV) demand. We note from the
figure the approximate valley filling nature of the load curve:
the socially optimal allocation based on (1)-(3) allocates PEV
charging mostly in the time slots that have less inelastic load,
thereby attaining (albeit approximately) the desirable objective
of flattening the overall load curve.

Next we demonstrate that for the es-PSP mechanism,
truthful bidding at this socially optimal allocation is a Nash
equilibrium. The socially optimal allocations for the PEVs
of types 1,2,3 and 4 respectively are 7.07 kWh, 6.34 kWh,
8.10 kWh and 2.73 kWh, respectively. Now, we study the
es-PSP mechanism in which we demonstrate the effect of
increasing the quantity of bid (aj) for each agent k£ in an
entire range of interest of charging, while the bids of all other
23 agents are held constant at their socially optimal values.
We assume truthful bidding, so determining the quantity ag
also determines the per-unit price p; (which can be obtained
from agent k’s valuation function).

We observe from Figure 6 that, agents of type 1 gain
maximum utility by truthful bidding at the socially optimal
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unilaterally, while other agents’ bids are kept at their socially optimal values.

quantities, at which point there is no incentive to unilaterally
deviate and gain a greater utility. (Results for the other three
types (2, 3 and 4) are found to show similar trends as in
Figure 6.) We also validated that this equilibrium point (as
which the the users declare their price bids truthfully) is
stable with respect unilateral changes in the bid price as well,
while keeping the bid quantity the same. These observations
are consistent with our theoretical results in Propositions 1
and 3, although the result is Proposition 1 is stronger in
that it claims the stability of truthful bidding at the socially
optimal allocation with respect to changes in both bid price
and quantity dimensions at the same time. A more extensive
simulation study of the properties of our auction mechanism
in more general settings will be presented in a full version of
this work.
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