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Abstract

MATLAB [20] is one of the most widely used mathematical computing environments in technical

computing. It is an interactive environment that provides high performance computational routines and

an easy-to-use, C-like scripting language. It has started out as an interactive interface to EISPACK [31]

and LINPACK [13], and has remained a serial program. In 1995, Cleve Moler of Mathworks argued that

there was no market at the time for a parallel MATLAB [26]. But times have changed and we are seeing

increasing interest in developing a parallel MATLAB, from both academic and commercial sectors. In a

recent survey, [10] 27 parallel MATLAB projects have been identified.

In this paper we will expand upon that survey and discuss the approaches the projects have taken

to parallelize MATLAB. Also we will describe innovative features in some of the parallel MATLAB

projects. Then we will conclude with an idea of a ‘right’ parallel MATLAB.Finally we will give an

example of what we think is a ‘right’ parallel MATLAB: MATLAB*P [11]

I. MATLAB

MATLAB [20] is one of the most widely used tools in scientific and technical computing. It started in

the 1970s as an interactive interface to EISPACK [31] and LINPACK [13], a set of eigenvalue and linear

system solution routines. It has since grown to a feature rich product utilizing modern numerical libraries

such as ATLAS [36] and FFTW [16], and with toolboxes in a number of application areas, for example,

financial mathematics, neural networks, and control theory. It has a built-in interpreted language that is

similar to C and HPF, and the flexible matrix indexing makes it very suitable for programming matrix

problems. Also it provides hooks to the Java programming language, making integration with compiled

programs easy.

MATLAB gained popularity because of its user-friendliness. It has seen widespread use in classrooms

as a teaching tool. Its strong graphical capabilities makes it a good data analysis tool. Also researchers

have been known to build very complex systems using MATLAB scripts and toolboxes.
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II. WHY THERE SHOULD BE A PARALLEL MATLAB

Because of its roots in serial numerical libraries, MATLAB has always been a serial program. In 1995,

Cleve Moler of Mathworks wrote an article Why there isn’t a parallel MATLAB [26], stating Mathworks’

intention not to develop a parallel MATLAB at that time. His arguments could be summarized as follows:

1) Memory model

Distributed memory was the dominant model for parallel computers, and for linear algebra appli-

cations, scatter/gather of the matrix took too long to make parallel computation worthwhile.

2) Granularity

For typical use, MATLAB spends most of its time in the parser, interpreter and graphics routines,

where any parallelism is difficult to find. Also, to handle embarrassingly parallel applications, which

only requires a collection of results at the end, MATLAB would require fundamental changes in

its architecture.

3) Business situation

There were not enough customers with parallel computers to support the development.

It has been eight years since the article was written, and we have seen tremendous changes in the

computing world. These changes have invalidated the arguments that there should not be a parallel

MATLAB.

1) Memory model

As modern scientific and engineering problems grow in complexity, the computation time and

memory requirements skyrocket. The increase in processor speed and the amount of memory that

can fit in a single machine could not catch up with the pace of computation requirements. Very

often current scientific problems simply do not fit into the memory of a single machine, mak-

ing parallel computation a necessity. Combining with improvements in interconnect technologies,

parallel computation has become a worthwhile endeavor.
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2) Granularity

Over the past eight years simple parallel MATLAB projects, some consisting of only 2 m-files,

have shown that multiple MATLAB instances running on a parallel computer could be used to

solve embarrassingly parallel problems, without any change to MATLAB itself. Also, increase in

problem sizes and processor speed have reduced the portion of time spent in non-computation

related routines.

3) Business situation

The past few years have seen the proliferation of Beowulf clusters. Beowulf clusters are parallel

computers made from commodity off-the-shelf (COTS) hardware. They often consist of worksta-

tions connected together with ethernet or other common, non-proprietary interconnect. Researchers

prefer Beowulf clusters over traditional supercomputers because Beowulfs are quite easy to setup

and maintain, and cheap enough so that a researcher can get his or her ’personal supercomputer’.

However, often researchers in science wanting to use a parallel computer to solve problems are

not experts in parallel programming. The dominant way of parallel programming, MPI [15], is too

low-level and too error prone. MATLAB is well known for its user-friendliness. There is a huge

potential market for a MATLAB that could be used to program parallel computers.

III. MATLAB, MAPLE, AND MATHEMATICA

Besides MATLAB, there are two other very popular technical computing environments. First is Maple

R
�

, developed by Maplesoft, which is well known for its excellent symbolic calculation capabilities. Then

there is Mathematica R
�

, developed by Wolfram Research, which features a procedural programming

language.

We are interested in looking at parallel MATLAB mainly because:

1) MATLAB is popular
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Compared to Maple and Mathematica, we feel a parallel MATLAB would reach a wider audience.

MATLAB has seen extensive use in classrooms at MIT and worldwide. To get a rough idea of

the popularity of the three software packages, we did a search on CiteSeer [8] for the number of

citations and Google for the number of page hits:

CiteSeer Google
MATLAB 3117 1720000
Maple 1733 Common word
Mathematica 1773 1530000

TABLE I: CiteSeer and Google search for 3 popular math
packages, measured on November 15, 2003

2) MATLAB is user friendly

From our experience of using the three packages, we feel that MATLAB has the best user interface.

Its C/HPF like scripting language is the most intuitive among the three for numerical parallel

computing applications.

IV. PARALLEL MATLAB SURVEY

The popularity of MATLAB and the fact that it could only utilize one processor sparked a lot of

interest in creating a parallel MATLAB. We have done a survey [10] and found through extensive web

searching 27 parallel MATLAB projects. These projects vary in their scope: some are one-man projects

that provide basic embarrassingly parallel capabilities to MATLAB; some are university or government

lab research projects; while some are commercial projects that enables the user of MATLAB in product

development. Also their approaches to making MATLAB parallel are different: some compile MATLAB

scripts into parallel native code; some provide a parallel backend to MATLAB, using MATLAB as a

graphical frontend; and some others coordinate multiple MATLAB processes to work in parallel. These

projects also vary widely in their status: some are now defunct and exist only in Google web cache,

while some are entering their second or third revision.
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A. Embarrassingly Parallel

MATLAB #0

MATLAB #1

MATLAB #2

MATLAB #3

Software that make use of this approach: Multi [24], Paralize [1], PLab [23], Parmatlab [3]

This approach makes use of multiple MATLAB processes running on different machines or a single

machine with multiple processors. However no coordination between the MATLAB processes is provided..

Instead, a parent process passes off data to the child processes. Then all processes work on its local data,

and return the result to the parent process.

Under this model, the type of functions that can be parallelized is limited. For example, a for-loop

with any data dependency across iteration would be impossible to parallelize under this model. However,

this model has the advantage of simplicity. In the software we found that utilize this approach, usually

no change in existing code is needed to parallelize the code, if the code is parallelizable using this

simple approach. From our experience, this approach is sufficient for a lot of real world applications. For

example, Seti@Home belongs to this category.
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B. Message Passing

MATLAB #1

MATLAB #3

MATLAB #0

MATLAB #2

Software that make use of this approach: MultiMATLAB [34], CMTM [37], DPToolbox [28], MPITB/PVMTB

[5], MATmarks [2], PMI [25], PTToolbox[18], MatlabMPI [22], pMatlab [21]

This approach provides message passing routines between MATLAB processes. This enables users to

write their own parallel programs in MATLAB in a fashion similar to writing parallel programs with a

compiled language using MPI. In fact, for some of the projects [34] [37] [5] [22], the routines provided

are wrappers for MPI routines. This approach has the advantage of flexibility: users are theoretically

able to build any parallel system in MATLAB that they can build in compiled languages with MPI. This

approach is a superset of the embarrassingly parallel approach.

C. Backend Support

MATLAB #0
Commands

Data

PARALLEL

SERVER

Software that make use of this approach: NetSolve [4], DLab [27], Matpar [32], PLAPACK [35],

PARAMAT [33], MATLAB*P [11]

This approach uses MATLAB as a front end for a parallel computation engine. Computation is done

on the engine, usually making use of high performance numerical computation libraries like ScaLAPACK
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[7]. For some approaches e.g. [4] [27], the data resides in MATLAB and are passed to the engine and

back. And for some approaches e.g. [11], the data reside on the server and are passed back to MATLAB

only upon request. The latter approach has the advantage that there is less data traffic. This is important

for performance when data sets are large.

The advantage of this approach is that it only requires one MATLAB session (therefore only one

license), and it usually does not require the end user to have knowledge of parallel programming.

D. MATLAB Compilers

MATLAB #0

Parallel Excutable

PARALLEL 

SERVER
Compile

Software that make use of this approach: Otter [30], RTExpress [19], ParAL [29], FALCON [12],

CONLAB [14], MATCH [6], Menhir [9]

These softwares compile MATLAB scripts into an executable, sometimes translating the scripts into a

compiled language as an intermediate step. Some softwares e.g. [30] [14] links the compiled code with

parallel numerical libraries, while some softwares e.g. [12] generates code that is already parallel.

This approach has the advantage that the compiled code runs without the overhead incurred by

MATLAB. Also the compiled code can be linked with code written in C or FORTRAN, so MATLAB

can be used to develop part of a system instead of the whole system. In this approach, MATLAB is

used as a development platform instead of a computing environment. This allows the produced parallel

program to run on platforms which does not support MATLAB (e.g. SGI).

E. The Parallel MATLABs
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MultiMATLAB [34] Cornell University
CMTM [37] Cornell University
DP-Toolbox [28] University of Rostock, Germany
MPITB/PVMTB [5] University of Granada, Spain
MATmarks [2] UIUC
PMI [25] Lucent Technologies
PT Toolbox [18] Wake Forest University
MatlabMPI [22] MIT Lincoln Lab
pMatlab [21] MIT Lincoln Lab

TABLE II: Message Passing

Matlab Parallelization Toolkit [17] Linkopings Universitet, Sweden
MULTI Toolbox [24] Purdue University
Paralize [1] Chalmers University of Technology, Sweden
PLab [23] Technical University of Denmark
Parmatlab [3] Northeastern University

TABLE III: Embarrassingly Parallel

Netsolve [4] University of Tennessee, Knoxville
DLab [27] UIUC
Matpar [32] Jet Propulsion Lab
PLAPACK [35] University of Texas at Austin
Paramat [33] Alpha Data Parallel Systems
MATLAB*P [11] MIT

TABLE IV: Backend Support

Otter [30] Oregon State University
RTExpress [19] Integrated Sensors Inc.
ParAL [29] University of Sydney, Australia
FALCON [12] UIUC
CONLAB [14] University of Umea, Sweden
MATCH [6] Accelchip Inc.
Menhir [9] IRISA, France

TABLE V: MATLAB Compiler
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V. PARALLEL MATLAB FEATURES

In evaluating the 27 parallel MATLAB projects, we found that some contain features that are innovative

in the parallel MATLAB world:

A. File System Based Communication

The earlier parallel MATLABs like MultiMATLAB [34] used TCP/IP based communication. TCP/IP

implementations and routine calls are often system dependent. Thus, a TCP/IP based parallel MATLAB

would not work cross platform.

Realizing that problem, some parallel MATLAB projects began to utilize a file system based com-

munication system. Machines in a Beowulf cluster often share a common file system, e.g. NFS, and

it can be exploited for communication. One of the earliest parallel MATLAB projects to make use of

this is Paralize [1](1998). Sends and receives are handles through writing to and reading from files,

and synchronization is done through checking for the existence of certain lock files. MatlabMPI [22]

implements basic MPI functions in MATLAB using cross-mounted directories. Bandwidth comparable

to C-based MPI is reported, although the latency is inferior.

B. Pure m-file Implementation

Simple parallel MATLAB approaches like the embarrassingly parallel approach or MPI could be

implemented with pure MATLAB m-files. One of the earliest parallel MATLAB to be implemented this

way is Paralize [1] (1998), a parallel MATLAB using the embarrassingly approach and implementing

dynamic load balancing in only 120 lines of MATLAB code. Pure m-file implementation has the

advantage of being portable to any platform on which MATLAB runs. Also, it makes installation simple

and user-friendly - no compilation is needed.
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C. Parallelism through Polymorphism

Parallel MATLABs often introduce new commands into MATLAB. For example, a pfor function for

parallel for-loops, or a set of MPI-like functions for message passing operations. The problem with this

approach is that it does not reduce the complexity of writing a parallel program. MPI is not the level

general users want to or should want to program at.

Since the number of functions in MATLAB is finite, it is sufficient to parallelize the functions in

MATLAB through overloading, and make the users call the parallel version instead. This is introduced

in MATLAB*P [11] seamlessly in the concept of Parallelism through Polymorphism. MATLAB*P is a

parallel MATLAB using the backend support approach, attaching a parallel backend server to MATLAB.

This will be explained further in a later section.

D. Lazy Evaluation

Backend support parallel MATLABs utilize a server to perform the computation. While the server is

busy computing, the frontend MATLAB often idles, wasting precious cycles. To remedy this problem,

DLab [27] introduces a concept called lazy evaluation. When a command is sent to the server, the

MATLAB program does not block and wait for the result. Instead, the MATLAB program only blocks

when it tries to make a server call again. This way, additional computations could be done in the time

between the server call and the next, which is wasteful in other backend support parallel MATLABs.

VI. WHAT DOES THE USER WANT IN A PARALLEL MATLAB?

A. The MATLAB experience

We could reflect on the experience of MATLAB to understand what a user would want in a parallel

MATLAB.

MATLAB started out as an interactive interface to EISPACK and LINPACK, a set of eigenvalue and

linear system solution routines. EISPACK and LINPACK were written in FORTRAN, so normally a
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user would have to write program in FORTRAN to use the routines. That way the user will have to

take care of the memory allocation, indexing, and studying the (quirky) EISPACK/LINPACK syntaxes.

Furthermore, there is no way to visualize the result without writing your own code.

But MATLAB took care of all of this. User calls create matrices and operate on them using simple,

intuitive calls. Visualization could also be done in the same framework. Furthermore, the scripting

language in MATLAB contains features from C and HPF, making it easier to use than FORTRAN

and more suitable for matrix computation than C.

All this convenience came at a cost of performance. The graphical user interface, parser and interpreter

takes away processor cycles which could be used for computation. Also the interpreted scripts could not

match the performance of compiled C or FORTRAN code. Yet still, MATLAB is a huge success. We

can see that what the users really want is ease-of-use, not peak performance. Users prefer a system that

is easy to use and has good performance, over a system with peak performance but is hard to use and

clumsy. The gain in performance in the latter system is easily offset by the additional time needed to

program it.

B. Modes of Parallel Computation

Over the years we have seen many parallel programs from various application areas: e.g. signal

processing, graphics, artificial intelligence, computational mathematics, and climate modeling. From the

code we have seen, we divide parallel computation in general into four categories:

1) A lot of small problems that require no communication

Also known as embarrassingly parallel problems. The problem size is small enough so that it will

fit into the memory of one machine, but there are a lot of them so parallel computation is needed.

No communication is required between the parallel threads of computation, except for an initial

scatter - to distribute the computation and a final gather - to collect the results. An example of this
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type of computation would be animation rendering. This is the largest class of problems.

2) A lot of small problems that require some communication

Just like the first case, the problem size is small enough to fit into the memory of one machine.

However, in this category it is necessary to communicate between the parallel threads during the

computation.

3) Large problems

This class of problems has a problem size that would not fit into the memory of a single machine.

Example: the high performance Linpack (HPL) benchmark

4) A mixture of the three

In this class of problems, the data is sometimes processed individually in embarrassingly parallel

mode, while sometimes it is treated as a global data structure. We have seen an example of this in

climate modeling.

A good parallel MATLAB should address at least one of these areas well.

C. The ’Right’ Parallel MATLAB

When building the ’Right’ parallel MATLAB targeting the widest possible audience (and thus would

be most commercially viable), we should take the above arguments into account. First, the interface in

the parallel MATLAB should be easy to use, does not differ much from ordinary MATLAB, and does

not require learning on the users’ part. Secondly, it should allow the four modes of parallel computation

described above.

VII. MATLAB*P

We present MATLAB*P [11] as an example of what could be a ’Right’ parallel MATLAB. MATLAB*P

is a parallel MATLAB using the backend support approach, aimed at widespread circulation among a

general audience. In order to achieve this, we took ideas from the approaches used by other software
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found in the survey. For example, the embarrassingly parallel approach allow simplistic, yet useful,

division of work into multiple MATLAB sessions. The message passing approach, which is a superset

of the embarrassingly parallel approach, allows finer control between the MATLAB sessions.

The main idea in MATLAB*P is that data exist on the parallel server as distributed matrices. Any

operations on a distributed matrix (which exists in the MATLAB frontend only as a handle) will be

relayed to the server transparently. The server calls the appropriate routine from a parallel numerical

library (e.g. ScaLAPACK, FFTW, ...) and the results stay on the server until explicitly requested.

The ’transparency’ comes from the use of polymorphism in MATLAB. This will be explained in the

next section.

VIII. FEATURES OF MATLAB*P

A. Parallelism through Polymophism - *p

The key to the parallelism lies in the *p variable. It is an object of dlayout class in MATLAB. By

overloading MATLAB functions for the class dlayout, we were able to create a parallel MATLAB that

has exactly the same interface as MATLAB.

Through the use of the *p variable, matrices that are distributed on the server could be created. For

example,

X = randn(8192*p,8192);

The above creates a row distributed, 8192 x 8192 normally distributed random matrix on the server.

X is a handle to the distributed matrix, identified by MATLAB as a ddense class object. By overloading

randn and many other built-in functions in MATLAB, we are able to tie in the parallel support transparent
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to the user. This is called parallelism through polymorphism. Note that the syntax is exactly the same as

ordinary MATLAB except for the additional *p variable.

e = eig(X);

The command computes the eigenvalues of X by calling the appropriate ScaLAPACK routines, and

store the result in a matrix e, which resides on the server. The result is not returned to the client unless

explicitly requested, to reduce data traffic. Again the syntax is the same as ordinary MATLAB.

E = pp2matlab(e);

This command returns the result to MATLAB. This is one of the few commands in MATLAB*P not

found in ordinary MATLAB (matlab2pp is another of them).

The use of the *p variable along with overloaded MATLAB routines enable existing MATLAB scripts

to be reused. For example,

function H = hilb(n)

J = 1:n;

J = J(ones(n,1),:);

I = J’;

E = ones(n,n);

H = E./(I+J-1);
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The above is the built-in MATLAB routine to construct a Hilbert matrix (obtained through type hilb).

Because the operators in the routine (colon, ones, subsasgn, transpose, rdivide, +, -) are overloaded to

work with *p, typing

H = hilb(16384*p)

would create a 16384 by 16384 Hilbert matrix on the server. By exploiting MATLAB’s object-

oriented features in this way, many existing scripts would run in parallel under MATLAB*P without

any modification.

B. ’MultiMATLAB/MultiOctave mode’

One of the goals of the project is to make the software to be useful to as wide an audience as possible.

In order to achieve this, we found that it would be fruitful to combine other parallel MATLAB approaches

into MATLAB*P, to provide a unified parallel MATLAB framework.

In conjunction with Parry Husbands, we developed a prototype implementation of a MultiMATLAB[34]-

like, distributed MATLAB package in MATLAB*P, which we call the PPEngine. With this package and

associated m-files, we can run multiple MATLAB processes on the backend and evaluate MATLAB

functions in parallel on dense matrices.

The system works by starting up MATLAB engine instances on each node through calls to the

MATLAB engine interface. From that point on, MATLAB commands can be relayed to the MATLAB

engine.

Examples of the usage of the PPEngine system:

>> % Example 1

>> a = 1:100*p;
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>> b = mm(’chi2rnd’,a);

The first example creates a distributed matrix of length 100, then fill it with random values from the

chi-square distribution through calls to the function chi2rnd from MATLAB statistics toolbox.

>> % Example 2

>> a = rand(100,100*p);

>> b = rand(100,100*p);

>> c = mm(’plus’,a,b);

This example creates two column distributed matrices of size 100x100, adds them, and puts the result

in another matrix. This is the slow way of doing the equivalent of:

>> a = rand(100,100*p);

>> b = rand(100,100*p);

>> c = a+b;

The ’MultiOctave’ mode works exactly the same as ’MultiMATLAB’ mode, only using Octave, a

freely available MATLAB-like scientific computing software, for the computation.

>> % Example 3

>> a = randn(4,4*p);

>> b = mm(’sin’,a)

>> c = mo(’sin’,a)

>> norm(b-c)
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ans =

6.7820e-07

The above interesting example shows that Octave and MATLAB uses a different algorithm for the sine

function. Octave serves the purpose of an embarrassingly parallel backend very well, because although

its graphical capabilities is not as good as MATLAB, it’s numerical parts is up to par with MATLAB.

As a backend engine, we are mostly concerned with numerical performance.

>> % Example 4

>> a = (0:(np-1)*p)/np;

>> b = a + (1/np);

>> [mypi, fcnt] = mm(’quadl’,’4./(1+x.ˆ2)’,a,b);

>> disp(’Pi calculated from quadl in mm mode’)

>> pi_from_quadl=sum(mypi)

>> disp(’Number of function evaluation on each processor’)

>> fcnt(:)

Pi calculated from quadl in mm mode

pi_from_quadl =

3.1416
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Number of function evaluation on each processor

ans =

18

18

18

18

The above example illustrates how np, the variable that returns the number of processes running on

the backend server, can be used in a script to write adaptive code. When the above example is run on 4

processes, a is 0:0.25:0.75, and b is 0.25:0.25:1. In the ’MultiMATLAB’ call each slave MATLAB will

compute the adaptive Lobatto quadrature of

�
�������

in the intervals (0,0.25), (0.25,0.50), (0.50,0.75), (0.75,1.0) respectively. The result from each slave

MATLAB is summed to form pi.

C. Visualization Package

This visualization package was written by Bruning, Holloway and Sulejmanpasic, under supervision

of Ron Choy, as a term project for the class 6.338/18.337 - Applied Parallel Computing at MIT. It has

since then been merged into the main MATLAB*P source.

This package adds spy, surf, and mesh routines to MATLAB*P. This enable visualization of very large

matrices. The rendering is done in parallel, using the Mesa OpenGL library.

Figure 1, 2, 3 shows the routines in action.
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Fig. 1. ppspy on a distributed 1024x1024 matrix on eight nodes

Fig. 2. ppsurf on the distributed 1024x1024 ’peaks’ matrix

All three routines allow zooming into a portion of the matrix. Also, ppsurf and ppmesh allow changing

of the camera angle, just as supported in MATLAB.
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Fig. 3. ppmesh on the distributed 1024x1024 ’peaks’ matrix
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Fig. 4. Structure of MATLAB*P 2.0

D. Structure of MATLAB*P 2.0 system

MATLAB*P 2.0 is written in C++ using extensive use of templates. It interfaces with MATLAB using

the MEX (MATLAB Extension) interface.

The server itself is divided in four self-contained parts:

1) Client Connection Manager

Client Connection Manager is responsible for communications with the client. It provides functions
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for reading commands and arguments from the client and sending the results back to the client. It

is only used in the head server process.

2) Server Connection Manager

Server Connection Manager takes care of communications between server processes. It mainly

controls broadcasting of commands and arguments from head process to the slave processes, and

collection of results and error codes. Also it provides rank and size information to the processes.

3) Package Manager

Package Manager is responsible for maintaining a list of available packages and functions provided

by them. When initiated by the server process, Package Manager will also perform the actual call

to the functions.

4) Matrix Manager

Matrix Manager contains all the functions needed to create, delete and change the matrices on the

server processes. It maintains a mapping from client-side matrix identifiers to actual matrices on

the server. It is also responsible for performing garbage collection.

This organization offers great advantages. First of all, debugging is made easier because bugs are

localized and thus are much easier to track down. Also, this compartmentized approach allows easier

extension of the server. For example, the basic Server Connection Manager makes use of MPI (Message

Passing Interface) as the means of communication between server processes. However, one could write

a Server Connection Manager that uses PVM (Parallel Virtual Machine) instead. As long as the new

version implements all the public functions in the class, no change is needed in any other part of the

code.

Similar extensions can be made to Client Connection Manager as well. The basic Client Connection

Manager uses TCP socket. An interesting replacement would be to make a Client Connection Manager

that act as an interface to a language like C++ or Java.
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Fig. 5. Matrix multiplication timing results

IX. BENCHMARKS

We compare the performance of MATLAB*P, MATLAB, and ScaLAPACK on a Beowulf cluster

running Linux.

A. Test Platform

	 Beowulf cluster with 9 nodes (2 nodes are used in the tests).

	 Dual-processor nodes, each with two 1.533GHz Athlon MP processors.

	 1GB DDR RAM on each node. No swapping occurred during benchmarks.

	 Fast ethernet (100Mbps/sec) interconnect. Intel Etherfast 410T switch.

	 Linux 2.4.18-4smp

	 MATLAB 6.1.0 R12.1

B. Timing Results

See graphs of matrix multiplication timing results and linear system solve timing results.
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Fig. 6. Linear system solve timing results

C. Analysis of Performance

1) MATLAB*P and MATLAB: From the results, MATLAB*P on 4 processors begins to outperform

MATLAB on single processor when the problem size is 2048 and upward. This shows that for smaller

problems, one should use plain MATLAB instead of MATLAB*P. When the problem size is large,

MATLAB*P offers two advantages:

	 Better performance

	 Distributed memory, enabling larger problems to fit in memory.

And all these come at close to zero effort on the user’s part.

2) MATLAB*P and ScaLAPACK: Comparing the timing results of MATLAB*P and ScaLAPACK, we

see that ScaLAPACK is always faster than MATLAB*P, although the gap narrows at larger problem size.

This should be obvious from the fact that MATLAB*P uses ScaLAPACK for matrix multiplication and

linear system solution, and MATLAB*P incurs overhead.

The difference in the timing results come from both overhead incurred by MATLAB*P and the design

of the benchmark itself:

	 Timing for MATLAB*P is done inside MATLAB, using tic/toc on the MATLAB call. The MATLAB
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call includes memory allocation and matrix copying on the server side. Timing for ScaLAPACK is

done in C++ using clock(), and only the actual computation routine is timed.

	 There is a messaging overhead from the MATLAB client to the server. As the MATLAB call yields

multiple calls to the server, this messaging overhead is multiplied.

	 In linear system solution, ScaLAPACK overwrites the input matrix. In MATLAB*P, in order to

mimic standard MATLAB behaviour, the input matrix is copied into another matrix which is used

in the ScaLAPACK call. This incurred additional overhead.

X. CONCLUSION

MATLAB*P shows how a parallel MATLAB system can address different needs of parallel computing.

Backend calls to ScaLAPACK handles large problems in parallel. The ’MultiMATLAB/MultiOctave’

mode takes care of problems that are embarrassingly parallel in nature, and collect the result in a

distributed matrix so that global operations can be performed on the result.

The system has been used to solve dense linear system of size 100000x100000 and 2D FFT of size

64000x64000 with success. It has been used for biomedical imaging and climate modeling applications,

as well as a teaching tool in MIT.
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