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Optimizing energy consumption in wireless sensor networks is of
paramount importance. There is a recent trend to deal with this problem by
introducing mobile elements (sensors or sink nodes) in the network. The
majority of these approaches assume time-driven scenarios and/or single-
hop communication between participating nodes. However, there are
several real-life applications for which an event-based and multi-hop oper-
ation is more appropriate. In this paper we propose to adaptively move the
sink node inside the covered region, according to the evolution of current
events, so as to minimize the energy consumption incurred by the multi-
hop transmission of the event-related data. Both analytical and simulation
results are given for two optimization strategies: minimizing the overall
energy consumption, and minimizing the maximum load on a specific sen-
sor respectively. We show that by adaptively moving the sink, significant
power saving can be achieved, prolonging the lifetime of the network.

Keywords: Wireless sensor networks, energy efficiency, lifetime, controlled
mobility, multi-hop communications.

1 INTRODUCTION

Wireless sensor networks constitute an emerging technology that has received
recently significant attention both from industry and academia. On the one
hand, there is an ever-widening range of attractive applications (e.g., disaster
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and environmental monitoring, wildlife habitat monitoring, intrusion detec-
tion, security surveillance) sensor networks can be used for. On the other
hand, sensor networks are self-organizing ad-hoc systems where optimized
energy consumption is of paramount importance; therefore, relaying informa-
tion between sensors and a sink node, possibly over multiple wireless hops, in
an energy-efficient manner is a challenging task that preoccupies the research
community for some time now.

Sensors are tiny devices with sensing, processing, and transmitting capabil-
ities; they are of low cost, but have a consequently low storage and computa-
tional capacity, and a limited energy supply. It is usually considered impossible
or impractical (from a technical or economical point of view) to recharge their
batteries; thus, they should be managed in such a way to ensure the unattended
operation of the network for a long enough time period (e.g., several months).

Information gathering in sensor networks can follow different patterns,
depending mostly on the specific needs of the applications. In a time-driven
scenario all sensors send data periodically to the sink. As opposed to this,
in the event-driven case sensors start communicating with the sink only if
sensing an event, i.e., a situation that is worth reporting. Finally, in a query-
driven scenario a sensor transmits its data only if the sink asks for it. Most of
the research papers in the area address the time-driven scenario, and provide
energy-efficient solutions for homogeneous networks, with sensors having
constant and equal amounts of data to send in all parts of the covered region.
Previous papers showed that in such a case of uniform distribution and uniform
reporting, the network cannot be energy balanced if a single static sink is
used [21]. However, there are a large number of applications (e.g., intrusion
detection, seismic activity monitoring, animal movement tracking) where an
event-driven approach is more appropriate. Hence, in our paper we address
only this scenario.

As we noted before, energy efficiency is the main requirement for the
operation of a sensor network. Sensors consume energy for sensing the field,
for digitizing and processing the data, but the most penalizing task is by far the
transmission of the information [24]. In the most commonly accepted power
attenuation model [27], signal power falls as d−α , where d is the distance
from the transmitter antenna and α is a constant dependent on the wireless
transmission environment, typically between 2 and 4. Therefore, assuming
that all receivers have the same power threshold for signal detection, typically
normalized to one, the energy required to support communication between
the two nodes is dα . In such conditions it is straightforward to assert that by
minimizing the distance between a sensor and a sink node we can efficiently
reduce power consumption, both for single- and multi-hop communications
(reducing the length of the multi-hop path results in fewer and/or shorter hops,
i.e., less energy is needed to relay data to the sink).

Besides analyzing the general case of an event-driven scenario, we intend
also to have a closer look on a specific example where events move inside the
observed region following a correlated random walk model. There are several
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concrete use cases this example can be relevant for. In [4] authors show that
animal movements can be described as a correlated random walk. A similar
result is obtained in [1] for the specific case of caribous. Moreover, the model
should fit intrusion detection and target tracking applications as well. In this
paper we propose to analyze, both analytically and through simulations, the
efficiency of adaptively moving the sink node so as to react to dynamic events
that follow a correlated random walk mobility model. Results are compared to
three alternative solutions: the case of a static sink, the case of random mobility
(the sink moves randomly, e.g., according to the random waypoint mobility
model, independently of the events), and the case of predictable mobility (the
sink moves on a predefined path, e.g., on the periphery of the network [19],
independently of the events).

The rest of this paper is organized as follows. In Section 2 we present
related work in the area of energy optimization and sink mobility. In Section 3
we describe the assumed network model, and calculate the overall energy
requirement an event poses on the network, as well as the maximum energy
consumption of a specific sensor. According to these analytical results, in Sec-
tion 4 we show how to find the optimal position of the sink inside the network
so as to minimize overall or maximum energy consumption. However, this
optimal position is specific only to a given snapshot of events that are present
in the network. Moreover, in a real application the sink cannot usually move
directly to the optimal position, it can only take a step towards it in a certain
period of time. Therefore, to continuously optimize energy consumption in
the case of dynamically evolving events, we should give efficient strategies
for adaptive sink mobility. This is the topic of Section 5. First we present the
assumed dynamic event model, and then give an analytical description of how
to choose the next location within the reach of the sink for the two strategies
(minimizing the overall or the maximum consumed energy). In Section 6 we
present some implementation issues, such as routing or updating sink location
information, that have to be dealt with in a real scenario. Section 7 presents
our simulation results, while Section 8 concludes the paper.

2 RELATED WORK

There were many proposals recently targeting the energy efficiency of wireless
sensor networks. Some approaches focused on energy conserving routing tech-
niques, i.e., finding optimal routes in terms of consumed power, and balancing
the energy consumption among all nodes [8,14,28,39]. Others were based on
topology control schemes, i.e., deploying sensor and sink nodes in an effi-
cient way or reshaping the topology through dynamic power control of the
participating sensors [6,18,23,26,35]. Clustering techniques are also widely
employed; the network is divided into small clusters, a cluster head being
responsible for aggregating and relaying towards the sink the information
gathered from the sensors of its cluster [15,37].

Administrator
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In all the above approaches the elements of the network are all considered
static. However, there is a recent trend to explore mobility as a way of enhanc-
ing energy efficiency. In [5] sensors dynamically react to the environmental
changes and move towards areas where events occur frequently. In [33] sensor
mobility is exploited at the deployment phase, to eliminate coverage holes that
are discovered through the use of Voronoi diagrams. Mobile sensors are also
considered in [29] to provide an extension of a stationary sensor network.

Moving the sink node is also a widely explored solution. The approaches
can be classified into three categories: random, predictable, and controlled
mobility of the sink. In [25] the authors propose an architecture that builds on
the random mobility of mobile agents, called data MULEs (Mobile Ubiquitous
LAN Extensions), to collect sensor data in sparsely deployed networks. Asim-
ilar approach, but for dense networks, is used by SENMA (SEnsor Networks
with Mobile Agents) [30]; data is sent directly to the mobile agent that is flying
above the sensor field, the transmission being triggered based on the estimated
fading state of each sensor in its communication with the agent. [11] uses a
random walk model for a mobile relay to theoretically derive parameters such
as delay and data delivery ratio. A serendipitous movement of the sink nodes
is also assumed in [16]. However, the authors propose an inversed scenario,
where there is a single sensor that transmits data to a large number of mobile
sinks. They describe the SEAD (Scalable Energy-efficient Asynchronous Dis-
semination) protocol to build and maintain an energy-efficient dissemination
tree that covers all the sink nodes.

A predictable mobility solution is presented in [7]. The sink (called
observer) moves along a predefined path, and pulls data from sensors in single-
hop communication when arriving near to them. A predefined path of the sink
is used in [19] as well. The authors show that moving the sink at the periphery
of the covered circular region ensures energy-efficient operation; the approach
is considerably different from other mobile sink solutions in that it assumes
multi-hop communication between all the sensors and the sink.

There are also several solutions that propose a controlled mobility of the
sink nodes. In the AIMMS (Autonomous Intelligent Mobile Micro-server)
system [13,12] a mobile micro-server moves across the network, along a
specific trail, to route data from the deeply embedded nodes. Its mobility is
controlled in order to spend extra time (e.g., stop or slow down) in regions
where there is a large amount of data to send or the communication channel
is constrained. The idea of using mobile nodes for message ferrying is also
considered in [38]; these nodes provide non-random proactive routes in highly-
partitioned wireless ad-hoc networks.

An attempt to determine specific sink movements for energy optimization
is presented in [9]. The authors argue that multi-hop communication results
in the sensors neighboring the sink being depleted at a fast pace. Therefore,
they propose to employ multiple sink nodes that periodically change their
locations, and present an ILP (Integer Linear Programming) model to obtain
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the optimal positions of these sinks. A linear programming solution to deter-
mine the movement of the sink and its sojourn time in different points of the
network is given in [34] as well. Both the sensors and the sink are placed on
a bi-dimensional grid. The sink moves along the grid, sojourn times in the
specific grid points being calculated so as to maximize the network lifetime.

Finding the optimal position of the sink is addressed in [2] as well, even if
mobility is not involved. The authors assume a time-driven scenario, where all
sensors send data at a constant rate; the problem is how to deploy n sink nodes
so as to ensure an energy-efficient operation of the network. [22] addresses
the static deployment problem as well, as it proposes to find the optimal loca-
tions of multiple sinks in sparse networks of aggregator points that send data
directly to these sinks.

In this paper we propose a solution that is significantly different from
all the above approaches. We assume an event-driven scenario, where sensors
that detect an event send data to the sink node in a multi-hop manner. (For
the single-hop communication case in clustered sensor networks, please refer
to [31].) Our goal is to control the mobility of the sink so as to ensure an energy-
efficient operation of the network. The sink node is alerted about the current
events, estimates the evolution of these events, and decides about the optimal
neighboring place where it should move so as to maximize network lifetime.

3 ENERGY CONSUMPTION IN EVENT-DRIVEN NETWORKS

This section gives the description of our assumed network model as well as
the analytical calculations on the energy requirements of network operation.
The network communication is event-driven in the sense that whenever the
sensor nodes detect something that is worth reporting, their task is to trans-
mit a message to the sink in a multi-hop manner. Typically, several sensors
report on the same event at a time; their messages are sent in parallel to the
sink, making the overall traffic load on relaying nodes significant. The energy
requirement of radio communication primarily depends on how far the pack-
ets must propagate to reach the sink. The larger the communication distance,
the higher the energy consumption. Both the total energy requirement and the
maximum load on a particular network node are calculated in this section.
Based on these results, we propose an efficient sink relocation strategy to
significantly decrease power consumption (see Section 4 later). (A simplified
version of the proposed analytical model was given in [32].)

3.1 Analytical Model
We assume a dense and strongly connected network (see Figure 1). There are
N sensor nodes distributed within a circle of radius R, and a single sink node S

placed at location (xS, yS) to collect the data. The sensor nodes are distributed
evenly with density ρ within a circle of CO,R . Thus, the total number of sensor
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r0

FIGURE 1
The sensor field.

nodes N is ρR2π . The sensing range of each sensor is r0. The network is event-
driven, i.e., whenever an event Z occurs at location (xZ, yZ), all sensors that
are within a circle CZ,r0 become active. All active sensor nodes generate a
message for the sink, and repeat it periodically, until the event persists. Since
each node is only able to communicate with neighbors within its radio range
rf , the message must be routed towards the sink hop-by-hop. We assume
multi-hop communication with an ideal short path routing, and without data
aggregation.

3.2 Events
From the abstract modeling point of view, we call an event any situation that is
worth reporting to the sink (e.g., an “intruder” is sensed by the sensors within
the monitored area). In general, an event is a random subset Z(t) of CO,R . The
event activates at time t the ith sensor at location pi for which

d(pi, Z(t)) ≤ r0. (1)

Z(t) = ∅ by definition before the event occurs and after it left the field or
disappeared (e.g., fall below the measure sensitivity of the sensors). Such
activation is represented by a pair of time and location (t, p). The events are
random in space and time, and their location can change during their lifetime.
This means that the same event may trigger several (ti , pi) pairs (with the
same or different ti and/or pi). In our model events are modeled as single
points (or locations) within the sensor field. When taking only a “snapshot” of
the system at a particular time instant, all existing events at that time are given
by their location coordinates only. Assuming I events, the coordinates of the
ith event Zi are (xZi , yZi ), i = 1, 2, . . . , I . All sensors that are closer to an
event than their sensing range r0 become active. In other words, all sensors
within the circles CZi,r0

, i = 1, 2, . . . , I are active.
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FIGURE 2
Active sensor areas for three events.

3.3 Total Energy
To calculate the overall energy requirement that an event poses on the network,
we proceed as follows. The task is to add up all the transmission energies
for messages generated by all sensors that were activated by the event. As
a result of multi-hop communication, sensors are communicating not only
when they are sensing an event but also when they are forwarding the reports
of other active sensors. In our model for the analytical calculations we assume
ideal short path routing, that is, the sensors are deployed densely and evenly
enough to find a straight linear path towards the sink. Thus, all sensors that are
in between an active sensor and the sink node will also be active during the
communication. Figure 2 denotes all active regions (marked as gray), assum-
ing three events as an example. The distance di denotes the (geographical)
distance of event Zi from S, i.e.,

di =
√

(xZi − xS)2 + (yZi − yS)2, i = 1, 2, . . . , I. (2)

The total energy needed to report an event to the sink is directly proportional
with the number of active sensors Ns that are sensing that event and the average
hop count k, i.e.,

Etotal = Nsk Ehop. (3)

where Ehop is the energy required to pass a message at distance h in one hop.
Knowing that an event Z activates sensors that are within sensing range, i.e.,
within CZ,r0 , the number of sensing nodes (Ns) in our model is r2

0πρ. The
average number of hops can be well approximated as

k ≈ max(1, d/h + 0.5), (4)

where we also took into account that the sensing range r0 is smaller than the
hop length h. (See Appendix A for the justification of the approximation.)
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FIGURE 3
Approximating transit load.

Thus, by substituting (4) into (3) we approximate Etotal by

Etotal ≈
{

(d/h + 0.5)r2
0πρEhop, if h/2 < d

r2
0πρEhop, if d ≤ h/2

(5)

Assume that there are I events on the sensor field instead of one. In this
case, the total energy requirement of the whole network is given by

ESN
total =

I∑
i=1

Ei
total, (6)

where Ei
total is the energy required to report Zi to the sink, and is given by (5).

3.4 Transit Load and Maximum Energy
Sensors can sense an event and forward packets from other nodes at the same
time. Furthermore, one sensor can be requested to forward (much) more than
one packet towards the sink, even if it is far from any events to be sensed.
This happens to sensors that are close to the sink node, and results in highly
uneven load distribution, which plays a key role in our investigations.

To calculate the transit load on a given node, we proceed as follows.
As Figure 3 shows, the average transit load LP on a particular node P is
approximated as

LP ≈ A1/A0, (7)

where nodes within area A0 must relay messages originating from nodes within
A1 that sense the event directly.

Based on our analytical model (seeAppendix B for more details), the transit
load can be approximated as

LP =




4dr0

h2
, if l ≤ h

2
2dr0

lh
, if

h

2
< l < d −

(
r0 + h

2

)
.
. (8)
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FIGURE 4
Transit load as a function of the distance from the sink (l). (The event distance from the sink is
d = 10r0, h = 1.)

The transit load LP is plotted on Figure 4 as a function of the distance from the
sink. As the figure shows, the load increases hyperbolically when approaching
the sink, and is maximal when the transit node P is only a half hop away from
the sink.

The energy requirement of the most loaded sensor node (Emax) can be
approximated using (8), i.e.,

Emax = L(h/2)Ehop = 4dr0

h2
Ehop. (9)

Thus, Emax is a linear function of the distance d between the sink and the
event location.

Assume again that there are more than one event at a time. In this case,
using (9) we can identify for each event Zi (i = 1, . . . , I ) the most heav-
ily loaded sensor with energy requirement Ei

max. By comparing these highly
loaded sensors on the sensor field, we get the highest energy requirement by

ESN
max = max

1≤i≤I
Ei

max. (10)

This energy load is on the sensor that is close to the sink and in the direction
towards the most distant event Zj , that is given by

j = arg max
1≤i≤I

d(Zi, S). (11)

We should note, that here we neglected the fact that one sensor could take
part in relaying messages of more than one event at a time. However, since
the most loaded sensors are on the line between the event and the sink, and
the load decreases rapidly if the sensor is further away from this line (see
Figure 16 in Appendix B), we basically neglect only the case when there are
two or more events directly “behind” each other.
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4 OPTIMAL SINK LOCATION

After calculating the total as well as the maximal communication energy that
is required to report the events to the sink, we can derive the optimal location
where the sink should be placed in order to decrease power consumption and
thus extend the network lifetime.

The so-called “facility location” is a classical problem of operations
research that has also been examined in the computational geometry com-
munity. The task is to position a point in the plane (the facility, which is the
sink in our case) such that the distance between the facility and given points
(active sensors) is minimized or maximized. The optimal facility location
is NP-hard, thus, the problem is usually solved using either a hill-climbing
heuristic or linear programming.

4.1 Minimizing Total Energy
In our case, the first idea is to place the sink node so as to minimize the overall
energy consumption of the network. Since there can be more than one event at
a time, the task is to minimize ESN

total given by (6). Since the energy requirement
of reporting an event is proportional to the event distance di (see (5)), this is
equivalent to minimize the sum of event distances, i.e.,

I∑
i=1

max(h/2, di) → min, (12)

where the maximum means that there is no gain when moving closer to a
particular event than the half of the hop length. Practically, this is the location
that gives the minimal average distance from the events. There is no closed
formula to find this location, but the problem can be solved numerically.

4.2 Minimizing Maximum Energy
The problem with the total energy minimization approach could be that—
although the overall energy consumption is minimized—it can happen that
the energy contributions of the sensors are rather uneven. In order to avoid
this problem, one would think of minimizing the transmission energy for the
most heavily loaded sensor in the network. Hence, energy consumption will
be more balanced. As the maximal traffic load depends on the biggest event
distance from the sink node (see (9) and (10)), this strategy is equivalent with
that of minimizing the maximum event distance from the sink, i.e.,

max
1≤i≤I

di → min . (13)

This minimization task is equivalent to the Minimal Enclosing Circle Problem,
where the task is to find the minimum radius circle that encloses all points of
a point set on the plane. There are several algorithms to solve this problem.
For example, it has been shown that it can be solved in O(n) time using the
prune-and-search techniques for linear programming [20].
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5 ADAPTIVE SINK MOBILITY

The optimal positioning of the sink, presented in the previous section, is
specific only to a given snapshot of events that are present in the network.
Moreover, in a real application the sink cannot usually move directly to the
optimal position, it can only take a step towards it in a certain period of time.
Therefore, to continuously optimize energy consumption in the case of dynam-
ically evolving events, we should give efficient strategies for adaptive sink
mobility. The specific application area we focus on is the so-called intrusion
detection and tracking task.

To reduce the communication overhead, and thus prolong the network
lifetime, we give in this section two algorithms to relocate the sink node
from time to time in an energy efficient way. What we want to maximize is
the network lifetime. To achieve this, we have two ways to proceed: (1) to
minimize the expected value of the total energy spent in the next round, or
(2) the expected value of the maximum energy load on a sensor. We do this by
moving the sink node to the best possible location within reach. We assume
that the sink makes a relocation decision (SRD) periodically, i.e., it calculates
the optimal position where the energy consumption is minimal, and moves
there (or at least towards it). The idea is that if we can predict the future
location of the event, then we can select the optimal location of the sink
node accordingly. The inputs for this decision are all the past observations the
sensors reported (and, alternatively, the status of the sensor network if known
by the sink, including sensor locations, network topology, routing protocol,
and energy status of sensors). We assume that all calculations are performed
by the sink node centrally. In order to find the best sink location, the full history
of the intruder movement is used to forecast the intruder’s future positions.
The forecast can be given for the next location, but can also be extended to
the consecutive steps.

5.1 Target Detection and Tracking
The goal of intrusion detection and tracking is to detect “intruders” (or targets)
entering the observed area, to estimate their initial position and to track the
position estimate as the target moves. To localize the target, the readings of a
certain minimum number of nodes have to be combined. By considering the
current position as well as past positions, the speed and the direction of the
target can also be estimated.

Our chosen model here is basically an intruder movement model. (We
should note, however, that the sink relocation strategies that we propose do
not only apply to this particular intruder movement model. Our target tracking
scenario only serves as an example to elaborate the proposed strategies.) We
assume that “intruders” appear (uniformly and independently) on the boundary
of the area described by a Poisson process of fixed rate λ, and start their
own independent movement in the field. Let t0 be the “starting time” of the
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intruder at Z0 = Z(t0) ∈ ∂CO,R . In each unit of time it makes a “step” of fixed
length l. What changes is the direction of the step. The direction of the first step,
denoted by θ , is uniformly choosen in [−π/2, π/2]. This is the main direction
the intruder follows. Each further step has length l and the direction angle is
chosen uniformly from [θ − σ, θ + σ ], where σ ∈ [−π, π ] is the (only) free
parameter of the model. This σ determines how closely the intruder follows
the originally chosen direction θ . It is clear that if σ = 0, then the movement
follows a straight line, while σ = π is a random walk without any direction
preference.

Let Zk denote the event position at the kth step (at time tk). The evolution
of the intruder’s trajectory is thus

Zk+1 = Zk + l e θk+1
, (14)

where e ϕ denotes the (unit) vector of (cos ϕ, sin ϕ). The coordinates of Zk+1
are thus given by

xZk+1 = xZk
+ l cos θk+1, (15)

yZk+1 = yZk
+ l sin θk+1. (16)

The intruder leaves the network if Zi /∈ CO,R for some i.

5.2 Minimizing the Total Energy (Mintotal)
To calculate the desirable future position of the sink node, let Vtotal(s) denote
the expected value of the total energy spent in the next round, ESN

total given
by (6), i.e.,

Vtotal(s) = E

{
ESN

total

}
(17)

= E

{
I∑

i=1

E(Zi
k+1, s)

}
(18)

=
I∑

i=1

E{E(Zi
k+1, s)}. (19)

where the energy function E(z, s) is given by (5), and the notation emphasizes
that this energy depends on the event location z and sink location s. The
expected value E{E(Zk+1, s)} can be calculated as

E{E(Zk+1, s)} =
∫∫

E(y, s) dP{Zk+1 = y|Zk = zk}

=
∫ θ+σ

θ−σ

E(zk + le ϕ, s)
1

2σ
dϕ. (20)
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The task now is to minimize Vtotal(s), i.e., the optimal position sopt for the
sink node is

sopt = arg min
s

Vtotal(s). (21)

The problem with (20) is that the parameters θ and σ are not known. One way
to proceed is to estimate θ and σ somehow and calculate (20) numerically for
each SRD to get an estimate for Vtotal(s). However, this solution would be
computationally rather demanding when solving (21). Instead, we try to solve

V̂total(s) =
I∑

i=1

E(E{Zi
k+1}, s) → min . (22)

By comparing (17) and (22) we should note that, in general,

E{E(Zk+1, s)} �= E(E{Zk+1}, s). (23)

However, we assume that the error of the estimate is below a certain thresh-
old and can be neglected in our case. The task now is to estimate E{Zk+1}
somehow.

There are many sophisticated ways to predict the next position of the mov-
ing event based on our assumed correlated random movement model. Our
solution is a simple one, since the event prediction is not the main scope of the
paper. For a detailed description on how the estimates can be derived please
refer to Appendix C. The case of multiple step forecast is also discussed there.
However, to predict and use more than one step ahead in minimizing the
energy requirement is not a straightforward task. Here we restrict ourselves to
one step ahead forecast only. To predict the expected value of the next step of
the event, E{Zk+1}, the forecast is based on standard statistical methods. As
a result, we have

E{Zk+1} = Zk + l
sin σ

σ
eθ . (24)

Equation (24) can be used for prediction if we replace θ and σ by their estimates
θ̂k+1 and σ̂k+1, and Zk is substituted by the observed value zk , i.e.,

Ẑk+1 = Ê{Zk+1} = zk + l
sin σ̂

σ̂
e
θ̂k+1

. (25)

(Please refer to Appendix C for the estimates θ̂k+1 and σ̂k+1 as well.)
By substituting (25) into (22) we have

V̂total(s) =
I∑

i=1

E(Ẑi
k+1, s) → min . (26)

As argued before (see (12)), this minimization is equivalent with minimizing
the sum of event distances, i.e., the best position for the sink node in the next
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round (Sk+1)—assuming that the sink can only move at limited speed—is
given by

Stotal
k+1 = arg min

s∈CSk,rv

I∑
i=1

max(h/2, d(Ẑi
k+1, s)), (27)

where rv is the maximum distance the sink node can move within one round,
i.e., the future position of the sink can only be within the circle CSk,rv of radius
rv , with its center being the sink’s present position. We call this strategy as
mintotal in the following.

5.3 Minimizing the Maximum Energy (Minmax)
As mentioned before, it can happen that by using the mintotal strategy the
energy consumptions of the sensors become highly uneven. To avoid this, we
try to minimize the energy consumption for the most heavily loaded sensor.
Let Vmax(s) denote the expected value of the maximal energy spent in the next
round, ESN

max given by (10), i.e.,

Vmax(s) = E

{
ESN

max

}
(28)

= E

{
max

1≤i≤I
E(Zi

k+1, s)

}
, (29)

where the energy function E(z, s) is given by (9). Unfortunately, in general

E

{
max

1≤i≤I
Ei

max

}
�= max

1≤i≤I
E{E(Zi

k+1, s)}. (30)

However, we assume that the estimate

V̂max(s) = max
1≤i≤I

E(E{Zi
k+1}, s) (31)

is a good approximation of the expected maximum energy requirement in the
network. Thus, we have to minimize V̂max(s). To do this, we need the estimate
of E{Zk+1} that we previously derived (refer to Appendix C), see (25).

By substituting (25) into (31) we have

V̂max(s) = max
1≤i≤I

E(Ẑi
k+1, s) → min . (32)

Since this minimization is equivalent with the task of minimizing the maximum
event distance from the sink (see (13)), we have

Smax
k+1 = arg min

s∈CSk,rv

{
max

1≤i≤I
d(Ẑi

k+1, s)

}
. (33)

In the following, we call this strategy as minmax.
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6 IMPLEMENTATION ISSUES

6.1 Routing
In our analytical investigations we assumed that the multi-hop communication
is supported by an ideal short path routing mechanism; the sensors were con-
sidered to be deployed densely and evenly enough to find a straight linear path
towards the sink. However, in a real world scenario there are many factors that
make such an ideal routing impossible; sensors are not that densely deployed,
the depletion of some sensors after a while may result in “black holes” in the
area, etc. Therefore, in order to implement our proposed adaptive mobility
strategies, a more realistic routing mechanism has to be used, that takes into
account all these factors.

We considered a distributed routing solution, where there is no central
authority to select the end-to-end route and inform the participating nodes
about it. It is up to the nodes to decide locally to whom the packet should be
handed over. The question is, how to choose the next hop among the neighbors
within radio range. We applied the GOAFR routing algorithm [17] that is a
variant of the original GFG algorithm [3]. The GOAFR routing combines
the greedy and the face algorithms. The greedy algorithm always picks the
neighbor closest to the sink to be next node for routing. However, it certain
situations it can occur that no neighbor is closer to the sink than the current
node, for example if there is a “hole” in the sensor field, as shown in Figure 5.
In this case the routing switches to the face algorithm, and passes around the
hole on its border. When it is possible, the routing switches back to the greedy
algorithm.

6.2 Updates Related to Sink Relocation
If sensors want to send data to the sink, they have to know its position, if
geographical greedy routing is used. Moving the sink node has a negative
side-effect on the energy consumption: sensors should be alerted about the
changed position of the sink through location update messages. Therefore,

Sink

Source

FIGURE 5
The route between the sink and the reporting node.
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having an efficient and power saving update mechanism is essential for a
viable data gathering strategy.

In approaches where the sink node is static, no update messages are needed
for that; information about the location of the sink is either hard-coded in
the sensors or broadcasted at the start-up phase of the network. However,
periodic flooding phases might also be used in static approaches. As an exam-
ple, in Directed Diffusion [10] the sink periodically floods the network with
query messages; sensors answer them along the reverse paths they received
those queries on. This flooding mechanism is similar to a location update per-
formed by a mobile sink, as the goal of both approaches is to refresh the data
gathering paths.

Our solution assumes a periodical update message sent out by the mobile
sink. However, there are several factors that make this mechanism “power-
friendly”. First, sensors do not relay update messages among them; the sink
node has the ability to cover the entire region through a single broadcast
message, updating each sensor directly. Note that the sink does not have power
limitations; thus, it can afford such a “costly” update mechanism. Moreover,
if needed, dedicated powered relay nodes can be deployed in the region to
forward these update messages.

Besides eliminating multi-hop update relaying, an important feature is that
only sensors that sensed an event listen to the update messages. This can
be done, for example, in the following way. Time is divided into sensing
periods and communication periods. During a sensing period sensors are in a
semi-sleep mode; they operate only as sensing units, but the communication
tasks are disabled. If during this period a sensor observes something it wants
to report to the sink, it prepares the data and waits for the communication
period. When a reporting sensor receives the update, it sends its data towards
the advertised location, incorporating the sink coordinates in its message as
well. Hence, intermediate relaying nodes do not have to listen to the periodic
updates of the sink.

It is important, that all the data packets that are sent by a sensor have to
arrive to the sink before it moves away. This can be ensured if the sink stays in
its advertised position for a certain (guaranteed) period of time, also included
in the update message. We assume that data delivery is fast enough to fit
safely into this guaranteed time period. After the communication period ends,
a new sensing period begins. Taking into consideration all the reports, the sink
makes a prediction about the future evolution of the events and calculates the
optimal neighboring position it should move to. Then, while the other nodes
are in their sensing period, the sink moves to the calculated position. In the
same time, the events propagate as well, according to the considered models
(e.g., the intruder continues to penetrate into the region).

Note also that location update messages might constitute a threat to the
security of the system, as a malicious node could advertise itself as being
the mobile sink, attracting all the traffic towards it. There are several well
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established solutions to deal with such attacks, even if some of them might
need to be adapted to the specificities of sensor networks. However, security
issues are out of the scope of this paper.

6.3 Communicating Neighbors
In our model we assumed that only a specific receiver node, chosen by the
routing mechanism, has to listen to the transmission of the sender; none of the
other neighbors within radio range have to waste energy on overhearing, i.e.,
on receiving packets that are not meant for them. This can be achieved, for
example, by using the free sleep-schedule feature of the S-MAC protocol [36].
Using S-MAC, an idle sensor goes to sleep for some time; then it wakes up,
and listens to see if any other node wants to talk to it. All nodes are free to
choose their own listen/sleep schedules. These schedules are exchanged by
broadcasting them to all immediate neighbors. This ensures that all neighbor-
ing nodes can talk to each other even if they have different schedules. For
example, if node A wants to talk to node B, it just waits until B is listening.
Hopefully, the other neighbors will be in sleep mode that time; thus, they do not
waste energy for listening to the transmission of node A. If more nodes are in
listening mode, the use of short RTS/CTS (Request-To-Send/Clear-To-Send)
packets can help to further reduce overhearing (see [36] for more details).

7 SIMULATION RESULTS

We simulated the proposed sink relocation strategies using MATLAB. We
assumed that the covered region is a circular area of radius R = 1000 m, in
which we randomly distributed 10.000 sensors, using a uniform distribution
model. Both the sensing range and the maximum communication range of
each sensor were fixed to 80 m. At the beginning of a simulation run each
sensor was loaded with 1000 “units” of energy. The cost of receiving a packet
was 1 unit. The cost of sending one packet depended on the transmission
distance d(ET x ∼ dα , α = 3); the transmission consumed 1 unit of energy
for d = h = 80 m.

The events are reported to the sink through multi-hop routing. Figure 6
shows a snapshot of the network with five simultaneous events being reported.
Around each event we marked the circular area containing the sensors that
observed that event. All those sensors start to send data to the sink on multi-
hop wireless paths that might overlap near to the sink node. Nodes on such
an overlapping segment will have an increased load as they have to relay data
from several sensors.

7.1 Event Modeling
Events occurred at uniformly chosen random locations on the periphery of
the area. The probability of a new event occurring in a simulation round was
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FIGURE 6
Routes between the sink and the reporting nodes.
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FIGURE 7
Trajectories of 100 events (left) and the number of simultaneous events in the simulations (right).)

0.03. The direction θ of the first step taken by an event was uniformly chosen
between 0 and π . For each further step the direction angle was uniformly
chosen between [θ −π/4, θ +π/4]. Events moved with a speed of 40m/round.

In Figure 7 (left) we present the trajectories of 100 events that entered the
region. We can observe that the different parts of the region were affected
by these events in a homogeneous manner. Note that these events were not
simultaneous ones, but appeared and disappeared according to our simulation
model. In Figure 7 (right) we show a histogram on the frequency of simulta-
neous events during an entire simulation run. One can see that in most of the
time there are two or more events present in parallel.

7.2 Sink Relocation Strategies
It is quite straightforward to assert that by adaptively moving the sink we
can increase the energy efficiency of the network. As said before, the sink
is relocated periodically in each round using either the mintotal or the min-
max strategy proposed in Section 5. Once all messages are received from the
reporting sensors, the positions of the sensed events are predicted: the next
position of the sink can be determined with arbitrary precision by evaluating
(27) and (33), respectively.



“aswin51” — 2007/5/15 — 17:49 — page 19 — #19

Adaptive Sink Mobility in Event-Driven 19

However, we should be able to quantify the performance increase compared
to other solutions. In order to do so, we consider three other approaches. The
first one, called fix, assumes the sink to be static, and located in the center
of the covered area. The second one, called circular, proposes to move the
sink along the periphery of the network, with a constant speed, independently
of the occurred events. We consider this approach as authors in [19] argue
in favor of it as being the optimal solution for lifetime elongation. However,
they analyzed a time-driven scenario, as opposed to our event-driven model.
Finally, the third approach, called rwp considered the sink to follow a random
waypoint mobility model, again independently of the current events. The sink
randomly chooses a point in the area, and goes towards it with a constant speed
of 40 m/round; upon reaching it, it chooses a new direction.

7.3 Network Lifetime
Figure 8 presents the average lifetime of the network for the different strategies.
We ran the simulation 10 times, and considered the network to be alive until
one of the events was unobserved by the sink, i.e., either there were no sensors
to detect it, or the information could not be relayed to the sink. We can see
that the mintotal strategy outperforms all the other solutions, ensuring 16%
longer lifetime than the circular strategy, and nearly 150% longer than the fix
case. In the figure we presented the 95% confidence intervals as well.

7.4 Energy Consumption
To explore the reasons behind the lifetime elongation generated by the pro-
posed strategies, the energy consumption of the network needs to be analyzed
in more details. Figure 9 presents the total energy consumption in the network
for the five different strategies. The results were obtained for one specific sim-
ulation run, for the same succession of events in the five cases. On the x-axis
we present the number of rounds completed in the simulation. A curve ends
in the figure if the network died for that specific strategy. We can see that by
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FIGURE 8
Average lifetime of the network (left), and the average energy consumption (right) in a round for
all five strategies.
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FIGURE 9
Total energy consumption of the five strategies.

positioning the sink in the middle of the network we consume less energy in
overall than by moving the sink along the periphery. However, nodes around
the sink deplete their batteries rapidly, and the network dies. On the other hand,
we can see that the circular strategy consumes significantly more energy than
both of our proposals. Note also that there is practically no difference between
our two solutions in terms of overall energy consumption. This is mainly due
to the fact that in the majority of the cases there are few (0 to 2) simultaneous
events in the region; thus, even if the sink moves to different locations (as
shown in Figure 12), the overall power consumption will not differ signifi-
cantly. Finally, moving the sink randomly inside the area consumes less energy
than moving it on the periphery, but it is still less efficient than the adaptive
strategies. By repeating the simulation several times, for different successions
of events, we obtained similar shapes for all the curves, the only difference
being in when the network dies in the different cases, a parameter that greatly
depends on the occurred events.

In Figure 8 (right) we see the average energy consumption of the entire
network per round, for the five different strategies. (We ran 10 times the
simulation, and calculated a cumulated average.) It can be seen that our two
adaptive strategies consume the less energy; they are around 30% better in
average than the circular strategy, and around 15% better the case of the
randomly moving sink.

It is also interesting to see how the five strategies affect the sensors located
at different portions of the covered area. Figure 10 shows the average energy
consumption of a sensor in a single round in function of its distance to the
center of the area. We divided the total energy consumption of a sensor with
the number of rounds it was alive, and calculated the average of this value for
all the sensors located at the same distance form the center. The final averages
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FIGURE 10
The average energy consumption of the sensors as a function of the sensors’ distance from the
center of the sensor field.

were obtained after running the simulation 10 times. An obvious result is that
the fix strategy depletes aggressively the sensors located close to the center.
It can also be seen that the circular strategy ensures the most homogeneous
energy consumption of the sensors. However, our two strategies consume
less energy than the circular solution in all the areas of the network, which
explains the resulting lifetime elongation. Sensors near the periphery consume
less energy for all the strategies, as they are rarely selected to relay messages
of other nodes.

Finally, in Figure 11 we present the remaining energy of the sensors in
different areas of the covered region, after the network has died; an area is
completely black if the corresponding sensors have 100% of their initial energy
still available. The values are averages calculated over 10 simulations. It can
be observed again that the fix strategy depletes the sensors around the center,
while the circular one makes use of nearly all the sensors in a comparable
way. Our two solutions conserve more energy in the network than the circular

Fix
Circular Rwp Mintotal

10 20 30 40 50 60 70 80 90

FIGURE 11
The remaining energy in the network.
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FIGURE 12
Histogram of sink positions for the minmax (upper left), mintotal (upper right) and rwp (bottom)
strategies.

strategy, while still ensuring a longer network lifetime. As the results for the
minmax and the mintotal cases were quite similar, we have chosen to show
only one of them.

7.5 Sink Location Distribution
Figure 12 shows the distribution of the sink coordinates after 30.000 simulation
rounds, for the minmax (upper left) and the mintotal (upper right) mobility
strategies, respectively. We can see that in the minmax case the sink often
resides near the center of the region, while in the mintotal case the distribution
is more homogeneous. This is because in the mintotal strategy if there are
several events nearby in a specific area, they will attract the sink even if there
is another distant event, isolated in an opposite area, which will be negatively
affected. On the other hand, in the minmax approach the isolated distant event
is more strongly protected. The distribution of the sink coordinates in the rwp
case is shown in Figure 12 (bottom). We can see that the rwp strategy ensures
an even more homogeneous distribution than the mintotal case.

8 CONCLUSION

Enhancing energy-efficiency is primordial in a wireless sensor network. There
are several techniques to achieve that, e.g., by using energy-aware routing
protocols, topology control schemes, or clustering mechanisms. Many recent



“aswin51” — 2007/5/15 — 17:49 — page 23 — #23

Adaptive Sink Mobility in Event-Driven 23

papers propose to use mobile sinks to reduce energy consumption. However,
they usually assume a time-driven scenario, and are frequently based on single-
hop communication between the sensors and the mobile sink.

In this paper we proposed an adaptive mobility solution that is specific to
event-driven applications and builds on multi-hop data relaying among sen-
sors. We presented the analytical foundations of two sink relocation strategies:
one optimizes the overall energy consumption in the network (mintotal), the
other minimizes the energy consumption of the most loaded sensor (minmax).
We showed through simulations that both strategies ensure a network lifetime
of around 150% longer than in case of a fixed sink, and consume about 30%
less energy than the circular strategy that moves the sink along the periphery
of the network. Even if this circular strategy ensures a more homogeneous
depletion of the sensors, the network dies more rapidly due to the increased
overall energy consumption. Our adaptive strategies perform significantly bet-
ter than the case of a randomly moving sink as well, both regarding network
lifetime and energy consumption.
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APPENDIX

A AVERAGE HOP COUNT

To calculate the average hop count, first let us derive the average distance of a
sensing node from the sink. The average distance l from sensors within CZ,r0

can be calculated (see Figure 13) as

l = 1

|CZ,r0 |
∫∫

CZ,r0

l dA, (34)

that is

l = 1

r2
0π

∫ r0

−r0

∫ √
r2
0 −y2

−
√

r2
0 −y2

√
(x − d)2 + y2 dx dy. (35)

where—without loss of generality—we assumed that the event is at location
(0, 0) and the sink is located at (d, 0). The integral (35) can be calculated
numerically for different event distances d (see the solid line on Figure 14).
The results show that—apart from small event distances—the average distance
l can be very well approximated by the event distance d.

The hop count k for each message can be calculated by dividing the distance
l by the hop length h, and rounding the result up to the nearest integer, i.e.,

Administrator
In the text the following sections as refered as Appendix A, Appendix B, Appendix C. Hence we had introduced the heading Appendix here. Please check if it is ok.
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FIGURE 13
Distance between the sink and a sensing node at a particular location. (	A = (	x × 	y)).
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FIGURE 14
Average distance l (solid line), average path length (hk, dotted line) and its approximation (dashed
line) from a sensing node to the sink. (Parameters: r0 = 1, h = 1, 2).

k = �l/h	. Knowing only the average distance l, a rough estimate for the
average hop count k could be l/h; however, this would underestimate the
desired quantity. This is because the estimate does not take into account that,
for a given path, �l/h	 ≈ l/h+0.5 “on the average”. Another candidate would
be estimating k by �l/h	; however, this can seriously overestimate the average
hop count. In our model, the average number of hops is approximated as

k ≈ max(1, d/h + 0.5), (36)

where we also took into account that the sensing range r0 is smaller than the
hop length h. This result is validated (see the dotted lines on Figure 14) by
approximating each path length by h�l/h	 and plotting its average for each d.
(Here we neglected the fact that the last hop of the path can be shorter than h.)
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FIGURE 15
Approximating transit load L.

B TRANSIT LOAD

To calculate the transit load on a given node, we proceed as follows. As
Figure 15 shows, the average transit load L(l,β) on a particular node P at
polar coordinates (l, β) where l = PS and β = ∠ZSP , is approximated as

L(l,β) ≈ A1/A0, (37)

where the area A0 can be calculated as

A0 = π((l + h/2)2 − (l − h/2)2)
	ϕ

2π
= hl	ϕ, (38)

and A1 is given by

A1 ≈ 	ϕ(g2 − f 2)/2 (39)

= 2d cos β

√
r2

0 − d2 sin2 β	ϕ, (40)

where g = GS and f = FS are

g = d cos β +
√

r2
0 − d2 sin2 β, (41)

f = d cos β −
√

r2
0 − d2 sin2 β. (42)

When the area A0 overlaps with A1, i.e., if l > f − h/2, the area A′
1 whose

generated traffic must be forwarded by nodes in A0 can be calculated as
follows:

A′
1 ≈ 	ϕ(g2 − (l + h/2)2)/2. (43)
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Thus, the transit load is given by

L(l,β) =




g2 − f 2

h2
, if l ≤ h

2

g2 − f 2

2lh
, if

h

2
< l < f − h

2

g2 − (l + h/2)2

2lh
, if f − h

2
≤ l < g − h

2
.

(44)

The transit load L(l,β) is plotted on Figure 16 as a function of path length
l for different values of β. As the figure shows, the load is maximal when
β is zero (i.e., on the straight path between the event and the sink node), and
increases hyperbolically when approaching the sink.

We should note, that (44) does not take into account the discrete hops
on the transmission path, but it assumes a continuous flow of traffic. The
load distribution is not so “smooth” when hops of length h are considered.
A dotted line is also drawn on Figure 16 to show the real multi-hop case when
the network is still assumed to be dense and routing is ideal. In this case the
transit load was approximated numerically. The result is in good agreement
with our proposed model, apart from the discrete steps appearing at larger
distances.
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FIGURE 16
Transit load as a function of path length l and direction β. (The event distance from the sink is
d = 10r0, and β̂ = arcsin(r0/d)).
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C EVENT LOCATION PREDICTION

C.1 One Step Forecast
Let us assume that k steps are already observed, i.e., the values θi = ϑi for
i = 1, . . . , k are known. Next, two cases can be distinguished: either wheter
the sector angle σ is known, or not. In the former case, the best estimator for
the unknown θ is the sample mean, i.e.,

θ̂k+1 = ϑk = 1

k

k∑
i=1

ϑi. (45)

It is also known that as k increases this estimate self-improves and ϑk is
approximately normally distributed with mean θ and dispersion σ/

√
3k.

If the sector angle σ is not known, one can use the sample mean and
dispersion to estimate θ and σ , but there is a commonly used alternative. In
this case we can consider η = θ − σ and ξ = θ + σ , and the fact that the θi-s
are independent and uniformly distributed in the interval [η, ξ ]. It is standard
to estimate η by

η̂k = min{ϑi : i = 1, 2, . . . , k}, (46)

and ξ by
ξ̂k = max{ϑi : i = 1, 2, . . . , k}. (47)

These estimators are asymptotically unbiased estimators of η and ξ . Based on
these, the estimate for the direction of the next step is

θ̂k+1 = (ξ̂k + η̂k)/2, (48)

and an estimate of σ is given by

σ̂k+1 = (ξ̂k − η̂k)/2. (49)

To estimate the expected value of the coordinates of Zk+1 we can write

E{xZk+1} = xZk
+ l

2σ

∫ θ+σ

θ−σ

cos ϕ dϕ (50)

= xZk
+ l

2σ
(sin(θ + σ) − sin(θ − σ)) (51)

= xZk
+ l

sin σ

σ
cos θ. (52)

Similarly, we get

E{yZk+1} = yZk
+ l

sin σ

σ
sin θ. (53)

Thus, we have

E{Zk+1} = Zk + l
sin σ

σ
eθ . (54)
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FIGURE 17
Multiple step forecast.

Equation (54) can be used for prediction if we replace θ and σ by their estimates
θ̂k+1 and σ̂k+1, and Zk is substituted by the observed value zk , i.e.,

Ẑk+1 = Ê{Zk+1} = zk + l
sin σ̂

σ̂
e
θ̂k+1

. (55)

C.2 Multiple Step Forecast
Until now we have dealt with the forecast of one step in advance, but the
forecast for more than one step in advance can also be developed. The random
variable we consider is

Zk+i = Zk + leθk+1
+ leθk+2

+ · · · + leθk+i
. (56)

Since the θi variables are modeled as independent, identically distributed
random variables, we can use the estimate (55) recursively, and finally we
have (see Figure 17)

Ẑk+i = zk + il
sin σ

σ
e
θ̂k+1

. (57)


