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Abstract Program comprehension research can be characterized by both the theories that

provide rich explanations about how programmers understand software, as well as the tools

that are used to assist in comprehension tasks. In this paper, I review some of the key cognitive

theories of program comprehension that have emerged over the past thirty years. Using these

theories as a canvas, I then explore how tools that are commonly used today have evolved to

support program comprehension. Specifically, I discuss how the theories and tools are related

and reflect on the research methods that were used to construct the theories and evaluate the

tools. The reviewed theories and tools are distinguished according to human characteristics,

program characteristics, and the context for the various comprehension tasks. Finally, I

predict how these characteristics will change in the future and speculate on how a number

of important research directions could lead to improvements in program comprehension tool

development and research methods.

Keywords Program comprehension . Cognitive models . Software tools . Research

methods . Software navigation . Software visualization . Collaborative software engineering

1. Introduction

Challenges in understanding programs are all too familiar from even before the days of

the first software engineering workshop (Nato, 1968). Since that time, the field of program

comprehension as a research discipline has evolved considerably. The goal of our community

is to build an understanding of these challenges, with the ultimate objective of developing

more effective tools and methods. From these early days we have come to accept that there

is no silver bullet (Brooks, 1987), but the community has made advances which have helped

software engineers tackle important problems such as the Y2K problem and the integration

of heterogeneous distributed systems.
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There are two key strands of program comprehension research. The first is empirical

research which strives for an understanding of the cognitive processes that programmers

use when understanding programs. The second involves technology research with a focus

on developing semi-automated tool support to improve program comprehension. This paper

provides a meta-analysis of how these two strands of research are related.

Empirical research in program comprehension has culminated in a wide variety of theories

that provide rich explanations of how programmers understand programs and can provide

advice on how program comprehension tools and methods may be improved. In response to

these theories, and in some cases in parallel to theory development, many powerful tools and

innovative software processes have evolved to improve comprehension activities.

The field of program comprehension research has been rich and varied, with various shifts

in paradigms and research cultures during the last few decades. A multitude of differences

in program characteristics, programmer ability and software tasks have led to many diverse

theories, research methods and tools. In this paper, I provide a review of this work to create a

landscape of program comprehension research. Such a view emphasizes how the theories and

tools are related and should reveal if parts of the landscape have not received much attention.

This review, combined with an excursion to newer areas of software engineering theory and

practice, directs us to specific areas for the future of program comprehension research.

This paper is organized as follows. In Section 2, I provide an overview of comprehension

theories and describe how programmer, program and task variability can impact comprehen-

sion strategies. In Section 3, the implications of cognitive theories on tool requirements are

considered and several theories that specifically address tool support are reviewed. In Section

4, I briefly describe comprehension tools and refer back to the theories about tool support. In

Section 5, I look to the future and predict how programmer and program characteristics are

likely to vary in the near term. Building on these predicted changes, I then suggest in Section

6 how research methods, theories and tools will evolve in the future. The paper concludes in

Section 7.

2. A review of program comprehension cognitive theories

Francois Détienne’s book, “Software Design—Cognitive Aspects” (Détienne, 2001), pro-

vides an excellent review of the history of cognitive models and related experiments over the

past twenty or so years. She delves back to a time, in the early 1970’s, when experiments were

done without theoretical frameworks to guide the evaluations. Consequently, it was neither

possible to understand nor to explain to others why one tool or technique might be superior

to other options.

The lack of theories was recognized as being problematic. As the field of program compre-

hension matured, research methods and theories were borrowed from other areas of research,

such as text comprehension, problem solving and education. Using these theoretical under-

pinnings, cognitive theories about how programmers understand programs and how tools

could support comprehension were developed. Perceived benefits of having these models

include having rich explanations of behaviour that would lead to more efficient processes,

methods and tools, as well as improved education procedures (Hohmann, 1996).

In this section, I review some of the influential cognitive theories in program compre-

hension research. I then present some results on how differences between programmers,

programming paradigms and task characteristics impact comprehension. First some termi-

nology is defined.
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2.1. Concepts and terminology

A mental model describes a developer’s mental representation of the program to be

understood whereas a cognitive model describes the cognitive processes and temporary

information structures in the programmer’s head that are used to form the mental model.

Cognitive support refers to support provided for cognitive tasks such as thinking or reasoning

(Walenstein, 2003).

Programming plans are generic fragments of code that represent typical scenarios in

programming. For example, a sorting program will contain a loop to compare two numbers in

each iteration (Soloway, 1984). Programming plans are also often referred to as clichés and

schemas (Rich, 1990). Delocalized plans occur when a programming plan is implemented

in disparate areas of the program (Soloway, 1984).

Beacons are recognizable, familiar features in the code that act as cues to the presence

of certain structures (Brooks, 1983). For example, a procedure name can indicate the imple-

mentation of a specific feature. Rules of programming discourse capture the conventions of

programming, such as coding standards and algorithm implementations (Soloway, 1984).

Rules of discourse invoke expectations in the mind of the programmer.

2.2. Top-down comprehension

Brooks theorizes that programmers understand a completed program in a top-down man-

ner where the comprehension process is one of reconstructing knowledge about the do-

main of the program and mapping this knowledge to the source code (Brooks, 1983). The

process starts with a hypothesis about the general nature of the program. This initial hy-

pothesis is then refined in a hierarchical fashion by forming subsidiary hypotheses. Sub-

sidiary hypotheses are refined and evaluated in a depth-first manner. The verification (or

rejection) of hypotheses depends heavily on the absence or presence of beacons (Brooks,

1983).

Soloway and Ehrlich (Soloway, 1984) observed that top-down understanding is used when

the code or type of code is familiar. They observed that expert programmers use beacons,

programming plans and rules of programming discourse to decompose goals and plans into

lower-level plans. They noted that delocalized plans complicate program comprehension.

2.3. Bottom-up comprehension

The bottom-up theories of program comprehension assume that programmers first read code

statements and then mentally chunk or group these statements into higher level abstractions.

These abstractions (chunks) are aggregated further until a high-level understanding of the

program is attained (Shneiderman, 1979). Shneiderman and Mayer’s cognitive framework

differentiates between syntactic and semantic knowledge of programs. Syntactic knowledge

is language dependent and concerns the statements and basic units in a program. Semantic

knowledge is language independent and is built in progressive layers until a mental model is

formed which describes the application domain.

Pennington also describes a bottom-up model (Pennington, 1987). She observed that

programmers first develop a control-flow abstraction of the program which captures the

sequence of operations in the program. This model is referred to as the program model and is

developed through the chunking of microstructures in the text (statements, control constructs

and relationships) into macrostructures (text structure abstractions) and by cross-referencing

these structures. Once the program model has been fully assimilated, the situation model is
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developed. The situation model encompasses knowledge about data-flow abstractions and

functional abstractions (the program goal hierarchy). The programmer’s understanding is

further enhanced through the cross referencing of artifacts in the program model and

situation model.

2.4. Knowledge-base model

Letovsky views programmers as opportunistic processors capable of exploiting both bottom-

up and top-down cues (Letovsky, 1986). There are three components to his model:

� The knowledge base encodes the programmer’s expertise and background knowledge. The

programmer’s internal knowledge may consist of application and programming domain

knowledge, program goals, a library of programming plans and rules of discourse.� The mental model encodes the programmer’s current understanding of the program. Ini-

tially it consists of a specification of the program goals and later evolves into a mental

model which describes the implementation in terms of the data structures and algorithms

used.� The assimilation process describes how the mental model evolves using the programmer’s

knowledge base together with program source code and documentation. The assimilation

process may be a bottom-up or top-down process depending on the programmer’s initial

knowledge base

Letovsky describes the observation of two recurring patterns: asking questions and con-

jecturing answers (Letovsky, 1986). He calls such activities inquiries. An inquiry may consist

of a programmer asking a question (for example, what is the purpose of variable x?), con-

jecturing an answer (x stores the maximum of a set of numbers), and then searching through

the code and documentation to verify the answer (the conjecture is verified if x is in an

assignment statement where two values are compared to see which is greater). According to

Letovsky there are three major types of hypotheses:

� why conjectures (questioning the role of a function or piece of code),� how conjectures (what is the method for accomplishing a goal),� and what conjectures (what is a variable or one of the program functions).

2.5. Opportunistic and systematic strategies

Littman et al. observed programmers enhancing a personnel database program (Littman,

1986). They observed that programmers either systematically read the code in detail, tracing

through the control-flow and data-flow abstractions in the program to gain a global under-

standing of the program, or that they take an as-needed approach, focusing only on the code

relating to a particular task at hand. Subjects using a systematic strategy acquired both static

knowledge (information about the structure of the program) and causal knowledge (interac-

tions between components in the program when it is executed). This enabled them to form a

mental model of the program. However, those using the as-needed approach only acquired

static knowledge resulting in a weaker mental model of how the program worked. More errors

occurred since the programmers failed to recognize causal interactions between components

in the program.
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2.6. The Integrated Metamodel

The Integrated Metamodel, developed by von Mayrhauser and Vans, builds on the models just

summarized. Their model consists of four major components (von Mayrhauser, 1993). The

first three components describe the comprehension processes used to create mental repre-

sentations at various levels of abstraction and the fourth component describes the knowledge

base needed to perform a comprehension process:� The top-down (domain) model is usually invoked and developed using an as-needed strat-

egy, when the programming language or code is familiar. It incorporates domain knowledge

as a starting point for formulating hypotheses.� The program model may be invoked when the code and application is completely unfa-

miliar. The program model is a control-flow abstraction.� The situation model describes data-flow and functional abstractions in the program. It may

be developed after a partial program model is formed using systematic or opportunistic

strategies.� The knowledge base consists of information needed to build these three cognitive models.

It represents the programmer’s current knowledge and is used to store new and inferred

knowledge.

Understanding is formed at several levels of abstraction simultaneously by switching

between the three comprehension processes.

2.7. Impact of program characteristics

Programs that are carefully designed and well documented will be easier to understand,

change or reuse in the future. Pennington’s experiments showed that the choice of language

has an effect on the comprehension processes (Pennington, 1987). COBOL programmers

consistently fared better at answering questions related to data-flow than FORTRAN pro-

grammers, and FORTRAN programmers consistently fared better than COBOL programmers

for control-flow questions.

Programming paradigms will also impact comprehension strategies. Object-oriented (OO)

programs are often seen as a more natural fit to problems in the real world because of ‘is-

a’ and ‘is-part-of’ relationships in a class hierarchy and structure, but others argue that

objects do not always map easily to real world problems (Détienne, 2001). In OO programs,

additional abstractions that capture domain concepts are achieved through encapsulation and

polymorphism (Détienne, 2001). Message-passing is used for communication between class

methods and hence programming plans are dispersed (i.e. scattered) throughout classes in

an OO program. Corritore et al. compared how experts comprehend object-oriented and

procedural programs (Corritore, 1999). They noted that experts make more use of domain

concepts in the initial understanding of object oriented programs.

2.8. Influence of individual programmer differences

There are many individual characteristics that will impact how a programmer tackles a

comprehension task. These differences also impact the requirements for a supporting tool.

There is a huge disparity in programmer ability and creativity which cannot be measured

simply by their experience (Curtis, 1981). Vessey presents an exploratory study to investigate

expert and novice debugging processes (Vessey, 1985). She classified programmers as expert

or novice based on their ability to chunk effectively. She notes that experts used breadth-first
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approaches and at the same time were able to adopt a system view of the problem area,

whereas novices used breadth-first and depth-first approaches but were unable to think in

system terms.

Détienne also notes that experts make more use of external devices as memory aids

(Détienne, 2001). Experts tend to reason about programs according to both functional and

object-oriented relationships and consider the algorithm, whereas novices tend to focus on

objects. Burkhardt et al. (Burkhardt 1998) performed experiments to study how object-

oriented programs are comprehended. They observed that novices are less likely than experts

to use inheritance and compositional relationships to guide their comprehension. Finally,

Davies (Davies, 1993) notes that experts tend to externalize low level details, but novices

externalize higher levels of representation related to the problem.

2.9. Effects of ask variability in program comprehension

According to Clayton there is no real agreement on what it is about a program that needs to be

understood (Clayton, 1998). This is not surprising as program comprehension is not an end

goal, but rather a necessary step in achieving some other objective. Tasks that involve compre-

hension steps include maintenance such as fixing an error, reusing code, refactoring, impact

analysis of proposed changes and changing the functionality of the program. Other tasks

include software inspection, evaluating quality metrics (such as reusability, performance,

security), and testing.

Obviously the type and scope of the ultimate programming task has have an impact on the

comprehension process followed. If a task is a simple one, the change probably only affects

a small portion of the code. For more complex changes, the programmer has to consider

global interactions thus requiring that the programmer obtain a thorough understanding of

the causal relationships in the entire program.

Pennington’s research indicates that a task requiring recall and comprehension resulted in

a programmer forming a program model (control-flow abstraction) of the software whereas

a task to modify the program resulted in a programmer forming a situation model containing

data-flow and functional information (Pennington, 1987).

For a programmer, a reuse task requires that she first understand the source problem,

retrieve an appropriate target solution, and then adapt the solution to the problem. The

mapping from the problem to the solution is often done using analogical reasoning (Détienne,

2001) and may involve iterative searching through many possible solutions. Davies et al. note

that the task, whether it is a development or comprehension task, influences which information

is externalized by experts (Davies, 1993).

2.10. Discussion: Implications for tool research

Many of the researchers that developed the traditional cognitive theories for program com-

prehension discuss the implications of the developed theories on tool design and in some

cases also discuss how education and program design could be improved to address program

understanding challenges. However, in many cases, the connection to tools and how they

could be improved or evaluated according to the theories could be stronger. Moreover, some

of these results were also criticized because the researchers studied novice programmers do-

ing fabricated tasks (Curtis, 1986). Vans and von Mayrhauser are notable exceptions. Despite

these criticisms, program comprehension research does contain many gems of advice on how

tools can be improved. The advantage for tool designers is that they can use these theories

to help them understand, not only what features are needed, but also why some features may
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neither be appropriate nor sufficient to assist comprehension tasks. Moreover, the research

which explores differences in programmers, programs and tasks can be used to guide tool

designers to meet specific needs.

3. Current theories and tool support

What features should an ideal tool to support program comprehension have? Program com-

prehension tools play a supporting role in other software engineering activities of design,

development, maintenance, and redocumentation. As discussed in the previous section of

this paper, there are many characteristics which influence the cognitive strategies the pro-

grammers use and in turn influence the requirements for tool support. In this section, I look

in general terms at tool requirements but these should be refined for a tool to be deployed in

a particular context. In Section 3.1, I review specific research that recommends tool features.

I then extract and synthesize tool requirements based on the prior discussion on cognitive

theories and their implications for tools in Section 3.2.

3.1. Cognitive models and tool implications

Documentation: Brooks suggests that documentation should be designed to support top-

down comprehension strategies (Brooks, 1983). He advocates that it is as important to

document the problem domain as it is to document programming concepts. Also stress

the importance of explicitly documenting domain knowledge to improve comprehension

(Clayton et al., 1998). Brooks suggests that different styles of languages require different

styles of documentation. Observations from Laitenberger et al.’s research corroborate that

different people read the documentation from different points of view and how they read

the documentation will depend on their comprehension goal (Laitenberger, 1995). Prechelt

et al. (Prechelt, 2002) report from their experiments that redundant design pattern docu-

mentation, i.e. program level documentation, improves maintenance tasks. The additional

documentation results in faster task completion times and fewer errors.

Browsing and navigation support: The top-down process requires browsing from high-

level abstractions or concepts to lower level details, taking advantage of beacons (Brooks,

1983) in the code. Flexible browsing support also helps to offset the challenges from de-

localized plans. Bottom-up comprehension requires following control-flow and data-flow

links as well as cross-referencing navigation between elements in the program and sit-

uation models defined by Pennington. The Integrated Metamodel suggests that frequent

switching between top-down and bottom-up browsing should be supported (von Mayrhauser,

1993). Since both experts and novices switch between top-down and bottom-up strategies

(Burkhardt, 1998), they may both benefit from tools that support breadth-first and depth-first

browsing.

Searching and querying: Tool support may be beneficial for searching of code snippets by

analogy and for iterative searching. Inquiry episodes (Letovsky, 1986) should be supported

by allowing the programmer to query on the role of a variable, function etc. A program

slice is a subcomponent of the program that may potentially impact the value of some

variables at another part of the program (Tip, 1995). Weiser conducted empirical research

that demonstrated that programmers use slices during debugging (Weiser, 1982). Francel et
al. (Francel, 1999) also determined that slicing techniques can be useful during debugging
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to help the programmers find the location of a program fault. This research suggests that

comprehension tools should therefore have query support for program slices, especially for

tools that support debugging.

Multiple views: Due to the diversity of comprehension strategies and the variability of

questions programmers need to answer during comprehension, programming environments

need to provide different ways of representing programs. One view could show a textual

representation of the code in the program, an additional view may show the message call graph

providing insight into the programming plans, while a third view could show a representation

of the classes and relationships between them to show an object-centric or data-centric view of

the program. These orthogonal views, if easily accessible, should facilitate comprehension,

especially if effectively combined and cross-referenced. Petre et al. discuss some of the

challenges with using and bridging between multiple views (Petre, 1998).

Context-driven views: The size of the program and other program metrics influence which

view is the preferred one to show to support a programmer’s task. For example, to support

browsing of an unfamiliar object-oriented program, it is usually preferable to show the

inheritance hierarchy as the initial view. However, if the inheritance hierarchy is flat, it may

be more appropriate to show a call graph as the default view.

Cognitive support: Experts need external devices and scratchpads to support their cognitive

tasks, whereas novices need pedagogical support to help them access information about the

programming language and the corresponding domain. Robbins’ research (Robbins, 1996)

indicates the importance of having tool support to manage “to do” activities during design.

More cognitive support could also benefit comprehension for sequential tasks such as code

inspections and debugging.

3.2. Tool requirements explicitly identified

Several researchers studied expert programmers in industrial settings and consequently rec-

ommended specific requirements for improving tools to support comprehension. Others built

on their own personal or colleagues’ experiences to recommend needed tool features. These

efforts and the requirements they determined are summarized here.

Concept assignment problem: Biggerstaff notes that one of the main difficulties in under-

standing comes from mapping what is in the code to the software requirements – he terms

this the concept assignment problem (Biggerstaff, 1983). Although automated techniques

can help locate programming concepts and features, it is challenging to automatically detect

human oriented or domain based concepts. The user may need to indicate a starting point

and then use program slicing techniques to find related code. It may also be possible for

an intelligent agent (that has domain knowledge) to scan the code and search for candidate

starting points. From experimenting with research prototypes, Biggerstaff found that queries,

slicing, graphical views and hypertext were important tool features.

Reverse engineering tool needs: Von Mayrhauser and Vans, from their research on the Inte-

grated Metamodel, make an explicit recommendation for tool support for reverse engineering

(von Mayrhauser, 1993). They determined basic information needs according to cognitive

tasks and suggested the following tool capabilities to meet those needs:
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trees; difference tools; history of browsed locations; and entity fan-in.� Situation model: a view showing a list of domain sources including non-code related

sources; and a view displaying a visual representation of major domain functions.� Program model: pop-up declarations; on-line cross-reference reports and function count.

Wong also discusses reverse engineering tool features (Wong, 2000). He specifically

mentions the benefits of using a “notebook” to support continuous comprehension processes.

Importance of search and history: Singer and Lethbridge also observed the work practices

of software engineers (Singer, 1997). They explored the activities of a single engineer, as well

as a group of engineers, and considered company-wide tool usage statistics. Their study led to

the requirements for a tool that was implemented and successfully adopted by the company.

Specifically they suggested tool features to support “just-in-time comprehension of source

code”. They noted that engineers after working on a specific part of the program quickly

forget details when they move to a new location. This forces them to rediscover information

at a later time. They suggest that tools need the following features to support rediscovery:� Search capabilities so that the user can search for code artifacts by name or by pattern

matching.� Capabilities to display all relevant attributes of the items retrieved as well as relationships

among items.� Features to keep track of searches and problem-solving sessions, to support the navigation

of a persistent history.

Information needs for maintainers: Erdös and Sneed designed a tool to support maintenance

following many years of experience in the maintenance and reengineering industry. They

proposed that a programmer maintaining an unfamiliar program will need to answer the

following seven questions (Erdos, 1998):

1. Where is a particular subroutine/procedure invoked?

2. What are the arguments and results of a function?

3. How does control flow reach a particular location?

4. Where is a particular variable set, used or queried?

5. Where is a particular variable declared?

6. Where is a particular data object accessed?

7. What are the inputs and outputs of a module?

Software visualization tool needs: In (Storey, 1999) we presented a cognitive framework

of design elements for improving software exploration tools. The framework provides an

overview of various tool features which could provide cognitive support for the various

comprehension models such as top-down, bottom-up and knowledge based approaches. The

emphasis was on tool support for browsing static software structures and architectures.

Pacione et al. (Pacione, 2004) provide a more extensive software visualization model

to support program comprehension. Although their model was specifically designed for

evaluating software visualization tools, it is also usable as a mechanism for evaluating more

general purpose program comprehension tool requirements. Their paper gives a detailed

list of both specific and general comprehension tasks. General tasks include determining

how the high-level components of a system interact and determining how interactions occur

between objects. More specific tasks include asking how the problem domain functionality is

implemented in the software systems. Pacione further maps these tasks to specific activities
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and determines how the information needs of these activities can be met through static and

dynamic software visualizations.

3.3. Discussion: Methods for determining program comprehension tool requirements

Determining which new features should be added or which features should be replaced or

improved in a program comprehension environment is not trivial. On the one hand, the em-

pirical approach results in the construction of theories about program comprehension strate-

gies and proposed tools. Despite some criticisms, these predominantly formal experiments

nevertheless have contributed to the wide body of knowledge we now have about comprehen-

sion theories and tool requirements. Moreover, some researchers, such as von Mayrhauser

and Vans, and Singer and Lethbridge, have conducted more qualitative experiments using

professional programmers on industrially-relevant programs. Techniques such as the analy-

sis of think-aloud protocols (Letovsky, 1986) and contextual inquiry (Beyer, 1997) proved

useful in many of these ecologically valid experiments.

In contrast with the empirical approach, some researchers and tool designers may rely on

practical experience and intuition to propose what is needed in a comprehension tool. Given

the variability in comprehension settings, all of these approaches contribute to the required

body of knowledge.

4. Tool research

The field of program comprehension research has resulted in many diverse tools to assist in

program comprehension. Program understanding tool features can be roughly categorized

according to three categories: extraction, analysis and presentation (Tilley, 1996).

Extraction tools include parsers and data gathering tools to collect both static and dynamic

data. Static data is obtained by extracting facts from the source code. A fact extractor should

be able to determine what artifacts the program defines, uses, imports and exports, as well

as the relationships between those artifacts. The technologies underlying fact extractors are

based on techniques from compiler construction (Aho, 2000). Example modern fact extractors

include CAN, a fast C/C++ extractor, from the Columbus reverse engineering tool (Ferenc,

2004) and CPPX (Dean, 2001). Moonen et al. discuss the benefits of island grammars for

generating parsers that can handle incomplete source code and different language dialects

(Moonen, 2001). Dynamic data is obtained by examining and extracting data from the run

time behaviour of the program. Such data can be extracted through a wide variety of trace

exploration tools and techniques (Hamou-Lhadj, 2004).

Analysis tools support activities such as clustering, concept assignment, feature identifica-

tion (Eisenbarth, 2003), transformations, domain analysis, slicing and metrics calculations.

There are numerous software clustering techniques that can be used during reverse engi-

neering to identify software components (Koschke, 2000). Frank Tip provides a survey of

program slicing techniques (Tip, 1995) and Mathias et al. discuss the role of various software

metrics on program comprehension (Mathias, 1999).

Dynamic analysis usually involves instrumentation of the source code. With dynamic

analysis, only a subset of the program code may be relevant but dynamic traces can be very

large posing significant challenges during the analysis of the data. Systä et al. describe how

static analysis can be used to prune the amount of information looked at during dynamic

analysis (Systä, 2001).
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Presentation tools include code editors, browsers, hypertext viewers, and visualizations.

Integrated software development and reverse engineering environments usually have some

features from each category. The set of features they support is usually determined by the

purpose for the resulting tool or by the focus of the research.

It is possible to examine a selection of these environments and to recover the motivation for

the features they provide by tracing back to the tool and cognitive theories. For example, the

well known Rigi system (Muller, 1988) has support for multiple views, cross-referencing and

queries to support bottom-up comprehension. The Reflexion tool (Murphy, 1995) has support

for the top-down approach through hypothesis generation and verification. The Bauhaus tool

(Eisenbarth, 2001) has features to support clustering (identification of components), slicing

and concept analysis. The SHriMP tool (Storey, 2003) provides navigation support for the

Integrated Metamodel, i.e. frequent switching between strategies. And the Codecrawler tool

(Lanza, 2001) uses visualization of metrics to support understanding of an unfamiliar system

and to identify bottlenecks and other architectural features.

4.1. Discussion: Methods for evaluating comprehension tools

Evaluating program comprehension tools can be a formidable task for a researcher. In

many cases the comprehension tools are evaluated by the researchers using case stud-

ies. There have been some usability experiments conducted to evaluate program com-

prehension tools (Storey, 2000). Bellay and Gall conducted a comparative evaluation of

five reverse engineering tools using a case study and an evaluation framework (Bellay,

1995).

Tools which fall into the extraction and analysis categories are inherently easier to evaluate

if there are well established benchmarks and associated criteria (Sim, 2003). However, for

many of the tools that present information to the user and offer cognitive support, it is not

always that easy to determine what to measure and when to take such measurements.

The comprehension theories can play a role in the evaluation of these environments.

They can be used as a first step in performing a heuristic evaluation of the environment and

in describing what the environment does and does not do. Secondly, they can be used to

help guide evaluations and to assist in presenting results. The issue of evaluation is discussed

further in Section 6 after a discussion of how the characteristics of programs and programmers

are currently evolving.

5. Programmer and program trends

Any research paper or talk that attempts to predict the future, always discusses how risky

and difficult such an endeavour is. Fortunately, it is less risky to closely examine current

trends and predict what will occur in the very near future. Tilley and Smith, in 1996, wrote a

thought-provoking paper entitled “Coming Attractions in Program Understanding” (Tilley,

1996). I follow a similar tack to that of Tilley and Smith, and keep the distance to the horizon

short by looking at the near future. To guide theory and tool predictions, I first consider how

some of the programmer and program characteristics will evolve.

5.1. Programmer characteristics

More diversified programmers: The need to use computers and software intersects every

walk of life. Programming, and hence program comprehension, is no longer a niche activity.
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Scientists and knowledge workers in many walks of life have to use and customize software to

help them do science or other work. In our research alone, we have already worked alongside

scientists from a variety of knowledge domains including forestry, astronomy, business and

medical science domains. We have encountered that these scientists are using and developing

sophisticated software through web services and other mechanisms despite the fact that they

lack a formal education in computer science. Consequently, there is a need for techniques to

assist in non-expert and end-user program comprehension. Fortunately, there is much work

in this area (especially at conferences such as Visual Languages and by the PPIG group—

www.ppig.org), where they investigate how comprehension can be improved through tool

support for spreadsheet and other end user applications.

Sophisticated users: Currently, advanced visual interfaces are not often used in development

environments. A large concern by many tool designers is that these advanced visual inter-

faces require complex user interactions. However, tomorrow’s programmers will be more

familiar with game software and other media that displays information rapidly and requires

sophisticated user controls. Looking at today’s industry trends, many programmers are using

larger screens and multiple monitors to help with programming and other complex tasks.

Consequently, the next generation of users will have more skill at interpreting information

presented visually and at manipulating and learning how to use complex controls on larger

displays and on multiple monitors. Grudin (Grudin, 2001) discusses some of the implications

for multiple monitor use for programmers as well as other classes of users. Modern devel-

opers are also more likely to have had much exposure to social software such as blogging,

wikis and social bookmarking (Hammond, 2005). Such features are be expected to be in the

next generation of development environments.

Globally distributed teams: Advances in communication technologies have enabled glob-

ally distributed collaborations in software development. Distributed open source develop-

ment is having a significant impact on industry. The most notable examples are Linux and

Eclipse. Some research has been conducted on studying collaborative processes in open

source projects (Mockus, 2002, Gutwin, 2004, German, 2006), but more research is needed

to study how distributed collaborations impact comprehension.

Agile developers: Agile development which incorporates techniques such as test driven

development and pair programming has an impact on how programs are comprehended

within an organization. To date there have been few studies to investigate how these practices

improve or possibly hinder how programmers comprehend programs.

5.2. Program characteristics

Distributed applications and web-based applications are becoming more prevalent with

technologies such as .NET, J2EE and web services. One programming challenge that is

occurring now and is likely to increase, is the combination of different paradigms in dis-

tributed applications, e.g. a client side script sends XML to a server application. Service

oriented architectures are also becoming popular and may require different comprehension

tool support.

Higher levels of abstraction: Visual composition languages for business applications are

also on the increase. As the level of abstraction increases, comprehension challenges are

shifting from the understanding of source code in a single program to more abstract concepts
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such as understanding the services provided by and the interfaces of components in libraries

and how to make use of software frameworks.

Dynamically configured systems: The prevalence of model driven development and auto-

nomic systems are leading to complex systems that are dynamically configured at run time.

Such systems will pose significant comprehension challenges. Pluggable frameworks such

as Eclipse are also posing development challenges as it is difficult to understand and manage

the dependencies resulting from different versions of many plug-ins. More advanced tool

support for such environments will be required as these technologies mature.

Aspect-oriented programming: The introduction of aspects as a construct to manage scat-

tered concerns (delocalized plans) in a program has created much excitement in the software

engineering community. Aspects have been shown to be effective for managing many pro-

gramming concerns, such as logging and security. However, it is not clear how aspects written

by others will improve program understanding, especially in the long term. The focus of the

work currently is on developing techniques and tools to support aspect oriented program-

ming and on how to identify aspects in legacy code for future refactorings (Hannemann, 2001,

Tonella, 2004, van Deursen, 2004). More empirical work is needed to validate and demon-

strate the assumed benefits of aspect oriented programming for the long term comprehension

of software programs.

Improved and newer software engineering practices: The more informed processes that are

used for developing software today will hopefully lead to software that is easier to comprehend

in the future. Component-based software systems are designed using familiar design patterns,

and other conventions. Future software may have traceability links to requirements, and

improved documentation such as formal program specifications. Test driven development

methods may also lead to code that is easier to comprehend due to the implicit requirements

captured by test cases.

Diverse sources of information: The program comprehension community, until quite re-

cently, mostly focused on how static and dynamic analyses of source code, in conjunction

with documentation, could facilitate program comprehension. Modern software integrated

development environments, such as the Eclipse Java development environment, also manage

other kinds of information such as bug tracking, test cases and version control. This informa-

tion, combined with human activity information such as emails and instant messages, will be

more readily available to support analysis in program comprehension. Domain information

should also be more accessible due to model driven development and the semantic web.

6. Future methods, theories and tools

In this section, I consider how research methods, theories and tools may evolve in response

to the predicted programmer and program changes.

6.1. Research methods

In recent years there has been a high expectation in the research community that tools should

be subject to some sort of evaluation. Case studies of industrial systems are often used as

a mechanism for demonstrating that a technique can efficiently and robustly perform the
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expected analysis. In some cases, we may also need evidence that the approach is useful for

and usable by less sophisticated developers.

Many techniques, especially those utilized in presentation tools, are evaluated using ex-

periments. Conducting empirical work and experiments in program comprehension is always

a challenging endeavour. There are two main research paradigms, the quantitative and the

qualitative (Cresswell, 1994).

The quantitative approach, the traditional approach in program comprehension, assumes

that reality is objective and is independent from the researcher. Quantitative studies are formal

and factors are isolated before the study. They are usually performed in context free situations,

and the studies are seen as reliable and repeatable.

The qualitative approach, the constructivist approach, assumes that the researcher interacts

with what is observed and that context is important. These studies are more informal and

hypotheses about the results are formed inductively. The key results from qualitative research

are patterns and theories which lead to initial or further understanding.

For the most part, cognitive models and tool evaluations in program comprehension have

been determined through quantitative approaches. However, the conditions for program com-

prehension are so complex and varied, that many researchers are recognizing that qualitative

approaches conducted in more ecologically valid settings may be very insightful. This shift

to conducting research in industrial settings brings with it many logistical challenges. Ob-

servations can be hard to do in industry and may result in large data sets that are difficult to

analyze. Observations can also be disruptive and are subject to the Hawthorne effect (e.g. a

programmer may change her behaviour because she is observed).

To address these issues, several researchers are also collecting instrumented data after the

tool is deployed in an industrial setting. This data collection technique shows much promise

as it captures information on the context of tool use as well as accurate information about how

a tool is used over a longer period of time. However, such results can also be misleading. A

lack of adoption is not enough to indicate that a tool is not useful as there are many barriers to

adoption (e.g. seemingly trivial usability issues can impede usage of a tool). There have been

ICSE workshops (Balzer, 2003, Balzer, 2004) that have hosted discussion on the adoption of

software tools.

As a community, there have been some shared evaluation efforts—the use of exemplar

case studies, i.e. benchmarks, (Sim, 2003) and collaborative tool demonstrations (Storey,

2003). These efforts give researchers a mechanism to compare their tools with others, and

learn more about different and similar approaches to research.

Irrespective of the evaluation technique used, theoretical underpinnings will benefit the

evaluations as the results will be easier to interpret. Although our long term goal may be to

build better tools, we need to be able to articulate why they are better than other approaches.

6.2. Theories

As the programming workforce and technology changes, learning theories (Exton, 2002) will

become more relevant to end-users doing programming-like tasks. Theories are currently

being developed to describe the social and organizational aspects of program comprehension

(Gutwin, 2004). The impact of open source processes and agile methods have yet to be fully

understood. Richer cognitive theories about how aspect oriented programming will impact

comprehension in the longer term need to be further developed. More theories about the

collaborative nature of program comprehension, both co-located and distributed, are needed.

It is becoming clear to many in this research area that developing theories on program

comprehension is an ambitious undertaking. This is mostly due to the large variability in
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the possible conditions for any experiment. It is important as a community to have many

data points; this will enable future researchers to do a meta-analysis of results from several

experiments so that common trends and issues can be extracted. This phenomenon can be

compared to efforts in the clinical trial community where many studies have to be done to

understand how a drug interacts with other drugs, different kinds of individuals and environ-

mental conditions.

In our research community, we need to document and present results in such a way that

others can make sense of our data and conclusions. Researchers evaluating presentation

tools and user interfaces for program comprehension tools could benefit from the work of

Walenstein and Green et al.: Walenstein proposes a methodology for evaluating cognitive

support (Walenstein, 2003) and Green’s Cognitive Dimensions provides a language and

framework that can be used for evaluating presentation tools (Green, 1996). More work is

needed to understand how we can combine results and benefit from collaborative efforts in

empirical work.

6.3. Tools

Faster tool innovations: The use of frameworks as an underlying technology for software

tools is leading to faster tool innovations as less time needs to be spent reinventing the wheel.

A prime example of how frameworks can improve tool development is the Eclipse framework

(see www.eclipse.org ). Eclipse was specifically designed with the goal of creating reusable

components which would be shared across different tools. The research community benefits

from this approach in several ways. Firstly, they are able to spend more time writing new and

innovative features as they can reuse the core underlying features offered by Eclipse and its

plug-ins; and secondly, researchers can evaluate their prototypes in more ecologically valid

ways as they can compare their new features against existing industrial tools.

Plug ‘n play tools: In Section 5, I described understanding tools according to three categories:

extraction, analysis and presentation. Given a suite of tools that all plug in to the same frame-

work, together with a standard exchange format (such as GXL—http://www.gupro.de/GXL/),

researchers will be able to more easily try different combinations of tools to meet their re-

search needs. This should result in increased collaborations and more relevant research re-

sults. Such integrations will also lead to improved accessibility to repositories of information

related to the software including code, documentation, analysis results, domain informa-

tion and human activity information. Integrated tools will also lead to fewer disruptions for

programmers.

Recommenders and search: Software engineering tools, especially those developed in re-

search, are increasingly leveraging advances in intelligent user interfaces (e.g. tools with

some domain or user knowledge). Recommender systems are being proposed to guide nav-

igation in software spaces. Examples of such systems include Mylar (Kersten, 2005) and

NavTracks (Singer, 2005). Mylar uses a degree of interest model to filter non-relevant files

from the file explorer and other views in Eclipse. NavTracks provides recommendations of

which files are related to the currently selected files. Deline et al. also discuss a system to

improve navigation (Deline, 2005). The FEAT tool suggests using concern graphs (explicitly

created by the programmer) to improve navigation efficiency and enhance comprehension

(Robillard, 2003). This work can be further inspired by research from the HCI (Human

Computer Interactionz) community on tracking interaction histories to inform navigation

(Chalmers, 1998, Wexelblat, 1998, Wexelblat, 1999).
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Search technologies, such as Google, show much promise at improving search for relevant

components, code snippets and related code. The Hipikat tool (Cubranic, 2006) recommends

relevant software artifacts based on the developer’s current project context and development

history. The Prospector system recommends relevant code snippets (Mandelin, 2005). It

combines a search engine with the content assist in Eclipse to help programmers use complex

APIs. Zimmerman developed the eRose tool which generates recommendations on which

files should be changed together (Zimmerman, 2004). eRose uses CVS data to find files that

have frequently been changed together. Holmes and Murphy (Holmes, 2005) propose using

structures to create code recommendations during evolution tasks.

Although this work in search and recommendations is relatively new, it shows much

promise and it is expected to improve navigation in large systems while reducing the barriers

to reusing components from large libraries.

Adaptive interfaces: Software tools typically have many features which may be overwhelm-

ing not only for novice users, but also for expert users. This information overload could be

reduced through the use of adaptive interfaces. The idea is that the user interface can be

tailored automatically, i.e. will self-adapt, to suit different kinds of users and tasks. Adaptive

user interfaces are now common in Windows applications such as Word. Eclipse has several

novice views (such as Gild (Storey, 2003) and Penumbra (Mueller, 2003)) and Visual Studio

has the Express configuration for new users. However, neither of these mainstream tools

currently have the ability to adapt or even be easily manually adapted to the continuum of

novice to expert users. There is related work in the HCI community on adaptive interfaces

(Findlater, 2004).

Visualizations have been the subject of much research over the past ten to twenty years.

Many visualizations, and in particular graph-based visualizations, have been proposed to

support comprehension tasks. Some examples of research tools include Seesoft (Ball, 1996),

Bloom (Reiss, 2001), Rigi (Wong, 1995), Landscape views (Penny, 1992), sv3D (Marcus,

2003), and Codecrawler (Lanza, 2001). In our work, we developed the SHriMP tool (Storey,

2003) to provide support for the Integrated Metamodel of comprehension. Our goal was to

facilitate navigation between different layers of abstractions, and to help navigation through

delocalized plans. Graph visualization is used in many advanced commercial tools such as

Klocwork, Imagix4D and Together. UML diagrams are also common place in mainstream

development tools.

Challenges with visualizing software include the large amount of items that can be dis-

played, knowing at what level of abstraction details should be shown, as well as selecting

which view to show. More details about the user’s task combined with metrics describing

the program’s characteristics (such as inheritance depth) will improve how visualizations

are currently presented to the user. A recommender system could suggest relevant views

as a starting point. Bull proposes the notion of model driven visualization (Bull, 2005). He

suggests creating a mechanism for tool designers and expert users that recommends useful

views based on characteristics of the model and data.

Collaborative support: As software teams increase in size and become more distributed,

collaborative tools to support distributed software development activities are more crucial.

In research, there are several collaborative software engineering tools being developed such

as Jazz and Augur (Hupfer, 2004, Froehlich, 2004). A review of how these and other tools

mine human activities to improve comprehension through visualization is given in (Storey,

2005). There are also some collaborative software engineering tools deployed in industry,
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such as CollabNet, but they tend to have simple tool features to support communication

and collaboration, such as version control, email and instant messaging. Current indus-

trial tools lack more advanced collaboration features such as shared editors and awareness

visualizations.

Although collaborative tools for software engineering have been a research topic for

several years, there has been a lack of adoption of many of the approaches such as shared

editors in industry and a lack of empirical work on the benefits of these tools. Another

area for research that may prove useful is the use of large screen displays to support co-

located comprehension. O’Reilly et al. (O’Reilly, 2005) propose a war room command

console to share visualizations for team coordination. There are other research ideas in

the CSCW (computer supported collaborative work) field that could be applied to program

comprehension.

Domain and pedagogical support: The need to support domain experts that lack for-

mal computer science training will necessarily result in more domain-specific languages

and tools. Non-experts will also need more cognitive scaffolding to help them learn new

tools and domain-specific languages (van Deursen, 2000) more rapidly. Tools to support

the maintenance of programs written in domain specific languages will also be required.

Pedagogical support, such as providing examples by analogy, will likely be an integral

part of future software tools. The work discussed above on recommending code examples

is also suggested at helping novices and software immigrants (i.e. programmers new to a

project). Results from the empirical work also suggest that there is a need for tools to help

programmers learn a new language. Technologies such as TXL (Cordy, 2002) can play a role in

helping a user see examples of how code constructs in one language would appear in a another

language.

Large screen and multiple displays: Modern tools should be designed to take advantage

of the now ubiquitous use of multiple monitors and large screens. Little is understood about

how these multiple monitors impact comprehension and how tool support could be improved

to match such display configurations. Larger screens could also improve pair programming

and the comprehension strategies used during agile development.

6.4. Discussion: Back to the future

It is an interesting exercise to travel back and look at Tilley and Smith’s paper from 1996

on “Coming Attractions in Program Understanding” (Tilley, 1996). Some of the predictions

they had then for technologies which would be available within five years did mature as they

predicted. They suggested that mature technologies would be leveraged, which is now the

case with mature off-the-shelf technologies such as Windows components and the Eclipse

framework. They also predicted that web interfaces and hypertext would play a bigger role.

Many modern tools now use web interfaces for navigating software resources. Tailorable

user interfaces are now common place, as are more advanced pattern matching facilities.

Some of their predictions, however, are not fully realized and indeed overlap the predictions

in this paper. These include: computer support for collaborative understanding; access to

alternative sources of data through natural language processing; data filters to allow the

programmer to focus on relevant information; conceptual and domain modeling techniques;

use of intelligent agents in a “maintainer’s handbook” and more advanced visual interfaces.

These suggestions are still under development but today seem within closer reach. Whether
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these themes will reappear in another ‘prophecy’ paper, written ten years from now, only

time will tell.

7. Conclusions

As a community, we can be proud of our achievements over the past thirty years. As

the landscape of comprehension research evolves, the future looks bright. We can antici-

pate that advances in program comprehension will increase, in part due to recent enabling

technologies, such as sophisticated frameworks to support the more rapid construction and

integration of tools, and advanced technologies such as context-aware and history-aware

search and intelligent user interfaces. In parallel to these tool advances, there are now more

researchers from both within computer science and from other disciplines that are interested

in understanding more about the cognitive and social aspects of program comprehension.

These researchers are now equipped with more appropriate research methods that can help

to reveal more understanding about program comprehension needs and how these needs may

be met through tool and process support. As the field of software engineering matures and

the possibilities for more advanced and pervasive software increase, the field of program

comprehension promises to be an exciting area for future research.
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