
SIGNING ON A POSTCARDDavid Naccache Jacques SternGemplus Card International Ecole Normale Sup�erieure34 rue Guynemer 45 rue d'UlmIssy-les-Moulineaux, F-92447, France Paris cedex 5, F-75230, Francenaccache@gemplus.com jacques.stern@ens.frAbstract. We investigate the problem of signing short messages usinga scheme that minimizes the total length of the original message and theappended signature. This line of research was motivated by several postalservices interested by stamping machines capable of producing digitalsignatures. Although several message recovery schemes exist, their secu-rity is questionable. This paper proposes variants of DSA and ECDSAallowing partial recovery: the signature is appended to a truncated mes-sage and the discarded bytes are recovered by the veri�cation algorithm.Still, the signature authenticates the whole message. Our scheme hassome form of provable security, based on the random oracle model. Us-ing further optimizations we can lower the scheme's overhead to 26 byteswith for a 2�80 security level, compared to forty bytes for DSA or ECDSAand 128 bytes 1024-bit RSA.1 IntroductionTwenty years or so after the discovery of public key cryptography and digitalsignatures, the world appears ready for their large-scale deployment. Several sig-nature schemes have been designed by the research community, either based onthe celebrated RSA algorithm or on the discrete logarithm problem modulo aprime or over an elliptic curve. Standards have been crafted. Security proofs,notably using the so-called random oracle model have been proposed. Surpris-ingly, there still remain speci�c needs that appear in relation with some tradingscenarii and which are not properly served by the current technology.In some situations, it is desirable to use very short signatures; more accu-rately, one wishes to minimize the total length of the original message and theappended signature. In some respect, this is very similar to the problem onefaces while trying to sign on a postcard without sacri�cing too much of the(already limited) space available for the text. This analogy is not fortuitous:the motivation for short signatures has arisen from the needs of various postalservices, which are currently investigating the possibility of integrating digitalsignatures into stamping machines. The space limitation here comes from thecombined abilities of low-cost barcode printing machines and optical readers.Every byte one can save is of importance and the overhead of 128 bytes, implied

by standard RSA signatures is not always acceptable. Even the forty byte over-head associated with DSA is hard to cope with using traditional (1-D) barcodetechnology.1.1 1-D barcodesBarcodes are alternating patterns of light and dark that encode speci�c infor-mation chunks. When scanned, barcodes can be converted back into the originalstring of text. Most barcodes consist of patterns of rectangles although some ofthe newer standards use other shapes. Barcodes can be scanned on the
y withlittle or no error under less than ideal conditions (e.g. folded envelops or dam-aged letters). The scanners that read barcodes emit a laser beam of a speci�cfrequency that works by distinguishing the edges within a symbol allowing themto be scanned omnidirectionally. Each symbology (type of barcode) has uniquestart and stop bars (or some other unique pattern) that allows the scanner todiscriminate between symbologies without human intervention. Most systemssacri�ce one or more CRC digits to insure accuracy when scanned. Typical bar-codes (such as Postnet, UPC, EAN, JAN, Bookland, ISSN or Code 39) have acapacity of a few bytes, normally up to thirty characters. A typical 1-D barcodeis shown in �gure 1.
Figure 1 : 1-D barcode. Figure 2 : 2-D barcode.Amongst the extensive bibliography about the 1-D barcodes available on-line,we particularly recommend [14]'s FAQ.1.2 2-D barcodesMore sophisticated standards exist. These are based on two dimensional sym-bologies. Ordinary barcode is vertically redundant, meaning that the same in-formation is repeated vertically. The heights of the bars can thus be truncatedwithout any information loss. However, the vertical redundancy allows a symbolwith printing defects, such as spots or voids to still be read. The higher the barsare, bigger is the probability that at least one path (horizontal section alongthe barcode) is still readable. A two dimensional (2-D) code stores informationalong the height as well as the length of the symbol (in fact, all human alpha-bets are 2-D codes). Since both dimensions contain information, at least someof the vertical redundancy is lost and error-correction techniques must be usedto prevent misreads and produce acceptable read rates.2-D code systems (for instance the PDF417 standard shown in �gure 2) havebecome more feasible with the increased use of moving beam laser scanners and

CCD (charge coupled device) scanners. The 2-D symbol can be read with handheld moving beam scanners by sweeping the horizontal beam down the symbol.Initially, 2-D symbologies were �rst applied to unit-dose packages in thehealthcare industry. These packages were small and had little room to placea barcode. The electronics industry also showed an early interest in very highdensity barcodes, and 2-D symbologies since free space on electronics assemblieswas scarce.There are well over twenty di�erent 2-D symbologies available today. Somelook like multiple lines of barcodes stacked on top of each other and othersresemble a honeycomb like-matrix. The reader can get a better idea of thisdiversity by consulting [13]. The capacity of 2-D codes is typically between a fewhundreds to a couple of thousands of bytes.1.3 Internet postageMore recently, the ability to encode a portable database has made 2-D sym-bologies attractive in postal applications: one example is storing name, addressand demographic information on direct mail business reply cards. A good directmail response is often less than two percent. If the return card is only coded witha license plate, the few replies must be checked against a very large database,perhaps millions of names. This can be quite expensive in computer time. If allthe important information is printed in 2-D code at the time the mailing labelis printed, there is very little additional cost, and a potential for great savingswhen the cards are returned. Similar savings can occur in �eld service applica-tions where servicing data is stored in a 2-D symbol on equipment. The �eldengineer uses a portable reader to get the information rather than dialing up thehome o�ce's computer.

Figure 3 : Internet Postage.In 1998, The United States Postal Service (USPS) introduced a new form ofpostage : Internet postage. Internet Postage is a combination of human-readableinformation and a 2-D barcode. To help the post o�ce protect against fraud, the2-D barcode contains information about the mail piece including the destination

zip code, amount of postage applied, date and time the envelope was posted anda digital signature so that the post o�ce can validate the authenticity of thepostage.Several companies were certi�ed to distribute Internet postage (e.g. PitneyBowes, Stamps.com etc.). In practice, such operators run postage servers thatcommunicate with the USPS. When customers log on such a server, they canprint Internet postage directly onto envelopes and labels using an ordinary laseror inkjet printer. A typical �nal result is shown in �gure 3.1.4 Short signaturesAlthough message recovery techniques seem to solve the signature size problem,they still su�er from several drawbacks. Firstly, they usually deal with messagesof �xed length and it is unclear how to extend them when the message exceedssome given size. For example, the Nyberg-Rueppel scheme described in [6] ap-plied to \redundant" messages of twenty bytes. This presumably means ten bytesfor the message and ten for the redundancy but what if the message happens tobe fourteen bytes long? Secondly, their security is not well understood. This iseven an understatement: recently, a
aw has been found in the iso/iec 9796-1/2standards (see [5, 4]). While completing this paper, we have been informed thatAbe and Okamoto had independently investigated the matter and proposed amessage recovery scheme proven secure in the random oracle model (see [1]).Still, they do not address the format question.In this paper, we propose variants of DSA and ECDSA allowing partial re-covery. The signature is appended to a truncated message and the discardedbytes are recovered by the veri�cation algorithm. Still, the signature (whichsomewhat behaves as an error-correcting code) authenticates the whole message.Furthermore, we o�er some form of proof for our scheme, based on the randomoracle model. More accurately, the proof applies to a version of the scheme thatslightly departs from the DSA/ECDSA design. Should closer compatibility withthe standard be desired, one has to go over to a weaker security model (namelythe so-called generic model). Still, this model gives strong evidence that thescheme's design is indeed sound.Our scheme allows to recover ten bytes of the message with a security level2�80. This reduces the overhead of DSA/ECDSA signatures to thirty bytes. Fur-ther optimizations lower this �gure to 26 bytes while keeping the same securitylevel. They use several tricks such as transmitting additional bytes of the mes-sage as a subliminal part of the signature or slightly truncating the signature.This is traded-o� against heavy (but still perfectly acceptable) preprocessingduring signature generation and a slight increase of the veri�cation time.This paper focuses on signatures, not on certi�cates. We are perfectly awarethat many trading scenarii will require appending a certi�cate to the signatureand that the resulting overhead should be considered. For this reason, the sizeof the public key matters and the choice of elliptic curve signatures has been

advocated in this context. Accordingly, we have chosen to describe our resultsin the elliptic curve setting. However, it is only the shorter length of the publickey that makes EC signatures more attractive in terms of size. If the public keyis known to the veri�er, then, ordinary discrete logarithm signatures such asDSA are strictly equivalent (as far as size is concerned) to their EC analogs. Inparticular all our techniques go through, mutatis mutandis, when ordinary DLsignatures are considered and the same optimizations in size that we suggest forEC signatures will equally apply to DL ones.We close this introduction by brie
y describing the organization of the paper:we �rst review the random oracle model and explain what kind of security it mayprovide; then, we introduce our partial recovery scheme and assess its soundness.Finally, we describe two possible optimizations and evaluate their cost in termsof memory requirement and computing time.2 The random oracle model2.1 The basic paradigmThe random oracle paradigm was introduced by Bellare and Rogaway in [2] asa practical tool to check the validity of cryptographic designs. It has been usedsuccessfully by Bellare and Rogaway ([3]) in connection with RSA signatures andby Pointcheval and Stern ([11]) to prove the security of El Gamal signatures. Themodel replaces hash functions by truly random objects and provides probabilisticsecurity proofs for the resulting schemes, showing that attacks against these canbe turned into e�cient solutions of well-known mathematical problems such asfactoring, the discrete logarithm problem (DL) or the ECDL problem.Although the random oracle model is both e�cient and useful, it has receiveda lot of criticism. It is absolutely true that proofs in the random oracle model arenot proofs: they are simply a design validation methodology capable of spottingdefective or erroneous designs when they fail. Besides, we will freely use therandom oracle model in the context of DSA-like signatures. As is known, DSAuses for the generation of each signature a randomly chosen one-time key-pairfu; vg, with v = gu mod p (with standard notations) and derives a part of thesignature c by considering v as an integer and reducing it modulo r. Similarly,ECDSA generates a random one-time key-pair fu; V g (where V is a point onthe elliptic curve de�ned by V = u:G), encodes V as an integer i and computesc = i mod r, where r is the order of G. As usual, the curve and the base point Gare elements of the key. To provide proofs or spot design errors, we will replacethe function v �! c, and similarly the function V �! c by a random functionR with range [0; r�1[. Practically, this can be achieved by hashing the encodingof v or V using a standard hash function such as SHA-1 [9]. Still, we do notnecessarily suggest to hash the encoding. Of course this can be criticized inan even stronger way than the original paradigm underlying the random oraclemodel. For example, in DSA, we know that if v1, v2 are given, and if c1, c2are their corresponding outputs, then v1 + v2 mod p is exactly (v1 mod p) +

(v2 mod p) or (v1 mod p) + (v2 mod p) � p and therefore produces either theoutput c1+c2 or c1+c2�1 since r divides p�1. Thus, the function v �! c is byno means random. Still, we note that it seems very di�cult to control the valueof v since it is produced by exponentiation and, accordingly, it is very di�cultto distinguish c from an output drawn by a random function R. For this reason,we believe that random oracle proofs are still signi�cant. In the next paragraphwe give further arguments in support of the random oracle model by relatingour approach to the so-called generic algorithms used by Shoup ([12]).2.2 A note on generic algorithmsA generic algorithm is an algorithm that uses a group structure but can onlyhandle the group elements by either calling arguments passed to the algorithmor by applying the group operations to previously accessed elements. The con-cept has been introduced by Nechaev ([8]) and has been successfully applied byShoup ([12]) to the discrete logarithm problem and the Di�e-Hellman problem.Basically, it rules out techniques that would take advantage of the actual repre-sentation of the group elements. Typically, methods such as the Index-calculus,which try to factor elements of the group into small prime factors do not fallunder the scope of generic algorithms. Similarly, any method that would processin any way the coordinates of an elliptic curve point would be beyond reach ofgeneric algorithms. The interesting point is that no such method is known.The concept of a generic algorithm is not easy to explain and we give our ownde�nition, which is inspired by [12] while not being exactly similar. Any groupelement V receives a name V̂ . The mapping that assigns a name to an elementis random and the algorithm can only access group elements by invoking theirnames. To compute V + V 0 (or V � V 0), the algorithm submits V̂ and V̂ 0 to arandom oracle that returns a name for V +V 0 (or V �V 0). In such a model, theonly way to compute an analog of the various functions R(V) introduced in theprevious section, is to use the random name V̂ . In other words, by consideringthat R(V) is a random function, we are simply working in the generic model usingR(V) in place of V̂ . In essence, the mechanism is similar to the manipulation ofdata (V ,V 0) using pointers (V̂ ,V̂ 0) and functions (+,�).3 The partial recovery scheme3.1 Nyberg-Rueppel signaturesWe say that a signature scheme allows message recovery if the message m is adeterministic function of the signature. Such signatures make it possible to avoidsending the message together with the signature. However, one should be verycareful since such schemes are inherently subject to forgeries. In other words,some redundancy should be added to the message.A DSA-like signature with message recovery has been considered by Nybergand Rueppel ([10], hereafter NR) and an ECDSA variant of this scheme, includedin [6], is described in �gure 4.

Signature 1. generate a random key-pair fu; V g2. form f from m by adding the proper redundancy3. encode V as an integer i4. c i+ f mod r5. if c = 0 go to step 16. d u� sc mod r7. output the pair fc; dg as the signatureVeri�cation 1. input a signature fc; dg2. if c 62 [1; r � 1] or d 62 [1; r � 1], output invalid and stop3. P d:G+ c:W4. if P = O, output invalid and stop5. encode P as an integer i6. f c� i mod r7. if the redundancy of f is incorrect output invalid and stop8. output valid and the underlying message mFigure 4 : Nyberg-Rueppel signatures (outline).In the above, f is a message with appendix. It simply means that it has anadequate redundancy. The encoding mentioned in step 2 of �gure 1 is de�nedin the standard. Its particular format is not important to us. Applying a hashfunction to this encoding consists of replacing step 2 by: \2. encode-and-hash Vas an integer i".Modi�ed that way, the scheme can be proven secure in the random oraclemodel, with arguments very close to those used in the sequel. We will not un-dertake this task as we feel that NR signatures are not
exible enough for ourpurposes. Assuming that f consists of ten message bytes and ten redundancybytes, NR is perfectly suitable for messages shorter than ten bytes but leavesunanswered the question of dealing with messages of, say, �fteen bytes.3.2 An ECDSA variant with partial recoveryThere are numerous ways to modify the NR design in order to achieve partialmessage recovery. In this section, we propose a possible choice that is as closeas possible to the original ECDSA. A similar construction, that we omit, appliesto the regular DSA.Our proposal allows to sign a messagem = m1jjm2, where jj denotes concate-nation and to only transmit m2 together with the signature. The partial messagerecovery concept is, of course, not new; the RSA-oriented iso 9796-2 standard [7]speci�es explicitly two recovery modes (total and partial) but to the best of ourknowledge, this notion was never extended to the DLP context. We propose to

sign m, using the algorithm described in �gure 5 where H denotes any standardhash function such as SHA-1.Signature 1. generate a random key pair fu; V g2. form f1 from m1 by adding the proper redundancy3. encode-and-hash V as an integer i4. c i+ f1 mod r5. if c = 0 go to step 16. f2 H(m2), d u�1(f2 + sc) mod r7. if d = 0 go to step 18. output the pair fc; dg as the signatureVeri�cation 1. input a signature fc; dg and a partial message m22. if c 62 [1; r � 1] or d 62 [1; r � 1], output invalid and stop3. f2 H(m2), h d�1 mod r, h1 f2h mod r4. h2 ch mod r, P h1:G+ h2:W5. if P = O output invalid and stop6. encode-and-hash P as an integer i7. f1 c� i mod r8. if the redundancy of f1 is incorrect output invalid and stop9. output valid and the underlying message m1Figure 5 : Partial recovery signatures (outline).Note that we do not necessarily advocate our encode-and-hash paradigm.Replacing encode-and-hash by encode in the above yields a scheme that is moreclosely modeled after ECDSA. Still, even if it remains signi�cant, the securityproof has a weaker status as explained in section 2.3.3 Security proofWe use the random oracle model to provide evidence in favor of the security ofthe new scheme. We will thus assume that the function R(V) which encodes thepoint V as an integer i and computes i mod r is random. Finally, we will assumethat the probability � that a random element f of [0; r � 1] has the expectedredundancy is very small. Basically, we want to show that an adversary who canforge a message/signature pair with probability �+� signi�cantly above � can beused to solve the ECDL problem with non-negligible probability. This is alongthe lines of [11]. However, we will not be careful about the security estimates forwe only wish to support the correctness of our design.Referring to the scheme described in �gure 5, we let A be an attacker ableto forge a pair consisting of a message m = m1jjm2 and a signature fc; dg with

a success probability � � + �. We consider the queries asked to the oracles asordered lists and let j and k be the respective indices corresponding to the timewhen P and m2 are respectively queried from the R-oracle and the H-oracle,during the computation of A. If j or k does not exist, we set j =1 or k = 1.Similarly, we let � be the truth-value of the statement \P is queried before m2",where the truth value is one if neither question is asked.By standard arguments from [11], we see that there is a set of triples A suchthat:i) A has probability � �=2ii) For any fj; k; �g the conditional probability of success of A when P isqueried at j, H queried at k and the statement \P is queried before m2" hasvalue � is � �+ �=2.We �rst claim that no triple fj; k; �g in A can have an in�nite value. Assumethat j = 1. Checking the signature precisely corresponds to computing i =R(P) mod r and verifying that c� i mod r has the proper redundancy. Now, ifR is controlled by a random oracle, and if P has not been queried during thecomputation performed by A, then, R(P) can be any value and the test willfail with probability 1� �. From this, we may infer that the conditional successprobability corresponding to the triple cannot be � � + �=2. We turn to thecase k = 1. If the value of H at m2 has not been queried by A during itscomputation, then, it is only computed at the veri�cation step and, again, withprobability � 1 � �, the resulting value of P di�ers from values queried to theR-oracle.We now apply the forking lemma from [11] by playing the attacker a �rst timeand generating a replay attack as explained below. Note that, with probability� �=2, the triple fj; k; �g corresponding to the �rst execution belongs to A, inwhich case neither j nor k is in�nite.We now distinguish two cases depending on the value of � :� If � = 0, then m2 is queried before P . We apply the forking technique atP and obtain, by a replay attack, another signature pair m0 = m01jjm02, fc0; d0g.From the facts that both computations are similar until P is queried we inferthat m02 = m2 and thatP = h1:G+ h2:W = h01:G+ h02:WEquivalently (f2d�1):G+ (cd�1):W = (f 02d0�1):G+ (c0d0�1):WFrom the �rst equality, we obtain f2 = f 02 and from the secondf2(d0 � d):G = (c0d� cd0):WThis discloses the secret logarithm of W in base G unless cd0 � c0d vanishes,in which case f2(d � d0) also vanishes. Observe that f2 which has been queried

from H is non zero with overwhelming probability. Thus, the secret key hasbeen found, except if d = d0. Since d is non zero, this implies c = c0, which readsi+ f1 = i0 + f 01, where i and i0 are the respective answers of the R-oracle to theP question. Due to the redundancy of f 0, this can only happen with probability� �. Since the conditional probability of success at fj; k; �g is � � + �=2, thereplay discloses the discrete logarithm of the public key with probability � �=2(once we know that fj; k; �g lies in A).� If � = 1 we fork at the point where m2 is queried. We obtain a secondmessage-signature pair m0 = m01jjm02, fc0; d0g and, this time, we note that i = i0,since the answer of the R-oracle to the P query is similar and, again, thatP = h1:G+ h2:W = h01:G+ h02:WWe get (f2d0 � f 02d):G = (c0d� cd0):WFrom this, we can compute the discrete logarithm of W in base G unless c0d�cd0and f2d0 � f 02d both vanish modulo r. To complete the security proof as above,we only have to see that this exceptional case can only happen with probability� �. Indeed, if it actually happens, we havec0d = cd0 mod rf2d0 = f 02d mod rfrom which we get f2cd0 = f2c0d = f 02cd mod rand, since d is not zero f2c0 = f 02c mod rwhich gives f2(f 01 + i) = f 02(f1 + i) mod rand, �nally, taking into account the fact that f2, queried from R is non zero withoverwhelming probabilityf 01 = f 02f�12 (f1 + i)� i mod rSince f 02 is randomly chosen by the H-oracle, f 01 has the requested redundancywith probability � �. This completes the proof.3.4 Adaptive attacksIn the previous proof, we have considered the case of an attacker forging amessage-signature pair from scratch. In more elaborate scenarii an attacker mayadaptively request signatures corresponding to messages of his choice. In otherwords, the attacker, modeled as a machine, interacts with the legitimate signerby submitting messages that are computed according to its program.

We show how to modify the security proof that was just given to cover theadaptive case. We have to explain how to turn the attacker into a machine thatdiscloses the logarithm of a given element W in base G. Basically, we wish touse the attacker in the same way and apply the forking technique. The maindi�culty comes from the fact that we have to mimic the signer's action withoutknowing the secret key.To simulate the signer when he has to output the signature of a messagem = m1jjm2, we pick the signature fc; dg at random, query the H-oracle at m2and compute the point V = (f2d�1):G+ (cd�1):Wwith f2 = H(m2). Next, we \force" the R-oracle to adopt c at its value at V .Since c has been chosen randomly, this does not produce any noticeable di�erenceunless the same V is forced to two di�erent values. It can be checked that thishappens with negligible probability.3.5 Practical consequencesThus, we have shown, in the random oracle model, that an attacker can be turnedinto an algorithm that solves the ECDL problem. This establishes the soundnessof the new design, provided that the probability � attached to the redundancyis small enough. From a practical standpoint, the only attack suggested by theabove analysis consists in picking the signature fc; dg at random, generating amessage m2, computing the hash value f2 = H(m2) and applying the messagerecovery algorithm, hoping that the resulting value of f1, computed at step 7has the correct redundancy. This strategy succeeds with a probability � �. Notethat we have not used any assumption on the format of the redundancy, whichcan simply consist of a requested number of �xed leading or trailing bytes. Sincethe security level required for signatures is about 280, we recommend to take� � 2�80. When signing messages with ` bytes, ` � 10, the new design allowsto only append to the signature fc; dg a part of the message m2 which is `� 10bytes long. The rest of the messagem1 is recovered by the veri�cation algorithm.4 Bandwidth optimizationsWe now investigate possible optimizations of our scheme that allow to save afew extra bytes. We use two di�erent tricks:1. transmitting additional message bytes as a subliminal part of the signature,by suitably choosing the random part during signature generation.2. truncating the signature, leaving completion to be performed during theveri�cation phase.

Of course, both suggestions increase the time complexity of signature gener-ation (in the �rst case) or veri�cation (in the second case). For this reason, wecannot expect to gain too many bytes per trick. Still, we show that it is quitereasonable to squeeze three bytes out of the �rst trick by using some form ofpreprocessing and one extra byte from the second.There are many ways in which the above ideas can be applied; bytes of themessage can be embedded into c, d or i. Similarly, either c or d can be truncated.We will only cover the case where i is used for subliminal information and d istruncated. The rest is left to the reader.4.1 Embedding bytes into iAssume that one wishes to embed ` bytes of m in i, where ` is a small integer.For example, assume that we try to stu� these bytes into the trailing part ofi. One would then repeat the �rst steps of the signature generation algorithmuntil a correct value of i appears, i.e. an i whose trailing bytes match the given` bytes of the message. Clearly, this is possible only if ` is small and yields thescheme presented in �gure 6 that allows to sign a message m = m1jjm2, wherem1 has 10 + ` bytes and to only transmit m2. The security proof of section 3.3goes through, word for word, for the modi�ed scheme.4.2 PreprocessingPreprocessing appears very helpful in relation with the optimization describedin the previous section. Basically, one should store pairs fu; ig and access thesepairs by the value of i mod 28`. Signature generation might fail if the table's listof elements is empty at some ` byte location. Thus, it is important to keep asu�ciently large number � of elements for each ` byte values and to refresh thetable regularly.The size of the table is ' 40�28` bytes; ` = 3 corresponds to 640� Mbyteswhich is quite acceptable; ` = 4 goes up to 160� Gbytes, which appears toomuch. Note that ` is not necessarily an integer: bytes can be cut into nibblesand ` = 3:5 could also be considered (10� Gbytes).4.3 Truncating dWe now turn to the second optimization suggested above. It consists in truncat-ing k signature bytes. For example, one could omit the k trailing (or leading)bytes of c. This basically means issuing 28k candidate signatures. The correctsignature is spotted at signature veri�cation: only the correct choice is acceptedby the veri�cation algorithm.It is easily seen that the security of the truncated signature is closely relatedto the security of the original scheme. An attacker able to forge a truncatedsignature will complete his forgery to an actual signature by using the veri�cationalgorithm. Thus, the only di�erence is the veri�er's workload.

Signature 1. generate a random key pair fu; V g2. discard the ` trailing bits of m13. form f1 from the result m01 by adding the proper redundancy4. encode-and-hash V as an integer i5. c i+ f1 mod r6. if c = 0 or i 6= m1 mod 28` go to step 17. f2 H(m2), d u�1(f2 + sc) mod r8. if d = 0 go to step 19. output the pair fc; dg as the signatureVeri�cation 1. input a signature fc; dg and a partial message m22. if c 62 [1; r � 1] or d 62 [1; r � 1], output invalid and stop3. f2 H(m2), h d�1 mod r, h1 f2h mod r4. h2 ch mod r , P h1:G+ h2:W5. if P = O, output invalid and stop6. encode-and-hash P as an integer i7. f1 c� i mod r8. if the redundancy of f1 is incorrect output invalid and stop9. append to m01 the ` trailing bytes of i10. output valid and the underlying message m1Figure 6 : Partial recovery signatures (outline).At �rst glance, it seems that, in order to check truncated signatures, theveri�er will have to verify 28k signatures, which appears prohibitive even fork = 1. However, optimizations are possible since the various elliptic curve pointsthat the veri�er should compute areP = h1:G+ h2:Wwhere only h2 = cd�1 mod r depends on c. Let c0 be the completion of thetruncated value of c by zeros. Writing P asPj = h1:G+ c0d�1:W + jd�1:Wwe see that the veri�cation algorithm can be organized as follows:1. Z d�1:W2. P P0 + c0:Z3. while a correct signature has not been found P P + ZConsidering that c, d are 160 bit integers and that a standard double-and-add algorithm is used, one can estimate the number of elliptic curve operations

needed to compute P0 as close to 240. Z and P0 can be simultaneously computedin about 320 additions by sharing the \double" part. Finally, step 3 is expectedto require 128 extra additions. For k = 1, the overhead does not exceed theveri�cation time needed of a regular signature.There is a trick which slightly improves performances: instead of producingthe signature as fc; dg, one can produce fh2; dg, with h2 = cd�1 mod h. Trun-cating h2 yields slightly better computational estimates.5 ConclusionWe have shown how to minimize the overall length of an elliptic curve signaturei.e. the sum of the lengths of the signature itself and of the message (or part of themessage) that has to be sent together with the signature. Up to thirteen messagebytes can be recovered in a secure way from a signature and an additional one-byte saving on the signature itself can be achieved.The proposed schemes have been validated by a proof in the random oraclemodel and can therefore be considered sound. All our schemes have ordinarydiscrete logarithm analogs.6 AcknowledgmentsThe authors are grateful to Jean-S�ebastien Coron for his help and comments.We also thank Holly Fisher for sending us �gure 3. Stamps.com's InternetPostage system (http://www.stamps.com) is covered by Stamps.com Inc. copy-right (1999). We underline that the image is only given for illustrative purposesand that this speci�c system does not implement the signature scheme proposedin this paper.

References1. M. Abe and T. Okamoto, A signature scheme with message recovery as secureas discrete logarrithms, Proceedings of Asiacrypt'99, LNCS, Springer-Verlag, toappear, 1999.2. M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designinge�cient protocols, Proceedings of the 1-st ACM conference on communications andcomputer security, pp. 62{73, 1993.3. M. Bellare and P. Rogaway, The exact security of digital signatures - How to signwith RSA and Rabin, Proceedings of Eurocrypt'96, LNCS 950, Springer-Verlag,pp. 399{416, 1996.4. D. Coppersmith, S. Halevi and C. Jutla, iso 9796-1 and the new forgery strategy.,manuscript, July 28, 1999.5. J.-S. Coron, D. Naccache and J.P. Stern, On the security of RSA padding, Pro-ceedings of Crypto'99, LNCS 1666, Springer-Verlag, pp. 1{18, 1999.6. IEEE P1363 Draft, Standard speci�cations for public key cryptography, (availablefrom http://grouper.ieee.org/groups/1363/index.html), 1998.7. ISO/IEC 9796-2, Information technology - Security techniques - Digital signaturescheme giving message recovery, Part 2 : Mechanisms using a hash-function, 1997.8. V.I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm.Mathematical Notes, 55(2), pp. 165{172, 1994. Translated from MatematicheskieZametki 55(2), pp. 91{101, 1994.9. National Institute of Standards and Technology, Secure hash standard, FIPS pub-lication 180-1, April 1994.10. K. Nyberg and R. Rueppel, A new signature scheme based on the DSA, givingmessage recovery, Proceedings of the 1-st ACM conference on communications andcomputer security, pp. 58{61, 1993.11. D. Pointcheval and J. Stern, Security proofs for signature schemes. Proceedings ofEurocrypt'96, LNCS 950, Springer-Verlag, pp. 387{398, 1996.12. V. Shoup, Lower bounds for discrete logarithms and related problems. Proceedingsof Eurocrypt'97, LNCS 1233, Springer-Verlag, pp. 256{266, 1997.13. http://www.adams1.com/pub/russadam/stack.html14. http://www.azalea.com
This article was processed using the LATEX macro package with LLNCS style

