
Performance Evaluation 13 (1991) 181-204 
North-Holland 

181 

Optimal decentralized flow control 
of Markovian queueing networks 
with multiple controllers 
Man-Tung T. Hsiao 
School of Electrical Engineering, Purdue University West Lafayette, IN 47907, USA 

Aurel A. Lazar 
Department of Electrical Engineering and Center for Telecommunications Research, Columbia Unwersity New York, NY 10027, 
USA 

Received September 1989 
Revised February 1991 

Abstract 

Hsiao, M.-T.T. and A.A. Lazar, Optimal decentralized flow control of Markovian queueing networks with multiple 
controllers, Performance Evaluation 13 (1991) 181-204. 

A Markovian queueing network model is used to derive decentralized flow control mechanisms in computer communication 
networks with multiple controllers. Under the network optimization criterion, finding the optimal decentralized flow control 
that maximizes the average network throughput under an average network delay bound becomes a team decision problem. It is 
shown that the network optimization problem depends on the parameters of the network only through the conditional 
estimates of the total arrival and departure rates. Using linear programming, the network optimal control is demonstrated to 
be a set of window-type mechanisms. Under the user optimization criterion, each individual user maximizes its average 
throughput subject to a constraint on its average time delay. Finding the optimal decentralized flow control under the 
individual user's performance results in a multiple objective optimization problem and leads to a game theoretic formulation. 
Structural results which simplify the problem are presented. It is shown that the user optimization problem depends on the 
parameters of the network and the action of the other users only through the conditional estimate of the user service rate. The 
Nash equilibrium solution under the game theoretic formulation is demonstrated to be a set of window-type mechanisms. 
Finally, the class of decentralized flow control problems with Nash equilibrium solutions is characterized. 

Keywords: team decision, game theory, Nash equilibrium, BCMP networks, optimal flow control. 

1. Introduction 

Consider an arbitrary number of users sharing the communication facilities of a packet switching 
network. Each user adopts a decentralized flow control strategy by individually monitoring the available 
information with an acknowledgment protocol. The users are not aware of the presence of the others 
except through the time delay incurred during a session. Optimal strategies for all users are to be derived 
simultaneously. The above problem of decentralized flow control can be considered as a team decision 
problem [12] or a game theoretic problem [13]. These two classes of problems arise due to the fact that 
performance measures can be based on statistics for the entire network, or statistics for each individual 
user. If the network performance point of view is taken, the flow control problem consists of many 
decision makers (controllers) with a common objective (a team decision problem). From the alternative 
point of view, i.e., that of individual performance, the problem becomes a multiple objective optimization 
problem with noncooperative decision makers (a game theoretic formulation). 
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In the control literature, the ideas of cooperative decision making appeared in team decision problems 
(e.g., [8,9]) while noncooperative game theory appeared in problems related to sequential strategies for 
dynamic systems with multiple decision makers and multiple objective functions (e.g., [5,18]). In team 
decision theory, the team players (decision makers) have access to decentralized information, and decide 
on individual controls based on a global objective. Hence, these problems can be treated in general as 
single objective optimization problems. For the game theoretic formulation (multiple objective optimiza- 
tion problems) the concept of a Stackelberg strategy (see e.g., [1]) is suitable for situations in which 
sequential actions are to be taken by the decision makers, i.e., there is a leader and a follower. These 
models are exemplified in pursuit-evasion type games. The concept of a Nash equilibrium strategy [28] is, 
on the other hand suitable for models where there is no natural distinction between the "players" to 
classify one as leader and others as followers. 

A large body of related work has considered models of bargaining, competitive market and various 
other economic models and appeared in the economics literature (e.g., [6,7,26,27,32,34]). Here concepts of 
noncooperative and cooperative games form the basis of multiple decision making models [28-30]. 

The application of game theoretic models to resource sharing in computer networks has been scarce. 
Kurose [19] applied the concepts of Pareto optimality to the multiple access environment. Courcoubetis 
[3,4] treated the case of two processes sharing a resource in the Pareto optimal sense. A Pareto optimal 
strategy is efficient since no alternate distribution of resources exists which improves the performance of 
one set of users without degrading the performance of some other set of users. 

In this article the optimal decentralized flow control of the Markovian queueing network model with 
multiple controllers described in Section 2 is investigated. The optimality criteria adopted are defined as 
follows: (i) the global (network) objective is to maximize the average network throughput subject to a 
bound on the average network time delay, i.e., the average is taken over all users of the network, and (ii) 
individual (user) objectives are to maximize each user's average throughput subject to the average user time 
delay constraint. In the second case there are more than one ,3bjective and constraint to be considered. 

The basic contributions of this paper are as follows. The generalized Norton's equivalent results of [14] 
are employed to obtain a simple equivalent queueing model of the original Markovian system (Section 3). 
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Structural results are first obtained for the network optimization criterion. A representation theorem is 
given which shows that the network optimization problem depends on the parameters of the network only 
through the conditional estimates of the total arrival rate and the total departure rates (Section 4.1). Using 
linear programming, the network optimal flow control is shown to be a window mechanism (Section 4.2). 
We then consider the user optimization problems under a game theoretic formulation (with constraints). 
Structural results are obtained for the user optimization criterion using the results of [14]. For the user 
optimization problem, we prove a separation theorem between flow control and estimation of the user 
service rate (Section 5.1). The Nash equilibrium solution of this formulation is demonstrated to be a 
collection of window mechanisms. The class of decentralized flow control problems for which Nash 
equilibrium solutions exist is characterized (Section 5.2). These results are summarized in Section 6. 

2. Markovian queueing network models for decentralized flow control 

In order to describe the behavior of large systems of various components or subcomponents, queueing 
network models are used. The stochastic nature of the input and output to and from a component is in 
general very complex. Only a very limited class of queneing network models are amenable to analytical 
solutions. Markovian queueing network models with the so-called "product form" solutions [2] are among 
those that can be analyzed exactly. 

In computer communication networks, the arrivals and departures of packets to and from communica- 
tion links and nodal processors constitute a stochastic input/output system. Naturally, queueing network 
models are employed to study the behavior of such systems. Indeed, such models have been used 
extensively since the early years when computer networks began to attract attention [17,31]. Through these 
extensive studies, it has been generally accepted that "product form" networks provide a reasonable 
approximation to the actual behavior of packet switched communication networks. In this article, we 
present a model for decentralized flow control in computer communication networks based on these 
Markovian "product form" queueing network models. 

Since each user has to choose a flow control strategy, and the optimal choice for decentralized flow 
control of a user depends on the strategies of other users, we describe a model where all the users are under 
flow control and decentralized optimal flow control strategies can be obtained for all users simultaneously. 
This model also allows us to model the behavior of each individual user attempting to optimize on his/her 
performance objectives. 

2.1. Network description 

Consider a datagram network or a virtual-circuit packet switching network. By making the assumptions 
listed below, we model this network as a multi-class queueing network. 
- The switching nodes have negligible nodal processing delays and there is no nodal blocking (i.e., there 

are ample buffers available). 
- The nodes are connected by M uni-directional links. The routing of a packet, upon completion of 

service at a station, is determined by a fixed probability distribution. It can be routed to another node 
within the network or it can leave the network entirely with certain probabilities. 

- Packets are acknowledged individually by an end-to-end protocol. Acknowledgments may be piggy- 
backed or stand-alone. It is assumed that a negligible delay is incurred in returning an acknowledgment, 
partly because it is much shorter than data messages, and partly because it may have higher priority. 
(This assumption, however, can easily be relaxed and incorporated into our model.) 

- There are K classes of packets. Each class belongs to a particular source-destination pair, for which 
optimal flow control mechanisms are to be found. It is assumed that there is a maximum of Nk packets 
of class k, k = 1, . . . ,  K, where the Nk's are arbitrarily large numbers. 

- Each source feeds into a controller which determines the rate of allowing packets into the network based 
on the number of unacknowledged packets of the corresponding source-destination pair. 
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2.2. Queueing model 

The model for this network consists of M FCFS stations with exponentially distributed service time 
and class independent service rates/~', 1 ~< i ~< M. K classes of packets access the network. Packets of class 
k, k = 1 . . . .  , K, are allowed into the network through controller k, which is modeled by a station with 
exponentially distributed service time, at rate Xk,, where Jk is the number of outstanding packets of class k 
in the network. The routing is probabilistic. Class k packets enter the network through station i with 
probability r k~. These packets move from station i to station j with probability r kU and leave the 
network from station i with probability r k~'= 1 -T .~=l r  ku. Packets of class k, upon leaving the network, 
are fed back to controller k with probability 1. There are a total of N k packets of class k in the k th closed 
subchain. Since there is a fixed number of each class of packets in the network, the feedback queues 
provide the decentralized information available to the controllers, i.e., the number of outstanding packets 
of each user. The queueing model of this network is shown in Fig. 1. 

Let xi = (xn, x~2,..., x~,,) be the state of station i, where x U is the class of the packet at position j and 
n~ is the total number of packets at station i. Since the total number of each class of packets is fixed, and 
only class k packets enter controller queue k, the state of this system can be described by x = 
(xl,  x2 . . . . .  XM). The steady-state probability for the network is given by [2]: 

p(x) =p(o) ... nx . 7 " 7  I = IK=O i= 1 

rl Kt  

(1) 

where nk~ is the number of class k packets at station i, and )Ik __A T~= ~nkj, k = 1 . . . .  , K, is the number of 
packets in the forward network. For each k, k = 1 . . . .  , K, the visit ratios 0 k j, satisfy the linear equations 

M 
Ok J= ~ OkirkU + rk'J , ( 2 )  

i=1 

for all j,  1 ~<j ~< M. Note that the computation of p(O), the normalization constant, is not necessary for 
the solution of our optimization problem. 

Network 

(~II N~ pockets~ 
a? 

11 

( II v~ r 
N k packets 

Controllers 

Fig. 1. Queueing model (many controllers). 
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Let ni--(n~i,  . . . .  nKi) be the aggregate state description of station i. By summing over appropriate 
states, the steady-state probability of state n = (n 1, . . . .  riM) is ~Jven by: 

p(,,) =p(0) 
r h - 1  71K-1 

n 
= I x = O  i=,  nl,! !nK,! ~ ~ , ]  -" ~ . (3) 

From these probabilities, we can compute for the network model described above any first order statistics 
such as the average throughput, and the average time delay. In the next section, the optimization problem 
will be formalized. 

2.3. Op t imi za t ion  criteria 

Since the network consists of more than one class of packets, two optimization criteria are investigated. 
The objective is to maximize the average throughput subject to a constraint on the average time delay. For 
the multiple controller model, we are interested in the n e t w o r k  performance as well as the performance of 
each user under flow control. The network performance defines the network optimization as a team 
decision problem. The users' performance define the user optimization problem and leads to a game 
theoretic formulation. 

For each source destination pair, there is a maximum load into the system. This naturally gives rise to 
the definition of an admissible control. The following is a precise 

Definition 1. The class of controls }k = (A~k), 0 6 Jk ~ Nk -- 1, k = 1 . . . .  , K, satisfying the constraints 

0 ~< },~, ~< c k , 

for all Jk, 0 <~ Jk <~ Nk -- 1, where c k ~ R +, k = 1, . . . .  K ,  is a constant, is called admissible. 

Denote the average network throughput and average network time delay by EV N and E¢/v, respectively. 
Here, N -  (N1, . . . .  NK). These averages can be computed based on the given steady-state probabilities of 
the network. The network optimization problem is defined as follows. 

Definition 2. The control ~ = (~k), 1 ~< k < K, is said to be network-optimal over the class of admissible 
controls for a given T, T ~ R +, if the maximum 

max E3,~v 
EcN <~ T 

is achieved. 

On the other hand, since each of the K users has a different performance measure, they define a 
multiple objective optimization problem. We propose a game theoretic formulation to analyze this problem 
and define the so-called Nash equilibrium of a noncooperative game. Denote the average user k 
throughput and average user k time delay by E3,~ and E~'~, respectively. The user optimization problem is 
defined as follows. 

Definition 3. The control ~k k, of user k is said to be user-optimal over the class of admissible controls of 
user k, for a given T k, T k ~ R +, and (~J . . . . .  ~k- 1 ~3 + l, . . . .  Xx), if the maximum 

m a x  
E'r~ ~< T k 

is achieved. 

For each user class k, a similar definition can be given for an user-optimal control for class k. Since 
each user has a different objective, this becomes a multiple-objective optimization problem. In order to 
describe the behavior of users who are only concerned with their own performance objectives, the Pareto 
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optimal description is inadequate. In a totally individualistic environment, each user attempts to optimize 
an individual objective, without regards to those of the other users. In this case, the concept of a Nash 
equilibrium [28] strategy in a game theoretic setting is more appropriate. In order to analyze the 
decentralized flow control problem in this setting, it is necessary to introduce the concept of a strategy, i.e., 
a plan for playing a game. The static decentralized flow control problem can be thought of as a one step 
game in which each user (player) chooses a strategy in the beginning. This strategy corresponds to the 
choice of the controlled flow rate of packets. User k ' s  strategy is (hk, 1 ~<jk <~ Nk), k = 1, . . . .  K.  The 
constraints on the choice of these strategies is that they be chosen from the class of admissible controls as 
defined above. For a strategic game (see Appendix), the notion of a Nash equilibrium solution will be 
adopted. In accordance with intuitive ideas, the game theoretic model of a strategic game consists of K 
players who have to choose from a set of strategies in order to receive a certain payoff. The Nash 
equilibrium in a noncooperative game consists of a strategy K-tuple of the players where there is no 
incentive for any player to deviate from the current strategy, given that the other players do not change 
their strategies. The formal definition of a Nash equilibrium is given below. 

Definition 4. The strategy K-tuple ~* = (~1, . . . . .  ~ :*  ) which satisfies 

+(X* ) = X*, 

where ~ is the network reaction function, is called the Nash equilibrium (NE) strategy of the strategic 
game G. 

Remark. The precise definition of the strategic game G and the function q~ are given in the appendix. 
In Section 4, we shall investigate the Nash equilibrium of this game theoretic model of the user 

optimization problem. We provide the structure of the equilibrium strategies as well as characterize the 
class of problems for which there exists Nash equilibrium solutions. For completeness, some background 
in game theory is given in the Appendix. (For a more detailed introduction to static and dynamic 
noncooperative game theory, the readers are referred to [1,24].) 

3. Norton's equivalent formulation 

The queueing model described in Section 2 for decentralized flow control with multiple controllers 
provides a detailed state description for the network. In this section we show that the average throughput 
and average time delay can be computed based on the Norton's equivalent [14] of the original network (the 
interpretation of the Norton's equivalent as a conditional estimate plays a fundamental role here). More 
specifically, suppose that (r/l,-. . ,  r/r), the number of each class of packets in the forward network, is 
observed. Then, it will be shown that the conditional departure rate estimates of the K classes of packets 
are sufficient for computing the average throughput and average time delay. For all k, 1 ~< k ~< K, let 

~k--a { x = ( x , ,  x2 . . . . .  x , , ) l x , = k ,  n>~ 1}. 

Thus, ~k corresponds to the set of states (in the original network) where the first packet in a station is of 
class k, 1 ~< k ~< K. Further, define the sets of states 5a(r/! . . . . .  r/x) and ,W'(r/l . . . .  , r/K) by 

Y(~l  . . . . .  r/K) _a { x I #  of class k packets = r/k, 1 ~< k ~< K } 
and 

• g'(n~ . . . .  , r /r)  ~ { n I #  of class k packets = r/k , 1 ~< k ~< K }. 

These correspond to sets of states that have the property that the total number of class k packets is r/k, 
l<~k<~K.  
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Now, by abuse of notation, the instantaneous departure rate of class k packets at time t, is 
M 

~k = )--,/drk/.l( ?(it ~ 1 ,  ), 
i = 1  

(4) 

where X/ is the state of station i at time t and 1(-) is the indicator function. To obtain expressions for the 
a_ ~,x~ p (x ) .  Then, the conditional estimates, denote the marginal probabilities by P,h-.-~,~- .~(,~, ..... ,~,,.) 

Norton's equivalent service rate for class k users is given by 

I " pk = E  p.k I E n y i = ' q y ,  J = l  K 
71 "'" ~g ' " " " ' 

i----I 

M 

= E E l ~ i r , i . l ( x , E ~ , )  p(x) 
x~,~"(  llt . . . . .  lib.) i= l P,h ... ,I,, 

E E l~irki" n,i + -n'k2 + nic, l(n,,. + ' ' '  +nKi > O) ~'~, :--~K 
n ~ / ' ( ~ n  . . . . .  ~lh) i=1  

()" ) 
, ~ ( ~ ,  ..... ~K) i=1 -1~ n~ j''l= nlj! nrj!  ~ ~ l~ j 

hA' p 

n E ~ r ( ~ l  . . . . .  71g) " =  n l j .  n K j .  

,, r Note that the ~'s do not appear in these estimates• where ni = Y'v = lnj~. 
The equivalent network for the multiple controller model is shown in Fig. 2. The marginal probabilities 

satisfy a set of "detailed balance equations"• This result is given in the following• 

Lemma 1. The marginal probabilities pn, ... ~A. satisfy the equalities 

= 

for all k, 1 <~ k ~ K. 

(1) 
I)riI ... r/K 

(K) 

A1 
r h 

A K 
~g 

N K pockets 

Fig. 2. Equivalent network of the many controllers model. 
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Proof. First note that by 

Thus, 

M M 

E 0  ~ =  E 
j - - - I  j - - 1  

M 

summing the traffic equations (2) over j,  we have, 
M E Okirkij + 1 

i=l  

for all k, 1 ~< k ~< K. = ~ Oki(1 - r k'') + 1 ,  

i = 1  

M 
E Ok i rk i '=  1, 

i - - I  

RK--  1 

• . .  n x , D .  Ix=O 

for all k, 1 <~k<K. 

Now, by substituting the expressions for P,~! ....K and r k 
~1 "'" v/K ' 

M | ~ll - 1 ~k 

k%k P,, ... ,K = Z Z Ok'rk'' [ I'-[O kl6 " " " r I  k~, 
nE~4e ' (~ l  . . . . .  71K) i f f i l  i ffi /i,---O 

u (% + . . .  +ngj)! 
H j---1 nlJ ! nKJ" 

o l j  nlj 
p(O) • " ~  .~ ~ 

M = .k. ) 
n ~ . . 4 f ( ~ ,  . . . . .  ~ k + l  . . . . .  ~ g )  i = 1  nli  -I- "" " "-I-nKi l(nl~ + " ' "  -I-nKi > 0 ) .  

~l-lli-iok$1 , , , H ky ]j~=l (rllj'l" " " " -I-HKj)' ( olj ) "'" ( oKJ ) nKy 
, = ,,--o ",~ ",.! 7 - 7  p(o) 

_ ~ k  [ ]  
vii . . . . .  ~k + 1 . . . . .  rig P ~ l  . . . . .  ~k + 1 . . . . .  r ig"  

The above conditional estimates can be used to compute the average throughput and time delay 
expressions, as shown in the next ,.wo sections. 

4. Network optimization (global objective) 

Using the conditional estimates in the previous section, the average network throughput is given by 
Ni Ng 

e ~ =  E "'" E (.: + " "  + " L . . ) p ~ , . .  ,, ...j~ (6) 
Jl =o jK=o 

and the average network time delay is (via Little's formula [23]) 

Z "'" Z (J, +' ' '+jK)pj, . . .J ,~ 
j~ =0 ix=0 E'rN = N, N~: • (7) 

E . . .  E ( ,) , . . .~+ . . .  +,~,".. j,)p,, .~ 
Jl  = 0  j g = O  

Under the network optimization criterion, we seek to maximize a global objective (avera[~ network 
throughput) subject to a global constraint (average network time delay). The expressions for these global 
averages can be further simplified. We proceed by first giving the structural results for the network 
optimization problem. 
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4.1. Structural results for  the network optimization problem 

In this subsection, we derive the structure of the network optimal decentralized flow control with 
multiple ,controllers. The average network throughput and average network time delay can be computed 
based on cry, the probability of there being a total of i packets in the network and ~, the total departure 
rate conditioned on a total of i packets in the network. From the expression for the average network 
throughp~ut (6), we can write 

e v , =  E " E (,,',...,~. + ' +,:,...,,.)p,,...,, 
j, =0 j~=o 

~ ' +  + ~ "  (':,, . . . , ,  + " ' "  + ' L . . , , . ) p , ,  ...,,. ~ ' +  ' + ~ "  
E E ,~, = E ~,~',, (8) 
i l l  jl + . . .  +jh'ffii 7ri i = 1  

where ~ A y'j,+ ... +jK=~(o!j, ... j~ + . . .  + ojx...j~)&, ... jK/~r, and ! 
The average network time delay (7) can be written as: 

A 
"n'i = Y"J~ + "'" +JA = i Pj, ... Jk" 

N! N K N I + . . .  + N A 

" '"  ~'~ (Jl  + "'" +JK)Pjt'"jh E i~r, 
Jl = 0  jh,=O i = 1  

= ( 9 )  Er~ = Jvt lvK N~+ ... +NA. 

E " E (:.,,...,, + . . .  +,: , . . . ,~)p, . . . . , ,  E ~,~, 
j i = 0  jA.----0 i = 1  

Thus, the network flow control problem can be considered as a problem for a single class of packets 
entering a state-dependent Markovian service station. Intuitively, since the averages are computed over the 
entire network, and the service rates are class independent, the equivalent system can be characterized by 
estimates of the arrival and service rates conditioned on the total number of packets in the system. Such a 
result is given in the following Representation Theorem and is illustrated in Fig. 3. 

Let Q~ be the number of class k, 1 ~< k ~ K, packets in the network at time t. 

T h e o r e m  1. (Representation Theorem) The network optimization problem depends on the parameters o f  the 
network only through the conditional estimates 

and  

~Q~+... +Q: e[~ +... I Q, +'-" + • 

(10) 

(11) 

1 The notat ion 5".ji + ... +j~=i stands for the summation over all states Jl . . . . .  J r ,  in the state space such that j i  + -- • + Jx = i. 

# ,  2',. 
h i 

i 
Fig. 3. Equivalent network for the network-optimization problem. 
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Proof. In view of eqs. (8) and (9), it is sufficient to show that ~r~ is also the equilibrium probability of a 
bir th-death process with arrival rate ~; and departure rate 9i. To verify this, note that 

9i  - -  
J~ + "'" +JK=i 

+ " " " + pjK.., jA ) pjt ... jr 

Pj,  ... j , ,  
Jl + "'" +j~.=i 

J~ + "'" +Jr = i 
Y" PJ, "" JA" 

J~ + " " +Jxf  i 

Jl + " ' "  +Jt¢=i-- I gr /_  1 
~'~-i ~', 

" -  ~ - 1  ~r, (12) 

which is the balance equation of a simple b i r th-death  process with rates ~,, and 9 i. Hence, the network 
optimization problem can be solved based on the conditional estimates (10) and (11). ra 

4.2. Op t ima l  ne twork  f l o w  control  

The above theorem gives structural insight into the network optimization problem since the averages 
needed for the network optimization problem can be computed based on the equivalent network. The 
optimal network flow control can be found by analyzing the equivalent system. However, since the 
controls ~, appear in the expressions for the conditional estimates [~ and 9;, it is more convenient to 
consider the problem in terms of the averages given by eqs. (6) and (7). 

Denote the minimum and maximum average network time delay with any admissible control by Tm~ n 
and Tma ~, respectively. Consider the case where T m i  n ,~< T~< Tma x. To obtain the form of the optimal 
control, let us consider the problem as a K step optimization on ~1 . . . . .  ~ r  i.e., 

max{ } ffi m a x . . ,  max{  } 
,X. AI Ax 

For an arbitrary but fixed ~l, . . . .  ~r-1, the network optimization problem can be cast in the form of a 
linear program. This is formalized in the following 

Lemma 2. For f i x e d  ~1, . . . .  ~ r - 1 ,  the op t imiza t ion  prob lem on ~1¢ is equivalent  to the f o l l ow ing  f inear p r o g r a m  
( L P N ) :  

N! N x 

max Y'. . . .  y"  (vJ t . . . j r+  . . .  + v f f . . . j x ) p j ~ . . . j  K (13) 
Jl = o Jx = o 

subject  to: 

NI Nx 

~-  " '"  ~ [Jl  + " '"  +jK-- (V) I , . . .& + " ' "  + V f f . . . j x ) l p j , . . . j x + x = O  , (14) j~ =0 jr=O 
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h ~ =1,! { O < ~ j , ~ N , , k = 2  . . . . .  K (15) 
J, PJ,  "" Jx .,i + 1. J2"" JK PJt + 1. j2 "'" Jx  0 <~ Jl <~ N! - 1, 

= 1,2 {O~<j, ~< N k, k =  3 . . . . .  K (16) 
X2j: Poj: ... j,. o,j2 + l, ... j ,  Po, j2 + 1, " "  JA" 0 <~ Jz <~ N 2  - -  1, 

and  

Xh-1 = 1,o  7.1 y,,._, Po ... o)A_ aA- o, i x -  t + 1, Jt¢ Po ... o, Jx- I + !, Jx 

cKpo . . .  Ojx = 1, 0K. . . O , j x + l P o . . . O , j x + ! _~. y j K  

{ O~<jr<~Nx (17) 
O <~jr_l <~ N r _ l  - 1 ,  

o lye-  1, (18) 

N I N h. 

E " '"  E Pj , . . . j , ,=  1, (19)  
j~ =o j~ =o 

where P~i ..../~" Y)~' x >t O. A control corresponding to the solution o f  ( L P N )  for  f i x e d  h 1 . . . . .  h x -  i is given 
by: 

[ 
J I 0 if pj, ... j~ 

. , , . . .  

[ 1,j~... jA._ ~.jA- + I Pj, -.. j,-_ ,.j,, + ! if PJ, "'" n, 
PJl--" J~, 

o <jk  <Nk = O, all 
k = l  . . . . .  K - 1  

> O, some Jl . . . . .  J r -1 .  

Proof. Equation (13) is simply the average network throughput. The equality constraint (14) is derived 
from the time delay constraint, with slack variable x. Equations (18) are derived from the "detailed 
balance equations" and the admissibility constraint 0 ~< ~j~ ~ c x. Note that the equations form a set of 
linearly independent balance equations for solving the steady-state probabilities pj, .-.JK" The slack 
variables YA r = (c r _ ?~  )pj,--.J~- are used to obtain the standard equality constraint formulation. For fixed 
hi  . . . .  Xr-l~ eqs. (15)-(17) are the remaining linearly independent balance equations for the steady state 
probabilities of the equivalent network. H 

With the linear programming formulation, we can immediately obtain structural properties of the 
optimal solution, e.g., [22]. If the time delay constraint, T, is such that Tmi, ~< T ~ Tmax, then a feasible 
solution exists. Since any continuous objective function achieves a maximum on a non-empty, compact 
and convex constraint set, there exists an optimal feasible solution. By the Fundamental Theorem of 
Linear Programming [25], there exists a basic optimal feasible solution. This result will be used to obtain 
the form of the optimal solution to (LPN) as in the following 

Lemma 3. Suppose that ~1 . . . . .  ?~K-l are arbitrarily f i x e d  and Tmi . <~ T ~ Tm..,x. Then there exists an optimal 
network f low control o f  the form: 

0 
A x =  0 <h~K~<c t¢ 

C K 

yK < 

at most one m x, 0 ~< m x < Lr 

O <~jK < LK,  jx=/= m x ,  

for  some L x ,  0 ~ L r < N x .  

Proof. From the partial balance equations, it is clear that there exist integers L 1 . . . . .  LK such that 
O < ~ L k ~ N  k, k = l  . . . .  , K a n d  

pyl ... yx > O O <~ jk <~ Lk , k = l . . . . .  K ,  

= 0 otherwise. P A  "'" Jx  
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The constraint equations (14)-(19) thus become: 
L, L h. 

. . .  [ j ,  + . . .  
Jl =0 jK=O 

+ . . .  + = 0 ,  

x ' j ,  p j ,  ... j , ,  = ,'), + , . j ~  ... jK p j ,  + , . j ~  ... j , ,  

~p2 ~,. Poj2 , . .  JK O, J2 + 1, . . .  JK Po, J2 + 1, ""  JK 

{ 0 ~<jk ~< Lk, k = 2 , . . . , K  
0 ~<Jl ~< L1 - 1, 

{ O <~jk <~ L k, k =  3, . . . .  K 
0~<j2 ~< L 2 -  1, 

hK-! .._ pK-I  
J~ - t Po ... ojh _ ,ix o ... O.jx_ I + 1, Jx Po ... o, ix- ~ + 1, Jx 

c X p o . . . o j K  - ~or... o.j~+~po.., o.j,.+~ +yj~ 
cKpo "" OLx = Yi. K ' 

Li L A. 

E ""  E 
J1-0 ix=0 

0 <~JK-1 <~ L K - !  -- 1, 

O ~ j r  <~ L x -  1, 

(20) 

(21) 

(22) 

(23) 

(24) 
(25) 

(26) 

The rank, R, of the constraint matrix is therefore [(L~ + 1)(L 2 + 1 ) . . -  (LK + 1)] + 2, corresponding to the 
number of linearly independent constraint equations• The number of nonzero stationary probabilities 
variables in this case is [(L~ + 1)(L 2 + 1 ) . . .  (LK-t-1)]. In a basic solution at most R variables are 
positive• From eq. (25), y f f  is necessarily positive• Therefore, at most one of yo x, y r  . . . . .  Yff~.-l, X is 
positive• The lemma then follows, ra 

The above results implies that one only needs to consider window policies for user K, irrespective of the 
policies of other users• By an inductive argument, the structure of the optimal solution for the network 
optimization problem can be obtained. Thus, for the general problem, we have proved the following 
theorem: 

Theorem 2. I f  Tmi . ~< T ~< Tmax, then there exists a network optimal f low control o f  the form: 

L, j, <N, 
h~,= < h ~ , ~ c  I at most onem 1,0~<m 1 < L  1 

c 1 0 ~ J l  < L1, Jl #: ml ,  {o 
h ~  0 < h r c r 

- ' -  m K  

C K 

L K ~ J K  < NK 

at most one m K, 0 <~ m K < L K 

O ~ j r < L K ,  j K * m r ,  

for  some ( L l , . . .  , LK), 0 ~< Lk < Nk, k = 1 , . . . ,  K. 

In other words, the optimal control is sho,~vn to be a collection of window flow control mechanisms. The 
optimal window sizes depend on the equivalent service rate z, k, k - 1 . . . . .  K, the maximum tolerated time 
delay T, and the maximum user packet generation rates c k k -- 1 , . . . ,  K.  In order to demonstrate the use of 
the above theorem for obtaining optimal network flow control, we give an example of a bottleneck 
decentralized flow control in the next subsection• 
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4. 3. Bottleneck modeling and decentralized flow control 

The performance of a network can be greatly degraded by bottlenecks. Bottienecks arise when the input 
flow exceeds the capacity of any processing or communication medium. One purpose of flow control is to 
make efficient use of network resources by limiting or rerouting traffic, thus avoiding bottlenecks 
[10,11,16]. 

In the following, the bottleneck is modeled as a station with exponentially distributed service time, 
mean 1 /# ,  and an FCFS service discipline. For simplicity, only two user classes are considered. Packets 
belonging to either class queue up in a common buffer for transmission via the bottleneck link. User class 
1 packets are generated at the maximum rate of c I packets per second, while user class 2 packets are 
generated at the maximum rate of c 2 packets per second. The corresponding controlled packet generation 
rates are X~I and X22, respectively. This model is a particular case of the network described in the previous 
subsection and hence, the structure of the network optimal flow control can be obtained from Theorem 2. 

In order to find the optimal window sizes for any particular set of user packet generation rates and time 
delay constraint, it is not necessary to run the corresponding linear program. The form of the optimal 
control provided by Theorem 2 gives a very explicit graphical way of computing the window sizes. As a 
numerical example, the service rate/L is normalized to 1. The maximum user packet generation rates are 
c I = 0.3, and c 2 0.6, respectively. The controls X~] and X2 = J2 are increased in the following way: if X~, = c ~ 
for all Jl < l, and X~ = 0 for all Jl >~ i, increase N t from 0 to c 1. This process is repeated for 0 ~< l < N 1. 
The control X22 is increased in the same manner. Hence, we can plot the average network throughput and 
average network time delay as a function of the control. These are shown in Figs. 4 and 5, respectively. 

In order to display the relationship between the maximum average time delay constraint and the 
maximum throughput, it is necessary to show their dependence on the control. To do so, first, the control 
of user I is parameterized and the comrol of user 2 is increased in the sense described above. Secondly, the 
control of user 2 is parameterized and that of user 1 is increased. The resulting throughput time delay 
tradeoffs are shown in Figs. 6 and 7, respectively. 
Remark. The notation " L  k = u"  means that XkA = c k, 0 ~<Jk ~< u and X~, = 0, otherwise (k = 1, 2). 

The optimal control is obtained by comparing these curves and choosing the control which corresponds 
to a maximum throughput for a given time delay constraint T. By superimposing the curves in Figs. 6 and 
7, it can be seen that the optimal control allows near equal window sizes for the two users. If c ~ < c 2, one 
user 2 packet should enter the system first. If the time delay constraint has not yet been achieved, one user 

Throughput 
(c1:0.3, c2:0.6,/~= 1.0) 

Fig. 4. Throughput versus control. 
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Time deioy 
(c1=0.3, c2=0.6, ~ :1 .0 )  

,/ x 

Fig. 5. Time delay versus control. 

1 packet has to enter the system. This process is repeated alternating between user 2 and user 1 packets 
until the time delay constraint is achieved. It is important to note that only the order relation between c 1 
and c 2 is needed in the determination of the optimal window sizes for the two users. This does not appear 
to be intuitive from a system point of view, since the resulting optimal strategy gives equal access to the 
system resources even though the users have different rates. From a fairness point of view, however, the 
result is intuitively pleasing since a global objective should not favor any particular type of users. 

Throughput 

0.6 

0.3 

0.0 

LI--I 

0 

I /  , -L , :3  
V L1=2 ' 

I 
1.0 2.0 Time delay 

Fig. 6. Throughput versus time delay (~l fixed). 
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Throughput 

0.6 

O.3 

0.0 210 Time detoy 

2=2 

/ L2= 1 

1.0 

Fig. 7. Throughput versus time delay (?~2 fixed). 

5. User optimization (individual objectives) 

The conditional estimates in the Norton's equivalent formulation in Section 3 can be used to compute 
the average user throughput and user time delay expressions as follows. For user k, the average throughput 
is given by 

E~,~= E " '" E vk (27) J~... s,, PJ~-'-J,< 
Jl =0 jK=O 

and the average time delay is (via Little's formula) 

E " E J,p;,...,= 
E~'~* = j~ =o jA.=o 

. . .  ~-', p.k 
s~"" 1. PJl "'" J." 

Jl --0 j r - -0  

(28) 

Under the user optimization criterion, the users seek to maximize individual objectives (average user 
throughput) subject to individual constraints (average user time delay). Since there are K users, each with 
a different objective, the problem becomes a multi-objective optimization problem. In this section, we 
consider the decentralized flow control problem where each user has a different objective that he/she 
attempts to optimize in a decentralized and noncooperative manner. As in economic systems, this type of 
individual optimization leads almost always to conflicting situations. 

For problems with more than one objective function, optimality has yet to be defined. One view is to 
treat the decentralized flow control problem as a noncooperative game in which each user is considered a 
player of a game under a set of rules [1]. The players would act individually in order to maximize their own 
payoff. Since the network users behave very much like payoff-maximizing players who act independently 
of one another, the game theoretic approach here appears to be a natural one. 

The user optimal flow control as given by Definition 3 places a hard constraint on the average user time 
delay. Consider for example a network with a time-out retransmission protocol. If a packet is not 
acknowledged before the time-out expires, the packet is retransmitted. Hence, for any achieved user 
tl~-oughput, the utility to the user is zero unless the user time delay constraint is satisfied. This motivates 
the following definition of the utility function of a user. 
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Definition 5. The utility function of user k, k = 1 , . . . ,  K is given by: 

,~(?,) = { E~,~ E ~ T  * 
0 otherwise, 

where )~ = ()~1,...,)~r ). 

Specifically, the static game model for the decentralized user flow control problem consists of: 
1) ~/'= 1, . . . ,  K (players 1 . . . . .  K),  
2)  S k  -- {(h~k, O <~jk <~ N k )  lO <~ ~k k. . . . ,  +~ <~ ck,  O <~jk <~ Nk } ( k  = l ,  K ) ,  
3) hk(~,) = uK(~,), k = 1 , . . . ,  K. 
Before providing the Nash equilibrium solution to the decentralized flow control problem, the structural 
properties of the user optimization problem will be presented. 

5.1. Structural results for the user optimization problem 

For users of class k, the optimization problem is to maximize the average user k throughput, Eye ,  
subject to a constraint on the average user k time delay, E ~ .  These averages can be expressed in terms of 

,,k p~ and #Jr, the marginal probability of there being Jk class k packets in the network, and the conditional 
estimate of the departure rate of class k packets given the number of such packets in the network, 
respectively. Specifically, 

N~ ]~- ! Nr +, 81< 
p ~ E - "  E E " EpI,...;. 

Jl =0 Jr-1 =0 Jr+l •O jx=O 

NI Nt<-! N/,. + ! N K 

~ . , . ~  E . . .  E E . . .  E~+ PJ'~ Ji "'" Jx k 
j! =0  Jr - I  =0  Jr+l =0 jK=O P)~ 

and 

To prove the assertion above, recall that the average user k throughput is given by 

EeN= E " . .  Ev+ .I, "" JK PJ, "" JK 
j= =0 jx=o 

Nr Ni Nr-i Nk+l 
- E  E . . .  E Y'. 

Jr •0 Jl =0  Jr-I  =0  Jr+l =0  

Nr 
= E ^k k #J, PJk' 

NK 
)-" vk PJ,'"J- k 

J, ""JK k "P)~. 
j,,=o p~; 

~ffi0 

and the average user k time delay is 

~1 ~x Nr 

j~ =0 jx=o Jr =0 
E~'~ = - N~ N~ -- Nr • 

E "'" E ~  + +, "'" JK PJ, ""j~ ~ #j~ p)~,,k k 
j~ =o  jx=o Jr-O 

(29) 

(30) 

The next theorem gives the structure of the optimization problem for user k. This result indicates that 
the optimization problem of user k can be reduced to the one shown in Fig. 3. Let Qk, k = 1 , . . . ,  K be the 
number of class k packets in the network at time t. 
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Theorem 3. (Separation Theorem) The optimization problem of user k depends on the parameters of the 
network and the action of other users only through the conditional estimate of the class k packets departure rate 

:~,~ ~- E[ 4~ ... ~: i e,~] • (3!) 

Proof. By virtue of eqs. (29) and (30), it suffices to demonstrate that the marginal probabilities p~, 
0 <~j, <~ N k, satisfy the following balance equations of a simple birth-death queueing process with arrival 

^ k  . rates hk and departure rates/t j,. Jk 
2kk. pk = ~k L', .~ (32) 

From the definition of the conditional estimates, 
NI pj, ...j, 

^k ~,,,=E[4:...,,:lO.*,=J,]= E " 

Ni Nk-I Nt,. + I 

- - Z . . .  Z E 
Jl----O Jk- l----O Jt~+l----O 

p)~ - 1 
j, - 1 P l  

N,-i Nk+l NA. 

Z Z " Z ,  .~ JI "'" JK 
Jl •0 Jr,-1 =0 Jk+l =0 jK=O 

N,~- 
. . o Z., a, Jk - ! k 

j , = o  P); 

The theorem then follows. [] 

Remark. The estimates ^k /tj~ are indeed independent of the arrival rates of user k packets, ~k.jc To see this, 
note that p~ can be written as 

j k - I  NI Nk-l N~+l NK K [ j , - 1  

FI x~ Z -.. E E ..- E FI / H x',, o(j,, .... j~)p(0), 
i :~,  L / ,=o &:=O j~ =0 A-I  =0 J,+l =0 Jr=O i 

where 

° ( J ' " ' " J K ) - - a  ~" ~ n,,! nr,! - ~  " ' " - ~ - ]  " n~e'(Jl ..... Jr) "ffi 

Hence, 

^k 

N! N,-  I Nk + l Nh" K 'j~- I ] 

• "" Z Z "'" Y'. I-I I-IX'i, l o ( J , , . . . , J k  - 1 ,  . . . .  J~) 
JI =0 Jk-I-~0 Jk+i-~0 jr_~O i=1 i,=o j 

i ~ k  

7II Nk-i Nk+l NK X [ "Jllii~i=l 0 
E "'" E E "'" E l I  h't, o ( J , , " ' , J k ' ' ' " J K )  

Jl=O Jk- l=0  Jk+l=0 jr=O iffil ~ k  

The structural results can be used to investigate the Nash equilibrium solution for the user optimization 
problems. 

5. 2. Optimal user flow control and the Nash equilibrium solution 

As far as user k is concerned, the objective is to maximize the average user k throughput subject to an 
average user k time delay constraint. The separation theorem above provides a simple equivalent 
formulation for the optimization problem of user k. By virtue of eq. (32), the optimal control problem for 
user k can be formalized as a linear program on the variables p~. 



198 M.-T. T. Hsiao, A.A. Lazar / Markovian queueing networks with multiple controllers 

Lemma 4. The ,optimization problem for user k is equivalent to the following linear program: 

max ~ #j~,,k p),i, (33) 
j~=O 

subject to 
N, 
E ( Jk - ,,k T k ~ pk (34) #Jk ! ?~ + x = O '  

X=O 

k k ,,k k k c P),=#j,+1P),+I +Y)~, O<~A <~N~- 1, (35) 

E P~ = 1, (36) 
X=O 

where p~, x, y)k >10. 

Proof. Equations (33) and (34) are the average user k throughput and time delay, respectively. To obtain 
the equality constraints (35), replace h~ in the balance equations (32) with c k and introduce the slack gA. 
variables yr. The optimal control for user k can be obtained from the optimal solution of the linear 
program as 

hal. ,,k . [] J~--p'A+! p~ 

Using the linear programming formulation, the optimal control for user k can be shown to be a 
window-type mechanism, for any given fixed h i, i ,  k. (For other applications of this technique, see for 
example [15,22].) Suppose that for the given controls h ~, i ~ k, the minimum and maximum average user k 
time delay (denoted by Tmkin and Tmk~x, respectively), that is achievable with any admissible control h ~, are 
such that 

k 

In other words, there exists a feasible solution to the constrained optimization problem of user k. An 
optimal feasible solution therefore exists by the continuity of the objective function and compactness of 
the constraint set. Then, the Fundamental Theorem of Linear Programming [25] implies that there exists a 
basic optimal feasible solution. The following Lemma makes use of this result to obtain the structure of 
the optimal solution. 

k Lemma 5. For any given controls h ~, i 4= k, suppose that T,~ n <~ T k <~ Tma x. Then, there exists an optimal 
control for the user k optimization problem of the form: 

J~ 

0 
- 0 < hkm, ~< c k 

C k 

Lk < Yk < lVk 
at most one m k , 0 ~< m k < L k , 

0 ~<jk < Lk, j kq :mk  

for some L~, 0 <x L k < N k. 

Proof. Note that from the balance equations (32), there exists an integer L k such that 0 ~< L k ~ Nk, and 

p k > O  O ~ j k ~ L k ,  

p~ = 0 otherwise. 
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The constraint equations (34)-(36) thus become: 
L~ 
E ( Jr,- - ~k ,-~t,- ~ k + O, l ~ j~  I P)~ x 

X=O 

and 

(37) 

c,,,-_k=#~ p~+ + k Py, j~+l 1 Y)2, O <~jk ~< Lk--  1, (38) 

ckp~, =y£~, (39) 

Lk 

E P~ = 1. (40) 
X=O 

The rank R, of the constraint matrix is therefore LA + 3, corresponding to the number of linearly 
independent constraint equations. The number of nonzero stationary probabilities variables p~ is L~ + 1. 
Now, there exists a basic optimal feasible solution with at most R positive variables. From eq. (39), y~, is 
necessarily positive. Therefore, at most one of yo k, y~ . . . . .  y~,_ ~, x is positive. This completes the proof. 
[] 

The above result implies that the optimal control for user k is to adopt a window-type policy for any 
control of the other users. The optimal window size, though, depends on the values of/~, ,  which in turn 
depend on the control of the other users. 

In order to obtain Nash equilibrium solutions to the decentralized user flow control problem, the 
reaction function of each user, ~k as defined in the Appendix, has to be found. The above Lemma gives 
the structure of the reaction function of user k, given the controls ~', i =# k. The Nash equilibrium strategy 
is a K-tuple of controls (~1" . . . . .  ~K. ) such that given the controls of other users i, ~ i .  i =/= k,  the optimal 
strategy for user k is to adopt control Ak., for all k, k --- 1 . . . . .  K. That is, given the strategies (controls) of 
the other users, no user has an incentive to deviate from their present strategy. If such a strategy K-tuple 
exists, then there is a Nash equilibrium strategy of the window type, as shown in the following. 

Theorem 4. The Nash equilibrium solutions to the decentralized user f low control problem are of  the form: 

0 
= 0<Alto,  ~<c 1 

cl 

L~ ~<Jl < N1 
at most one m~, 0 ~< m~ < L~ 

0 <~Jl < L1, Jl ~ ml,  

0 
= O<hX., <~c K 

c K 

LK ~<jx < NK 
at most one m K , 0 <~ m r < LK 

0 ~jK < L r ,  j K * m r ,  

for  some ( L1 . . . . .  L K ), 0 ~< L k < N k, k = 1 . . . .  , K.  

Proof. By Lemma 5, the reaction function of user k is given by a window type control. Therefore, we can 
restrict the range of the reaction function to the class of window-type controls. Since the Nash equilibrium 
is defined by the fixed point equation q0(A*) = ~*, the theorem follows. [] 

It remains now to characterize the class of decentralized optimal flow control problems for which there 
exist Nash equilibrium solutions. The conditional estimates #Jk ^~ provide a simplified formulation for the 
optimization problem of user k. These estimates can be considered as the conditional throughput of class k 
packets from the network given the number of class k packets in the network. For a large class of 
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jk 

N k pack 

Jk 

Fig. 8. Equivalent network for the optimization problem of user k. 

networks, it has been shown that the throughput is a concave increasing function of the number of packets 
in the network [20,33]. Intuitively, since the network utilization is increasing with a diminishing rate in a 
completely shared network with fixed resources, the amount of resource available to a user (the 
throughput) is a concave increasing function of the number of the user's packets in the network. In the 

^k following discussion, we shall assume that the conditional estimates #j, are concave increasing in Jk, i.e., 

~ ~< ~ < 12~ (41) 
and 

^k ^k - 

m - I  >I n ~ - / '  (42) 

for all I, m and n such that 0 ~ I < m < n ~ Nk. 
The above property can be given a very natural interpretation: the average throughput and the average 

time delay of user k is increasing with the number of user k packets in the system. For networks with 
these properties, the optimal flow control problem of user k (as shown in Fig. 8) can be solved via a 
majorization argument and the optimal solution is explicitly given [21]. The optimal control is char- 
acterized by the set of increasing numbers 2, indexed by Lk -- 0, 1, 2 . . . .  , N k, and by abuse of notation, 

Lk 

L~ j~ =0 L k 
T/~,max ~- ~ ~ ^k , (43) 

^k k /LL~ 
t~ j ,  p)-, 

j ,=O 

where #~ ~ 1-I[~Z_~ck/ft~, +1 and the reaction function for user k is given by the following 

T h e o r e m  5. With gtj,̂ k determined by ~ikl _A (N, i ~ k), and given that ,eL,, k.max- 1 < T k ~< T;,max ,Lk  for some Lk ,  
2 <~ L k <~ N k, the reaction function of user k is given by 

c k 0 ~<Jk ~< Lk - 2 

= = = - 1 ( 4 4 )  

0 Lk<~jk<~Nk,  

2 These numbers may be interpreted as the maximum time delay for user k with a total of L k packets in the network. 
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where 
' 

n PL k. - 1 I~ = 0 

Furthermore, the maximum user k throughput is given by 
Lk.-- 1 

- -  J k l l  Lk ) P)-k 

Fk ( Tk ) = jk= l L~.-  1 

L k - f ? r , T k +  Y'. [Lk-- jk- - ( f tkL ,  - ttj,̂ k ) T k ] p ~  
j~ = l 

(45) 

(46) 

Proof. See [21] or [15] for more general results, ra 

We are now ready to characterize the class of decentralized user optimal flow control problems for 
which there exist Nash equilibrium solutions. Let 

r-a- {(T ' ,  T 2 . . . .  ,T  r )  ~ R r I E ~  "k= T k, k =  1, 2 . . . .  , K }, 

where E¢~ are functions of hi , . . . ,  h r and each h !' is a window mechanism of the type (44), k = 1 . . . .  , K. 

Theorem 6. For any decentralized user flow control problems with time delay constraints such that 
( T  1, T2 , . . . ,  T r )  ~3" ,  the Nash equilibrium exists. 

^k which Proof. The average user k throughput, E~,~, and time delay, E¢~ are increasing as Xk, for #j~ 
satisfies (41) and (42). Hence, the time delay constraint is achieved for an optimal control for user k. 
Furthermore, this optimal control is unique. Suppose that ~1. , . . . ,  2kr. are window ~oimols such that 
E¢~ = T1 , . . . ,  E~ ff  = T r. Then, given the controls of users i, h i*, i :~ k, the optimal control for user k is 
h k *. Thus, (h 1 *, . . . .  XK . )  is a Nash equilibrium solution for the decentralized user flow control problems 
with constraints T~, . . . , T r. [] 

It only remains to characterize the properties of if'. It is easy to see that the set ,~" can be generated by 
the set of all window controls hi, . . . ,  ?~r of the form (44). Hence, the elements of ~q" can be generated by 
computing the time delays E~-~, . . . .  E¢ r for each possible selection of window control policies of the form 
(44). In the following, a scenario in which the concept of Nash equilibrium may be applied to computer 
networks is given. 

5.3. A scenario 

The concept of Nash equilibrium for decentralized optimal flow control introduced above can be 
applied to describe the behavior of a number of users logging onto a network. Consider the situation in 
which there are K users who are using the resources of a packet switched network. By the separation 
theorem, the optimal control policy for packets of class k can be found based on the estimates of the 
departure rates of class k packets from the network. In equilibrium, the users control the flow of their 
packets with a window mechanism and the estimates remain constant. When the estimates begin to 
change, as when a user logs off or a new user enters the network, a new control policy has to be computed 
based on the new estimates. The introduction of the new user to the network drives up the time delay of 
the other users and away from their original equilibrium. Therefore, the latter users have to reduce their 
window sizes in order to meet their time delay requirements. After the process of adjusting the window 
sizes in order to meet the time delay constraints, the network will operate at a new Nash equilibrium point. 
In order to achieve this, decentralized flow control algorithms need to be developed and their convergence 
properties ;.nvestigated. 
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Although the result does not prescribe how a network of noncooperative users behave absolutely, it 
does specify the manner these users control their packets so as to achieve their individual objectives. In 
view of the separation theorem, each user only sees the network as a dedicated resource with variable 
service rates. In practice, these results should lead to efficient decentralized algorithms for the flow control 
of computer communication networks with many users. The application of the Nash equilibrium concepts 
in decentralized flow control with a throughput/time-delay criterion thus represents a novel approach for 
describing the behavior of a system of noncooperating users with decentralized information. 

6. Conclusions 

In this article, the decentralized flow control in computer communication networks with multiple 
controllers was studied. Under a global objective, the average network throughput is maximized subject to 
a constraint on the average network time delay. Representation results were given which provide insight 
into the network optimization problem. By using a linear programming formulation, the optimal control 
was shown to be a window-type mechanism. An example was given which demonstrates how the structural 
results can be used to obtain the network optimal control policy. 

Under individual objectives, each user maximizes the corresponding average user throughput subject to 
the average user time delay constraint. The multi-objective optimization problem arising from individual 
users' performance measures was treated in a game theoretic setting. A separation result was proved which 
revealed that the optimization problem for user k can be solved based on estimates of the departure rates 
of class k packets from the network. The optimal control for an arbitrary user k was given explicitly as a 
function of the control of the other users. The solution using the Nash equilibrium concepts was presented. 
A scenario in which the Nash equilibrium concept was used to describe the action of different users 
sharing the resources of a packet switching network was also discussed. 
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Appendix. Game theoretic preliminaries 

The concept of a game in strategic (normal) form is defined in the following: 

Definition 6. A game in strategic form (strategic game), G, consists of: 
1) a set ~ (of players), 
2) for each k ~ ~ a set S k (strategy set of k), 
3) for each k ~ g "  a function h k (the payoff function of k): 

hk: M S k ~ R .  
k~dtr 

In other words, if ~e'ffi {1, 2 . . . .  , K }, the game consists of K players P i , - . - ,  PK. Player Pk, k = 1, . . . ,  K, 
chooses from the strategy set S k and receives a payoff h k equal to the utility corresponding to the chosen 
control strategy, a defined earlier. It is assumed that the players are noncooperative in the sense that the 
players do not have enough information or incentive to form a coalition which would increase the payoffs 
to all players simultaneously. Hence, the players act individualistically (selfishly in a sense) in order to 
maximize their individual payoffs. 
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Suppose that Pz . . . . .  Ps  have chosen strategies 2k 2 ~ S 2 . . . . .  X r ~ S r. The reaction of P! is the strategy 
which maximizes Pl's own payoff,  given that Pk has chosen strategy hk, k = 2 . . . . .  K. This defines a 
mapping as follows: 

Definition 7. The Sl-valued function q~ • S 2 × - - • × S r ~ S ], such that 

tpl ( h2 . . . . .  ~K ) = arg max h I(X 1 . . . . .  X r ) 
~ , ~ S  ~ 

is called the reaction function of PI. 

The reaction functions of P/,, ~,k, k = 2 . . . . .  K, are similarly defined. 
Now,  define the network reaction function q0 by 

. . . .  x K) - . . . . .  C ( x  [K])),  

where h lkl & (h ] . . . . .  X k-l ,  h TM,. . . ,  Xx). The Nash equilibrium strategy is then a fixed point of the 
function ~.  The precise definition is repeated here for completeness. 

Definition 4. The strategy K-tuple X* = (X 1. . . . . .  X r * ) which satisfies 
= X *  

is called the Nash equilibrium (NE)  strategy of the strategic game G. 
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