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Abstract

In this work we investigate the usefulness of n-grams for document indexing in text categoriza-
tion (TC). We call n-gram a set tk of n word stems, and we say that tk occurs in a document
dj when a sequence of words appears in dj that, after stop word removal and stemming,
consists exactly of the n stems in tk, in some order. Previous researches have investigated the
use of n-grams (or some variant of them) in the context of specific learning algorithms, and
thus have not obtained general answers on their usefulness for TC. In this work we investigate
the usefulness of n-grams in TC independently of any specific learning algorithm. We do so
by applying feature selection to the pool of all α-grams (α ≤ n), and checking how many
n-grams score high enough to be selected in the top σ α-grams. We report the results of
our experiments, using several feature selection functions and varying values of σ, performed
on the Reuters-21578 standard TC benchmark. We also report results of making actual use
of the selected n-grams in the context of a linear classifier induced by means of the Rocchio
method.

Categories and subject descriptors: H.3.3 [Information storage and retrieval]: Information
search and retrieval - Information filtering; H.3.3 [Information storage and retrieval]: Systems
and software - Performance evaluation (efficiency and effectiveness); I.2.3 [Artificial Intelligence]:
Learning - Induction
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1 Introduction

A key issue for information retrieval (IR) and all other content-based text management applica-
tions is document indexing, i.e. the task of automatically constructing an internal representation
of a text dj that (i) can be interpreted by the document management algorithms, and (ii) com-
pactly captures the meaning of dj . The choice of a representation format for text depends on
what we consider to be (a) the meaningful textual units (the problem of lexical semantics) and
(b) the meaningful natural language rules for the combination of the meanings that these units
convey (the problem of compositional semantics). Traditionally, IR has concentrated on issue (a)
and almost neglected issue (b), assuming that a good representation for a document dj may be
obtained by simply taking into account whether and how frequently a word tk appears in dj and
in the document collection, thus disregarding the syntactic, semantic and pragmatic contexts of
such occurrences. This has given rise to the so-called bag of words approach to indexing, according
to which a text dj is represented as a vector of weights 〈w1j , . . . , wrj〉, where r is the number of
words that occur at least once in the document collection and 0 ≤ wkj ≤ 1 represents, loosely
speaking, how much word tk contributes to identifying the meaning of dj . Weights 0 ≤ wkj ≤ 1 are
computed according to the frequency of tk in dj and in the document collection. Variants of the
bag of words approach are obtained by using word stems instead of words [9], or by disregarding
frequency issues and simply using a binary assignment for wkj based on the presence/absence of
tk in dj (the set of words approach).

We will hereafter use the term vector of features to denote a vector of weighted words, or
stems, or whatever characteristics of a document one might decide to use for the representation;
accordingly, we will use variables t1, t2, . . . to denote features. Of course, the possible choices
for what counts as a feature are limited by current text processing technology, i.e. by what can
be extracted in a fully automated and scalable way from the text itself. That is, although in
principle it would be best to identify features with the concepts the document deals with, or with
the problems the document tackles, these pieces of knowledge are not within the reach of current
knowledge extraction technology.

1.1 Phrase indexing in IR and TC

In the past a number of IR researchers have expressed their unsatisfaction with the bag (or set)
of words approach, and have tried to use notions of what a feature is that are at the same time
semantically richer and technically feasible. In particular, a number of authors have investigated
phrase indexing, i.e. the use of phrases, in addition to individual words, as features. In a linguistic
sense, a phrase is a textual unit usually larger than a word but smaller than a full sentence:
examples of noun phrases are nuclear waste disposal, the dog that crossed the street, and Bill Clinton,
while examples of verb phrases are playing ice hockey and went to school. Hereafter, we will use the
term syntactic phrase to denote any phrase that is such according to a grammar of the language
under consideration. Using syntactic phrases in indexing seems an interesting idea, in that

• phrases come closer than individual words or their stems to expressing structured concepts;

• phrases have a smaller degree of ambiguity than their constituent words, thanks to the
mutual disambiguation effect of words. That is, while the two words hand and drill are both
ambiguous (e.g. a hand of cards and shaking hands; oil drilling and a pronunciation drill), hand

drill is not, since each of its two constituent words creates a context for the unambiguous
interpretation of the other;

• by using phrases as index terms, a document that contains a phrase that occurs in the
request would be ranked higher than a document that just contains its constituent words in
unrelated contexts;

• current natural language processing technology allows the individuation of phrases to be
performed with a good degree of robustness [29, 33].
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Unfortunately, a number of researches that have investigated the usefulness of indexing with
syntactic phrases in IR have obtained discouraging results (see Section 7). The likely reason for
this is that, although indexing languages based on phrases have superior semantic qualities, they
have inferior statistical qualities with respect to indexing languages based on single words [7, 18].
For instance, the phrase nuclear waste disposal definitely denotes an interesting, articulated concept,
but unless it occurs frequently enough in the document collection it is unlikely to make an impact
in terms of effectiveness. This situation is worsened by the fact that the same concept may be
triggered by related but linguistically different units (such as disposing of nuclear waste, Dispose of

your nuclear waste!, etc.), each of which is usually considered, from the standpoint of frequency, a
different unit, unless the similarity of the underlying concepts is recognized.

Also, not every syntactic phrase denotes an interesting concept: associate professor does, but
tall professor does not, and telling a phrase that does from one that does not is difficult (Kageura
and Umino [15] call this “the termhood problem”).

Some researchers have attempted to find a way out of these problems by understanding the
notion of phrase in a statistical sense, rather than syntactically. We will call statistical phrase any
sequence of words that occur contiguously in a text, and do so in a statistically interesting way.
Statistical phrases have a number of advantages over syntactic ones: a) they may be recognized by
means of more robust and less computationally demanding algorithms; b) the effect of irrelevant
syntactic variants can be factored out; and c) uninteresting phrases (e.g. tall professor) tend to be
filtered out from interesting ones (e.g. associate professor). Of course, inherent in their statistical
nature is the disadvantage of a non-null error rate: some phrases are not going to be recognized
as such, and some non-phrases are instead going to be incorrectly recognized as phrases.

This work deals with assessing the value of statistical phrases for document indexing in the
context of text categorization (TC), the activity of inductively learning to classify natural language
texts with topical categories from a pre-specified set [28]. Previous researches have investigated
the impact of statistical phrases on TC in the context of specific learning algorithms, and thus
have not obtained general answers on their usefulness for TC tout court. In this work we want to
analyze the problem in a learner-independent way, with the aim of obtaining an indication on the
usefulness of statistical phrases for TC that be independent of the learning algorithm to be used.
In order to do so, we extract phrases from a corpus of documents and assess their value not in a
“direct” way (i.e. by running classification experiments on a test collection) but in an “indirect”
way, i.e. by scoring the phrases by means of a number of different feature evaluation functions [32].
The extent to which phrases outplay (according to the computed scores) single words, and the
increase that phrases bring about in the overall “score” of the resulting indexing language, will
indicate the potential usefulness of phrases in TC.

Following this learner-independent study, we also perform a number of “direct” experiments
by running the Rocchio classifier-learning algorithm on the phrase-based representations (we have
started running a parallel experiment using the Ripper system [3] but its results were not ready
before submission time). These experiments are aimed at assessing whether the results from the
“indirect” experiments are confirmed by field tests, i.e. whether an increase in the overall quality
of the indexing language as measured by the above-mentioned criteria also results in an increase
in classification effectiveness.

The paper is organized as follows. In Section 2 we briefly introduce the basic notions of text
categorization. In Section 3 we define precisely our own notion of statistical phrase, that we will call
n-gram1. In Section 4 we describe our learner-independent method for the evaluation of n-grams.
Section 5 describes the results we have obtained by applying this method on Reuters-21578, the
standard benchmark of TC research. In Section 6 we discuss our “direct” experiments performed
by applying the Rocchio classifier-inducing method to our n-gram representations, again using
Reuters-21578. Section 7 describes some related work in phrase indexing in IR and TC. Section 8

1We remark that the term “n-gram” is used in the text processing literature in two quite different senses. In the
first sense it is used, as here, to indicate a set of n words that occur sequentially in a text. In the second sense it is
used to indicate a sequence of n characters that occurs in a text, and that may be part of a word or of a sequence
of two or more words occurring contiguously. The latter sense is typical of the literature on indexing noisy texts,
such as those resulting from OCR, or texts in Asian languages, and will not be dealt with here.
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concludes.

2 Text categorization

Text categorization (also known as text classification, or topic spotting) is the activity of auto-
matically building, by means of machine learning (ML) techniques, automatic text classifiers, i.e.
programs capable of labelling natural language texts with thematic categories from a predefined
set C = {c1, . . . , cm}. A frequently used approach to building a text classifier for categories
C = {c1, . . . , cm} is that of building m independent classifiers, each capable of deciding whether
a given document dj should or should not be classified under category ci, for i ∈ {1, . . . , m}2.
This process requires the availability of a corpus Co = {d′1, . . . , d

′

s} of manually preclassified
documents3, i.e. documents such that for all i ∈ {1, . . . , m} and for all j ∈ {1, . . . , s} it is known
whether d′j ∈ ci or not. A general inductive process (called the learner) automatically builds a clas-
sifier for category ci by learning the characteristics of ci from a training set Tr = {d′1, . . . , d

′

g} ⊂ Co

of documents. Once a classifier has been built, its effectiveness (i.e. its capability to take the right
categorization decisions) may be tested by applying it to the test set Te = {d′g+1, . . . , d

′

s} = Co−Tr

and checking the degree of correspondence between the decisions of the automatic classifier and
those encoded in the corpus.

2.1 Feature selection

Many classifier induction methods are computationally hard, and their computational cost is a
function of the length of the vectors that represent the documents. It is thus of key importance
to be able to work with vectors shorter than r (the number of words that occur at least once
in the document collection), which is usually a number in the tens of thousands or more. For
this, feature selection techniques are used to select, from the original set of r features, a subset of
r′ ≪ r features that are most useful for compactly representing the meaning of the documents;
the value ρ = r−r′

r
is called the reduction factor. Usually, these techniques consist in scoring each

feature by means of a feature evaluation function (FEF) and then selecting the r′ features with
the highest score. Often, feature selection is also beneficial in that it tends to reduce overfitting,
i.e. the phenomenon by which a classifier tends to be better at classifying the data it has been
trained on than at classifying other data.

Many functions, mostly from the tradition of decision or information theory, have been used
as FEFs in TC [17, 22, 32]; some which are of interest to the present work are illustrated in
Table 1. In the third column of this table, probabilities are interpreted on an event space of
documents (e.g. P (tk, ci) indicates the probability that, for a random document x, feature tk does
not occur in x and x belongs to category ci), and are estimated by counting occurrences in the
training set. In Table 1 the χ2 and OR functions are specified “locally” to a specific category ci;
in order to assess the value of a feature tk in a “global”, category-independent sense, either their
weighted average favg(tk) =

∑m
i=1 P (ci)f(tk, ci) or the maximum fmax(tk) = maxm

i=1 f(tk, ci) of
their category-specific values are usually computed.

3 A definition of n-grams

We start by precisely characterizing what we mean by statistical phrases. The same definition has
been used in a number of IR contexts (e.g. [2, 21]), but never in the case of TC (see Section 7 for
a detailed discussion).

2In this paper we make the general assumption that a document dj can in principle belong to zero, one or
many of the categories in C; this assumption is indeed verified in the Reuters-21578 benchmark we use for our
experiments. All the techniques we discuss in this paper can be straightforwardly adapted to the other case in
which each document belongs to exactly one category.

3In the following we use variables d1, d2, . . . to indicate generic documents and variables d′
1
, d′

2
, . . . to indicate

preclassified documents.
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Function Denoted by Mathematical form

Document Frequency DF (tk) P (tk)

Information Gain IG(tk)
∑

t∈{tk,tk}

m
∑

i=1

P (t, ci) log
P (t, ci)

P (ci) · P (t)

Chi-square χ2(tk, ci)
g · [P (tk, ci) · P (tk, ci) − P (tk, ci) · P (tk, ci)]

2

P (tk) · P (tk) · P (ci) · P (ci)

Odds Ratio OR(tk, ci)
P (tk|ci) · (1 − P (tk|ci))

(1 − P (tk|ci)) · P (tk|ci)

Table 1: Some feature evaluation functions used in the literature. In the χ2(tk, ci) formula g is
the cardinality of the training set.

Definition 1 A 1-gram (or unigram) is a word stem. An n-gram is an alphabetically ordered
sequence tk of n unigrams. We say that an n-gram tk occurs in a document dj when a sequence
of words appears in dj that, after stop word removal and stemming, consists of a permutation of
tk.

For instance, inform retriev is a 2-gram (or bigram); among its possible occurrences in a text are
the expressions

(a) information retrieval

(b) retrieval of information

(c)* informative retrieval

(d) retrieved information

(e) retrieving information

(f) retrieves information

(g) Retrieve information!

(h)* He informs the retriever

Note that, as evident from all these examples, stop word removal, stemming, and alphabetical
ordering have the effect of factoring out from the notion of n-gram a number of morphological,
syntactic, and semantic variations. As for morphosyntactic variations, note that noun phrases
(expressions (a) to (d)), verb phrases (expressions (e) and (f)) and full sentences (expressions (g)
and (h)) can all be occurrences of the same n-gram. As for semantic variations, note that noun
phrases with different meanings, as is the case for (a) and (d), can also give rise to the same
n-gram. Defining n-grams this way is based on the hypothesis that various syntactic expressions
may convey the same concept, and is thus to be seen as a form of conflation. As for other types of
conflation, the generalization we perform by means of n-grams has its problems too. In particular,
n-grams as defined here suffer from

• over-generalization: this may be seen from the fact that examples (c) and (h) do not refer
to the same concept as the other examples;

• under-generalization: this may be seen from the fact that an expression such as retrieving in-

teresting information arguably refers to the same concept as example (e) but is not recognized
as such.

Note also that, quite obviously, the mere contiguous occurrence of two words in a text does not
guarantee that they refer to a complex concept. For instance, the text

What is recursion? It is what was illustrated in the dialogue Little Harmonic Labyrinth:

nesting, and variations on nesting.
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contains the bigrams illustrat recur, dialog illustrat, dialog harmon, harmon labyrinth, labyrinth nest,
and nest var. Arguably, none of these conveys an articulated concept. It is then clear that the
use of n-grams for indexing purposes is possible only in the presence of a method for filtering
interesting n-grams from non-interesting ones.

Filtering is also necessary because the number of different n-grams that occur at least once in
a collection is too high. In fact, while the number of α-gram occurrences increases linearly (for
any occurrence of a α-gram there are 2 occurrences of a (α + 1)-gram), the number of different
α-grams increases much more, since the average (α + 1)-gram occurs much less frequently than
the average α-gram.

There are many possible filters, most of which are based on frequency considerations. This is
not surprising, since we may expect an interesting bigram such as inform retriev to have different
occurrence patters from an uninteresting, “occasional” bigram such as illustrat recur.

4 A classifier-independent evaluation of the usefulness of

statistical phrases in text categorization

Our method of establishing the usefulness of n-grams for TC purposes consists in generating all
α-grams (for α = 1, . . . , n) that occur in a corpus of documents, score each of them by means of
a FEF of the type discussed in Section 2.1, and rank them according to the score received. The
proportion of n-grams that appear at the top of this ranked list will then constitute an indication
of the potential usefulness of n-grams for text categorization.

In order to be more precise we introduce the notion of penetration level of n-grams.

Definition 2 Let Tr be a training set of documents and r be the number of different unigrams
that occur in it. We define the penetration level πf

ρ (n) of n-grams for FEF f at reduction factor
ρ as the fraction of the r′ = r(1− ρ) top (according to f) α-grams (α = 1, . . . , n) of Tr for which
α = n.

The purpose of this definition is best described by an example. Suppose that there are 10,000
different unigrams in our training set Tr. If we had to perform feature selection by applying a FEF
f to these 10,000 unigrams with reduction factor .90, we would obtain the 1,000 unigrams that
f considers the most valuable. Suppose that there are 120,000 different bigrams in Tr. In order
to compute the penetration level π

f
.90(2) we apply f to each of the 130,000 α-grams (α = 1, 2)

and check how many of the top 1,000 α-grams are actually bigrams. The higher π
f
.90(2) is, the

more valuable bigrams prospectively look, and the more worthwhile it looks to extract them. Or,
at least, worthwhile according to our chosen FEF f and for the reduction factor ρ chosen. If we
repeat the same experiment for different FEFs fi and different reduction factors ρj , by averaging
the results in some way we can get a fairly clear picture of how promising bigrams look for TC
purposes, and we do so without invoking even a single learning algorithm, which means that our
results are arguably going to be valid regardless of the specific learning algorithm chosen. This
method is, of course, applicable for any value of n.

4.1 Pros and cons of this approach

Before moving to the discussion of the experimental results we have obtained, we should remark
that this is not the only approach to the evaluation of n-grams for TC. A possible alternative
approach consists in generating only a subset of prospectively good n-grams (i.e. n-grams selected
according to a particular statistical filter [2, 4, 21] or heuristics [6, 11, 23]), using them in document
indexing, and checking the difference in effectiveness that a given classifier exhibits with respect
to the standard “bag of words” case.

This latter method has no doubt the advantage of a better computational efficiency; for in-
stance, a heuristics according to which we generate all and only the n-grams that are composed of
“valuable” unigrams and/or have certain frequency characteristics, allows to substantially reduce
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the computation time needed to generate the n-grams, and completely avoids the computation
time needed to score them. For many practical applications this may even be the only feasible
method.

The drawback of this method, though, is that the experimental results thus obtained are going
to be dependent (i) on the chosen heuristics and (ii) on the chosen classifier learning algorithm.
The method we have chosen abstracts away from both aspects. While Point (ii) needs no further
discussion, concerning Point (i) we want to emphasize that

1. our method relies not on generic heuristics, but on FEFs that are both well-studied and
well-founded on statistical and information theory;

2. our method relies on the application of a whole range of FEFs, so as to obtain results that
are not biased towards one or the other FEF.

In a sense, the real object of this work is not using n-grams in a particular TC application, and
hence devising an efficient algorithm for extracting them. This work is more foundational in
nature, as we want instead to assess whether, in principle, n-grams are prospectively interesting
for TC applications so that it might be worth to devise such an algorithm. For this purpose, it
is clear that we need to analyze all n-grams, and not just those that are generated by a selective
heuristics. For the same reason, we need to perform this analysis in the most general possible way,
that is, without reference to specific learning algorithms and with reference to the widest possible
spectrum of FEFs.

5 “Indirect” experiments

We have performed a number of experiments in order to test the usefulness of n-grams for TC
according to the above-mentioned learner-independent method. The experiments reported in this
paper are limited to the case of n = 2, since the investigation of the n ≥ 3 case might be worthwhile
only after bigrams have unequivocably proven useful.

5.1 Experimental setting

For our experiments we have used the “Reuters-21578, Distribution 1.0” corpus, as it is currently
the most widely used benchmark in text categorization research4. Reuters-21578 consists of a
set of 12,902 news stories, partitioned (according to the “ModApté” split we have adopted) into
a training set of 9,603 documents and a test set of 3,299 documents. The documents have an
average length of 211 words (that become 117 after stop word removal) and are labelled by 118
categories; the average number of categories per document is 1.08, ranging from a minimum of 0
to a maximum of 16. The number of positive examples per category ranges from a minimum of
1 to a maximum of 3964. According to Definition 1, Reuters-21578 contains 17,439 unigrams and
250,059 bigrams, for a total of 267,498 “uni+bigrams”.

We have run our experiments on the set of 115 categories with at least 1 training example,
rather than on other smaller, more commonly used subsets of it. The full set of 115 categories is
“harder”, since it includes categories with very few positive instances for which inducing reliable
classifiers is obviously a haphazard task5.

In all the experiments discussed in this paper, stop words have been removed using the stop
list provided in [19, pages 117–118]. Punctuation has been removed and all letters have been
converted to lowercase; no stemming and number removal have been performed.

4The Reuters-21578 corpus may be freely downloaded for experimentation purposes from
http://www.research.att.com/~lewis/reuters21578.html

5See [13] for a discussion on why this is the “right” subset of Reuters-21578 categories to use.

7



.000

.100

.200

.300

.400

.500

.600

.700

.800

.900

1.000

.441 .470 .498 .527 .556 .584 .613 .642 .670 .699 .728 .756 .785 .814 .842 .871 .900 .928 .957 .986

 DF(avg)

 IG

ChiSquare(avg)

ChiSquare(max)

OddsRatio(avg)

OddsRatio(max)

5.2 Experimental results

Figure 1 displays the results of computing penetration levels for bigrams by applying the four
FEFs described in Table 1 with varying reduction factors; χ2 and OR have been tested in both
their avg and max variants. We have chosen these FEFs as they have turned out to be the best
performers in the thorough comparative experiments of [22, 32].

Figure 1: Penetration level for 2-grams computed for different FEFs at different reduction factors.

Table 2 lists, for a set of features ϕf
ρ selected by FEF f with reduction factor ρ,

1. the values AvgScore(ϕf
ρ), representing the average score attributed by f to a feature tk ∈ ϕf

ρ ;

2. the values AvgDF (ϕf
ρ), representing the average number of documents in which a feature

tk ∈ ϕf
ρ occurs;

3. the values AvgCF (ϕf
ρ), representing the average number of categories that contain at least

a document in which a feature tk ∈ ϕf
ρ occurs.

Each entry of Table 2 includes the value for the case of unigrams (upper row), for the case of
uni+bigrams (lower row), and the increase obtained in switching from the former case to the
latter. In order to correctly interpret the results, note that in each entry the values for the
unigrams and the uni+bigrams cases are obtained by using the same number of features. For
instance, to interpret the first row of results one should note that reducing the set of 17,439
unigrams by a ρ = .70 reduction factor yields 5,232 features, which is the same number of features
obtained by reducing the set of 267,498 uni+bigrams by a ρ = .9805 reduction factor (this is why
we will often speak the .70/.9805 reduction factor).

From Figure 1 it is immediately evident that, for all FEFs f , the penetration level πf
ρ (2) is

a decreasing function of the reduction factor ρ. This is not surprising. In fact, suppose Ux and
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FEF ρ AvgScore(ϕf
ρ) AvgDF (ϕf

ρ) AvgCF (ϕf
ρ)

DF .70 80.393 80.393 14.751
DF 9805 118.498 (+47.4%) 118.498 (+47.4%) 19.937 (+35.2%)
DF .80 116.861 116.861 19.783
DF .9870 164.113 (+40.4%) 164.113 (+40.4%) 24.247 (+22.6%)
DF .90 214.195 214.195 30.096
DF .9935 281.220 (+31.3%) 281.220 (+31.3%) 32.795 (+9.0%)

IG .70 -2.907 80.037 14.653
IG 9805 -2.903 (-0.1%) 114.478 (+43.0%) 18.873 (+28.8%)
IG .80 -2.904 115.996 19.506
IG .9870 -2.900 (-0.2%) 157.681 (+35.9%) 22.345 (+14.6%)
IG .90 -2.898 210.065 28.886
IG .9935 -2.893 (-0.2%) 264.287 (+25.8%) 29.073 (+0.6%)

χ2
avg .70 12.516 78.922 13.759

χ2
avg 9805 23.373 (+86.7%) 109.367 (+38.6%) 15.476 (+12.5%)

χ2
avg .80 17.521 113.975 18.161

χ2
avg .9870 31.339 (+78.9%) 150.118 (+31.7%) 18.646 (+2.7%)

χ2
avg .90 30.559 204.378 26.747

χ2
avg .9935 51.497 (+68.5%) 251.638 (+23.1%) 24.763 (-7.4%)

χ2
max .70 323.592 63.427 10.028

χ2
max 9805 1805.572 (+458.0%) 14.025 (-77.9%) 3.062 (-69.5%)

χ2
max .80 441.239 73.628 10.141

χ2
max .9870 2183.591 (+394.9%) 14.884 (-79.8%) 2.999 (-70.4%)

χ2
max .90 713.364 73.645 9.212

χ2
max .9935 2936.242 (+311.6%) 16.622 (-77.4%) 2.631 (-71.4%)

ORavg .70 2.980 22.825 3.321
ORavg 9805 8.257 (+177.0%) 16.919 (-25.9%) 1.961 (-40.9%)
ORavg .80 3.695 17.923 2.915
ORavg .9870 10.801 (+192.3%) 22.373 (+24.8%) 2.056 (-29.5%)
ORavg .90 5.506 24.107 2.990
ORavg .9935 17.721 (+221.9%) 34.618 (+43.6%) 2.052 (-31.4%)

ORmax .70 411.681 18.826 6.498
ORmax .9805 4003.307 (+872.4%) 5.339 (-71.6%) 2.799 (-56.9%)
ORmax .80 575.073 15.278 5.823
ORmax .9870 5217.889 (+907.3%) 5.113 (-66.5%) 2.464 (-57.7%)
ORmax .90 982.787 12.660 5.062
ORmax .9935 7583.538 (+671.6%) 3.812 (-69.9%) 1.963 (-61.2%)

Table 2: Values for AvgScore(ϕf
ρ), AvgDF (ϕf

ρ) and AvgCF (ϕf
ρ) computed for various FEFs f

at different reduction factors ρ. Every entry lists the score for the unigrams case (upper row), for
the uni+bigrams case (lower row), and the percentage increase between the former and the latter.
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Bx are the numbers of unigrams and bigrams still available for selection after the x top-scoring
features have been selected, and suppose features are selected at random from Ux ∪ Bx. If a
unigram is selected as the (x + 1)-th feature, this causes a decrease in the odds for Ux (denoted

as P (Ux)
P (Bx) ) much larger in magnitude than the increase in the same odds caused by the selection

of a bigram, since Ux is much smaller than Bx. This means that, on average, these odds tend to
decrease with x, which means that the proportion of bigrams in the set of the top x features tends
to grow with x.

Also, from Figure 1 it is evident that the six FEFs we have studied may be partitioned in
two groups (Group 1, consisting of {DF , IG, χ2

avg}, and Group 2, consisting of {χ2
max, ORavg,

ORmax}) of FEFs that display a very similar behaviour, with the FEFs of Group 2 displaying
much higher penetration levels than those of Group 1. Incidentally, this also confirms one results of
Yang and Pedersen [32], who in an experiment involving unigrams only and two different collections
had shown DF and IG to be highly correlated, and had conjectured that this pattern was general
rather than corpus-dependent.

The third observation is that penetration levels are indeed high! If we define bigrams as in
Definition 2, many of them have statistical characteristics that, according to the FEFs we have
employed, make them preferable to many of the unigrams rated high by the same FEFs. This
means that, if we trust that our FEFs give a faithful picture of the value of a feature, it looks that
bigrams may substantially improve the overall value of the indexing language used.

The results listed in the first column of Table 2 clearly show that the FEFs that achieve high
penetration levels (see Figure 1) also achieve a high increase in AvgScore(ϕf

ρ). This would seem
to confirm that penetration levels are indeed a reasonable way to compute the contribution of
n-grams to the overall quality of a feature set.

6 “Direct” experiments

Following this learner-independent study, we have performed a number of “direct” experiments
aimed at assessing whether an increase in the overall quality of the indexing language, as measured
by the above-mentioned criteria, also results in an increase in classification effectiveness.

6.1 Evaluation methodology

In the experiments that follow, classification effectiveness has been measured in terms of the classic
IR notions of precision (Pr) and recall (Re) adapted to the case of document categorization.
Precision wrt ci (Pri) is defined as the probability that if a random document dx is categorized
under ci (i.e. it is deemed a positive example of ci), this decision is correct (i.e. it is a true positive
for ci). In what follows, TP , TN , FP and FN will denote the numbers of true positives, true
negatives, false positives, and false negatives, respectively. Recall wrt ci (Rei) is instead defined
as the probability that, if a random document dx ought to be categorized under ci, this decision is
taken. Estimates of Pri and Rei (indicated by P̂ ri and R̂ei) may be obtained in the obvious way
by counting occurrences on the test set. These category-relative values may in turn be averaged
to obtain P̂ r and R̂e, i.e. values global to the whole category set C, according to two alternative
methods:

• microaveraging (indicated by the “µ” superscript): P̂ r and R̂e are obtained by globally
summing over all individual decisions, i.e.:

P̂ r
µ

=
TP

TP + FP
=

∑m
i=1 TPi

∑m
i=1(TPi + FPi)

R̂e
µ

=
TP

TP + FN
=

∑m
i=1 TPi

∑m
i=1(TPi + FNi)

10



• macroaveraging (indicated by the “M” superscript): precision and recall are first evaluated
“locally” for each category, and then “globally” by averaging over the results of the different
categories, i.e.:

P̂ r
M

=

m
∑

i=1

Pri

m
=

m
∑

i=1

TPi

TPi + FPi

m

R̂e
M

=

m
∑

i=1

Rei

m
=

m
∑

i=1

TPi

TPi + FNi

m

Whether microaveraging or macroaveraging is the “right” measure to use depends on the applica-
tion. In our experiments we have thus evaluated both.

As a measure of effectiveness that combines the contributions of both P̂ r and R̂e, we have used
the well-known Fβ function, defined as

Fβ =
(β2 + 1) · P̂ r · R̂e

β2 · P̂ r + R̂e

with 0 ≤ β ≤ +∞. Similarly to most other researchers we have used the parameter value β = 1,
which places equal emphasis on P̂ r and R̂e.

6.2 Experimental results

Table 3 compares the effectiveness of unigrams and uni+bigrams on a linear classifier induced
according to the Rocchio method, for the four FEFs of Table 1 and for different reduction factors.
The Rocchio parameters have been set to β = 16 and γ = 4 (see [28, Section 6.6] for a full
discussion of the Rocchio method). Feature weighting has been done by means of the standard
“ltc” variant of the tfidf function, i.e.

tfidf(tk, dj) = tf(tk, dj) · log
|Tr|

#Tr(tk)

where #Tr(tk) denotes the number of documents in Tr in which tk occurs at least once and

tf(tk, dj) =

{

1 + log #(tk, dj) if #(tk, dj) > 0
0 otherwise.

where #(tk, dj) denotes the number of times tk occurs in dj . Weights have been further normalized
by cosine normalization, i.e.

wkj =
tfidf(tk, dj)

√

∑r′

s=1 tfidf(ts, dj)2

where r′ is the set of features resulting from feature selection.
The conventions used in the formatting of Table 3 are similar to those discussed for Table 2.

In particular, we recall that every entry describes the performance of the Rocchio classifier on a
unigram representation (upper row) and on a uni+bigram representation (lower row), where these
representations use the same number of features; this ultimately means that the value of bigrams
for our TC purposes can be measured by how often the second sub-row reports a better result
than the first, and by the magnitude of these improvements.

The results of Table 3 show that an increase in the value of AvgScore(ϕf
ρ) as a result of the

insertion of high-scoring bigrams in the feature set, does not always contribute to the categorization
effectiveness of the Rocchio classifier: 20 out of 48 cases witness an improvement in effectiveness,
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while in the other 28 cases we actually have a loss in performance. Moreover, when bigrams
bring about a performance improvement, this is seldom significant (the best improvement is 2.8%,
obtained for FM

1 with χ2
max and ρ = .60). Conversely, when bigrams cause a deterioration in

performance, this is often very significant (the worst deterioration is 35.1%, obtained for F
µ
1 with

ORmax and ρ = .70). All this is in some sense unexpected, as the results of Figure 1 and Table 2
would seem to indicate that, particularly when penetration levels and increases in AvgScore(ϕf

ρ)
are high, the overall “quality” of the feature set increases.

Improvements are evenly distributed in the microaveraged and macroaveraged cases. Rather,
we may observe that:

1. improvements are achieved more often for low than for high reduction factors. For instance,
a reduction factor of .60/.9740 often tends to be associated to performance gains, while a
reduction factor of .90/.9870 almost invariably brings about effectiveness losses.

2. the loss in effectiveness introduced by bigrams is higher for those FEFs that have achieved
high penetration levels. For instance, the cases in which bigrams improve performance are
obtained for IG (7 out of 8 cases), DF (5 out of 8), and χ2

avg (5 out of 8); these are the FEFs
of Group 1, i.e. the ones that had yielded the smallest penetration levels (Figure 1) and the
smallest increases in AvgScore(ϕf

ρ) (Table 2). Conversely, the FEFs that had produced high

penetration levels and increases in AvgScore(ϕf
ρ) (i.e. those of Group 2) perform badly, as

in the case of χ2
max (3 out of 8), or even disastrously, as in the case of ORavg and ORmax

(both achieve 0 out of 8).

3. increases in the values of AvgDF (ϕf
ρ) and AvgCF (ϕf

ρ) (Table 2) seem to be associated with
an increase in performance, although this is not a definitely clear pattern.

These observations (especially 1 and 2) seem to indicate that an excessive use of bigrams at the
expense of unigrams may be detrimental to effectiveness, even if the value of AvgScore(ϕf

ρ) is
increased by letting bigrams in. This may indicate that important unigrams are pushed out of
the top set by bigrams that somehow “duplicate” the information carried by existing unigrams.
For instance, inform retriev, inform and retriev may all be selected for the top set, with inform

retriev pushing out a unigram that is quite unrelated to all other remaining features. This is a
consequence of the reductionistic nature of the “filtering” approach to feature selection, i.e. the
fact that a feature is evaluated independently of all other features. In principle, a better approach
would be the “wrapper” approach to feature selection [14], whereby feature subsets are evaluated
globally. However, this approach is impractical in TC, since it is computationally infeasible when
the set of features to choose from is large.

Besides eliminating potentially informative unigrams, the selection of too many bigrams has the
further drawback that it increases the pairwise stochastic dependence between features, a situation
which is at odds with the principles underlying most text classifiers currently used (including
Rocchio). There are methods designed to handle such situations, e.g. maximum entropy [16].
Maximum entropy combines feature selection with a classifier, somewhat similarly to Bayesian
methods. When confronted with words that co-occur frequently (a situation that can be the
effect of the above-mentioned “duplication”), maximum entropy avoids the conclusion that this
co-occurrence is a significant predictor of class memebership. However, [16, 24] have reported
mixed performance of maximum entropy when used in practical applications. While in some
domains an improvement has been reported with respect to Bayesian classifiers, in some others a
deterioration in classification accuracy has been noted [24]. Kantor and Lee [16] report similarly
mixed results on an information retrieval task.

7 Related work

Phrase indexing is closely related to the problem of automatic term recognition (ATR) in terminol-
ogy, a subfield of computational linguistics that investigates the identification and extraction from

12



FEF ρ Reµ Prµ F
µ
1

ReM PrM F M
1

DF .60 .674 .778 .723 .521 .678 .589
DF .9740 .683 .788 .732 .530 .688 .599
DF .70 .674 .778 .723 .522 .679 .590
DF .9805 .683 .788 .732 .525 .679 .592
DF .80 .680 .785 .728 .528 .683 .595
DF .9870 .681 .785 .729 .512 .651 .573
DF .90 .686 .791 .734 .524 .670 .588
DF .9935 .669 .772 .717 .493 .616 .548

IG .60 .674 .777 .722 .520 .679 .589
IG .9740 .684 .789 .732 .532 .680 .597
IG .70 .676 .780 .724 .526 .683 .594
IG .9805 .684 .789 .733 .532 .682 .598
IG .80 .680 .785 .728 .527 .684 .595
IG .9870 .685 .790 .733 .536 .685 .601
IG .90 .688 .793 .737 .531 .680 .597
IG .9935 .682 .788 .731 .534 .697 .604

χ2
avg .60 .674 .778 .722 .520 .680 .590

χ2
avg .9740 .686 .791 .734 .538 .693 .606

χ2
avg .70 .676 .780 .724 .522 .680 .591

χ2
avg .9805 .686 .792 .735 .538 .695 .606

χ2
avg .80 .681 .786 .730 .534 .690 .602

χ2
avg .9870 .685 .790 .734 .520 .679 .589

χ2
avg .90 .688 .794 .737 .537 .700 .608

χ2
avg .9935 .674 .778 .722 .495 .622 .551

χ2
max .60 .676 .780 .725 .518 .676 .587

χ2
max .9740 .679 .788 .729 .537 .691 .604

χ2
max .70 .678 .783 .727 .520 .679 .589

χ2
max .9805 .658 .768 .708 .528 .688 .598

χ2
max .80 .683 .788 .732 .525 .686 .595

χ2
max .9870 .619 .748 .677 .513 .675 .583

χ2
max .90 .682 .787 .731 .530 .692 .600

χ2
max .9935 .507 .621 .558 .445 .653 .529

ORavg .60 .667 .770 .715 .518 .673 .585
ORavg .9740 .608 .711 .655 .486 .697 .573
ORavg .70 .652 .753 .699 .512 .675 .582
ORavg .9805 .583 .693 .633 .449 .661 .535
ORavg .80 .631 .731 .677 .483 .661 .558
ORavg .9870 .566 .692 .623 .437 .641 .520
ORavg .90 .607 .725 .661 .470 .650 .546
ORavg .9935 .549 .671 .604 .401 .654 .497

ORmax .60 .627 .723 .671 .514 .663 .579
ORmax .9740 .414 .483 .446 .422 .593 .493
ORmax .70 .618 .713 .662 .524 .684 .594
ORmax .9805 .387 .484 .430 .410 .597 .486
ORmax .80 .565 .655 .607 .490 .665 .564
ORmax .9870 .337 .470 .392 .365 .621 .460
ORmax .90 .460 .538 .496 .449 .644 .529
ORmax .9935 .261 .666 .375 .264 .733 .388

Table 3: Comparison between the unigram and the uni+bigram effectiveness of a Rocchio classifier
for different FEFs and different reduction factors.
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texts of linguistic units which characterise specialised domains. In their review of ATR research,
Kageura and Umino [15] draw a distinction between research that emphasizes “unithood” (i.e.
the fact that a given linguistic expression qualifies as a “term” from a syntactic point of view)
and research that instead emphasizes “termhood” (i.e. the fact that a given linguistic expression
qualifies as a “term” from a semantic point of view). The distinction we have drawn between
syntactic and statistical phrases for use in IR and TC is very similar.

7.1 Related work in information retrieval

Work on the use of either syntactic or statistical phrases in IR dates back to the early ’70s (see [7]
for a review of this early work). However, it was not until Fagan’s work [7, 8] that thorough
experimental comparison between standard indexing, syntactic phrase indexing and statistical
phrase indexing was performed. In his experiments Fagan found syntactic phrases to yield very
small effectiveness improvements, notwithstanding the fact that a sophisticated linguistic technique
had been employed for phrase extraction. More importantly, he also found that statistical phrases
obtained by a simple method improved performance a lot more than the syntactic phrases.

Lewis and Croft [20] investigated the idea of extracting syntactic phrases and then clustering
them in order to endow the resulting indexing language with better statistical properties, but this
did not result in significant effectiveness improvements.

Mitra et al. [21] investigated the impact of both syntactic and statistical phrases in IR. Their
research showed that the difference in effectiveness between the two is almost negligible, and that
there is a significant overlap between the sets of phrases identified by the two methods (41%
of the union of the two sets is in their intersection). They also showed that phrase indexing
gives little benefits at low recall levels, but the benefits tend to increase at high recall levels.
This is an important observation for TC applications, since in TC the recall level is usually a
parameter learnt on a validation set; this means that if phrases are used, in TC the recall level
that maximizes overall performance is automatically chosen by the system. The statistical phrases
of [21] are exactly equivalent to our bigrams (they do not consider n-grams for n ≥ 3), with the
only difference that an empirical statistical filter is used in place of our FEFs (i.e. only bigrams
occurring in more that 25 documents are considered).

The results of [21] concerning statistical phrases have essentially been confirmed by a later
study by Turpin and Moffat [30], who have also tried to use non-alphabetically-ordered phrases
without obtaining substantially different results.

7.2 Related work in text categorization

While quite a few researchers have investigated the usefulness of phrase indexing for IR purposes,
relatively few have done the same in a TC context. A number of researchers, although using
syntactic [10, 31] or statistical [1, 25, 26, 27] phrases for TC purposes, do not provide explicit
comparisons between performance with and without phrases.

7.2.1 Syntactic phrases

Lewis [18, 19] has been the first to study the effects of syntactic phrase indexing in a TC context. He
reported that, in the context of a Näıve Bayes classifier, this yields significantly lower effectiveness
than standard “set-of-words” indexing, regardless of whether the syntactic phrases are successively
clustered (similarly to [20]) or not. It has to be remarked, though, that Lewis’ phrase indexing
language consisted of phrases only; this is different from most other works (including the present
one), in which the indexing language includes both unigrams and phrases.

Dumais et al. [5] reported no benefit at all from the use of syntactic phrases with a variety of
text classifiers in the context of Reuters-21578 experimentation.

Fürnkranz et al. [12] showed that syntactic phrases yield precision improvements at low recall
levels, somehow confirming the results obtained by Mitra et al. [21] in an IR context.
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7.2.2 Statistical phrases

Mladenić and Grobelnik [23] have extracted n-grams of length up to 5 by means of a fast (although
incomplete) algorithm that relies on document frequency as a statistical filter. On a Näıve Bayes
classifier applied to a corpus of Web pages they have found that n-grams of length up to 4 give
significant benefits with respect to the single words case, while 5-grams do not provide additional
benefit.

Fürnkranz [11] uses an algorithm similar to that of [23] to extract n-grams of length up to 5.
On Reuters-21578 he has found that Ripper [3] has a significant improvement in performance when
n-grams of length up to 2 are used, but that longer n-grams reduce classification performance; on
another dataset of Usenet newsgroup articles he instead found also 3-grams to have some utility,
whereas the negative contribution of larger n-grams was confirmed.

8 Conclusion

We have investigated the usefulness of bigrams in text categorization by first performing a learner-
independent study and then assessing whether the indications of this study were confirmed by real
text categorization experiments. Although our experiments have been restricted to bigrams, the
methodology we have employed can be used for general n-grams. The learner-independent study
has shown that feature evaluation functions routinely used in text categorization experiments tend
to score many bigrams higher than unigrams that they would themselves select in unigram-only
feature selection tasks, sometimes giving rise to high bigram “penetration levels”. This would seem
to indicate that there is value added in using an indexing language that also contains bigrams.

Our hypothesis that a high bigram penetration level were conducive to improving effectiveness
was not confirmed. In particular, our experiments have shown that if the feature evaluation
function being used gives rise to a too high bigram penetration level, effectiveness may decrease.
It is easy to conjecture that this is due to the elimination of informative unigrams on the part
of bigrams that partly duplicate the information carried by existing unigrams. We think that
the issue of information duplication as a result of bigram insertion is central to understanding
why significant bigram penetration levels do not result in classifier effectiveness improvements.
The investigation of ways to avoid this duplication is the main direction along which we plan to
continue our work.

We think that this approach sheds some light on the role of bigrams in TC, a role that in
previously published experiments had been clouded by learner-dependent issues.

Further, we remark that this study uses a definition of n-grams that is standard in IR contexts
and, nevertheless, has never been evaluated in TC experiments. In fact, one difference between the
experiments in [11, 23] and our experiment, apart from the obvious issue of learner-independence,
is that [11, 23] used no stemming and no alphabetical ordering. This is an important difference
since, as discussed in Section 3, stemming and alphabetical ordering allow to factor out a significant
number of morphological, syntactic and semantic differences between linguistic expressions. The
comparison between their experiments, which have uniformly shown effectiveness improvements,
and our own, which have produced more mixed results, might induce one to believe that stemming
and alphabetical ordering should be avoided in bigram extraction. However, we remark that
another difference between our research and all other works discussed in this section (including
the one of [11, 23]) is that, in comparing the effectiveness deriving from standard indexing with
that deriving from phrase indexing, we keep the number of features fixed (i.e. bigrams substitute
some unigrams in the representations) while in all other works this is not the case (i.e. bigrams
are added to the unigrams in the representation). It might be the case that if we too had worked
by addition, rather than by substitution, effectiveness would have uniformly improved. We have
chosen to work by substitution because, unlike in IR, in TC the dimensionality of the feature space
is an important parameter (see Section 2.1), and because of this any comparison between different
representation schemes is significant only if the numbers of features used are the same.
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