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ABSTRACT NF-E2-related factor 2 (Nrf2) is a basic
leucine zipper transcription factor that binds to the
promoter sequence “antioxidant responsive element
(ARE)” leading to coordinated up-regulation of ARE-
driven detoxification and antioxidant genes. Since the
expression of a wide array of antioxidant and detoxifi-
cation genes are positively regulated by the ARE se-
quence, Nrf2 may serve as a master regulator of the
ARE-driven cellular defense system against oxidative
stress. In support of this, numerous studies have shown
that Nrf2 protects many cell types and organ systems
from a broad spectrum of toxic insults and disease
pathogenesis. This Nrf2-conferred, multi-organ protec-
tion phenomenon raises an interesting question about
how a single protein can protect many different organs
from various toxic insults. A possible molecular mech-
anism explaining this phenomenon is that Nrf2 protects
many different cell types by coordinately up-regulating
classic ARE-driven genes as well as cell type-specific
target genes that are required for the defense system of
each cell type in its unique environment. This hypoth-
esis is supported by microarray data indicating the
protective role of Nrf2 is conveyed through both known
ARE-driven genes and novel cell type-specific genes.
The widespread nature of Nrf2 may have an important
therapeutic potential, allowing prevention of carcino-
genesis and neurodegenerative diseases.—Lee, J.-M.,
Li, J., Johnson, D. A., Stein, T. D., Kraft, A. D., Calkins,
M. J., Jakel, R. J., Johnson, J. A. Nrf2, a multi-organ
protector? FASEB J. 19, 1061–1066 (2005)
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THE HYPOTHESIS

Many studies have reported that a basic leucine zipper
transcription factor, NF-E2-related factor 2 (Nrf2),
plays a critical role in protecting a variety of tissues
(lung, liver, kidney, stomach, small intestine, central
nervous system, splenocytes, macrophages, erythro-
cytes, and retinal epithelia) from a wide array of toxic
insults (carcinogens, electrophiles, reactive oxygen spe-
cies, diesel exhaust, inflammation, calcium distur-
bance, UV light, and cigarette smoke). To explain this
“single protein-conferred multi-organ protection phe-

nomenon,” we suggest a hypothesis that Nrf2 protects
various cell types by coordinately up-regulating not only
classic ARE-driven genes but also cell type-specific
protective genes essential for the basic defense system
of each cell type.

ARE AND Nrf2

Reactive oxygen species (ROS) and electrophiles cause
cellular damage leading to many diseases including
cancer, autoimmune disease, and neurodegenerative
disease; such toxic insults are normally detoxified by
phase II detoxification enzymes and antioxidant pro-
teins. Therefore, the cis-acting regulatory element “an-
tioxidant responsive element (ARE)” that transcription-
ally regulates genes encoding detoxification enzymes
and antioxidant proteins plays an important role in
cellular defense system. Enhancer sequences originally
were described in the rat glutathione S-transferase
(GST) -P (1), rat GST Ya (2), mouse GST Ya (3), rat
NAD(P)H:quinone oxidoreductase-1 (NQO1) (4), and
human NQO1 genes (5). Collectively, these studies
have identified a common pathway for ARE-driven
phase II detoxification gene induction; the underlying
ARE activation mechanism was further clarified by
investigation of Nrf2. Initially, Venugopal and Jaiswal
(6) and Itoh et al (7) implicated Nrf2 function in the
ARE-driven gene expression mechanism; subsequent
studies have revealed the molecular mechanism by
which Nrf2 is activated and participates in ARE-driven
gene expression. Briefly, Nrf2 is sequestered in the
cytoplasm by Keap1, and ARE activation signals (i.e.,
protein kinase pathways and electrophiles) disrupt
the Nrf2-Keap1 complex leading to nuclear translo-
cation of Nrf2. Upon activation, Nrf2 binds to ARE
sites in the promoter regions of many detoxification
and antioxidant genes, leading to the coordinate
up-regulation of downstream targets that boost cel-
lular detoxification processes and antioxidant poten-
tial (Fig. 1) (8 –16).
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MULTI-ORGAN PROTECTION BY THE Nrf2
PATHWAY

The function of Nrf2 and its downstream target genes
suggests that Nrf2 plays a central role in protecting cells
from ROS and electrophiles. In agreement with this
idea, numerous studies have shown that Nrf2 protects
multiple organs from various toxic insults.

Lung and liver

Nrf2 protects lung from butylated hydroxytoluene-
induced acute respiratory distress syndrome (17), hy-
peroxic injury (18), and bleomycin-mediated pulmo-
nary fibrosis (19) by increasing detoxification pathways
and antioxidant potentials. Recent study further dem-
onstrated that genetic ablation of Nrf2 enhanced sen-
sitivity to cigarette smoke-induced emphysema and
identified Nrf2-dependent antioxidant and cytoprotec-
tive genes using microarray technology (20). Nrf2 plays
a role in protecting liver, as evidenced by increased
sensitivity to acetaminophen-induced centrilobular
hepatocellular necrosis and hepatotoxicity (21, 22) as
well as increased levels of lipid peroxidation and DNA
damage in Nrf2�/� livers (23).

GI tract

Some studies have shown that Nrf2 protects GI tract
from carcinogenesis, implying a role for Nrf2 in cell
cycle regulation and cancer prevention. For example,
Nrf2�/� mice showed an increased burden of gastric
neoplasia after benzo[a]pyrene treatment compared
with Nrf2�/� mice; oltipraz significantly decreased
gastric tumors only in Nrf2�/� mice, implying that the
chemopreventive activity of oltipraz is dependent on
the Nrf2-ARE pathway (24). Further support for this
anti-carcinogenic effect is evidenced by an increased
DNA adduct formation in forestomach after benzo-
[a]pyrene administration in Nrf2�/� mice (25). Fi-
nally, an ARE-inducer, sulforaphane, is a potent bacte-
riostatic agent against Helicobacter pylori and blocks
benzo[a]pyrene-evoked forestomach tumors (26). This
chemopreventive effect of sulforaphane is not observed
in Nrf2�/� mice, suggesting Nrf2 dependency. Thus,
constitutive and inducible expression of phase II en-
zymes through the Nrf2-ARE pathway can modify the
susceptibility of GI tract to carcinogenesis.

Nervous system

The Nrf2-ARE pathway appears to contribute to neuro-
protection. First, activation of the Nrf2-ARE pathway by
tert-butylhydroquinone (tBHQ) protected neuroblas-
toma cells from oxidative glutamate toxicity (27) and
H2O2-induced apoptosis (28). Primary astrocytes and
neurons derived from Nrf2�/� mice were more sensi-
tive to oxidative damage, calcium disturbance, and
mitochondrial toxins than were wild-type cells (29, 30).
Overexpression of Nrf2 and small molecule-mediated
activation of the Nrf2-ARE pathway in astrocytes in-
creased resistance of neurons to non-excitotoxic gluta-
mate toxicity (31). Similarly, dominant negative-Nrf2
stable cells were more sensitive to NO-induced apopto-
sis, and siRNA-mediated knockdown of Nrf2-sensitized
neuroblastoma cells to NO-induced apoptosis (32).
Nrf2�/� mice are more susceptible to lesions produced
by the mitochondrial complex II inhibitors, and trans-
plantation of Nrf2-overexpressing astrocytes into the
striatum protects from malonate-induced lesions (33).
These data reinforce the pivotal role of the Nrf2-ARE
pathway in protecting nervous system.

Others

The protective effects of Nrf2 have proved indispens-
able in many other cell types as well. Phase II gene
induction by sulforaphane protected retinal pigment
epithelial cells from photooxidative damage (34), and
Nrf2 was important in protecting macrophages and
epithelial cells from diesel exhaust chemicals (35). In
addition, Nrf2 has been identified as a putative Lith 1
gallstone gene contributing to gallstone resistance (36)
and plays a role in wound healing/keratinocyte differ-
entiation (37, 38). Finally, Nrf2�/� mice develop lupus-
like autoimmune nephritis (39), systemic autoimmune

Figure 1. Cellular protection mechanism conferred by Nrf2-
ARE pathway.
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disease (23), hemolytic anemia (40), and splenomegaly
(23, 40).

Taken together, the studies outlined indicate that
Nrf2 protects many different types of organs and cells,
and begs an interesting question as to how a single
protein can protect multiple organs from an array of
different toxic insults.

PROTECTION MECHANISMS

Our hypothesis for Nrf2-conferred multi-organ protec-
tion phenomenon is that Nrf2 protects multiple tissues
by coordinately up-regulating classic ARE-driven detox-
ification and antioxidant genes as well as cell type-
specific targets that are required for basic defense in
each unique environment. Although the observed pro-
tective effects are primarily mediated by classic ARE-
driven genes, Nrf2-mediated, cell type-specific pathways
(other than classic detoxification and antioxidant
genes) may substantially contribute to protection of
each cell type. This hypothesis is supported by a series
of gene expression profiling experiments using oligo-
nucleotide microarrays for various tissues/cell types
(Table 1).

First, Thimmullappa et al. showed that many xeno-
biotic metabolizing enzymes, detoxification, and anti-
oxidant proteins were increased by Nrf2 in the small
intestine and suggested a pivotal role for Nrf2 in
modulating cellular defense against carcinogens and

toxins (41). Small intestine-selective Nrf2 target genes
identified by microarray experiments (epoxide hydro-
lase, aflatoxin aldehyde reductase, UGT, GSTs, and
multidrug resistance protein) indicate that Nrf2 pro-
tects the small intestine by coordinately regulating drug
metabolism enzymes in the GI tract, where xenobiotics
are absorbed primarily and processed. Considering the
basic function of the small intestine, these small intes-
tine-selective genes play a role in maintaining cellular
integrity of GI tract against xenobiotics.

Kwak et al. identified Nrf2-dependent, D3T (3H-1,2-
dithiol-3-thione) -inducible genes in liver (42). D3T
induced many chaperones and ubiquitin-proteasome
pathway genes in a Keap1-Nrf2-dependent manner.
Based on liver-selective Nrf2 target genes, the authors
expanded the role of the Nrf2-ARE pathway beyond its
primary functions into secondary protective effects
such as recognition and repair/removal of damaged
proteins (42). This finding indicates that Nrf2 plays an
important role in protecting hepatocytes and maintain-
ing hepatocyte function by up-regulating specific target
genes involved in recognition, detoxification, repair,
and removal of damaged proteins. Since these pro-
cesses might constantly occur during the xenobiotic
metabolism in liver, the Nrf2-ARE pathway is important
in supporting specialized hepatocyte functions.

DNA chip experiments have revealed that Nrf2 ba-
sally up-regulates many ARE-driven genes in primary
astrocytes and neurons. In addition to classical ARE-
driven genes (Table 1), these studies revealed that Nrf2

TABLE 1. Identification of classic Nrf2 target genes by microarray analysisa

Gene Fold change

Species Mouse Mouse Mouse Rat Rat Mouse Mouse Mouse

Cell type/gender
Small

intestine
Primary
astrocyte

Primary
neuronal

Primary
glial

Primary
neuronal

Liver/
male

Liver/
female

Spleen/
female

Reference (41) (30) (29) (43) (43) (23) (23) (23)

Nrf2 – 135.6 122.7 – – 140.6 118.8 121.0
NQO1 13.7 11.9 14.9 14.3 15.4 14.3 17.5 –
GST A4 (Ya) – 11.5 14.7 121.7 14.7 12.0 11.4 –
GST A2 (Yc2) – – – 117.6 18.8 12.6 – –
GST P1 – 11.3 – – – – – –
GST P2 – – – 13.4 12.4 – – –
GST mu 1 (8.7) 12.7 11.9 12.6 – – 12.7 11.7 –
GST mu 2 11.9 11.3 – – – 12.2 – –
GST mu 3 (9.3) 16.1 11.6 11.7 – – 13.6 12.4 11.2
GCLM – 11.3 – 113.0 15.1 – – –
GCLC – 11.9 11.3 – – 12.0 – –
HO-1 – 11.5 – 12.8 121.3 – – –
Malic enzyme 13.4 11.5 11.6 18.3 110.1 12.1 12.1 –
TXNRD1 – 11.7 – 12.6 13.4 11.4 – –
G6PDH 11.7 11.3 – – – – 12.0 –

a Primarily, RNA from Nrf2�/� and wild-type control mice (small intestine, primary astrocytes, primary neuronal, liver, and spleen) was
used for gene expression profiling. Rat glial and neuronal cells were used for overexpression of Nrf2 and identification of Nrf2 target genes.
Many classic Nrf2 target genes were identified by gene expression profiling experiments using oligonucleotide microarrays. Fold changes of Nrf2
target genes were obtained from the comparisons of 1) Nrf2�/� cells vs. Nrf2�/� cells (23, 29, 30, 41) and 2) Nrf2-overexpressed cell vs. vector
control (43). GCLM, glutamate-cysteine ligase modulatory subunit; GCLC, glutamate-cysteine ligase catalytic subunit; HO-1, heme
oxygenase-1; TXNRD1, thioredoxin reductase 1; and G6PD, glucose-6-phosphate dehydrogenase. –, Either not available or no change.
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regulates genes involved in the reducing potential and
immune/inflammation in astrocytes as well as calcium
homeostasis, growth factors, signaling molecules, and
receptors/channels in neuronal cultures (Table 2) (29,
30). Nrf2-regulated, astrocyte-specific genes may ex-
plain the observed antioxidant/reducing potential and
anti-inflammatory effects of Nrf2 (18, 37), insinuating
important functional roles for Nrf2-activated astrocytes
in supporting neurons. Furthermore, neuronal func-
tions (i.e., signaling and receptors) and defense activi-
ties of neurons (calcium buffering capacity) are greatly
enhanced in the presence of Nrf2, suggesting toxic
by-products occurring during normal neuronal activi-
ties is mitigated by Nrf2-ARE pathway.

Using a cell sorting technology, Kraft et al. isolated
an astrocyte-specific (detoxification and antioxidant)
and neuron-specific gene cluster (cell adhesion, synap-
tic transmission, calcium mobilization) (31), support-
ing the notion that Nrf2 regulates target gene expres-
sion depending on a cell’s function and the toxic
by-products generated in the cell’s microenvironment
during routine activities.

Finally, Li et al. showed that Nrf2�/� mice develop
an autoimmune disease with multiple organ pathology
that closely resembles human systemic lupus erythma-
tosus (SLE). These data indicate that the lack of Nrf2
can induce pathologies in multiple organs, and SLE
might be evoked by oxidative tissue damage. In support
of this, the authors identified Nrf2 target genes in liver
and spleen. While Nrf2 regulates many classical ARE-
driven genes in liver, it also regulates many cytokines as

TABLE 2. Examples of nervous system-selective Nrf2-dependent genesa

Cell type Category Gene

Primary Astrocytes Reducing potential Glucose-6-phosphate dehydrogenase
Transaldolase
Transketolase

Immune/inflammation PAF acetylhydrolase
Prostaglandin-endoperoxide synthase 2
Dithiolethione-inducible gene
Tachykinin 2

Primary Neuronal Calcium homeostasis Calbindin-28K
Synaptotagmin-1
Hippocalcin
S100 calcium binding protein A1

Growth factor Nerve growth factor-�
Fibroblast growth factor-13
Fibroblast growth factor-14
Brain-derived neurotrophic factor

Signaling Neuronal GEF
Protein kinase C-�
G-protein-�3
Adrenomedullin
Corticotropin-releasing hormone

Receptor/channel Chloride channel
GABA-A receptor-1
GABA-A receptor, gamma 3
GABA-B receptor-1

a In addition to known classic Nrf2-target genes, oligonucleotide microarray experiments further identified novel cell type-specific
Nrf2-dependent genes from many cell types. Some examples of novel Nrf2-dependent genes identified from primary astrocytes and neurons by
microarray analysis (29, 30, 31, 43) are listed.

Figure 2. A multi-organ protector, Nrf2. Nrf2 protects various
cell types (lung, liver, kidney, stomach, small intestine, central
nervous system, splenocytes, macrophages, erythrocytes, and
retinal epithelia) by coordinately increasing classic ARE-driven
detoxification and antioxidant genes. Nrf2 contributes to cellu-
lar protection by enhancing cellular resistance to potential
harmful insults that occur during cells’ normal activities.
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well as B cell and T cell-specific genes, which are
important for immune and phagocytosis function of
splenocytes (23).

Overall, these observations show that Nrf2-depen-
dent, ARE-driven detoxification and antioxidant genes
commonly play an important role in cellular protection
(Table 1, Fig. 1). Furthermore, there are cell type-
dependent Nrf2 target genes that further contribute to
cellular protection. Although some of these genes have
been shown to be regulated through the Nrf2-ARE
pathway, many have not been verified as being under
direct control of Nrf2. It is quite possible that some of
the changed genes could be secondary to an Nrf2
controlled gene; such information has yet to be inves-
tigated.

The basic defense system of each cell type has
evolved to deal with those most likely toxic insults that
each cell could encounter in its specific environment
(Fig. 2). It would also appear that cell utilizes the
Nrf2-ARE pathway as a common mechanism to regu-
late/activate its defense system.

CONCLUSIONS

In summary, we have proposed and presented evidence
supporting the hypothesis that Nrf2 has the capability
to confer and is central to a multi-organ protection
phenomenon. Expansion of these known characteris-
tics of the Nrf2-ARE pathway are important in identify-
ing novel pathways necessary to prevent or cure toxic
effects involved in multiple disease states. As numerous
studies have demonstrated the great potential for the
Nrf2-ARE pathway as a therapeutic target in preventing
cancer, autoimmune disease, and neurodegenerative
disease, it is important to identify ways to modulate
cell-specific Nrf2 activity so as to facilitate the develop-
ment of novel therapeutic strategies for treatment of
these diseases.
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