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AbstractA Master equation approach to the stochastic neurodynamics proposed byCowan[ in Advances in Neural Information Processing Systems 3, edited byR.P. Lippman, J.E. Moody, and D.S. Touretzky (Morgan Kaufmann, San Ma-teo, 1991), p.62] is investigated in this paper. We deal with a model neuralnetwork which is composed of two-state neurons obeying elementary stochastictransition rates. We show that such an approach yields concise expressions formulti-point moments and an equation of motion. We apply the formalism toan (1+1)-dimensional system. Exact and approximate expressions for variousstatistical parameters are obtained and compared with Monte Carlo simulations.



I. INTRODUCTIONRecently, Cowan introduced a model to describe stochastic neural networks[1] based on a master equation[2], which he called the "Neural Network MasterEquation" (NNME). The purpose of this paper is to investigate some of theproperties of this equation for the case of networks composed of two-state neu-rons. We are especially interested in obtaining time-dependent expressions forone-point and many-point moments in a neural network, since such momentscan presumably be used to study information processing in the brain[3].In what follows, we �rst brie
y review the Neural Network Master Equa-tion. We then derive equations for the moment generating function. Explicitsolutions to these equations are then obtained for a simple system composed oftwo neurons. The hierarchy of equations for moments is also derived using theNNME. In order to gain some insight into many neuron systems, we then discussa special case of the NNME for a (1+1)-dimensional system, which is shown tobe identical to the "contact process"[4]. For this system, we study analyticallytime-dependent bulk behavior using the moment equations. Analytical resultsare then compared with Monte Carlo simulations.II. A NEURAL NETWORK MASTER EQUATIONThe NNME is written using a second quantizationmethod for classical many-body systems originally formulated independently by Doi[5] and by Grassbergerand Scheunert[6]. Cowan introduced two master equations: one to deal withtwo-state model neuron systems and the other for the more realistic case ofthree-state model neurons. However, in this paper we shall limit our discussionto systems composed of two-state neurons. Neurons at each site can thus bein one of two states, either "active" or "quiescent". We assume that the activestate corresponds to �ring and the quiescent to resting of a biological neuron.This assumption leads to a master equation based on spin operators di�eringfrom Doi's formulation based on boson operators.In writing down the equation, we start with a set of elementary transitionrates for each neuron in the network. Let us denote quiescent and active statesby j0 > and j1 > respectively. We then assume that the transition rates of theith neuron from one state to the other to be given as follows;j1 > �! j0 >; j0 >�(vi)! j1 >; (1)where � is a uniform decay rate. (Since the cycle of an action potential lastsabout 2 millisecond, this decay rate can be taken as roughly 500 Hz.) vi is thesum of all inputs from active neurons connected to the ith neuron, and � is theactivation rate function. In general, this function � is a nonlinear function ofthe total input current which has a sigmoid shape to re
ect the upper bound inthe activation rate due to the absolute refractry period [7, 8].1



Let us now denote states (or con�gurations) of the network by fj
 >g, whichis the direct product space composed of all neural state vectors in the network:j
 >= jv1 > jv2 > . . . jvN >; vi = 0 or 1: (2)We also de�ne P[
, t] to be the probability to �nd the network in a particularstate 
 at time t. Then we can introduce the "neural state vector" for an Nneuron network as j�(t) >=Xf
gP [
; t]j
 >; (3)where the sum is taken over all possible network states.With these de�nitions, we can now write the NNME for a system whichimplements the transition rates given by ( 1), using creation and annihilationoperators, �+i and ��j in the Pauli spin formalism. (These anti-commute at thesame site (i = j) to satisfy the physical assumption of single occupancy, andcommute for di�erent sites:)� @@t j�(t) >= Lj�(t) > (4)The Liouvillian, L, is then given asL = � NXi=1(�+i � 1)��i + NXi=1(��i � 1)�+i �( 1n NXj=1 wij�+j ��j ) (5)where n is the average number of connections to each neuron, and wij is thesynaptic transmission strength from jth to ith neuron. This is one of the masterequations formulated by Cowan. (The factor 1n in the nonlinear function isintroduced to normalize the input to each neuron.) In what follows we analyzesome of the properties of this equation.III. MOMENT GENERATING FUNCTIONIn some recent studies of neural networks, one-point and many-point neuralmoments have gained attention as important quantities in signal processing. Itcan be shown that these quantities and their equations of motion are given in aconcise form using the NNME and the spin-coherent states[9]:< ~Zj =< 0jjExp[ NXi=1 Zi��i ] = NYi=1(< 0j+ Zi < 1j); (6)where the product is taken as a direct product, Zi are complex parameters, and< 0jj =< 0j < 0j < 0j . . . < 0j: (7)2



Introducing one-point and many-point moments as�vi(t)� =Xf
g viP [
; t]; (8)�vivj . . . (t)� =Xf
g(vivj . . .)P [
; t]; (9)it follows that �vi(t)� =< ~Z = 1j��i j�(t) > (10)and �vivj . . . (t)� =< ~Z = 1j(��i ��j . . .)j�(t) > (11)Furthermore, the moment generating function G(~Z; t) is given asG(~Z; t) =< ~Zj�(t) > (12)from which we can recover the moments as�vi(t)� = @@ZiG(~Z; t)j~Z=1 (13)�vivj . . . (t)� = @@Zi @@Zj . . .G(~Z; t)j~Z=1 (14)We obtain the equation for G(~Z; t) by simply projecting the NNME ontothe spin-coherent states: � @@tG(~Z; t) =< ~ZjLj�(t) > (15)We can also express this equation in oscillator-algebra form[10]:� @@tG(~Z; t) = f� NXi=1(D+i �1)D�i + NXi=1(D�i �1)D+i �( 1n NXj=1WijD+j D�j )gG(~Z; t)(16)D�i = @@Zi ; D+i = Zi(1� Zi @@Zi ) (17)where we have used the relations,< ~Zj��i = @@Zi < ~Zj; < ~Zj�+i = Zi(1� Zi @@Zi ) < ~Zj (18)We note here that our assumption of two-states implies that G(~Z; t) is at mostlinear in each Zi and that we can further simplify equation ( 16) by eliminatingdi�erential operators of second and higher orders, to obtain the equation:3



� @@tG(~Z; t) = f� NXi=1(Zi � 1) @@Zi� NXi=1(Zi � 1)(1� Zi @@Zi )�( 1n NXj=1WijZj @@Zj )gG(~Z; t) (19)We can solve this equation explicitly for networks comprising a few neurons.Consider the two neuron case, whose Liouvillian is:L2 = � 2Xi=1(�+i � 1)��i + 2Xi=1(��i � 1)�+i 2Xj=1 �(Wij�+j ��j )= �f(�+1 � 1)��1 + (�+2 � 1)��2 )g+(��1 � 1)�+1 �(W12)�+2 ��2 + (��2 � 1)�+2 �(W21)�+1 ��1 : (20)[In obtaining the last expression, We have assumed that �(x) can be expandedin a Taylor series about x = 0, and that �(0) = 0. Physically, this assumptionexcludes "self activation".]We obtain the general form of the moment generating function as follows[for �(W12) 6= �(W21) ]:G(Z1; Z2; t) = S0+ 3Xi=1 Sie��mitf� 1mi ( 1k1 �mi + 1k2 �mi )+ 1k2 �miZ1 + 1k1 �miZ2 + Z1Z2g; (21)where k1 = 1 + �(W12)� ; k2 = 1 + �(W21)� ; (22)and mi are solutions ofm3 � (2 + k1 + k2)m2 + (2 + k1 + k2 + k1k2)m� (k1 + k2) = 0 (23)The Si (i = 0; 1; 2; 3) are constants determined by the initial condition.In the special case that �(W12) = �(W21) � �, the solution is given by thesimpler form:G(Z1; Z2; t) = A+B(Z1 � Z2)e�(�+�)t+ Ce�
+t(�2�
+ + Z1 + Z2 + 2�2�� 
+Z1Z2)+ De�
�t(�2�
� + Z1 + Z2 + 2�2�� 
�Z1Z2) (24)4



Again A;B;C;D are constants determined by the initial conditions, and
� = 12f(3�+ �)�p�2 + 6�� + �2g (25)Finding a solution to the many neuron case can be done in principle by trialfunction methods[11]. However, it is not an easy task in practice and someapproximation scheme is necessary.IV. THE HIERARCHY OF MOMENT EQUATIONSIn addition to the equation for the moment generating function, we canobtain equations for the moments themselves. As is typical in the case of manybody problems, we obtain an analogue of the BBGKY hierarchy of equations[12]:� @@t�vi� = ��vi�+�(vi � 1)�( 1n NXj=1Wijvj)� (26)� @@t�vivj� = 2��vivj�+ �(vi � 1)vj�( 1n NXk=1Wikvk)�+ �(vj � 1)vi�( 1n NXk=1Wjkvk)� (27)and so on, with the equation for the Mth order moment given as� @@t�vp1vp2 . . . vpM� =M��vp1vp2 . . . vpM�+ MXs=1�(vp1vp2 . . . vpM )(1� 1vps )�( 1n NXj=1Wpsjvj)� (28)The main point to note in this hierarchy is that as is common the nonlinearityof � makes inter-dependency of these equations more involved than hierarchiesarising from a linear interaction (like the one obtained by Doi). More speci�-cally, nonlinearity in the interaction makes the equation of motion for the (m)thmoment depends not only on the (m+1)th and the (m-1)th moments, but alsoon higher and lower moments as well. In the following, we present a way tovisualize this hierarchy using Venn Diagrams. Let us de�ne the set k vi k as fP [
(vi = 1); t] g, i.e., k vi k is a set of probabilities summed to obtain �vi�in the de�nition ( 8). We can de�ne sets corresponding to higher moments in asimilar fashion. k vivj . . . k= fP [
(vi = vj = . . . = 1); t]g (29)5



It is straightforward to represent the relationships between these sets with Venndiagrams. The higher moments can be visualized as an overlap of relevant lowermoments. In such diagrams, we can visualize which factors are involved giventhe equation for a given moment. We have not found a way to utilize thesediagrams other than for visualization purpose. However, it makes apparentsome simple relationships, which may prove useful in approximation schemes,e.g: �vi� � �vivj� � �vivjvk� � . . . (30)V. (1+1)-DIMENSIONAL SYSTEMTo gain some insight into the NNME, we devote the rest of this paper tothe study of a special case, an 1-dimensional ring of excitatory neurons. Asshown schematically in Fig. 1., each neuron in this system interacts with itstwo neighbors via a uniform excitatly synapic strength w.Figure 1: Schematic diagram of 1-dimensional chain of neurons.We also assume that the activation rate function is linear. (It should be keptin mind that this is rather unrealistic model for biological neural networks.)More precisely, we impose the following conditions on equations ( 4) and ( 5):�(x) = x; wij = w (�i;i+1 + �i+1;i); (N + 1 � 1) (31)It turns out that with this condition our model is isomorphic to a contact process[4] with suitable re-scaling, the equation of which can be written as:� @@t j�(t) >= f� NXi=1(�+i � 1)��i + 12 NXi=1(��i � 1)�+i NXj=1 �+j ��j gj�(t) > (32)This system has been studied by several groups using both computer simulationsand analytical methods[13, 14, 15]. It appears to possess an active steady statefor � < �c (in the limit of in�nitely many neurons) and a totally quiescent(vacuum) steady state for � > �c with a continuous transition at �c � 0.304[13].Here, we shall investigate the time-dependent behavior of this model using themoment equations, which in this case are (up to second order):6



� @@t�vi� = ��vi�� 12(�vi+1���vivi+1�)+ 12(�vi�1���vi�1vi�)g (33)� @@t�vivi+1� = 2��vivi+1�+ 12(�vi�1vivi+1���vi�1vi+1�+�vivi+1���vi+1�)+ 12(�vivi+1vi+2���vivi+2�+�vivi+1���vi�) (34)We are faced with the hierarchy problem we mentioned earlier in solving thesesets of equations. But we can use these equations to compute statistical param-eters of the time-dependent behavior of this network.One such parameter is �, the \total activation di�erence", between evennumbered and odd numbered neurons in the ring. We de�ne � as� = 1N ( Xi=even�vi� � Xi=odd�vi�) � �e � �o (35)It follows from equation ( 33) that the equation of motion for � is given exactlyfor a system with even N as: � @@t� = (�+ 1)� (36)This equation is almost exact for systems with odd N with the extra term1N�vNv1�, which is negligible for large N .A Monte Carlo algorithm designed for master equations[16] was used tosimulate equation ( 32) with 10000 neurons in the ring. The initial conditionfor each run was set so that all even-numbered neurons are active and all odd-numbered ones are quiescent. For each run with a given �, we computed thedi�erence between the numbers of active neurons on even and odd sites atsampled time steps. 20 runs were made for each � and the di�erences wereaveraged at each sampled time step in order to obtain the numerical dynamicsof �.The results, some of which are shown in (Fig.2), indicate that equation ( 36)indeed captures the dynamical evolution of � very well for all ranges of �. (Theunit of � is taken to be sec�1.) 7
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Figure 2: Examples from comparison of Eq.(36) (Solid Line) with Monte Carlosimulations (dots) for values of � given as (a)0.1, (b)0.5, (c)1.5, and (d)3.0.Hence, as long as � is concerned, the many body behavior of this modelcan be \identi�ed" with that of a two neuron system: one being odd-numberedneurons collectively, and the other being even-numbered neurons collectively.We can derive equation ( 36) using the moment generating function for twoneuron case given in ( 24) with de�nition ( 35), and identi�cation of parametersas � = � and � = 1.This identity to the two neuron system does not hold so well when we con-sider the total activatio, � = �e + �o, which is of more interest in studies ofthis model. We do not have an exact equation for �, and need to resort to someform of approximation.The single-site mean �eld (SMF) approximation[13] (or, equivalently theBragg-Williams approximation[17, 18]) can be obtained by assuming the fol-lowing: �vivi+1� � �vi�� (37)Then from ( 33), � @@t� = (�� 1)�+ �2 (38)This equation shows a critical value of �(1)c = 1, and a steady state�! 1� � (� < 1); �! 0 (� > 1): (39)Thus, this SMF approximation poses a problem in describing the behavior ofthe system with �c � 0:304 < � < �(1)c = 1.To improve the approximation, we utilize both ( 33) and ( 34) and introduce8



�, called the \total neighbors moment":� = 1N NXi=1�vivi+1� (40)We assume that next nearest neighbors which are not directly connected arestatistically independent, though we retain the 2-point correlation of nearestneighbors. In addition, we assume that 3-point moments factor into a productof 1- and 2-point moments. More precisely, we assume that�vivi+1vi+2� � �vivi+1�� �vivi+2� ��vi�� (41)With these assumptions, coupled nonlinear equations for � and � are obtainedusing ( 33) and ( 34). � @@t� = (�� 1)�+ � (42)� @@t � = ��+ (2�+ 1)� + �� � �2 (43)We call this approximation the 2nd moment leve (2ML) approximation. Withthe 2ML approximation, the critical value of � is improved to �(2)c = 0:5 Andthe steady states are given as�! 1� 2� (� < 0:5); �! 0 (� > 0:5): (44)We now compare Monte-Carlo simulations with the time dependence of �given by ( 38) and ( 42) and of � by ( 43). Some of the results are shown inFig.3 and Fig.4.(The procedures of simulation are the same as before. Similar results areobtained for di�erent initial conditions.) The result shows that for � >� 0:5, the2ML approximation scheme captures the time dependent changes in � and �very well. As seen in ( 44), the 2ML approximation predicts a steady state withnon-zero � for �c < � < �(2)c , which does not match simulation results. Even inthis range of �, however, improvement over the SMF approximation is obtained.Thus, the 2ML approximation captures the dynamics of � in the range of� where the SMF approximation does not work well. It should be stressed,however, that merely going to higher order in the moment equation hierarchyis not su�cient to obtain a better approximation for �. First, we note thatthere is a range of �(<� 0.2) where the 2ML approximation does not work aswell as the SMF approximation. Secondly, we made a particular choice toretain certain correlations and neglected others to close the hierarchy, and toobtain the 2ML approximation which works for � >� 0:5. It turns out thatour choice of this closure of the hierarchy can be formulated as an extensionof the Vlasov Equation [19] to second moments. A general formulation of this9
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Figure 3: Comparison of Monte Carlo simulations (dots) with the SMF (dashedline) and the 2ML (solid line) approximations for �. The values of � is given as(a)0.1, (b)0.2, (c)0.3, (d)0.4, (e)0.5, (f)0.8, (g)1.0, and (h)2.0.
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extension suited for the hierarchy given in ( 26) to ( 28) with applications tomore complex networks are currently being investigated.VI. SUMMARY AND DISCUSSIONIn this paper, we have described a Neural Network Master Equation thatenables us to derive dynamical equations for statistical quantities associatedwith the network in a concise form. In analyzing the resulting dynamics ofstochastic neural networks, we are faced with two aspects of the usual many-body problem: one is the di�culty in solving equations of motion for momentgenerating functions, and the other in dealing with the hierarchy of equationsof motion for the moments. We have studied a special case of the NNME for a(1+1)-dimensional system, which is shown to be isomorphic to a contact process.One way to go beyond the single-site mean �eld approximation was derived andlimited improvement was seen. Even though there exist some results[1, 12, 20]which suggest possible approaches toward systematic time-dependent approx-imations for dealing with the hierarchy of moment equations (or equivalentlywith the moment generation function), such theories still need to be adaptedfor stochastic neurodynamics.ACKNOWLEDGEMENTSThe authors would like to thank Dr. Y. Nambu and Dr. J.G.Milton fortheir helpful comments. This work was supported in part by the Robert R.McCormick Fund at the University of Chicago, and in part by grant No. N0014-89-J-1099 from the US Department of the Navy, O�ce of Naval Research.
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