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Abstract

GloptiPoly is a Matlab/SeDuMi add-on to build and solve convex linear matrix
inequality (LMI) relaxations of non-convex optimization problems with multivariate
polynomial objective function and constraints, based on the theory of moments. In
contrast with the dual sum-of-squares decompositions of positive polynomials, the
theory of moments allows to detect global optimality of an LMI relaxation and
extract globally optimal solutions. In this report, we describe and illustrate the
numerical linear algebra algorithm implemented in GloptiPoly for detecting global
optimality and extracting solutions. We also mention some related heuristics that
could be useful to reduce the number of variables in the LMI relaxations.

1 Introduction

Consider the global optimization problem

p? = minx g0(x)
s.t. gi(x) ≥ 0, i = 1, 2 . . . ,m

(1)

where the mappings gi : Rn → R, i = 0, 1, . . . ,m are real-valued polynomials, that is,
gi ∈ R[x1, . . . , xn] for all i = 1, . . . ,m. Depending on its parity, let deg gi = 2di− 1 or 2di,
and denote d = maxi di. Define

vk(x) =
[
1 x1 x2 . . . xn x2

1 x1x2 . . . x1xn x2
2 x2x3 . . . x

2
n . . . x

k
1 . . . x

k
n

]T
(2)

as a basis for the space of polynomials of degree at most k.

A polynomial g ∈ R[x1, . . . , xn] can be written

x 7→ g(x) =
∑
α∈Nn

gαx
α
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where
xα = xα1

1 x
α2
2 · · ·xαnn

is a monomial of degree |α| =
∑n

i=1 αi.

Following the methodology described in [12], we define for (generally non-convex) problem
(1) a hierarchy {Qk} of (convex) LMI relaxations

Qk


p∗k = miny

∑
α(g0)αyα

s.t. Mk(y) � 0
Mk−di(giy) � 0, i = 1, 2, . . . ,m

(3)

where

• each decision variable yα of y = {yα} corresponds to a monomial xα,

• Mk(y) is the positive semidefinite moment matrix of order k, and

• Mk−di(y) is the positive semidefinite localizing matrix of order k−di associated with
the polynomial gi, for all i = 1, . . . ,m.

Solving the sequence {Qk} of LMI relaxations (3) of increasing orders k = d, d+ 1, . . ., it
is proved in [12] that under some mild assumptions on the polynomials {gi}, we obtain a
monotone sequence of optimal values p∗k converging asymptotically to the global optimal
value p∗ of the original optimization problem in (1), i.e. p∗k ↑ p∗ as k →∞. Experimental
results reveal that in practice p∗k is very close to p∗ for relatively small values of k. In ad-
dition, in many cases the exact optimal value p∗ is obtained at some particular relaxation
Qk, that is, p∗ = p∗k for some relatively small k.

GloptiPoly is a user-friendly Matlab/SeDuMi add-on to build and solve these LMI relax-
ations, see [10]. In this report we describe the algorithm used in GloptiPoly to detect
whether the global optimum p∗ in (1) has been reached at some LMI relaxation Qk in
(3), i.e. whether p∗k = p∗ for some index k. We also describe how to extract (one or
several) global minimizers x∗ ∈ Rn to original problem (1), given a solution y∗ of the LMI
relaxation Qk in (3).

Note that there exist a dual approach to build hierarchy of LMI relaxations, based on real
algebraic geometry and sum-of-squares (SOS) decompositions of positive polynomials, see
[16] for the theory and [18] for a Matlab/SeDuMi implementation. In contrast with the
theory of moments which works in the space of measures on the primal space of solutions
x ∈ Rn, the SOS approach rather works in a (dual) space of polynomials, to obtain
certificates ensuring validity of bounds on the objective function. As a result, and so far,
in the latter approach there is no sufficient condition to check whether the exact optimal
value is obtained, and no solution extraction mechanism.

In section 2 we state an algebraic condition ensuring global optimality of an LMI relax-
ation, and we describe the numerical linear algebra algorithm used to extract globally
optimal solutions. In section 3 we mention some heuristics based on this algorithm that
can used to reduce significantly the number of variables in the LMI relaxations. Finally,
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in section 4 we comment on a numerical behavior of GloptiPoly on unconstrained mini-
mization problems. Illustrative numerical examples are inserted throughout the text.

2 Extracting globally optimal solutions

2.1 Global optimality condition

Let y∗ be an optimal solution of the LMI relaxation Qk in (3) (of order k). A sufficient
rank condition ensuring global optimality of the LMI relaxation is

rankMk(y
∗) = rankMk−d(y

∗). (4)

This condition can be checked numerically with the help of the singular value decom-
position [8]. Note however that the rank condition (4) is not necessary, i.e. the global
optimum p∗ may have been reached at some LMI relaxation of order k (i.e., p∗ = pk), and
yet rankMk(y

∗
k) > rankMk−d(y

∗
k).

That condition (4) is sufficient to ensure that p∗ = pk is a consequence of a deep result of
Curto and Fialkow [6]. In our present context, if condition (4) is true, then by Theorem
1.6 in [6], y∗ is the vector of moments of a rankMk(y

∗)-atomic measure supported on the
feasible set K = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . ,m}.

In the important special case where the feasible set K can be writen

K = {x ∈ Rn | gi(x) = 0, i = 1, . . . , n; gn+j(x) ≥ 0, j = 1, . . . ,m},

and the polynomial ideal I = 〈g1, . . . , gn〉 ⊂ R[x1, . . . , xn] is zero-dimensional and radical,
then condition (4) is guaranteed to hold at some index k. For instance this is the case for
boolean (or 0-1) optimization problems, and more generally, bounded discrete optimiza-
tion problems. For more details the interested reader is referred to [13, 14, 15, 17].

2.2 Extraction algorithm

Assume that the LMI relaxation Qk in (3) has been solved, producing a vector y∗. Assume
further that the rank condition (4) is satisfied. Then the main steps of the extraction
algorithm can be sketched as follows.

2.2.1 Cholesky factorization

As condition (4) holds, y∗ is the vector of a rankMk(y
∗)-atomic measure supported on K.

Hence, by construction of the moment matrix Mk(y
∗), we have

Mk(y
∗) =

r∑
j=1

λjvk(x
∗(j))vk(x

∗(j))T = V ∗(V ∗)T
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where

λj ≥ 0,
r∑
j=1

λj = 1

are nonnegative weights,
r = rankMk(y

∗). (5)

and
V ∗ =

[ √
λ1vk(x

∗(1))
√
λ2vk(x

∗(2)) · · ·
√
λrvk(x

∗(r))
]

where vk(x) is as in (2), and {x∗(j)}rj=1 are r global minimizers of (1).

In practice, we extract a Cholesky factor V of the positive semidefinite moment matrix
Mk(y

∗), i.e. a matrix V with r columns satisfying

Mk(y
∗) = V V T . (6)

Such a Cholesky factor can be obtained via singular value decomposition, or any cheaper
alternative [8].

Matrices V and V ∗ span the same linear subspace, so the solution extraction algorithm
consists in transforming V into V ∗ by suitable column operations. This is described in
the sequel.

2.2.2 Column echelon form

Reduce matrix V to column echelon form

U =



1
x
0 1
0 0 1
x x x

...
. . .

0 0 0 · · · 1
x x x · · · x

...
...

x x x · · · x


by Gaussian elimination with column pivoting [8]. By construction of the moment matrix,
each row in U corresponds to a monomial xα in polynomial basis v. Pivot elements
in U (i.e. the first non-zero elements in each column) correspond to monomials xβj ,
j = 1, 2, . . . , r of the basis generating the r solutions. In other words, if

w = [xβ1 xβ2 . . . xβr ]
T (7)

denotes this generating basis, then it holds

v = Uw (8)
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for all solutions x = x∗(j), j = 1, 2, . . . , r.

In summary, extracting the solutions amounts to solving polynomial system of equations
(8).

2.2.3 Solving the polynomial system of equations

Once a generating monomial basis is available, it turns out that extracting solutions of
polynomial system of equations (8) amounts to solving a linear algebra problem.

As pointed out to us by Monique Laurent, this fact has been rediscovered many times. It
is called Stickelberger theorem in textbook [20], and it is credited to Stetter and Müller
in [4], see also the recent work [9]. The method can be sketched as follows.

2.2.4 Multiplication matrices

For each first degree monomial xi, i = 1, 2, . . . , n extract from U the r-by-r multiplication
matrix Ni containing coefficients of monomials xixβj , j = 1, 2, . . . , r in generating basis
(7), i.e. such that

Niw = xiw, i = 1, 2, . . . , n. (9)

2.2.5 Common eigenvalues

As shown in [20], the entries of solutions x∗(j), j = 1, 2, . . . , r are common eigenvalues of
multiplication matrices Ni, i = 1, 2, . . . , n.

In order to compute these eigenvalues, we follow [4] and build a random combination of
multiplication matrices

N =
n∑
i=1

λiNi

where the λi, i = 1, 2, . . . , n are non-negative real numbers summing up to one. Then,
compute the ordered Schur decomposition [8]

N = QTQT (10)

where
Q =

[
q1 q2 · · · qr

]
is an orthogonal matrix (i.e. qTi qi = 1 and qTi qj = 0 for i 6= j) and T is upper-triangular
with eigenvalues of N sorted increasingly along the diagonal.

Finally, the i-th entry x∗i (j) of x∗(j) ∈ Rn is given by

x∗i (j) = qTj Niqj, i = 1, 2, . . . , n, j = 1, 2, . . . , r. (11)
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2.3 Example

Consider the non-convex quadratic optimization problem [12, Ex. 5]

p∗ = minx −(x1 − 1)2 − (x1 − x2)2 − (x2 − 3)2

s.t. 1− (x1 − 1)2 ≥ 0
1− (x1 − x2)2 ≥ 0
1− (x2 − 3)2 ≥ 0.

Applying the first (k = 1) LMI relaxation we obtain p∗1 = −3 and rankM1(y∗) = 3.

With the second (k = 2) LMI relaxation we obtain p∗2 = −2 and rank M1(y∗) =
rankM2(y∗) = 3. Rank condition (4) ensures global optimality, so p∗ = p∗2 = −2.

The moment matrix of order k = 2 reads

M2(y∗) =


1.0000 1.5868 2.2477 2.7603 3.6690 5.2387
1.5868 2.7603 3.6690 5.1073 6.5115 8.8245
2.2477 3.6690 5.2387 6.5115 8.8245 12.7072
2.7603 5.1073 6.5115 9.8013 12.1965 15.9960
3.6690 6.5115 8.8245 12.1965 15.9960 22.1084
5.2387 8.8245 12.7072 15.9960 22.1084 32.1036


and the monomial basis (2) is

v2(x) =
[
1 x1 x2 x2

1 x1x2 x2
2

]T
.

The Cholesky factor (6) of the moment matrix is given by

V =


−0.9384 −0.0247 0.3447
−1.6188 0.3036 0.2182
−2.2486 −0.1822 0.3864
−2.9796 0.9603 −0.0348
−3.9813 0.3417 −0.1697
−5.6128 −0.7627 −0.1365


whose column echelon form reads (after rounding)

U =


1
0 1
0 0 1
−2 3 0
−4 2 2
−6 0 5

 .

Pivot entries correspond to the following generating basis (7)

w = [1 x1 x2]T .
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From the subsequent rows in matrix U we deduce from (8) that all the globally optimal
solutions x satisfy the polynomial equations

x2
1 = −2 + 3x1

x1x2 = −4 + 2x1 + 2x2

x2
2 = −6 + 5x2.

Multiplication matrices (9) of monomials x1 and x2 in generating basis w are readily
extracted from rows in U :

N1 =

 0 1 0
−2 3 0
−4 2 2

 , N2 =

 0 0 1
−4 2 2
−6 0 5

 .
Then choose e.g.

N = 0.6909N1 + 0.3091N2 =

 0 0.6909 0.3091
−2.6183 2.6909 0.6183
−4.6183 1.3817 2.9274


as a random combination of matrices N1 and N2. The orthogonal matrix in Schur decom-
position (10) is given by

Q =

 0.4082 0.1826 −0.8944
0.4082 −0.9129 −0.0000
0.8165 0.3651 0.4472

 .
From equations (11), we derive the 3 optimal solutions

x∗(1) =

[
1
2

]
, x∗(2) =

[
2
2

]
, x∗(3) =

[
2
3

]
.

2.4 Numerical stability

As shown in [8], all the operations of the solution extraction algorithm are numerically
stable, except the Gaussian elimination step with column pivoting. Practical experiments
with GloptiPoly however reveal that ill-conditioned problem instances leading to a failure
of Gaussian elimination with column pivoting are very scarce. This experimental property
of Gaussian elimination was already noticed in [8].

2.5 Number of extracted solutions

In virtue of relation (5), the number of solutions extracted by the algorithm is equal to the
rank of the moment matrix. Up to our knowledge, when solving an LMI relaxation there
is no easy way to control the rank of the moment matrix, hence the number of extracted
solutions.
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If there is no objective function in problem (1), by default GloptiPoly minimizes the trace
of the moment matrix. As a result, its rank is indirectly minimized as well. Note however
that, in constrast with trace minimization, rank minimization under LMI constraints
is a difficult non-convex problem. Practical experiments reveal that low rank moment
matrices are preferable from the numerical point of view: they ensure faster convergence
to the global optimum. See also example 3.1.1 for an illustration of the impact of the
trace minimization heuristic on the number of extracted solutions.

3 Applications of the extraction algorithm

When rank condition (4) is not satisfied, then we still can attempt to apply the extrac-
tion algorithm described in section 2. If the algorithm is successful and returns feasible
solutions reaching the relaxed optimal value p∗k, then by definition of the relaxation Qk,
these solutions are global minimizers. This is the topic of section 3.1. Unfortunately,
this heuristic does not work systematically, and extracted solutions can be infeasible, as
illustrated with a counterexample in section 3.2.

If the algorithm is not successful, the column echelon form of the Cholesky factor of the
moment matrix may contain useful information that can sometimes be exploited to reduce
significantly the number of variables, hence the computational burden, in subsequent LMI
relaxations. This heuristic is described in section 3.3.

3.1 Rank condition non satisfied but global optimum reached

Even though rank condition (4) is not satisfied, the extraction algorithm can be applied
successfully, as shown by the following example.

3.1.1 Trace minimization heuristic

With the help of this example we also return to the comments of section 2.5 on the number
of extracted solutions and the trace minimization heuristic.

Consider the polynomial system of equations [4, Ex. 5.2]

x2
1 + x2

2 − 1 = 0
x3

1 + (2 + x3)x1x2 + x3
2 − 1 = 0
x2

3 − 2 = 0.

There is no objective function to be minimized, so as indicated above GloptiPoly solves
the LMI relaxations by minimizing the trace of the moment matrix.
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Applying the least order (k = 2) LMI relaxation we obtain rank M1(y∗) = 4 and
rankM2(y∗) = 7, so global optimum cannot be ensured via rank condition (4).

With the third LMI relaxation (k = 3) we obtain rankM1(y∗) = rankM2(y∗) = rankM3(y∗) =
2, so rank condition (4) ensures global optimality.

From the extraction algorithm we derive the two globally optimal solutions

x∗(1) =

 0.5826
−0.8128
−1.4142

 , x∗(2) =

 −0.8128
0.5826
−1.4142

 .
Now replacing the minimum trace LMI objective function in GloptiPoly with a zero
objective function, the third LMI relaxation returns rankM1(y∗) = 4 and rankM2(y∗) =
rankM3(y∗) = 6, so rank condition (4) cannot ensure global optimality.

However, by applying the extraction algorithm, we are able to extract 6 solutions

x∗(1) =

 −0.8128
0.5826
−1.4142

 , x∗(2) =

 0.5826
−0.8128
−1.4142

 , x∗(3) =

 0.0000
1.0000
−1.4142

 ,

x∗(4) =

 1.0000
0.0000
−1.4142

 , x∗(5) =

 0.0000
1.0000
1.4142

 , x∗(6) =

 1.0000
0.0000
1.4142


thus proving global optimality of the LMI relaxation.

3.2 Infeasible extracted solutions

When rank condition (4) is not satisfied, it may happen that solutions extracted by
the algorithm are infeasible for the original optimization problem. Since solutions are
extracted from a convex LMI relaxation, they may be feasible for a subset of the original
constraints only.

3.2.1 Example

We consider the polynomial systems of equations arising from a test for numerical bifur-
cation, originally described in [11] and listed in problem collection [2]:

5x9
1 − 6x5

1x2 + x1x
4
2 + 2x1x3 = 0

−2x6
1x2 + 2x2

1x
3
2 + 2x2x3 = 0
x2

1 + x2
2 = 0.265625.

This system has 8 distinct real solutions.
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The lowest order (k = 5) LMI relaxation yields rank M1(y∗) = 3 and rank M2(y∗) =
rank M3(y∗) = rank M4(y∗) = rank M5(y∗) = 4. Since d = 5, rank condition (4) cannot
ensure global optimality.

The extraction algorithm on moment matrix M2(y∗) returns 4 solutions

x∗(1) =

 0.3653
−0.3636
−0.0153

 , x∗(2) =

 0.3653
0.3636
−0.0153

 , x∗(3) =

 −0.3653
−0.3636
−0.0153

 , x∗(4) =

 −0.3653
0.3636
−0.0153

 .
These solutions satisfy the second and third equations of the original problem, but not
the first equation. Indeed, since the solutions are extracted from a convex relaxation of
the original problem, they may be infeasible for a subset of the original constraints.

Proceeding with the 6th order LMI relaxation, we obtain rank Mi(y
∗) = 2 for all i =

1, 2, . . . , 6, hence ensuring global optimality. The two extracted solutions are

x∗(1) =

 −0.2619
0.4439
−0.0132

 , x∗(2) =

 0.2619
0.4439
−0.0132

 .

3.3 Reducing the number of LMI variables

Suppose that at the LMI relaxation of order k, equation (8) holds for the solutions to be
extracted, i.e. some monomials in standard basis (2) are expressed as linear combinations
of monomials of generating basis (7).

If constraints of the original optimization problem become redundant when replacing lin-
early dependent monomials with combinations of generating monomials, then this results
in a reduction of the monomial basis over which subsequent LMI relaxations are built.
A similar idea is used in 0-1 quadratic problems to reduce the number of variables in
successive LMI relaxations, see [14].

In summary, application of the reduction algorithm at earlier LMI relaxations – at which
global optimality cannot be ensured with rank condition (4) – may result in a significant
reduction of the problem dimensions. This can be seen as a (heuristic) alternative to the
(systematic) algebraic reduction techniques of [7].

3.3.1 Example with continuous variables

Consider the following non-convex quadratic optimization problem suggested by Etienne
de Klerk and Radina Dontcheva:

p∗ = minx −(x1 − 1)2 − (x2 − 1)2 − (x3 − 1)2

s.t. 1− (x1 − 1)2 ≥ 0
1− (x2 − 1)2 ≥ 0
1− (x3 − 1)2 ≥ 0

(12)
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whose global optimum is p∗ = −3.

At the first (k = 1) LMI relaxation, the 4x4 moment matrix M1(y∗) has rank 4, so
obviously no solution can be extracted. However, we obtain p∗1 = −3, so the global
optimum is reached.

When k = 2, we have rank M1(y∗) = 4 and rank M2(y∗) = 7, and the column echelon
form of the Cholesky factor of the 10x10 moment matrix M2(y∗) is given by

U =



1
0 1
0 0 1
0 2 0
0 0 0 0 1
0 0 0 0 0 1
0 0 2 0 0 0
0 0 0 0 0 0 1
0 0 0 2 0 0 0


in the monomial basis (2)

v2(x) =
[
1 x1 x2 x3 x2

1 x1x2 x1x3 x2
2 x2x3 x2

3

]T
.

Pivot entries in matrix U correspond to the following generating basis (7)

w(x) = [1 x1 x2 x3 x1x2 x1x3 x2x3]T

which has 7 monomials.

From the rows in matrix U we deduce from (8) that solutions x to be extracted satisfy
the polynomial equations

x2
1 = 2x1

x2
2 = 2x2

x2
3 = 2x3.

(13)

The extraction algorithm fails however, because third degree monomials are missing in U
to build multiplication matrices (9).

Note however that when substituting monomials as in (13), constraints of the original
problem (12) become redundant since 1 − (xi − 1)2 = −x2

i + 2xi = 0 ≥ 0, for i = 1, 2, 3.
We can therefore replace monomials x2

i with 2xi and remove constraints in the next LMI
relaxation.

So when k = 3, instead of having a basis (2) with 20 monomials of degree 3, we can use
only 8 monomials to build the third LMI relaxation – with respect to the previous basis
of the second LMI relaxation, the only new element is the third degree monomial x1x2x3.
Using 8 monomials instead of 20 reduces significantly the computational burden when
solving the LMI relaxation. A further reduction is achieved since redundant constraints
can be removed and the third LMI relaxation does not feature any localizing matrix.
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When applying the reduction algorithm on the moment matrix M3(y∗) of rank 8, we
obtain that monomial x1x2x3 belongs to the generating basis. Multiplication matrices are
readily obtained, and the 8 expected globally optimal solutions are extracted

x∗(1) =

 0
0
0

 , x∗(2) =

 2
0
0

 , x∗(3) =

 0
2
0

 , x∗(4) =

 2
2
0

 ,
x∗(5) =

 0
0
2

 , x∗(6) =

 2
0
2

 , x∗(7) =

 0
2
2

 , x∗(8) =

 2
2
2

 .

3.3.2 Example with discrete variables

Consider the Max-Cut problem

min −1
2

∑
i<j wij(1− xixj)

s.t. xi ∈ {−1, +1}

in the case of a complete K5 graph with adjacency matrix

W =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 .

The first (k = 1) LMI relaxation yields p∗1 = −6.25 and rankM1(y∗) = 5.

When k = 2 we obtain p∗2 = −6.25 and rankM1(y∗) = 5, rankM2(y∗) = 10.

When k = 3, we get p∗3 = −6 and rankM1(y∗) = 5, rankM2(y∗) = 10, rankM3(y∗) = 20.
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The extraction algorithm returns

U =



1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−2 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 −2 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1
0 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 −1 0
0 −1 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 −1
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0


so that linearly dependent monomials in polynomial system of equations (9) are as follows

x4x5 = −2− x1x2 − x1x3 − x1x4 − x1x5 − x2x3 − x2x4 − x2x5 − x3x4 − x3x5

x1x2x3 = x4x5

x1x2x4 = x1x2x3

x1x2x5 = x1x2x4

x1x3x4 = x1x2x5

x1x3x5 = x1x3x4

x1x4x5 = −2x1 − x2 − x3 − x4 − x5 − x4x5 − x1x2x3 − x1x2x4 − x1x2x5 − x1x3x4

x2x3x4 = −x1 − x2 − x3 − x4 − x4x5 − x1x2x3 − x1x2x5

x2x3x5 = −x1 − x2 − x3 − x5 − x4x5 − x1x2x4 − x1x3x4

x2x4x5 = x1 + x3 + x4x5 + x1x2x5 + x1x3x4

x3x4x5 = x1 + x2 + x4x5 + x1x2x3 + x1x2x4.
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From these relations, fourth degree monomials can be expressed in generating basis (7)

x1x2x3x4 = (x1x2x3)x4 = (x4x5)x4 = x5

x1x2x3x5 = (x1x2x3)x5 = (x4x5)x5 = x4

x1x2x4x5 = (x1x2x4)x5 = (x1x2x3)x5 = (x4x5)x4 = x5

x1x3x4x5 = (x1x3x4)x5 = (x1x2x5)x5 = x1x2

x2x3x4x5 = (x2x3x4)x5 = (−x1 − x2 − x3 − x4 − x4x5 − x1x2x3 − x1x2x5)x5

= −x1x5 − x2x5 − x3x5 − x4x5 − 2x4 − x1x2

and the only fifth degree monomial readily follows

x1x2x3x4x5 = (x1x2x3x4)x5 = 1.

At this stage, it is useless to proceed with higher order LMI relaxations since no more
linearly independent monomials of higher degree can be produced.

Consequently, the global optimum p∗ = p∗3 = −6 has been reached and 20 globally optimal
solutions can be extracted from the above matrix U .

4 A remark on the numerical behavior of GloptiPoly

Finally, we want to comment on a nice and surprising behavior of GloptiPoly that we
observed on some examples of unconstrained minimization.

In the case of unconstrained global minimization, that is when K is Rn, only one LMI
relaxation is useful, namely Mk(y) if deg g0 = 2k or 2k − 1. Indeed,

(a) either g0 − p∗ is SOS and then p∗k = p∗, or

(b) g0 − p∗ is not SOS and then p∗k+j = p∗k < p∗ for all j = 1, 2, . . .

Therefore there is no need to try relaxations with orders higher than k. However, in
case (b) it may be worthy to still try higher order relaxations! Indeed, because of the
numerical inaccuracies involved in the solving procedure, one may obtain convergence in
a finite number of steps to a value and minimizers, very close to the exact value and the
exact minimizers respectively! Let us try to explain why.

If the space of polynomials x 7→ g(x) =
∑

α gαx
α is equipped with the norm ‖g‖ =∑

α |gα|, then the cone Σn of SOS polynomials is dense in the set of polynomials nonneg-
ative over the multidimensional box [−1, 1]n, see e.g. [1].

Therefore, consider a nonnegative polynomial g0 that is not SOS, and assume that g0 has
a global minimizer x∗ ∈ [−1, 1]n with g0(x∗) = p∗. Then, one may hope that an SOS
polynomial gk, close to g0 (i.e., with ‖gk − g0‖ < ε) will provide a global minimizer close
to x∗. Observe that for all x ∈ [−1, 1]n,

|gk(x)− g0(x)| = |
∑
α

[(gk)α − (g0)α]xα| ≤ ‖gk − g0‖ ≤ ε.
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However, one does not know how to construct such a sequence of SOS polynomials {gk}
with ‖gk − g0‖ → 0.

But let us see how GloptiPoly behaves on the following well-known example of a non-
negative polynomial which is not SOS, namely the polynomial obtained by dehomoge-
nization of Motzkin’s form:

g0(x) =
1

27
+ x2

1x
2
2(x2

1 + x2
2 − 1).

This polynomial is nonnegative (p∗ = minx g0(x) = 0 attained at |x1| = |x2| =
√

3/3) but
is not SOS.

• The least order (k = 3) LMI relaxation is unbounded, returning no useful informa-
tion. In principle one should stop here; we have detected that g0 is not SOS.

• when k = 4 the LMI relaxation is unbounded too.

• when k = 5 the LMI relaxation returns p∗5 = −0.4036 and all the moment matrices
have full rank (in GloptiPoly we use a relative threshold of 10−3 to evaluate the
numerical rank of a matrix)

• when k = 6 the LMI relaxation returns p∗6 = −0.08241 and all the moment matrices
have full rank

• when k = 7 the LMI relaxation returns p∗7 = −0.01675 and all the moment matrices
have full rank

• when k = 8 the LMI relaxation returns an almost zero optimum p∗8 = 3.022 · 10−10,
and rankM1(y∗) = 3, rankM2(y∗) = rankM3(y∗) = 4, thus proving global optimality.

The moment matrix of second order reads

M2(y∗) =


1.0000 0.0000 0.0000 0.3333 0.0000 0.3333
0.0000 0.3333 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.3333 0.0000 0.0000 0.0000
0.3333 0.0000 0.0000 0.1111 0.0000 0.1111
0.0000 0.0000 0.0000 0.0000 0.1111 0.0000
0.3333 0.0000 0.0000 0.1111 0.0000 0.1111


from which we readily extract the four globally optimal solutions

x∗(1) =

[
−0.5773
−0.5773

]
, x∗(2) =

[
0.5773
−0.5773

]
, x∗(3) =

[
−0.5773

0.5773

]
, x∗(4) =

[
0.5773
0.5773

]
.

From the dual LMI [12, 16], we can obtain the SOS decomposition

g8(x) =
32∑
i=1

a2
i q

2
i (x) + εr(x) ≈ g0(x) on [−1, 1]2,

where
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• polynomials qi(x) and r(x) are normalized such that their coefficient vectors have
unit Euclidean norm,

• ε ≤ 10−8 < a2
i , i.e. positive scalar parameter ε is less than a given threshold, and

positive scalar coefficients a2
i in the decomposition are greater than the threshold,

• deg qi(x) ≤ 8, since GloptiPoly solved the eighth LMI relaxation,

• there are 32 (!) terms in the SOS decomposition.

The above SOS decomposition is approximate in the sense that parameter ε is small, but
non-zero. It turns out that in GloptiPoly numerical inaccuracy (roundoff errors) helped
to find a higher degree SOS polynomial g8 close to Motzkin polynomial on [−1, 1]2.

Thus, everything looks like if in the solving procedure of the dual relaxation Q∗k (see [12]
for notations) the constraints

〈X,Bα〉 = (g0)α, |α| ≤ 2k,

are replaced automatically by

〈X,Bα〉 = (g0)α + εα, |α| ≤ 2k,

with appropriate small perturbations {εα}, chosen by the solver!

In a similar vein, it can be useful to add a redundant constraint of the type

g1(x) = R2 − ‖x‖2
2 ≥ 0,

and consider the optimization problem min{g0(x) | g1(x) ≥ 0}, to obtain guaranteed con-
vergence of the successive associated LMI relaxations.

Now consider problem (1) where g0(x) is the above Motzkin polynomial and g1(x) is the
above radius constraint with R = 1 (to include the 4 global minima). With GloptiPoly
we obtain already at the third LMI relaxation the SOS decomposition

g0(x) =
6∑
i=1

a2
i q

2
i (x) + g1(x)

2∑
i=1

b2
i r

2
i (x)

with only 6 and 2 terms such that deg qi ≤ 3 and deg ri ≤ 2, respectively.

5 Conclusion

Solution extraction is straightforward when the moment matrix has rank-one: in this
case the solution vector is equal to the first order moment vector. When the moment
matrix has rank greater than one, we have proprosed in section 2 a systematic extraction
procedure, implemented in version 2.2 of the GloptiPoly software.
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The extraction algorithm is applied when moment matrices satisfy rank condition (4),
in which case it is always successful and yields globally optimal solutions. However, as
pointed out in section 3, when the rank condition is not satisfied, a heuristic consists in
applying the extraction algorithm anyway. Either the algorithm is successful and we are
done (see section 3.1) or the algorithm fails, but still some information can be exploited
to reduce the number of variables in subsequent LMI relaxations (see section 3.3). Note
however that these ideas are not currently implemented in GloptiPoly.

Note finally that an incomplete extraction procedure was sketched in [3] in the case of LMI
relaxations for polynomial systems of equations, and partly motivated us to devise a more
general algorithm. A specific extraction procedure was also described in [19, Section 5]
in the case of quadratic optimization problems with one (possibly non-convex) quadratic
constraint, or one linear constraint jointly with one concave quadratic constraint.
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