
INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY

Nanotechnology 18 (2007) 035204 (11pp) doi:10.1088/0957-4484/18/3/035204

Nano/CMOS architectures using a
field-programmable nanowire
interconnect
Gregory S Snider and R Stanley Williams

Hewlett Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304-1126, USA

Received 11 July 2006, in final form 29 September 2006
Published 3 January 2007
Online at stacks.iop.org/Nano/18/035204

Abstract
A field-programmable nanowire interconnect (FPNI) enables a family of
hybrid nano/CMOS circuit architectures that generalizes the CMOL
(CMOS/molecular hybrid) approach proposed by Strukov and Likharev,
allowing for simpler fabrication, more conservative process parameters, and
greater flexibility in the choice of nanoscale devices. The FPNI improves on
a field-programmable gate array (FPGA) architecture by lifting the
configuration bit and associated components out of the semiconductor plane
and replacing them in the interconnect with nonvolatile switches, which
decreases both the area and power consumption of the circuit. This is an
example of a more comprehensive strategy for improving the efficiency of
existing semiconductor technology: placing a level of intelligence and
configurability in the interconnect can have a profound effect on integrated
circuit performance, and can be used to significantly extend Moore’s law
without having to shrink the transistors. Compilation of standard benchmark
circuits onto FPNI chip models shows reduced area (8× to 25×), reduced
power, slightly lower clock speeds, and high defect tolerance—an FPNI chip
with 20% defective junctions and 20% broken nanowires has an effective
yield of 75% with no significant slowdown along the critical path, compared
to a defect-free chip. Simulations show that the density and power
improvements continue as both CMOS and nano fabrication parameters scale
down, although the maximum clock rate decreases due to the high resistance
of very small (<10 nm) metallic nanowires.

1. Overview

Micro/nano hybrid architectures have been proposed which
integrate nanowire crossbars with a CMOS chip (figure 1,
right) [6, 25, 26, 18, 20]. Each crossbar ‘junction’ (formed
by one nanowire crossing over another separated by a small
distance (figure 1, left)) is generally hypothesized to be an
electrically configurable or reconfigurable device, the simplest
being an antifuse. Metallic ‘pins’ on the surface of the chip
connect down into CMOS gates and provide contact points
for electrically attaching nanowires in the crossbar. The
architects of these hybrids must decide: (1) how to split
functionality between the CMOS and nano layers; (2) how to
interconnect the two layers by appropriate placements of pins
and nanowires; and (3) how to deal with the high defect rates
and device variability found in the nanowire crossbars.

CMOS

nanowire
 crossbar

“pin”

configurable
 junction

nanowire

nanowire

Figure 1. Left: crossing nanowires separated by a molecular layer
form ‘junctions’ that may be electrically configured as electronic
devices. Right: nanowire crossbars connected to a CMOS chip via
metallic ‘pins’ on the CMOS surface.

One of the earliest ideas proposed that demultiplexers,
implemented in the nanowire crossbars, would allow a
small number of pins to control a large number of

0957-4484/07/035204+11$30.00 1 © 2007 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0957-4484/18/3/035204
http://stacks.iop.org/Nano/18/1

Nanotechnology 18 (2007) 035204 G S Snider and R S Williams

nanowires [12, 6, 24]. Although progress has been made with
this approach [13, 19, 9, 14], demultiplexers are difficult to
build without nonlinear devices. Demultiplexers also present
architectural challenges since they are often called upon to do
double-duty: to configure selected junctions in the crossbars as
well as shuttle data between the CMOS and nano layers.

1.1. CMOL

A more recent approach, CMOL (CMOS/molecular hy-
brid) [20, 22], proposes moving the most difficult functions
necessary for logic—inversion and gain—along with the de-
multiplexing into the CMOS layer, using the nanowires and
selected configured junctions only for wired-OR logic and sig-
nal routing. By distributing pins uniformly across the sur-
face of the CMOS chip and structuring the crossbars such that
each nanowire connects to exactly one pin, CMOL achieves
simplicity in junction configuration and maximal signal band-
width between the CMOS and nano layers. Preliminary studies
have shown that CMOL field-programmable gate arrays (FP-
GAs) might provide circuits about two orders of magnitude
denser than conventional CMOS FPGAs and with similar per-
formance [22].

The cleverness and chief virtues of CMOL are its
simplicity, density, and clean separation of configuration and
data communication, but it does present some operational and
fabrication issues. Because it uses non-complementary, wired-
OR logic, keeping static power dissipation within bounds
(200 W cm−2) requires careful optimization of the closed-
junction resistance, pass-transistor resistance, and supply
voltage. An initial estimate places the supply voltage,
Vdd, at about 0.3 V [22], far lower than any projected by
the International Technology Roadmap for Semiconductors
(ITRS) through the year 2020 [10]. The configurable junctions
are assumed to be extremely nonlinear antifuses in order to
implement the wired-OR function, but device variability or
insufficient nonlinearity might limit the fan-in to less than
desired (a fan-in of 7 was assumed in [22]), decreasing
the circuit density. The wired-OR logic also restricts the
architecture to nonlinear nanodevices, excluding the use of
more linear devices that might be easier to fabricate.

CMOL pins present a fabrication challenge, as shown in
the left half of figure 2—the pins are actually ‘nanopins,’ just
a few nanometres in diameter. Half of the nanopins (the blue
pins in figure 2) must be taller (by about 8 nm) than the other
half (red pins), and they must be surrounded by an insulating
layer (shown as grey cladding in the figure). This might be
accomplished by projecting the taller pins above the surface
of the CMOS layer, which would be flush with the tops of
the shorter pins, but the projecting nanopins would severely
complicate subsequent circuit processing steps.

Another challenge is registration error or uncertainty in
the locations of the nanopins. The protruding blue nanopins
of figure 2 are designed to extend through and break the lower
level nanowires at regular intervals in order to make contact
with the upper level nanowires, but sufficient variation in
nanopin location could lead to missing or extra breaks in the
nanowires. Although in principle this need not significantly
reduce the CMOL connectivity, it does present problems
to a compiler attempting to map a circuit onto a CMOL

pin
pad

pin
CMOS

nano

CMOS

nano

FPNI

pinpinpin

A

BA+B

A

B

AB

cell cell

CMOL

pad

Figure 2. Schematic diagrams of hybrid circuits. The CMOL (left
column) places a nanowire crossbar on top of a sea of CMOS
inverters. The crossbar is slightly rotated so that each nanowire is
electrically connected to one pin extending up from the CMOS layer.
Electrically configured, nonlinear antifuses (green, bottom panel)
allow wired-OR logic to be implemented, with CMOS supplying
gain and inversion. The FPNI (right column) places a sparser
crossbar on top of CMOS gates and buffers. Nanowires are also
rotated so that each one connects to only one pin, but configured
junctions (green, bottom panel) are used only for programmable
interconnect, with all logic done in CMOS.

chip—not only must the compiler be aware of defective
junctions and broken or shorted wires, it must also have a
complete characterization of the actual nanowire lengths and
connectivity.

The inverter-based structure of CMOL presents a
challenge to routing algorithms, which almost always assume
routing networks of non-inverting buffers and switches. This
structure requires either the development of new routing
algorithms that keep track of signal polarity of nets during
routing, or a pairing up of inverters into buffers, reducing the
density but allowing conventional algorithms to be used.

One final challenge is the nanowire size (4.5 nm) and
pitch (9 nm) chosen for CMOL. These values are far beyond
any demonstrated lithographic capabilities, and essentially
represent an extrapolation of the ITRS out to the year
2030 [10]. Thus, CMOL as proposed and described is a decade
or more away from being realized.

1.2. FPNI

In this paper we present a general hybrid architectural approach
named FPNI (field-programmable nanowire interconnect) that
trades off some of the speed, density and defect-tolerance
of CMOL in exchange for easier fabrication, lower power

2

Nanotechnology 18 (2007) 035204 G S Snider and R S Williams

Figure 3. Atomic force microscope topographs of a nearly defect-free region (left) and highly defective region (right) in a 34 nm pitch
nanowire crossbar [11].

dissipation, and greater freedom in the selection of nanodevices
in the crossbar junctions. The key differences are as follows.

(1) In FPNI architectures, logic is done only in CMOS,
routing only in the nanowires (figure 3 shows some
nanowire crossbars we have fabricated in our laboratory).
This significantly reduces static power dissipation, and
allows us to use linear (or approximately linear) antifuses
for the nanowire junctions. In addition, the FPNI
routing network is buffer-based, not inverter-based, which
simplifies the routing.

(2) Alignment of the FPNI nanowire crossbar with the CMOS
pins is required, but the alignment accuracy is at the same
scale as the CMOS.

(3) The FPNI uses conventional CMOS processes and
voltages and provides a planar silicon surface for
nanowires; the CMOL requires reduced supply voltage
(Vdd = 0.3 V), reduced signalling voltage swing (40 mV)
and ‘nanopins’ of two different heights on a nonplanar
silicon surface [22].

Figure 2 compares the geometry of nanowires, pins and
underlying CMOS for the two approaches. The CMOL (left
column of figure 2) assumes a sea of inverters regularly
connected to pins on the surface of the silicon. The nanowire
crossbar on top is rotated slightly to allow each nanowire
to contact exactly one pin; the approximately horizontal
nanowires connect only to inverter inputs and the vertical
only to inverter outputs. Selected junctions (shown in green
in the bottom panel) are configured as nonlinear resistors to
implement wired-OR logic (in conjunction with a pull-down
transistor in the CMOS), with the CMOS inverters providing
gain and inversion.

The FPNI (right column of figure 2), on the other hand,
assumes a sea of logic gates, buffers and other components
in the CMOS layer, and uses the nanowires only for the
interconnect. The nanowires include large ‘pads’ to cover the
pins (much larger than the CMOL nanopins), and there is a
similar crossbar rotation so that each nanowire connects to
only one pin. Selected junctions (green, bottom panel) are
configured as resistors to interconnect the underlying logic.
As the pin size and alignment error approach zero, the CMOL
nanowire layout emerges as a special case of FPNI.

Table 1. FPNI architectural parameters.

Parameter Description

Pnano The nanowire pitch. This is the centre-to-centre
spacing of adjacent, parallel nanowires.

Wnano Mean nanowire width.

Wpin Mean pin diameter.

Wpinvar Plus/minus variation in pin size due to
fabrication limitations.

Wcell The height of a CMOS cell. All cells are square,
laid out in a regular grid.

Walign Maximum alignment error, in any direction,
of nanowires relative to CMOS.

Wsep The minimum planar separation between a
CMOS pin and a passing nanowire that must be
electrically isolated from it.

Rclosed Closed junction resistance.

2. Architecture

2.1. Nanowires

The nanowire and cell geometries are derived from the first
seven architectural parameters listed in table 1. We route the
nanowires diagonally (with a slight rotation to maximize their
length) in order to maximize routability. The two nanowire
‘arms’ emanating from the central ‘pad’ are of equal length to
minimize worst-case RC (resistance–capacitance) delays. The
core nanowire fabric is derived from the parameters of table 1
using a little geometry and trigonometry.

2.2. CMOS

The CMOS layer is divided into an array of square cells, with
each cell connected to one input pin (for reading a signal driven
from a nanowire) and one output pin (for driving a signal from
a gate to a nanowire). A buffer is implemented in a single cell,
while logic gates and flipflops require multiple cells.

The logic gate used in this architecture is an n-input
NAND/AND gate, implemented in n cells. It computes the
logical AND of its inputs and drives the true (AND) and
complemented (NAND) forms of the result. The motivation
for such a nonstandard gate derives from the equal numbers

3

Nanotechnology 18 (2007) 035204 G S Snider and R S Williams

1

Q

1

1

1

Figure 4. A hypercell consisting of four three-input NAND/AND
gates, one flipflop and 26 buffers.

of input and output pins in the cell array. A simple, n-input
NAND gate would waste one or more output pins for n � 2;
the NAND/AND makes more effective use of the pins and also
eliminates the need for inverters. For large n, the true and
complemented outputs can be replicated to improve routability
and defect tolerance. For all n > 2, at least one output pin per
gate is used to drive a logical ‘1’ signal, which is connected to
unused gate inputs to prevent them from floating.

A flipflop is implemented in four cells. The four input
pins are all connected to the D input of the flipflop, allowing
the compiler to connect to any of the input pins to reach the D
input. Two of the four output pins are driven by the Q output
of the flipflop, the other two are driven by the −Q output.

Primary inputs and outputs are implemented with a pair
of cells that together handle one input and one output signal.
An input signal is brought in from circuitry external to the cell
array and driven out in true and complemented form on the
two output pins. An output signal is driven through a nanowire
to one of the two input pins and from there delivered to the
outside world. These I/O cell pairs occupy the outer cell edges
of the cell array.

Logic gates, buffers and flipflops are collected together
into a rectangular region known as a ‘hypercell,’ a structure
analogous to a configurable logic block (CLB) in a
conventional FPGA. An FPNI chip consists of a rectangular
array of identical hypercells, surrounded by a periphery of I/O
cell pairs. An example is shown in figure 4.

2.3. Configuration

The junction configuration uses the same scheme proposed for
use in CMOL [20]. A junction is electrically configured by
driving appropriate voltages onto the two nanowires that define
it. Configuration lines in the CMOS chip (figure 5), running
through each of the cells, provide this capability. During the
configuration of a junction, the buffers, gates and flipflops in
the cells are disabled; decoders along the edge of the cell
array each drive a single configuration line with a programming
voltage while grounding the remaining configuration lines.
Driving appropriate voltages through the decoders causes two
transistors, typically in different cells, to drive two different
voltages onto a selected ‘output’ nanowire and a selected
‘input’ nanowire. If the two nanowires share a junction, the
voltage drop across it can be used to configure the junction’s
state. For example, a positive voltage drop across an antifuse
junction might drive it into a low-impedance state, while a
negative voltage drop might return it to a high-impedance
state.

Once a circuit has been configured, the configuration lines
are driven to turn off the configuration transistors in each cell,
and the buffers, gates and flipflops are then enabled to allow
programmed circuit operation.

2.4. Fabrication

Since the nanoscale electronics will almost by definition
be too small to fabricate by any existing generation of
photolithography, the likely approach for fabricating the
nanoelectronics will be imprint lithography with alignment
capabilities at the scale of (or better than if available, but not
necessarily) the alignment required for the CMOS circuitry, in
order to achieve registry between the pads and the nanowire
connections. It will be possible to begin with a planarized
surface on which the pads for both levels of the nanoelectronics
are at the same height. A representative process flow is as
follows (figure 6).

(1) The first layer of connectors and wires are defined by
nanoimprint [11], with the pads of the bottom nanowires
aligned over one set of pins on the substrate.

configuration lines
output nanowire

input
nanowire

configuration lines

decoder

decoder

decoder

decoder

Figure 5. Junction configuration. Each decoder along the edge of the cell array drives a configuration line through each cell. When a pair of
configuration lines connected to a transistor (such as the transistor in the upper right of the cell above) is driven with appropriate voltages, the
nanowire connected to that transistor will be driven with a voltage. Driving two different nanowires that share a junction with different
voltages can be used to change that junction’s conductance state, e.g. to close or open a switch connecting the wires.

4

Nanotechnology 18 (2007) 035204 G S Snider and R S Williams

Figure 6. The CMOS cells (a) are rotated slightly relative to the imprinted nanowires. The first layer of vertical nanowires (b) is imprinted so
the nano pads (black squares) make contact with the blue CMOS pins. A switching layer is overlaid (c) and the second layer of horizontal
nanowires (d) are imprinted so that their nano pads (red squares) make contact with the green nano pins.

(2) The entire surface of the chip is coated with whatever
switching layer or layers are necessary, followed by a thin
blanket of a protective material such as Ti [2].

(3) Using standard lithography, a mask layer is deposited
with openings over the second set of substrate pins, the
materials covering these pins are etched away to expose
the pins, and the mask layer is removed.

(4) The second layer of nanowires can be defined and
deposited in a manner similar to the first, with the pads
aligned over the exposed pins.

(5) An etching process is used to remove all the switching
and protective materials that are not directly under the
upper nanowires, which electrically isolates parallel sets
of nanowires, e.g. the formation of the switching junctions
is a self-aligned process.

This process flow will require that the upper nanowires ‘climb
over’ the lower nanowires that they cross, as shown in figure 3.
While this may lead to breaking of the top nanowires as the
wire width shrinks, it has not been a problem for crossbars with
65 nm or greater half-pitch [2, 11], and we have developed a
strategy to mitigate this issue for wires narrower than 65 nm.
Afterwards, a layer of dielectric material can be deposited
over the nanowire layer, which is then planarized to prepare
the system for subsequent processing steps. Alternately, a
planarization process can be inserted between steps 1 and 2
above, if this is considered to be important and appropriate.

2.5. Electrical model

Calculating the performance and dynamic power of an
application compiled onto an FPNI chip requires an electrical
model of the nanowires, junctions and CMOS components. For
nanowires we need to know the capacitance and resistance per
unit length, the closed-junction resistance, and must take into
account the geometry of the wires and their interconnections
through closed junctions. For the CMOS we need to know the
intrinsic gate delay.

Nanowire capacitance per unit length is difficult to
estimate because of the non-regular nanowire crossbar
structure in the FPNI along with the fact that the top layer
nanowires created by nanoimprint are not parallelepipeds, but
undulate as they cross over the spaces between nanowires in
the layer beneath (figure 3). We begin with Strukov’s model
for a regular, parallelepiped nanowire crossbar [20], where
nanowires within a layer are separated by a distance equal to
their width. Given a 3 nm thick switching layer separating
the two nanowire layers, a nanowire width of 15 nm, and an
insulator between and around all nanowires with a dielectric
constant of 3.9 (that of SiO2), that model predicts a capacitance
per length of approximately 2.8 pF cm−1. FPNI crossbars
are somewhat sparse, though (see figures 2 and 8), reducing
the capacitance between layers. In addition, switching layers
that we anticipate using to separate nanowire layers typically

5

Nanotechnology 18 (2007) 035204 G S Snider and R S Williams

dB

d2 d3d1

dA

source

sink 1

sink 2
source

sink 1

sink 2

D = d1 + d2 + d3

Cd1

 2

Rd1

rsw

Cd1

 2
Cd2

 2
Cd2

 2
Cd3

 2
Cd3

 2

Rd2 Rd3

CdA

 2
CD
 2

CD
 2

RD

source

CdA

 2

C(D-dA)
 2

C(D-dA)
 2

RdA

sink 1

R(D-dA)

rsw

CdB

 2
CD
 2

CD
 2

RD

CdB

 2

C(D-dB)
 2

C(D-dB)
 2

RdB

sink 2

R(D-dA)

R = resistance / meter
C = capacitance / meter
D = nanowire length,m

rsw = closed switch
 resistance

(a) (b)

(c)

Figure 7. Electrical model of nanowires and junctions. A signal with a fanout of 2 (a) is implemented by electrically closing junction switches
between the nanowire driven by the source and the two nanowires connected to the sinks (b). The electrical model used for estimating signal
delay (c) uses the physical coordinates of the nanowires and their closed junctions to derive nanowire resistance and capacitance. Delay is
estimated using the Elmore delay model; in this example, delay (source → sink1)
≈Rd1(4D + d1/2 + d2 + d3)C + 2rsw DC + RdA(D + dA/2)C .

have a dielectric constant of about 2.5, reducing the interlayer
capacitance still further. A passivation layer covering the
top nanowire layer need not be SiO2, allowing us to choose
a material that protects the nanowire layers while having
a somewhat lower dielectric constant—perhaps 3.5 or so.
Nanowire pads add additional capacitance, but since their
area is quite small compared to that of the nanowires, we
neglect their contribution. From these considerations we have
estimated the nanowire capacitance at 2.0 pF cm−1.

Nanowire resistance per unit length depends upon the
effective resistivity of the nanowire material. We assume here
nanowires of copper (the metal specified in the ITRS roadmap),
which allows us to estimate the resistivity for wires down to
15 nm by interpolating the ITRS projections. For example,
Cu wires with a line width of 15 nm are projected to have an
effective resistivity of approximately 8 μ� cm, so a square Cu
nanowire, 15 nm on a side, would have a resistance of about
355 � μm−1.

Nanowire resistivity, ρ, is difficult to model for very small
(<10 nm) wires. Strukov [22] used a common approximation

ρ/ρ0 = 1 + 0.75(1 − p)(λ/d) (1)

with p (the fraction of electrons scattered specularly at the
surface) assumed to be 0.67, λ (the mean free path) equal
to 40 nm, ρ0 (the bulk resistivity) equal to 2 μ� cm, and
d set to the nanowire width. However, this model is known
to underestimate the effective resistivity for small wires [21]
and assumes negligible increased resistivity due to scattering at
grain boundaries (which is possible for very large grain sizes).
For our study we adopted a more conservative model, using

Matthiessen’s rule to combine the above surface scattering
model with the Mayadas–Shatzkes grain boundary scattering
model [21], assuming an average grain size equal to the
nanowire width (which might require annealing to achieve).
We then fitted the resulting model to the ITRS resistivity
model, finding a reasonable fit for p = 0.6 and a grain
boundary reflectivity coefficient of 0.43. Extrapolation yielded
an estimated resistivity of about 24 μ� cm for 4.5 nm Cu
nanowires; the uncertainty of this estimate, though, is quite
high.

Closed-junction resistance depends on the materials used
to build the nanowire crossbar, but we have experimentally
observed as a rule of thumb that it is difficult to configure
a closed junction to a resistance less than the sum of the
resistances of the nanowires from their junction to their
respective drivers. Our baseline experiments assume a
nanowire width of 15 nm and a maximum nanowire length of
about 7.11 μm, yielding a maximum nanowire resistance from
pad to tip of about 2.5 k�. Based on this and experimental
work [15] we have chosen a value of 24 k� as a reasonably
conservative estimate of obtainable closed-junction resistance
for 30 nm pitch nanowires; smaller values have been observed
repeatedly in experimental investigations of the closed-switch
state for switchable junctions [15]. For higher-resistance,
4.5 nm nanowires, the closed-junction resistance cannot be
much less than 120 k�.

CMOS gate delay was estimated to be 10 ps by noting the
projected n-FET switching time of 0.39 ps for the year 2010
from the ITRS roadmap [10]. Our analysis is not sensitive to
this value, though, since circuit timing is strongly dominated
by the RC delays of the nanowires.

6

Nanotechnology 18 (2007) 035204 G S Snider and R S Williams

Figure 8. Left: FPNI fabric for FPNI 30 nm parameters. Right: a two-bit counter compiled onto a small FPNI chip. For clarity, only active
electrical nanowire connections are shown. The blue cells are two-input NAND/AND gates (two cells per gate), the yellow cells are buffers,
and the green cells are flipflops (four cells per flipflop).

Table 2. Experimental parameters for two FPNI architectures.

Parameter Description FPNI 9 nm FPNI 30 nm

Pnano Nanowire pitch 9 nm 30 nm
Wnano Nanowire width 5 nm 15 nm
Wpin Pin diameter 45 nm 90 nm
Wpinvar Pin size variation 20 nm 20 nm
Wcell Cell height 450 nm 840 nm
Walign Alignment error 30 nm 40 nm
Wsep Pin/wire separation 5 nm 15 nm
Rclosed Closed junction 120 k� 24 k�

resistance
ρ Nanowire resistivity 24 μ� cm 8 μ� cm

Nanowire length 5087 nm 7115 nm
Nanowire resistance 58 k� 2.53 k�

Evaluating the speed of a circuit mapped onto an FPNI
fabric requires a detailed calculation of delay through every
component and interconnect, and then extracting the critical
timing path by searching for the longest delay through a chain
of wires from any flipflop output (or primary input) to any
flipflop input (or primary output). Ideally one would use a
program like SPICE [23] to do this analysis, but this is practical
only for small circuits. Instead we use the simpler Elmore
delay model [7, 4, 16] to estimate the delay for each path
through nanowires and junctions (see figure 7).

Dynamic power analysis tallies the number of nanowires
allocated by our compiler to implement a circuit onto an FPNI
target, and computes the dynamic power required to charge and
discharge the capacitance of those wires using the formula [5]

Dynamic power = 1
2 ANCV 2

dd f (2)

where A is the average ‘activity’ of a signal, N is the number of
allocated nanowires, C is the capacitance of a single nanowire,
Vdd is the supply voltage used by the CMOS, and f is the
maximum clock frequency determined by timing analysis. We
have chosen an activity of 0.1, following Davis [5], and Vdd of
1.0 V from the ITRS roadmap for the year 2010 [10]. Note
that we have not computed the static power dissipation in the
CMOS gates and flipflops nor the dynamic power needed to
drive the CMOS clock tree.

Table 3. Area and delay as function of logic gate inputs for 17
benchmark circuits.

Average total critical
Gate inputs Total area (μm2) path delay (ns)

2 657 540 179.3
3 598 730 164.4
4 680 698 169.2
5 647 450 169.9

3. Experiments

Since there is no simple way of analytically comparing
the FPNI architecture with CMOL and conventional CMOS
FPGAs, we use the time-honoured tradition of modelling
and simulation using standard benchmarks. We chose
17 benchmark circuits1 from the ‘FPGA place-and-route
challenge’ suite [8].

We created two different FPNI architectural models for
this study: a conservative model, FPNI 30 nm, that we believe
is technologically viable by 2010 for both nanowires and
CMOS; and an aggressive model, FPNI 9 nm, that uses the
same CMOS and nanowire technology assumptions used by
CMOL [22] (most likely aimed at the year 2020) so that we
may compare FPNI with CMOL. The CMOS parameters were
based on values from the ITRS roadmap for the year 2010 [10]
and on discussions with CMOS fabrication engineers. The
parameters for both architectures are shown in table 2.

Our initial set of experiments was designed to establish
(1) the optimal number of NAND/AND inputs; and (2) the
optimal hypercell composition (proportion of gates, buffers
and flipflops). To do this we created an ensemble of FPNI
chip models meeting the FPNI 30 nm architectural parameters
of table 2, but that varied in the number of NAND/AND gate
inputs and hypercell composition. We then compiled each of
the circuits onto each chip of the ensemble, sizing the FPNI
chip in each case to be the smallest hypercell array capable
of containing that circuit’s logic (although not necessarily its
routing). From the results of those experiments, we then fixed

1 We eliminated the three I/O-limited benchmark circuits from the suite since
it was difficult to make meaningful area comparisons with them.

7

Nanotechnology 18 (2007) 035204 G S Snider and R S Williams

Table 4. Performance comparison: CMOS versus CMOL versus FPNI (data in the CMOS and CMOL columns are from [22]).

Area (μm2) Critical path delay (ns) Dynamic power (mW)

CMOL FPNI FPNI FPNI FPNI FPNI FPNI
Circuit CMOS 9 nm 30 nm 9 nm CMOS 30 nm 9 nm 30 nm 9 nm

alu4 137 700 1 004 17 513 5 026 5.1 6.53 28.7 0.48 0.061
apex2 166 050 914 18 983 5 448 6 7.10 32.5 0.47 0.059
apex4 414 619 672 13 457 3 862 5.5 5.98 27.1 0.44 0.054
clma 623 194 9 308 78 020 22 391 13.1 19.70 85.5 0.78 0.103
diffeq 100 238 1 194 18 983 5 448 6 6.86 30.6 0.33 0.044
elliptic 213 638 4 581 43 493 12 482 8.6 12.48 56.1 0.50 0.066
ex1010 391 331 3 486 41 252 11 839 9 10.03 44.4 0.84 0.106
ex5p 100 238 829 11 050 3 171 5.1 5.42 23.8 0.37 0.047
frisc 230 850 4 199 43 493 12 482 11.3 14.02 61.8 0.52 0.068
misex3 124 538 1 004 14 750 4 233 5.3 5.52 25.7 0.50 0.061
pdc 369 056 4 979 48 153 13 819 9.6 12.74 58.0 0.90 0.110
s298 166 050 829 20 513 5 887 10.7 12.74 58.5 0.25 0.032
s38417 462 713 9 308 84 220 24 170 7.3 12.94 63.1 0.93 0.114
s38584.1 438 413 9 872 66 329 19 036 4.8 7.80 39.4 1.29 0.153
seq 151 369 1 296 17 513 5 448 5.4 6.55 28.9 0.51 0.066
spla 326 025 2 994 43 493 12 482 7.3 10.92 48.6 0.84 0.108
tseng 78 469 1 194 17 513 5 026 6.3 7.10 29.0 0.25 0.037

Total 4494 491 57 663 598 728 172 250 126.4 164.45 741.6 10.18 1.29

Total relative 1.0 0.013 0.133 0.038 1.0 1.30 5.87 1.0 0.13

our optimal gate size and hypercell composition and continued
compiling the benchmarks onto an ensemble to explore

• the performance (power, clock speed, area); and
• the defect tolerance (stuck-open junctions and broken

nanowires).

The left side of figure 8 shows a close-up of the nanowires
and pins derived from the FPNI 30 nm parameters. The
right side shows the result of compiling a small circuit onto a
very small FPNI fabric—for clarity, only the active electronic
connections are shown. The compiler is described in the
appendix.

3.1. Logic gate and hypercell

Our first set of experiments explored varying the number of
inputs to NAND/AND gates from two to five and varying the
relative proportions of gates, buffers and flipflops within a
hypercell. The goal was to determine the parameters that would
minimize the area while maximizing the clock speed. Since we
wish to compare our results with conventional FPGAs, which
often use a four-input look-up table (LUT) and flipflop as their
basic logic element, we needed to determine the computational
power of n-input NAND/AND gates relative to four-input
LUTs. Technology mapping experiments showed that this
relationship is strongly circuit dependent, but suggested an
approximation. Our hypercells were thus constructed with
a single flipflop combined with either five two-input gates,
four three-input gates, three four-input gates or three five-input
gates. This left only the number of buffers in a hypercell to be
determined.

For each value of n from 2 to 5, we constructed a set
of hypercells with the number of n-input gates and flipflops
just described, but with varying numbers of buffers that kept
the hypercell compactly rectangular. Every benchmark circuit
was compiled onto FPNI chips composed of the smallest

Table 5. Tolerance of ‘stuck-open’ junctions.

Stuck-open defect rate Yield Average critical path (ns)

0.0 1.00 9.67
0.1 1.00 9.70
0.2 1.00 9.74
0.3 1.00 9.77
0.4 1.00 9.86
0.5 1.00 9.94
0.6 0.95 9.89
0.7 0.94 10.01
0.8 0.89 10.18
0.9 0.43 12.21

possible grid for a given hypercell. For each n, we selected
the smallest hypercell (the one with the fewest buffers) that
all 17 benchmarks could be compiled onto. To compare the
results, we summed up the total area and total critical path for
all circuits onto chips made of that hypercell. Because our
placer and router are nondeterministic, we did this 25 times
and averaged the results, shown in table 3.

We were somewhat surprised that neither the area nor the
critical path delay was strongly sensitive to the type of logic
gate used. But the three-input NAND/AND proved to be the
best on both counts, and the smallest three-input hypercell that
worked for all circuits was 6×7 cells (shown in figure 4). That
hypercell, containing four three-input gates, one flipflop and 26
buffers, was used for the remainder of our experiments.

3.2. Performance (power, speed, area)

To determine the FPNI performance, we compiled each
circuit 25 times onto each of the two architectures, FPNI 30 nm
and FPNI 9 nm (table 2) and averaged the results for each
circuit. The dynamic power calculations assumed Vdd = 1.0 V,
activity = 0.1 and circuits clocked at the maximum rate (equal
to 1/critical path delay). The results (table 4) show that FPNI

8

Nanotechnology 18 (2007) 035204 G S Snider and R S Williams

Table 6. Tolerance of ‘stuck-open’ junctions and broken nanowires.

Stuck-open Broken nanowire Average critical
defect rate defect rate Yield path (ns)

0.2 0.0 1.00 9.72
0.2 0.1 0.82 9.00
0.2 0.2 0.75 8.86
0.2 0.3 0.62 8.76
0.2 0.4 0.48 8.81
0.2 0.5 0.35 8.42
0.2 0.6 0.24 8.38
0.2 0.7 0.12 8.54
0.2 0.8 0.04 9.60
0.2 0.9 0.02 8.86

30 nm requires only about one eighth of the area of a CMOS
FPGA (with the same 45 nm node semiconductor technology)
while running about 22% slower. CMOL 9 nm is far smaller
than FPNI 30 nm, but because of our more conservative
resistance model, it is not possible to directly compare the
CMOL and FPNI performance.

The FPNI 9 nm architecture is only about 4% the
size of the CMOS FPGA (though still three times larger
than CMOL), but is much slower. The rapidly increasing
resistance of shrinking nanowires overwhelms the reduction
in total circuit capacitance from the corresponding shortening
of nanowires, reducing the clock rate. Note that the reduced
power dissipation of the 9 nm architecture is due both to
reduced capacitance (due to shorter nanowires) and reduced
clock rate. If we normalize the clock rate, the 9 nm architecture
dissipates only 57% as much dynamic power per cycle as the
30 nm architecture.

3.3. Defect tolerance

Nanowire antifuse crossbars are typically fabricated with all
junctions initially in the ‘open’ or high-impedance state.
The most common defect expected in such crossbars is the
‘stuck-open’ switch—a high-impedance junction that cannot
be configured to a low-impedance state. To study how those
defects impact the yield and critical path timing, we compiled
each of the 17 benchmarks onto ‘FPNI 30 nm’ chips, varying
the ‘stuck-open’ junction probability from 0, 0.1, 0.2, . . . , 0.9.
To collect sufficient statistics, the compilation was done 100
times for each (circuit, defect rate) pair, for a total of 17 000
compilations. The results are summarized in table 5. Defect
rates of 50% have almost no impact on the yield (99.7%)
or critical path timing (an average increase of less than 3%).
Even defect rates of 80% have respectable yield (88.5%) and
degradation in critical path delay2 (5%).

We expect broken nanowires to be fairly common. To
study their impact, we repeated the previous experiments on
the 17 benchmarks with the ‘stuck-open’ defect rate fixed
at 0.2, and varied the broken nanowire defect rate (0.0, 0.1,
0.2, . . . , 0.9). Each (circuit, broken nanowire rate) pair was
compiled 100 times, for a total of 17 000 compiles, and the
results averaged. For this experiment we defined a nanowire
to be a single nanowire ‘arm’ connected to the ‘pad’ over the

2 ‘Critical path delay’ is the delay of the slowest path limiting the performance
of a synchronous circuit; it is equal to the smallest clock period at which the
circuit will function correctly.

pin. Nanowire arms were selected at random with the given
rate to be defective, and were broken at a random position
along their length with uniform distribution. The experimental
results (table 6) show a yield of about 75% when 20% of the
nanowires are broken and 20% of the junctions are stuck open.
The critical path delay appears to decrease as the nanowire
breakage increases—one might expect this because of reduced
nanowire capacitance, but we believe in this case it is merely
uncovering instabilities in our routing algorithm. Note that
the yield shown is pessimistic because our placer is not defect
aware; a single gate placed such that one of its outputs has two
broken (and extremely short) nanowires extending from its pad
would cause the entire compilation to fail.

4. Discussion

FPNI architectures offer a path for continued shrinking of
field programmable logic arrays. Simulation shows that the
approach is extremely tolerant of the high defect rates likely to
be found in nanoscale structures, and that clock rates need not
be sacrificed. The eight-fold density increase for FPNI 30 nm
compared to a CMOS-only FPGA for the ITRS 45 nm node
is equivalent to leaping ahead on the ITRS roadmap by three
generations, or nine years to the ITRS 16 nm node (i.e. 2019).
According to our simulation results, FPNI can simultaneously
improve three performance issues with respect to CMOS-
only FPGAs: circuit density, power, and defect tolerance,
without requiring improvements in the transistors themselves.
In addition, we used fairly conservative estimates for wire and
switch resistances—our estimates for the critical path delays
would improve significantly if we assumed larger grain sizes
in the wires and best-case experimental measurements for ON-
state switches.

Variations in nanowire and junction electrical proper-
ties will present challenges in modelling ultimate device
performance—it is likely that the power and clock rate will
be need to be determined empirically for each chip. Device
ageing will also need to be addressed: we do not yet know, for
example, for how long a configured junction will maintain its
state [3]. Perhaps an FPNI chip’s configuration would need to
be periodically ‘refreshed’ to continue correct operation.

Compilation presents economic challenges since a
manufacturer cannot afford to expend hours of computation
on each chip in order to find all defects and then place
and route around them. We believe that the extremely high
switch redundancy in FPNI, shown in the defect-tolerance
experiments, can be exploited to make compilation viable in
a reasonable amount of time (in, say, less than 1 min per chip).
One approach might involve doing a global place and route on
a generic model of a target FPNI chip, being careful to spread
the placement out more sparsely than would be needed for a
defect-free chip, and then perturbing that mapping as needed
during the incremental configuration of the circuit. Algorithms
that combine defect characterization with compilation might
be most appropriate.

Scaling down both nano and CMOS fabrication dimen-
sions causes dynamic power dissipation to scale down as well,
primarily due to reduced wire capacitance from shorter wires.
Unfortunately, static power dissipation in CMOS increases
as feature sizes decrease, and nanowire resistance increases

9

Nanotechnology 18 (2007) 035204 G S Snider and R S Williams

rapidly as cross-sectional area shrinks, causing RC delays to
reduce performance. Circuit designers at the nanoscale will be
forced to make trade-offs between clock rate, area, power, and
fabrication cost.

Acknowledgments

We thank Dmitri Strukov for supplying the benchmark circuits,
Zhiyong Li and G-Y Jung for the AFM images of nanowire
crossbars, Ted Kamins for discussions about CMOS, and Will
Tong, Duncan Stewart, and Alex Bratkovski for discussions
about nanowire resistivity.

Appendix. FPNI compiler

The FPNI compiler maps logic circuits onto FPNI chips. It
takes two files as inputs—a circuit file and an FPNI chip
description file—and produces a mapping of that circuit onto
the chip. The flow through the compiler is linear.

(1) Model building reads a file containing a set of architectural
parameters describing an FPNI chip (table 1) and builds
models of the chip (e.g., logic gates, nanowire geometry,
nanowire electrical properties, chip area) used by the
remaining compiler passes.

(2) Technology mapping converts a circuit’s implementation
from n-input NAND gates, inverters and flipflops to n-
input NAND/AND gates and flipflops (and no inverters).

(3) Clustering groups NAND/AND gates and flipflops
together into clusters, with each cluster conforming to
the resources available in the target FPNI chip’s logic
hypercell.

(4) Placement places the clusters onto hypercells with the
objective of minimizing the total number of nanowires
needed to implement the circuit.

(5) Routing allocates switches (junctions) to interconnect
the circuit’s gates, flipflops, primary inputs and primary
outputs.

(6) Timing analysis (which is also done during routing)
analyses delay through a successfully placed and routed
circuit to determine the maximum clock speed for the
circuit.

(7) Power analysis estimates the dynamic power required to
drive the allocated nanowires at the maximum clock speed.

Technology mapping begins by replacing each NAND gate
with a NAND/AND gate with the same number of inputs,
and replacing each primary input with a bipolar primary input
that has both true and complemented outputs. Inverters are
removed by replacing the output signal driven by the inverter
with the inverted form of the inverter’s input signal from
the appropriate NAND/AND gate or bipolar primary input.
Flipflops and primary outputs are left untouched.

Clustering implements Singh’s greedy algorithm [17] with
a Rent exponent of 0.667. One logic cluster corresponds to a
single logic hypercell, so we add additional code to ensure that
the number of gates and flipflops packed into a cluster does not
exceed the number available in the hypercell. One I/O cluster
is allocated for each primary input and each primary output.

Placement uses the simulated annealing algorithm
described by Betz [1]. I/O clusters may only be placed on the

periphery of the chip in I/O hypercells, and logic clusters may
only be placed in the interior logic hypercells. Only one logic
cluster may be placed in a logic hypercell, but multiple I/O
clusters may be placed in an I/O hypercell if there are sufficient
resources to support it (generally the case).

The router implements the timing-driven, directed-search
maze algorithm described by Betz [1]. The algorithm requires
multiple iterations, with each iteration consisting of routing
all nets, recording wire congestion resulting from the attempt,
and ripping up the routings. The iterations continue until
all nets are successfully routed without overusing any routing
resource, up to a maximum of 50 iterations, at which point
we declare a circuit to be unrouteable. Wire delays are
estimated during routing using a simple, linear-delay model;
a more sophisticated delay model (such as the Elmore delay of
figure 7) would probably lead to faster critical paths, but at the
cost of significant additional computational overhead during
routing.

Timing analysis is done at the end of each routing
iteration. The Elmore delay is evaluated for every allocated
wire and switch, and the critical path is extracted by searching
for the longest delay through a chain of wires from any
flipflop output (or primary input) to any flipflop input (or
primary output). This information is used by the router in
the subsequent iteration, helping it to preferentially allocate
shorter paths to signals along the critical path.

Power analysis tallies the number of nanowires allocated
by the router and computes the dynamic power required to
charge and discharge the capacitance of those wires using
equation (2).

References

[1] Betz V, Rose J and Marquardt A 1999 Architecture and CAD
for Deep-Submicron FPGAs (New York: Kluwer Academic)

[2] Chen Y, Jung G-Y, Ohlberg D A A, Li X, Stewart D R,
Jeppesen J O, Nielsen K A, Stoddart J F and
Williams R S 2003 Nanoscale molecular-switch crossbar
circuits Nanotechnology 14 462–8

[3] Chen Y, Ohlberg D A A, Li X and Stewart D R 2003 Nanoscale
molecular-switch devices fabricated by imprint lithography
Appl. Phys. Lett. 82 1610–2

[4] Cong J, He L, Koh C and Madden P 1996 Performance
optimization of VLSI interconnect layout, integration VLSI
J. 21 1–94

[5] Davis J A, Vivek K De and Meindl J D 1998 A Stochastic
wire-length distribution for gigascale integration
(GSI)—Part II: applications to clock frequency, power
dissipation, and chip size estimation IEEE Trans. Electron
Devices 45 590–7

[6] DeHon A 2002 Array-based architecture for molecular
electronics Proc. 1st Workshop on Non-Silicon Computation
(Feb. 2002)

[7] Elmore W 1948 The transient response of damped linear
networks with particular regard to wideband amplifiers J.
Appl. Phys. 19 (January) 55–63

[8] FPGA Place-and-Route Challenge Available online at http://
www.eecg.toronto.edu/∼vaughn/challenge/challenge.html

[9] Gopalakrishnan K et al 2005 The micro to nano addressing
block (MNAB) Electron Devices Mtg, 2005. IEDM
Technical Digest (Piscataway, NJ: IEEE International)
pp 471–4

[10] International Technology Roadmap for Semiconductors
(ITRS) 2005 Available online at http://public.itrs.net/

[11] Jung G Y et al 2006 Circuit fabrication at 17 nm half-pitch by
nanoimprint lithography Nano Lett. 6 351–4

10

http://dx.doi.org/10.1088/0957-4484/14/4/311
http://dx.doi.org/10.1063/1.1559439
http://dx.doi.org/10.1016/S0167-9260(96)00008-9
http://dx.doi.org/10.1109/16.661220
http://dx.doi.org/10.1063/1.1697872
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://public.itrs.net/
http://dx.doi.org/10.1021/nl052110f

Nanotechnology 18 (2007) 035204 G S Snider and R S Williams

[12] Kuekes P J and Williams R S 2001 Demultiplexer for a
molecular wire crossbar network (MWCN DEMUX) US
Patent Specification 6,256,767

[13] Kuekes P J, Warren R, Gadiel S and Stanley W R 2005
Defect-tolerant interconnect to nanoelectronic circuits:
internally redundant demultiplexers based on
error-correcting codes Nanotechnology 16 869–82

[14] Kuekes P, Robinett W, Roth R, Seroussi G, Snider G and
Williams R S 2006 Resistor-logic demultiplexers for
nanoelectronics based on constant-weight codes
Nanotechnology 17 1052–61

[15] Lau C N, Stewart D R, Bockrath M and Williams R S 2005
Scanned probe imaging of nanoscale conducting channels in
Pt/alkanoic acid monolayer/Ti devices Appl. Phys. A
80 1373–8

[16] Okamoto T and Cong J 1996 Buffered Steiner tree construction
with wire sizing for interconnect layout optimization Proc.
1996 IEEE/ACM Int. Conf. Comput. Aided Design ICCAD
pp 44–9

[17] Singh A, Parthasarathy G and Marek-Sadowska M 2002
Efficient circuit clustering for area and power reduction in
FPGAs ACM Trans. Des. Autom. Electron. Syst. 7 643–63

[18] Snider G, Kuekes P and Williams R S 2004 CMOS-like logic in
defective, nanoscale crossbars Nanotechnology 15 881–91

[19] Snider G and Robinett W 2005 Crossbar demultiplexers for
nanoelectronics based on n-hot codes IEEE Trans.
Nanotechnol. 4 249–54

[20] Strukov D B and Likharev K K 2005 CMOL FPGA: a
reconfigurable architecture for hybrid digital circuits with
two-terminal nanodevices Nanotechnology 16 888–900

[21] Steinhögl W, Schindler G, Steinlesberger G and
Engelhardt M 2002 Size effects in the electrical resistivity of
polycrystalline nanowires Phys. Rev. B 66 075414

[22] Strukov D B and Likharev K K 2006 A reconfigurable
architecture for hybrid CMOS/nanodevice circuits FPGA
’06 (Monterey, CA, USA, Feb. 2006)

[23] Vladimirescu A 1994 The SPICE Book (New York: Wiley)
ISBN 0-471-60926-9

[24] Zhong Z, Wang D, Cui Y, Bockrath M W and Lieber C M 2003
Nanowire crossbar arrays as address decoders for integrated
nanosystems Science 302 1377–9

[25] Ziegler M M and Stan M R 2003 CMOS/nano co-design for
crossbar-based molecular electronic systems IEEE Trans.
Nanotechnol. 2 217–30

[26] Ziegler M M and Stan M R 2003 The CMOS/nano interface
from a circuits perspective ISCAS ’03: Proc. 2003 Int. Symp.
on Circuits and Systems (May 2003) vol 4, pp IV-904–7

11

http://dx.doi.org/10.1088/0957-4484/16/6/043
http://dx.doi.org/10.1088/0957-4484/17/4/035
http://dx.doi.org/10.1007/s00339-004-3171-3
http://dx.doi.org/10.1145/605440.605448
http://dx.doi.org/10.1088/0957-4484/15/8/003
http://dx.doi.org/10.1109/TNANO.2004.837853
http://dx.doi.org/10.1088/0957-4484/16/6/045
http://dx.doi.org/10.1103/PhysRevB.66.075414
http://dx.doi.org/10.1126/science.1090899
http://dx.doi.org/10.1109/TNANO.2003.820804

	1. Overview
	1.1. CMOL
	1.2. FPNI

	2. Architecture
	2.1. Nanowires
	2.2. CMOS
	2.3. Configuration
	2.4. Fabrication
	2.5. Electrical model

	3. Experiments
	3.1. Logic gate and hypercell
	3.2. Performance \(power, speed, area\)
	3.3. Defect tolerance

	4. Discussion
	Acknowledgments
	Appendix. FPNI compiler
	References

