
Formal Analysis of Publish-Subscribe Systems

by Probabilistic Timed Automata

Fei He1, Luciano Baresi2, Carlo Ghezzi2, and Paola Spoletini2

1 Department of Computer Science & Technology, Tsinghua University
Beijing, China, 100084

hef02@mails.tsinghua.edu.cn
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano

Milano, Italy, 20133
{baresi,ghezzi,spoleti}@elet.polimi.it

Abstract. The publish-subscribe architectural style has recently emer-
ged as a promising approach to tackle the dynamism of modern dis-
tributed applications. The correctness of these applications does not only
depend on the behavior of each component in isolation, but the interac-
tions among components and the delivery infrastructure play key roles.
This paper presents the first results on considering the validation of these
applications in a probabilistic setting. We use probabilistic model check-
ing techniques on stochastic models to tackle the uncertainty that is
embedded in these systems. The communication infrastructure (i.e., the
transmission channels and the publish-subscribe middleware) are mod-
eled directly by means of probabilistic timed automata. Application com-
ponents are modeled by using statechart diagrams and then translated
into probabilistic timed automata. The main elements of the approach
are described through an example.

1 Introduction

The publish-subscribe architectural style [1–3] has recently emerged as a promis-
ing approach to tackle the dynamism and flexibility of modern distributed ap-
plications. Components do not communicate directly, but their interactions are
mediated by a dedicated element called dispatcher. Components dynamically
subscribe to the messages they are interested in, and the dispatcher notifies

them as soon as a message that matches their subscriptions is published by one
of the other components. The dispatcher is the only element that knows how
to route the messages in the system, and thus the sender of a message does
not know its receivers. This peculiarity allows components to join and leave an
application seamlessly without any need to restructure the whole system.

The correctness of these applications does not only depend on the correct
behavior of each component in isolation. We also need the right intertwining
among subscriptions, publications, and notifications, to allow components to
receive the messages they need, and an infrastructure that actually delivers all
the messages exchanged within the system. Therefore, the formal analysis of

publish and subscribe systems must consider two orthogonal aspects: (a) the
subscriptions and unsubscriptions that can dynamically change the topology
of the system, and its interaction paths, and (b) the underlying infrastructure
that cannot always guarantee that all messages, along with subscriptions and
unsubscriptions, be delivered to all interested parties.

Among the many attempts [4–10] to model and validate publish-subscribe
systems, model checking has been considered as an attractive solution. How-
ever, all these works assume deterministic systems and neglect the uncertainty
that characterize practical publish-subscribe applications. Differently from these
works, in this paper we do not discuss the fine-grained analysis of subscriptions
and notifications, but we present the first results on extending these approaches
by considering the problem in a probabilistic setting. We use probabilistic model
checking techniques on stochastic models to tackle the uncertainty that is intrin-
sic in these systems. Even if we assume that application components are correct,
stochastic models help us reason on the reliability of the infrastructure, that is,
the probability with which messages can be lost during the transmission. More-
over, since probabilistic model checking involves the exhaustive exploration of
all possible paths, it can also supply important information about the model:
for example, the optimal size of buffers, average delays, and so on.

In our approach, we provide independent models for the communication
infrastructure, which includes the transmission channels and the middleware,
and for application components. The transmission channels provide the mecha-
nisms for message delivery. The middleware supports subscriptions, unsubscrip-
tions, and message routing. Both are problem-independent, and their models
are reusable in different systems. Application components are problem-specific
and are not usually reused. In this paper, the communication infrastructure is
modeled by means of probabilistic timed automata directly. Application compo-
nents are modeled with statechart diagrams, and we provide some easy clues for
translating these diagrams to probabilistic timed automata. An example helps
us validate the effectiveness of our approach by means of the probabilistic model
checker PRISM.

The rest of the paper is organized as follows. Section 2 briefly surveys some
related works. Section 3 introduces an abstract model of publish-subscribe sys-
tems. Section 4 provides some background definitions about probabilistic timed
automata. Section 5 presents our proposal, while Section 6 exemplifies it on a
simple case study. Section 7 concludes this paper.

2 Related Work

This paper builds on the previous efforts of some of the authors [4–6] by extend-
ing the formal analysis of publish-subscribe systems in a probabilistic setting.
In [4], application components are modeled as UML statechart diagrams while
the communication infrastructure is supplied as a configurable predefined com-
ponent. UML statechart diagrams are translated into Promela and validated
through the SPIN model checker. While this approach builds on top of an ex-

isting model checker, [5,6] extend the Bogor model checker and the communica-
tion mechanisms of publish-subscribe infrastructures are embedded in it. Some
domain-specific knowledge is used to reduce the state space.

In [7,8], the authors present a generic framework for automatically analyzing
publish-subscribe systems and also provide a translation tool to automatically
generate analysis models. Although the ideas presented in these papers are sim-
ilar to those described here, there are some differences. We extend this work by
adding the probabilistic environment and we also allow components to change
their subscriptions at run-time. These proposals are also extended in [9], which
improves the representation of events, event delivery policies, and event-method
bindings. Finally, [10] presents a transformation framework for the approach.

In [11], the authors present a compositional reasoning framework for verifying
publish-subscribe systems. A system specification is decomposed into the prop-
erties of its components, which are then model checked separately under several
environmental assumptions. The main drawback of this approach is the difficulty
in decomposing the specification and providing appropriate assumptions.

3 Abstract Publish-Subscribe Architecture

The common denominator of the many variants proposed for the publish-subscribe
paradigm is the decoupling in time and space of application components [1–3].

Fig. 1 illustrates the abstract model of a publish-subscribe infrastructure that
we use for analysis via model checking. It comprises a dispatcher, the compo-
nents, and a number of buffers that describe the transmission channels. Each
buffer buf is characterized by a maximum size, MAX buf ; n buf denotes the
current number of elements stored in buffer buf . All buffers adopt a FIFO policy.

Components send their messages (i.e., publications, subscriptions, and un-
subscriptions) to the dispatcher, by inserting them into buffer bpi. The message
is tagged with the component that delivered the message. Messages are eventu-
ally transferred into buffer bpo, which models the input buffer to the dispatcher.
Moving a message from bpi to bpo reflects the physical operation of message
transmission. Since the message is tagged with the name of the originating com-
ponent3, it is possible to associate different probabilities with the delivery of
messages from different components to the dispatcher. The messages delivered
from the dispatcher are inserted into buffer bni. Each component Ci has an input
buffer bno[i] in which it receives the notifications. The transfer of a message from
bni to a buffer bno[i] reflects the physical operation of message transmission from
the dispatcher to the notified component. The messages are transferred from bni

into all the buffers of the target components to which it has to be delivered, based
on the routing information stored in the subscription table. Again, a probability
can be associated with the transfer of a message from bni to its target buffer in
order to model unreliable channels.

We make the following assumptions, under which systems are analyzed via
model checking: (a) transmission channels preserve the order of messages deliv-

3 Tags are then removed when the messages are dispatched to their subscribers.

Fig. 1. Publish-subscribe infrastructure

ered through them, (b) messages are dropped in case of buffer overflow, and (c)
transmission channels are unreliable. Messages may be lost during transmission
according to a certain probability, which varies from component to component.
We denote by pi the probability of message loss for the i-th component4. We
also introduce some timed parameters that are relevant to represent time-related
properties of the system: TPL and TPH are the minimal and maximal time de-
lay for the dispatcher to process a message, TDL and TDH are the minimal and
maximal time delay for the dispatcher to process a subscription/unsubscription,
and TRL and TRH are the minimal and maximal transmission delays of a
message through the communication channels.

The thorough analysis of these parameters might lead to the explosion of the
state space. If we consider all the combinations among the possible values for
these parameters, we would easily obtain an unmanageable finite state model.
Some domain-specific abstractions can help us constrain the problem and obtain
a model more suitable for analysis. For example, if we consider an embedded
system whose components are distributed over a local area network, we can easily
assume that TRL = TRH = 0 since transmission delay can be ignored, and
thus the number of possible different states (combination of parameter values)
decreases.

4 Notice that, since we model subscriptions and messages delivery with different
buffers, our model allows to assign different probabilities to each component de-
pending on the direction of the communication.

4 Probabilistic Timed Automata

Probabilistic timed automata provide a modeling framework for time-related
systems with probability. Our definition is derived from timed automata [12,13],
and we also follow the definitions in [14–16] with minor modifications.

A finite discrete probability distribution over a set S is a mapping p :
S → [0, 1] such that

∑
s∈S p(s) = 1 and the set {s|s ∈ S and p(s) > 0} is finite.

The set of all finite discrete probability distributions over S is denoted by µ(S).
A Markov decision process is a discrete time stochastic process charac-

terized by a set of states; in each state there are several actions from which
the decision maker can choose. For a state s and an action a, a state transi-
tion function p(s′) determines the transition probabilities to the next state s′. A
Markov decision process can be represented as a tuple (Q,Steps), where Q is a
set of states, and Steps : Q → 2µ(Q) is a function assigning a set of probability
distributions to each state.

A clock is a real-valued variable which increases at a given rate. Let X be a
set of clock variables, ranging over the nonnegative real numbers R+. A valuation
of X assigns a nonnegative real value to every clock in set X. We denote the set
of all clock valuations of X with RX .

A clock constraint is an inequality of the form x ∼ c or xi − xj ∼ c, where ∼

is an operator in {<,≤, >,≥} and c is a nonnegative integer number or infinity.
A clock zone is a convex subset of the valuation space RX described by a
conjunction of constraints. Let Z(X) be the set of all zones of X.

Given a clock zone λ ∈ Z(X) and a valuation v ∈ RX , λ(v) is the boolean
value obtained by replacing each occurrence of a clock x ∈ X with v(x). If
λ(v) = true, we say that v satisfies λ, denoted as v ⊲ λ.

Definition 1. Let AP be a fixed, finite set of atomic propositions. A probabilis-
tic timed automaton is a 7-tuple M = (S, S0, L,X, inv, prob, 〈τs〉s∈S), where

– S is a finite set of locations.
– s0 is the initial location.
– L : S → 2AP is a labeling function that associates each location s ∈ S with

the set L(s) of atomic propositions that are valid in s.
– X is a finite set of clocks.
– inv : S → Z(X) is a mapping that associates each location with an invariant

condition.
– prob : S → Pfn(µ(S × 2X)) is a mapping function that associates each

location with a finite and non-empty set of discrete probability distributions

on S × 2X .
– 〈τs〉s∈S is a family of functions where for any s ∈ S, τs : prob(s) → Z(X)

associates each p ∈ prob(s) with an enabling condition.

A state of a probabilistic timed automaton is a pair 〈s, v〉, where s ∈ S,
v ∈ RX , and v ⊲ inv(s). The system starts in location s0, with all clocks
initialized to 0. The values of all the clocks increase uniformly as time passes.

If we assume that the present state is 〈s, v〉, a probabilistic timed automaton
has two basic types of transitions:

– Delay transition: the system can remain in the current location s and lets
time pass, provided that the invariant condition in s can continuously be
satisfied while time passes.

– Action transition: the system can make a discrete transition according to
any probability distribution in Prob(s) whose enabling condition is satisfied
by the current time valuation v.

These concepts are exemplified by the automaton of Fig. 2. It consists of: two
locations s0 and s1, two clocks x0 and x1, and two probabilistic distributions, a

and b, associated with s0 and s1, respectively. The first distribution (a) defines
a discrete transition from s0 to s1 with probability 1. The second distribution
(b) defines a discrete transition from s1 to s0 again with probability 1. s0 is the
initial location, and the automaton starts with state (s0, x0 = 0, x1 = 0). Before
the clock x0 reaches the value 4, the automaton may remain in the location s0

(delay transition). After 2 time units, the enabling condition for the discrete
transition from s0 to s1 is satisfied, and the automaton can either move to the
location s1 (action transition) or remain in location s0 (delay transition).

Fig. 2. An example of probabilistic timed automaton

5 Implementation

In this section, we explain how publish-subscribe systems can be formally spec-
ified and verified by means of probabilistic timed automata.

As discussed earlier, a model for a publish-subscribe system can be separated
into two parts: the reusable part, consisting of the dispatcher and the transmis-
sion channels, and the problem-specific components. Following the model illus-
trated in Fig. 1, we start the presentation with the probabilistic timed automata
that model the dispatcher and transmission channels, respectively, and then we
continue with the application-specific components.

5.1 Dispatcher

Fig. 3 shows the probabilistic timed automaton that models the dispatcher. The
automaton starts in location 0. The enabling conditions and actions are attached
to the transitions as follows:

cond1 ∧ cond2 ∧ · · · ∧ condm, act1, act2, . . . , actn

The semantics of labels is that if the conjunction of the conditions in the
first part of the label holds, the sequence of actions that follows is performed
atomically before the transition terminates.

Fig. 3. Probabilistic timed automaton modeling the dispatcher

The dispatcher monitors the receiving buffer bpo. If it is not empty, the
dispatcher fetches the first message in the buffer. If the message is a subscription,
the dispatcher moves to location 1 by resetting timer t. The invariant in location
1 means that the dispatcher may process the message for at most TPH time
units. Before t reaches the timeout, the dispatcher leaves location 1 and goes
back to location 0 by either recording this subscription in the table (if the table
is not full), or by dropping this subscription (if the table is full).

If the message is an unsubscription, the dispatcher moves to location 2 by
resetting timer t. Then the dispatcher searches all the entries in the subscription
table and removes those that match this unsubscription. Finally, it returns back
to location 0 after at least a time delay. If the message is a publication, the
dispatcher moves to location 3 by resetting timer t. Note that if the buffer bni is
full, the dispatcher does not transfer the message and moves back to location 0.
Otherwise the dispatcher transfers the message to buffer bni after a time delay.
Operation match, which labels some of the transitions, performs the matching of a
message against a subscription, and evaluates to true if its arguments match. The
function encapsulates the details of the specific linguistic mechanisms supported
by the publish-subscribe middleware to specify the matching. Operation del

removes an element from a buffer (or subscription table).

5.2 Channels

The probabilistic timed automaton of Fig. 4 models the transmission of messages
from components to the dispatcher. It commences in location 0. If buffer bpi is not
empty, the automaton moves to location 1 by resetting timer t. The transitions
exiting location 1 describe the fact that the channel may drop the message if
the receiving buffer is full, or perform the probabilistic transmission otherwise.
The probabilistic transition is drawn in the Fig. 4 as two directed shared edges
connected by an arc. For readability reasons, we only show one example of a
probabilistic transition, although there should be one for each component. The
enabling condition is attached to the arc, and the actions are attached to the
two edges. The message is lost with probability p[i], and the message arrives
at the receiving buffer with probability 1 − p[i]. Notice that the message loss
probability p[i] can be different for different components. Moreover, this model
does not distinguish if transmitted messages are subscriptions, unsubscriptions,
or notifications; the channel only takes care of queueing the messages in the
buffer and then the dispatcher deals with them.

Fig. 4. Probabilistic timed automaton modeling message transmission to the dispatcher

The probabilistic timed automaton of Fig. 5 models the notifications, i.e.,
the delivery of messages to the registered components. It starts in location 0
and if buffer bni is not empty, the channel moves to location 1 by initializing
variable j to 0. The sequence of transitions from location 1 to locations 2 and 3,
to end in location 1, models the notification of a message to a component. The
transition from location 1 to location 2 models the match of the message with the
j-th subscription. Variable tmp1 is used to record the identifier of the component
that delivered the subscription, and variable tmp2 is used to record the number of
elements currently stored in buffer bno[tmp1]. The self-loop transition in location
1 describes the mismatch of the j-th subscription with the message; the value of
j is also incremented by 1.

Fig. 5. Probabilistic timed automaton modeling notification

5.3 Application components

This section describes how to model application-specific components. The in-
frastructure provides the following operations to the designers of application
components to let them communicate:

– subscribe(pid,t): component pid subscribes to messages that match pattern
t.

– unsubscribe(pid,t): component pid withdraws its former subscriptions that
match pattern t.

– publish(k): a component publishes message k.
– consume(k): a component removes message k from its receiving buffer bno.

As defined in Section 3, we assume that operation consume takes at least
TCL and at most TCH time units. Probabilistic timed automata allow us to
model the above operations as shown in Fig. 6. Component designers specify
the behavior of components by means of statechart diagrams, and use the above
operations to model the interaction among components. They can then trans-
late the statechart diagrams to probabilistic timed automata according to the
translation rules defined in Fig. 6.

6 Example application

This section applies our approach to a simple example taken in the domain of
embedded control systems. The example consists of two sensors, a main proces-
sor, and an actuator. The main processor reads the responses from the sensors,
and then feeds the actuator. This system can be implemented by using a publish-
subscribe architecture as shown in Fig. 7.

First, the main processor publishes events to request data from the sensors.
Then, the main processor, which receives responses from the sensors, publishes a

Fig. 6. Probabilistic timed automata modeling communication operations: (a)
subscribe(pid,t), (b) unsubscribe(pid,t), (c) publish(k), and (d) consume(k)

message to feed the actuator5. The sensors take from TSDL to TSDH time units
to give their responses, and the actuator uses from TADL to TADH time units
to be fed. Since the message may be lost during the transmission, we assume an
upper bound TMW for the main processor to wait for data. We start a timer as
soon as the main process begins to work. If a time-out occurs, the main process
terminates and reports a failure.

Fig. 7. Publish-subscribe architecture of the embedded control system

Fig. 8 and Fig. 9 show the statechart diagrams for the sensors and the main
processor, respectively. The statechart diagram for the actuator is not illustrated
here since it is similar to the one for the sensors. The corresponding probabilis-
tic timed automata can be obtained from the statechart diagrams by applying
the translation rules of Fig. 6. For example, the probabilistic timed automaton
obtained from the statechart diagram for sensors is shown in Fig. 10. The prob-
abilistic timed automaton of the main processor can be obtained similarly. In
this example, subscriptions cannot change dynamically (i.e., while the system
executes); they are defined statically. Hence the complete model contains the
above described components and the dispatcher presented in Section 5, where

5 Notice that all the messages are mediated through the dispatcher.

subscription and unsubscription messages are ignored. Accordingly, the model
in Fig. 4 only handles publication messages.

Fig. 8. Statechart diagram for a sensor

The choice of only considering static subscriptions is not due to limitations
of the proposed approach, but to the nature of the example application, since
embedded systems are often statically configured. However, should we need to
add dynamic subscriptions, the components ought to be modified by adding two
new outgoing transitions from location 0 to model subscription and unsubscrip-
tion requests, respectively. These transitions are taken with a given probability
to simulate the success of these operations and thus how the scenario changes6.
If one of these transitions is taken, the automaton moves to a new location, from
which we model the subscription (or unsubscription) request.

Fig. 9. Statechart diagram for the main processor

6.1 PRISM model

PRISM [17–19] is the model checker we selected to verify our models. PRISM is
a probabilistic model checker developed at the University of Birmingham and is
a tool for the design and analysis of systems that exhibit probabilistic behaviors.

6 Notice that in this example, this probability is 0, since with do not permit dynamic
subscriptions and unsubscriptions and thus the arcs are skipped.

Fig. 10. Probabilistic timed automata for a sensor

It supports three types of probabilistic models: Discrete-Time Markov Chains
(DTMCs), Markov Decision Process (MDPs), and Continuous-Time Markov
Chains (CTMCs). Models are specified in a simple, high-level modeling language,
which is a variant of the Reactive Modules formalism of Alur and Henzinger [20].
Properties are described by the PRISM property specification language, which is
based on the two probabilistic temporal logics called Probabilistic Computation
Tree Logic (PCTL) [21,22] and Continuous Stochastic Logic (CSL) [23,24].

Since we are interested in modeling both probabilistic (unreliable channels
with message loss) and non-deterministic (time delays) behaviors of publish-
subscribe systems, we decided to adopt the MDP formalism, which allows us to
mix the two different types of behaviors. The translation from probabilistic timed
automata to PRISM models is easy. Each automaton in the publish-subscribe
system corresponds to a PRISM module. The buffers and the subscription table
are rendered as global variables. Since all the timers should run at the same rate,
it is required that all the time passing actions be synchronized. For example, the
dispatcher staying in location 1 with time progressing is described in PRISM as:

[time] s_dp=1 & t_dp<TPH -> t_dp’=min(t_dp+1,TPH);

Similarly, sensor 1 staying in location 2 with time progressing can be de-
scribed in PRISM as:

[time] s_s1=1 & t_s1<TSDH -> t_s1’=min(t_s1+1,TSDH);

Notice that these two commands are labeled with the same action time to
mean that these two commands need to be synchronized.

PRISM models can be augmented with rewards structures7, which associate
real values with certain states or transitions of the model. With reward struc-
tures, PRISM can be used to reason about the properties related to the expected
values of these rewards. In our model, we assign a reward of 1 to all the transi-
tions labeled with action time. All the others maintain 0 as default value. This
way we can verify the properties related to expected time.

7 Interested readers can refer to [25,26] for a detailed presentation.

6.2 Experimental Results

This section presents some results obtained by using the PRISM model checker
to verify the example system.

Service provision The first concern is to understand if the task finishes success-
fully. This means that the automaton of the main processor must end in location
0 without generating a time-out. This can be expressed in PRISM as:

label "succeed" = s_mn=0 & t_mn>0;

Pmax=?[true U "succeed"], Pmin=?[true U "succeed"]

Notice that the probabilities for an MDP can only be computed after nonde-
terminism is resolved. Here we have two types of probabilities: Pmax and Pmin

correspond to the resolutions that all the delays take the minimum or maximum
values. We checked the effect of p0 (message loss probability for the main pro-
cessor) on the two probabilities and Fig. 11 shows the results. Notice that the
two probabilities behave the same way, so we use the term probability in Fig. 11
to refer to both the probabilities. Similar results can be obtained for other mes-
sage loss probabilities. It is easy to understand that probability Pmax (or Pmin)
decreases as the message loss probability increases.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

P
ro

ba
bi

lit
y

p0

Fig. 11. Effect of p0 on the probability (Pmax, Pmin)

Average time Our second concern is about the average time the system takes to
complete the task. It can be expressed in PRISM as:

label "terminate" = (s_mn=0 & t_mn>0) | (s_mn=3);

Rmax=?[F "terminate"], Rmin=?[F "terminate"]

where R=? [F prop] is a reward-based property. It accumulates rewards along
each path until prop is satisfied, and then returns the expected value [26].

We have tested the effect of p0 on both Rmax and Rmin. Since we assign a
reward of 1 to all the transitions labeled with action time, the values of Rmax

and Rmin just give the average times in the case of maximum and minimum
delays, respectively. The results are plotted in Fig. 12 and show that when p0

increases, the probability of the task to successfully finish decreases, as a result
the average time increases accordingly. Needless to say, the system takes more
time if the sub-tasks fail. There is also an upper bound for the two expected
values.

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5

E
xp

ec
te

d
re

w
ar

d

p0

Rmax
Rmin

Fig. 12. The effect of TDL on Rmin

Effect of buffer size If we consider the probabilities computed in the first exper-
iment, the values of Pmax and Pmin are the same. However, if we reduce the size
of the corresponding buffers, the value of Pmin may become 0. To understand
this result, we need to consider the scenario in which all the sensors send their
responses to the dispatcher at (almost) the same time. If the size of the receiving
buffer is not large enough, or if the dispatcher cannot process existing messages
quickly enough, there is a buffer overflow and the arrival of a new message would
be dropped directly. The same situation can happen to the other buffers. Our ex-
periments show that probabilistic model checking help optimize the appropriate
size of buffers of the system model.

7 Conclusions and future work

This paper presented an approach to modeling and validating publish-subscribe
systems by using probabilistic model checking. The infrastructure (transmission

channels, dispatcher) is modeled by probabilistic timed automata. Application-
specific components are modeled by statechart diagrams and then translated
into probabilistic timed automata. The actual validation is carried out by using
the PRISM model checker.

This paper presented some preliminary results we obtained so far, which
are motivating us to keep investigating these ideas. Our long-term goal is to
design an integrated tool-set for the multi-perspective validation of the highly
dynamic software architectures, which are becoming increasingly important and
widespread in practice. Publish-subscribe architecture are a first notable class
of such architectures, on which we initially focused our research.

References

1. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19(3) (2001)
332–383

2. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2) (2003) 114–131

3. Cugola, G., Picco, G.P.: Reds: a reconfigurable dispatching system. In: SEM
’06: Proceedings of the 6th international workshop on Software engineering and
middleware, New York, NY, USA, ACM Press (2006) 9–16

4. Zanolin, L., Ghezzi, C., Baresi, L.: An approach to model and validate pub-
lish/subscribe architectures. In: Proceedings of the SAVCBS’03 Workshop,
Helsinki, Finland (2003)

5. Baresi, L., Ghezzi, C., Mottola, L.: Towards fine-grained automated verification of
publish-subscribe architectures. In Najm, E., Pradat-Peyre, J.F., Donzeau-Gouge,
V., eds.: FORTE. Volume 4229 of Lecture Notes in Computer Science., Springer
(2006) 131–135

6. Baresi, L., Ghezzi, C., Mottola, L.: On accurate automatic verification of publish-
subscribe architectures. In: (To appear) Proceedings of the 29th International
Conference on Software Engineering (ICSE07), Minneapolis (MN, USA) (2007)

7. Garlan, D., Khersonsky, S.: Model checking implicit-invocation systems. In: Proc.
of the 10th Int’l Workshop on Software Specification and Design. (2000) 23–30

8. Garlan, D., Khersonsky, S., Kim, J.S.: Model checking publish-subscribe systems.
In: Proc. of the 10th Int’l SPIN Workshop on Model Checking of Software. (2003)

9. Bradbury, J.S., Dingel, J.: Evaluating and improving the automatic analysis of
implicit invocation systems. In: FSE. (2003)

10. Zhang, H., Bradbury, J.S., Cordy, J.R., Dingel, J.: A transformational framework
for testing and model checking implicit invocation systems. In: Proc. Int. Work.
on Distr. Event-Based Systems (DEBS’04). (2004)

11. Caporuscio, M., Inverardi, P., Pelliccione, P.: Compositional verification of
middleware-based software architecture descriptions. In: ICSE ’04: Proceedings
of the 26th International Conference on Software Engineering, Washington, DC,
USA, IEEE Computer Society (2004) 221–230

12. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In:
Proceedings of Fifth Annual IEEE Symposium on Logic in Computer Science.
(1990) 414–425

13. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2)
(1994) 183–235

14. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. Theoretical Computer
Science 282 (2002) 101–150

15. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model check-
ing for probabilistic timed automata. In Lakhnech, Y., Yovine, S., eds.: Proc.
Joint Conference on Formal Modelling and Analysis of Timed Systems and Formal
Techniques in Real-Time and Fault Tolerant Systems (FORMATS/FTRTFT’04).
Volume 3253 of LNCS., Springer (2004) 293–308

16. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods in System
Design 29 (2006) 33–78

17. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking
with PRISM: A hybrid approach. International Journal on Software Tools for
Technology Transfer (STTT) 6(2) (2004) 128–142

18. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the proba-
bilistic model checker PRISM. Electronic Notes in Theoretical Computer Science
153(2) (2005) 5–31

19. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for au-
tomatic verification of probabilistic systems. In Hermanns, H., Palsberg, J., eds.:
Proc. 12th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’06). Volume 3920 of LNCS., Springer (2006)
441–444

20. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design:
An International Journal 15(1) (1999) 7–48

21. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5) (1994) 512–535

22. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In Thiagarajan, P., ed.: FSTTCS: Foundations of Software Technology
and Theoretical Computer Science. Volume 15 of volume 1026 of LNCS., Springer
(1995) 499–513

23. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time markov
chains. In Rajeev Alur, Thomas A. Henzinger, eds.: CAV ’96: Proceedings of
the 8th International Conference on Computer Aided Verification. Volume LNCS
1102., London, UK, Springer-Verlag (1996) 269–276

24. Baier, C., Katoen, J.P., Hermanns, H.: Approximate symbolic model checking
of continuous-time markov chains. In: CONCUR ’99: Proceedings of the 10th
International Conference on Concurrency Theory, London, UK, Springer-Verlag
(1999) 146–161

25. Kwiatkowska, M., Norman, G., Pacheco, A.: Model checking expected time and
expected reward formulae with random time bounds. In: Proc. 2nd Euro-Japanese
Workshop on Stochastic Risk Modelling for Finance, Insurance, Production and
Reliability. (2002)

26. Prism user manual, http://www.cs.bham.ac.uk/ dxp/prism/manual/.

