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Content sharing through vehicle-to-vehicle communication can help people find their in-

terested content on the road. In VANETs, due to limited contact duration time and the

unreliable wireless connection, a vehicle can only get the useful data when it meets the

vehicle which has the exactly matching data. However, the probability of such cases is very

low. To improve the performance of content sharing in intermittently connected VANETs,

we propose a novel P2P content sharing scheme called Roadcast. Roadcast relaxes user’s

query requirement a little bit so that each user can have more chances to get the requested

content quickly. Furthermore, Roadcast ensures popular data is more likely to be shared

with other vehicles so that the performance of overall query delay can be improved. Road-

cast consists of two components called popularity aware content retrieval and popularity

aware data replacement. The popularity aware content retrieval scheme makes use of In-

formation Retrieval (IR) techniques to find the most relevant data towards user’s query, but

significantly different from IR techniques by taking the data popularity factor into consider-

ation. The popularity aware data replacement algorithm ensures that the density of different

data is proportional to the square-root of their popularity in the system steady state, which

firmly obeys the optimal “square-root” replication rule [6]. Results based on real city map

and real traffic model show that Roadcast outperforms other content sharing schemes in

VANETs.

I. Introduction

The proliferation of low-cost wireless connectivity,

combined with the growth of distributed peer-to-

peer cooperative systems, is transforming the next-

generation vehicular networks. With wireless tech-

nology, it is possible to deliver digital content from

roadside infrastructure to drivers and passengers in-

side moving vehicles [18,25,31,33]. With the support

of peer-to-peer wireless communication, content can

be shared among vehicles beyond the infrastructure

coverage [11,21,24]. Supporting content delivery and

sharing in vehicular ad hoc networks (VANETs) can

greatly benefit our daily life. For example, informa-

tion about road hazards, traffic jams, and emergency

stops can be used to improve traffic safety and effi-

ciency. Passengers or drivers inside vehicles can get

entertainment or local information such as MP3 mu-

sic, sale advertisement, restaurant recommendations

or videos of upcoming attractions.

∗A preliminary version [32] of the paper appeared in IEEE

ICDCS’09. This work was supported in part by the National Sci-

ence Foundation under grant number CNS-0721479.

Most existing research focuses on various solutions

to disseminate some data to other vehicles [8, 11, 18,

21]. Another important problem is to efficiently find

the requested data/content using VANETs. Currently,

a user in the VANET can only get his/her interested

data opportunistically, i.e., it gets the data only when

it meets another vehicle which happens to have the

requested data [11, 18, 21]. Obviously, such chances

are very low in VANETs. Although service discov-

ery techniques [12,27] are widely used in peer-to-peer

networks and wireless ad hoc networks, it is difficult

to apply them to VANETs. This is because VANETs

may be sparsely connected [28,33], especially at night

or at rural areas, and hence the delay and communica-

tion overhead of finding the requested data in VANET

is much higher.

In this paper, we propose a novel content sharing

scheme (called Roadcast) for VANETs. The moti-

vation of the popularity-aware content sharing is as

follows. If a vehicle requests a popular data which

is densely disseminated in the network, it may take

much shorter time than requesting a rare data, because

the chance of meeting one vehicle that has the popu-
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lar data is much higher. In the opportunistic and un-

reliable VANET, we can expect that users are more

willing to get data which roughly matches their inter-

est with shorter delay than taking a longer delay (and

the risk of not getting it) to get the perfectly match-

ing data. As a result, it is desirable to give more op-

portunities to deliver the data with higher popularity.

Getting popular data can also satisfy the neighboring

node’s query and may serve more vehicles in the fu-

ture. Thus, we need to balance two objectives: match-

ing users’ query and increasing data accessibility in

the future.

Roadcast achieves these objectives with two tech-

niques: popularity aware content retrieval and popu-

larity aware data replacement. First, the popularity

aware content retrieval scheme makes use of infor-

mation retrieval (IR) techniques to find the relevant

data towards users’ queries. Different from IR tech-

niques, we consider the popularity factor of the data

and re-rank the relevance of the data to queries, and

ensure more popular data is more likely to be shared

with other vehicles. Second, in Roadcast, the down-

loaded data is stored as replica which can be shared

with other Roadcast users. When the local memory

is full, some data has to be replaced. The proposed

data replacement algorithm ensures that popular data

has more, while not too many, replicas in the net-

work. Our analysis shows that with the proposed data

replacement algorithm, the densities of different data

are proportional to the square-root of their popularity

in the system steady state, which firmly obeys the op-

timal “square-root” replication rule [6]. Simulation

results show that the proposed popularity aware con-

tent sharing solutions can reduce the data access delay

while satisfying the user requirements.

The rest of this paper is organized as follows. Sec-

tion II presents the related work. Then in Section III,

we describe the proposed popularity aware content re-

trieval scheme, which is the first part of Roadcast. The

second part of Roadcast, the popularity aware data re-

placement algorithm that can be used to achieve the

optimal data allocation, is introduced in Section IV.

Performance evaluations are shown in Section V. Fi-

nally, we conclude the paper in Section VI.

II. Related Work

II.A. Vehicular Networks

Vehicular networks represent an interesting applica-

tion scenario not only for traffic safety and efficiency

but also for more commercial applications and enter-

tainment support such as content sharing [10], peer-

to-peer marketing [22], and urban data collecting

[15, 20]. Most vehicular network researches have fo-

cused on routing issues. MDDV [29] provides a rout-

ing framework that exploits geographic forwarding to

the destination region. VADD [33] and TBD [16]

study how to choose the best routing path based on the

traffic and trajectory information. Maxprop [4] deter-

mines packet delivery/drop order when node contact

duration is not long enough to delivery all the packets.

Zhao et al. [34] introduce data pouring and buffering

techniques to disseminate data along the roads. All

these works assume the content consumer is known

beforehand so that the sender can route the content

to its destination. Our work studies content sharing

that is different from routing. In content sharing, each

vehicle queries the useful data from its encountered

neighbors, and the focus is how to retrieve and buffer

the most suitable data from neighboring vehicles.

II.B. Content Retrieval

Recently, there has been increasing interest in con-

tent retrieval through intermittent contact opportuni-

ties in vehicular networks. [30] and [11] focus on a

low power, low connectivity setting, where vehicles

in adjacent lanes exchange information as they pass

through one another. Guo et al. [11] further discusses

how to retrieve interested data at particular region and

particular time. They only study content retrieval in

a small area. Our work, however, investigates con-

tent retrieval and sharing at a much larger scale. Lee

et al. [21] and Johnson et al. [18] improve content

retrieval by using randomized network coding. The

data is cut into small blocks and encoded before be-

ing injected into the network. After enough number

of blocks are collected, the original data can be recov-

ered. All these works require exact match between

user query and data. In Roadcast, different techniques

are used to approximately match user query and data.

We study how to efficiently sharing content with fu-

ture encountered vehicles based on local information.

II.C. Data Replacement

Studies in data replacement start from cache replace-

ment. Cao and Irani [5] have studied several re-

placement algorithms such as Least-Recently-Used

(LRU), Least-Frequently-Used (LFU), Lowest Rela-

tive Value (LRV) for web cache, and have found none

of the existing algorithms address the network cost

concerns. They propose the GreedyDual-Size algo-

rithm so that cache replacement considers both the

variability in data size and the retrieval cost. Later,
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Jin and Bestavros [17] improve the GreedyDual-Size

algorithm by adding the popularity factor. However,

all these works are based on a centralized environ-

ment, where the web cache server collects informa-

tion on the data access pattern to make better cache

replacement decisions. The data replacement in Road-

cast differs from the existing works in that it is a dis-

tributed replacement algorithm and it aims to opti-

mize the network-wide content retrieval delay. Ve-

hicles perform local replacement decisions based on

their own knowledge. The collective behavior of all

vehicles achieves a global square-root [6] replication

allocation to provide better content access.

III. Popularity Aware Content Re-
trieval

III.A. Overview

In our popularity aware content retrieval, we should

consider two important characteristics when vehicles

request and retrieve content from the encountered ve-

hicles.

1. Relevance between content and query.

When one query is issued, it can generally be

served by multiple data with different degree of

relevance to the query. Many users do not neces-

sarily require to get the exact matching content,

e.g. John Lennon’s song called Imagine. Instead

they may only roughly describe their interested

content at a coarse level, and hence they would

be satisfied with any content close to their key-

word query descriptor, e.g. any John Lennon’s

songs, or any MP3 rock music.

2. Tradeoff between content relevance and access

delay.

A VANET is generally known as an intermit-

tently connected network, where the network

connectivity is opportunistic and the connection

duration is short and unreliable. Users can only

query their encountered vehicles for data. There-

fore, the delay to obtain the perfectly matching

content is long. However, if the user requests

can be relaxed a little bit, it may take much

shorter time for the user to get the satisfied con-

tent. Thus, there is a trade-off between getting

less interested data (but still nice to have) with

better chances or getting perfectly matching data

with less chances and longer delay.

Considering these characteristics, we give more op-

portunities to the content with higher popularity. That

is, when one vehicle receives a content request from a

neighboring vehicle, it returns the most popular con-

tent that is relevant to the request. The returned con-

tent can satisfy the neighboring vehicle’s request, and

serve more vehicles in the future. Thus, delivering

more popular content contributes more to the content

accessibility from the network perspective. In sum-

mary, when Roadcast chooses a data to deliver from

one vehicle to another, the goal is to maximize and

balance the following two aspects:

∙ Matching users’ query.

∙ Increasing data accessibility in the future.

Different from other peer-to-peer content delivery

and sharing schemes, the decision on which data to

deliver in Roadcast considers the client’s current in-

terest and the overall demand in the network. A re-

ceiver is not only a content consumer, but also a pro-

ducer which shares the content to others in the future.

Therefore, the data retrieval considers not only serv-

ing the current receiver but also potentially serving

more users in the future.

In Roadcast we extend the classical Information

Retrieval (IR) algorithm to realize the popularity

aware content retrieval in VANETs. Searching data

items based on keywords has been extensively studied

in the IR community [19,26]. However, their solutions

are centralized and data accessibility is not an issue in

their environments. In Roadcast, the basic idea is to

leverage the most popular and well-studied IR algo-

rithm, Vector Space Model (VSM), to find the data

that matches users’ query, and also consider data pop-

ularity as an important factor. Thus, Roadcast may not

always deliver the best matching data for a reply, in-

stead it delivers a less matching data, but more popu-

lar. Therefore more popular data is given more oppor-

tunities to be shared with others. This makes Road-

cast very efficient at obtaining popular content. For

less popular data, the delay may be longer. To address

this problem, in Section IV, we propose techniques to

keep some copies of less popular data in the network

to optimize the overall performance.

In the following, we first describe how to use VSM

to find the data that matches users’ query, and then

enhance the solution by considering data popularity.

III.B. Matching queries based on VSM

Both data and query can be presented and in-

dexed with resource representation techniques such

as RDF (i.e., Resource Description Framework [13])

or WSDL (i.e., Web Services Description Language
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[14]) based on specific keyword attributes. In Road-

cast we also assume queries are keyword based. Users

enter a sequence of keywords into the Roadcast sys-

tem to describe the data item they want to retrieve,

such as “MP3 music rock John Lennon Imagine”.

To support complex data description we assume

each data item is associated with multiple tags as the

meta-data description in Roadcast. For example, a

MP3 file of John Lennon’s song Imagine is attached

with a tag like “MP3 / music / rock / UK / 1970’s/ John

Lennon / Imagine”. The tag of a data can be obtained

from external sources and pre-loaded in Roadcast, or

added/edited by Roadcast users.

Next, we describe how to use Vector Space Model

(VSM) to find the data that matches users’ query. Sup-

pose there are ! data items in a vehicle, and each
data item is associated with some keywords as tags (as

shown in Table 1). Let " denote the total number of
terms that can be used in the tag and query vocabulary.

Then each data item #! can be represented by a binary

vector in the "-dimensional space, say
−→
#! , whose en-

try indicates the presence or absence of one particular

term in the tags of data item #!. The entry is “0” if the
term does not occur in the data tag, and “1” otherwise.

In this way, the data items in the vehicle can be rep-

resented by a ! × " binary matrix, where every row
represents one data item (shown in Table 2). Similarly,

a query can also be thought as a vector in the same "-
dimensional space. For example, query ”MP3 / mu-

sic / John Lennon / Imagine” can be interpreted as a

"-dimensional vector (1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, ...).
Thus, content retrieval becomes a matter of finding the

data vectors in the space that are closest to the query

vector.

1QOb∠

0QOb∠

Figure 1: Similarity of vectors

To answer a query, the data items are ranked ac-

cording to the similarity between the data vector and

the query vector, and the data item with the highest

similarity will be returned. A common measure of the

similarity between two binary vectors with the same

dimension is to calculate the number of their over-

lapped “1”s. If one data vector has more common “1”s

with the query vector, its data has higher similarity

with the query. However, this similarity comparison

method has some bias since the data items with more

terms tend to be ranked higher than those with fewer

terms. Therefore, the number of terms that appears in

the data term vector should be normalized when cal-

culating the similarity.

We use the angle of two vectors to represent their

similarity, which is able to remove the bias due to

the number of occurrent terms. If two vectors have a

smaller angle between them, they are more similar. To

simplify the computation, the angle of two vectors can

be transformed to the cosine value of the angle. For-

mally, as shown in Figure 1, given the "-dimensional

term vector of a query &,
−→
& = ('1, '2, ⋅ ⋅ ⋅ , '") and

two data items,
−→
#0 = ((1, (2, ⋅ ⋅ ⋅ , (") and

−→
#1 =

()1, )2, ⋅ ⋅ ⋅ , )"), the similarity between query & and
two data items #0, #1 can be defined in Equation 1.

*+,(
−→
&,

−→
#0) =

−→
&

⊙−→
#0

∣
−→
& ∣ ⋅ ∣

−→
#0 ∣

=

∑!
"=1

'"-0"
√
∑!

"=1
'2" ×

√
∑!

"=1
-2
0"

*+,(
−→
&,

−→
#1) =

−→
&

⊙−→
#1

∣
−→
& ∣ ⋅ ∣

−→
#1 ∣

=

∑!
"=1

'"-1"
√
∑!

"=1
'2" ×

√
∑!

"=1
-2
1"

(1)

If *+,(
−→
&,

−→
#0 ) > *+,(

−→
&,

−→
#1 ), #0 is more similar to

&; otherwise #1 is more similar.

III.C. Popularity Aware Vector Space
Models

III.C.1. Adding the Impact of Data Popu-
larity

In order to give high priority to deliver more popular

data, we assign values to the entries in the VSM ma-

trix according to the popularity of the data. We denote

the data set of a vehicle as/ = {#0, #1, ⋅ ⋅ ⋅ , ##} and
the popularity score of data #! as 0! (0! > 1 and it is
proportional to the popularity of #!. The calculation of
0! will be discussed in Section III.C.2). Suppose the
original VSM matrix, say 1#×", is as following:

1#×" = [-!$ ]#×", w.s.t. 0 < 3 < !, 0 < 4 < ".

Then we get the entry in the Popularity Aware VSM

(PVSM) matrix -%!$ = 0! × -!$ . So the new PVSM
matrix can be computed as

1%
#×" = [0! × -!$]#×".

In PVSM, the length of the term vector of data item

#! is scaled by 0! according to its popularity. However,
Equation 1 uses cosine measure to compute the simi-

larity between the two term vectors, which normalizes
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Table 1: An example of data tags.
Data Data tags

ID File type Category Other Other Other

Data #0 MP3 Music John Lennon Love /

Data #1 MP3 Music John Lennon Beetles Yoko Ono

Data #2 Video Music Pop Mika /

Table 2: VSM matrix generated for the example.
Data Terms

ID MP3 Video Music Pop John Lennon Mika Yoko Ono Beetles Imagine Love ... ...

Data #0 1 0 1 0 1 0 0 0 0 1 0 ... 0

Data #1 1 0 1 0 1 0 1 1 0 0 0 ... 0

Data #2 0 1 1 1 0 1 0 0 0 0 0 ... 0

Query & 1 0 1 0 1 0 0 0 1 0 0 ... 0

both vectors to compare the angles of different vec-

tor pairs and discards the effect of the vector length.

To add the impact of popularity, we revise Equation 1

and compute the relevance between the query vector
−→
& and the data vector

−→
#! with the production of their

cosine measure and the popularity score of the data

item #!, i.e.,

56768-"*6(&, #") = *+,(
−→
&,

−→
#" )× 0"

=

∑!
"=1

'" × -"# × 0"
√

∑!
#=1

'2# ×
√

∑!
#=1

-2"#

(2)

Here, we also give another relevance function

56768-"*6′(&, #") =

∑!
"=1

'" × -"# × 0"√
number of non-zero entries in #"

(3)

This function is much simpler and it needs less com-

putation compared to the original relevance function.

The following proof shows that 56768-"*6′(&, #!) is
equivalent to 56768-"*6(&, #!).
Theorem 1. To compare the relevance between any

data #! and a given query &, the relevance function
56768-"*6′(&, #!) is equivalent to 56768-"*6(&, #!).
Proof: For a given query &, the first term of the

denominator in 56768-"*6(&, #!),
√

∑"
$=1

'2$ , is al-

ways a constant value to different data items. At the

same time, in a binary matrix where the value of each

entry is either 0 or 1, the second term of the denomi-

nator in 56768-"*6(&, #!),
√

∑"
$=1

-2!$ , equals to the

square root of the number of non-zero entries in the

data vector of data item #!. Then, it is obvious that

56768-"*6(&, #!) ∝
∑"

!=1
'! × -!$ × 0!

√

∑"
$=1

-2!$

=

∑"
!=1

'! × -!$ × 0!
√

number of non-zero entry in #!

To summarize, the relevance function

56768-"*6′(&, #!) is equivalent to 56768-"*6(&, #!)
for the query-data relevance comparison. ■

Therefore, in Roadcast, we use the simplified

56768-"*6′(&, #!) instead of 56768-"*6(&, #!) as the
relevance function for fast computation.

III.C.2. Calculating the Popularity Score
0!

0! is used to represent the popularity of data item
#!. If one data item is more popular, its popularity
score 0! should be larger. In our implementation, 0!
is the estimated number of times that #! is picked to
reply queries during a given time period. The initial

value of 0! is set to the number of times that the data
is read by the local user during a given time period.

Since 0! changes dynamically, we use a decay func-
tion that gives preference to more recent accesses and

de-emphasizes the significance of past accesses in pre-

diction. In particular, at the (t+1)-th time period, the

popularity score of #! is defined as

0!(9+ 1) = : × 0!(9) + (1 − :) × ;

where ; is the number of times the data is accessed in
the last time period and : is the decay coefficient. In
our experiments (see Section V), we set : = 0.2. 0! is
recorded by individual vehicles in a distributed way.

Thus, different vehicles may have different 0! for the
same data item #!.

III.C.3. Using Sparse Matrix Algorithm
to Optimize Information Storage
and Relevance Calculation

In VSM, the entry -!$ indicates the presence or ab-
sence of term 3 in data #$ . To precisely describe a
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Table 3: The storage index structure for the example.
"+" <65+ 86*9+5 4 4 4 4 1 1 1 1 1 2 2 2 2

*+7=!" 86*9+5 0 2 4 9 0 2 4 6 7 1 2 3 5

5+> 86*9+5 0 4 9 13

Table 4: Query processing and relevance ranking.
Data ID Relevance Score Ranking

#0 (4 × 1 + 4× 1 + 4× 1 + 4× 0)/
√
4 = 6 1

#1 (1 × 1 + 1× 1 + 1× 1 + 1× 0 + 1× 0)/
√
5 = 1.34 2

#2 (2 × 0 + 2× 1 + 2× 0 + 2× 0)/
√
4 = 1 3

query, the terms’ pool can be a vocabulary dictio-

nary in which the number of terms is quite large.

Consequently, the size (the number of columns) of

the PVSM matrix becomes huge, increasing the over-

head for calculating the similarity and storing these

data. Fortunately, we observe that PVSM is actually a

sparse matrix where only a small number of keywords

are used to represent both data and query while most

others are absent in vector (i.e., most entries are 0).

Hence, we can apply some techniques to optimize the

data storage and relevance calculation.

Storage optimization: The sparse matrix stores only

non-zero entries to save space. The index structure is

stored in three sparse vectors. The first vector stores

non-zero entries of the sparse matrix. The weight

(0! × -!$) in a particular data represents the impor-
tance of a term in a data. Hence we store all non-zero

(0!×-!$) for each element in the first non-zero vector.
The second vector is the column vector, where each

entry stores the term identifier or the column index

for the corresponding term in non-zero vector. The

third vector is the row vector that consists of pointers

to each row of the matrix. The row vector consists

of only one entry for each row of the matrix and the

value of each entry is the position of the first non-zero

entry of each row in non-zero vectors. For example,

the storage index structure of Table 2 can be shown

in Table 3, with data #0, #1, #2 and query Q. We can
see that it saves memory space because it stores only

non-zero entry and only one entry for each row of the

matrix.

Calculation optimization: The algorithm to optimize

the computation overhead is shown in Algorithm

1. It starts by scanning the first value in vector

"+" <65+ 86*9+5[]. This is the first non-zero term in
the first data vector. If the corresponding term appears

in the query vector&=65)[], this value is added to the
relevance function and it continues to scan the next

non-zero value; otherwise it just continues the scan.

When all non-zero terms of one data item are scanned,

Algorithm 1 : Relevance Calculation with the Vec-

tor Matrix Multiplication Algorithm
1: Input:

2: M: Number of data in the memory;

3: !"! #$%" &$'("%[]: weight of each non-zero element;
4: %") &$'("%[]: position of the first non-zero element of each
row;

5: '"* &$'("%[]: column of each non-zero element in
!"! #$%" &$'("%;

6: +,$%-[]: query
7: Output:

8: .$*$&/!'$[]: the relevance value of each data to the query;
9:

10: FOR ('",!( = 0; '",!( < 1 ; '",!( ++ )
11: ($23 = 0;
12: FOR (%") = %") &$'("%['",!(];

%") <= (%") &$'("%['",!( + 1]− 1);
%") ++)

13: '"* = '"* &$'("%[%")];
14: ($23 = ($23+ !"! #$%" &$'("%[%")]×+,$%-['"*];
15: END FOR

16: .$*$&/!'$['",!(] = ($23/56%((%") &$'("%['",!(+1]
−%") &$'("%['",!(]);

17: END FOR

the final relevance value of this data item can be cal-

culated by dividing the current relevance value by the

square root of the number of non-zero terms in the

data vector. Clearly, the computation complexity of

Algorithm 1 is ,("), where " is the number of ele-
ments in vector "+" <65+ 86*9+5[].

The optimization can accelerate the query-data rel-

evance calculation and save memory space. Using Al-

gorithm 1 and the storage index of Table 3, the result

of query processing and relevance ranking of the ex-

ample are shown in Table 4. As can be seen, although

both #0 and #1 match three keywords of query &, #0
has a higher relevance ranking due to its higher popu-

larity factor and more concentrated terms.
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IV. Popularity Aware Data Replace-
ment

In the previous section, we proposed techniques to

make popular data maintaining a high density in the

network. At the same time, we need to make sure that

popular data should not be replicated too aggressively

and less popular data should not be totally removed

from the network. [6] and [23] show that the square-

root data allocation strategy can achieve optimal repli-

cation and minimize the query cost. In the square-

root strategy, the number of data replications should

be proportional to the square root of their popularity.

In Roadcast, we propose a simple and cost-effective

solution that can help achieve the square-root data al-

location by using local data replacement. In this way,

the popular data can have more, while not too many

replications in the network and some less popular data

can also be replicated to reduce the query delay. In

this section, we first introduce a popularity aware data

replacement algorithm and then prove that it can reach

the optimal square-root data allocation.

IV.A. Data Allocation Principal

In an unstructured peer-to-peer system with blind

search, we must answer the question: how many

copies of each data item should be in the system so

that the search cost (in terms of query delay) for the

data is minimized, assuming that the total amount of

storage in the network is fixed? This problem has been

studied in [6] and [23]. We first review these results

and illustrate the difficulty of achieving the strict op-

timal data allocation in a dynamic VANET system.

Consider the system model used in [6] and [23]

where the network consists of " nodes (vehicles), each
with capacity @ which is the average number of data
items that the node can hold. There are 7 available
distinct data items and each item #! is replicated at 5!
random nodes. Suppose A =

∑&
!=1

5!, where A is the
total number of data copies in the network. Data #! is
requested with a rate B!, where we normalize this by
setting

∑&
!=1

B! = 1, and obviously B! ∝ 0!. Query is
delivered to any encountered node until the query can

be served. Therefore, the number of encounter nodes

required until the query is served is a Geometric ran-

dom variable, and the probability C5(D) that the data
is found on the D’th node follows the Geometric dis-
tribution G( '!" ) and it can be calculated as

C5(D) =
5!
"
(1−

5!
"
)(−1

Thus, the average search size 1! is the mean of

G( '!" ), which is
"
'!
. We are interested in the average

search size of all available data items:

1 =
"
∑

!=1

B!1! = "
"
∑

!=1

B!
5!

This metric essentially captures the query cost in

terms of query delay in a VANET.

Uniform, Proportional and Square-Root Allocation:

The simplest strategy is to create the same number

of copies of each data item, i.e., 5! =
)
& . This is the

uniform allocation strategy. In this case the average

search size 1*"!+,'# is

1*"!+,'# =
"
∑

!=1

B!1!

=
"
∑

!=1

B!
7

@

=
7

@

which means for uniform allocation, the search size is

independent of the query distribution.

In the proportional allocation, each data is repli-

cated proportional to the access frequency, i.e., 5! =
A'!. In this case the average search size is

1-',-,'.!,"/& =
"
∑

!=1

B!1!

= "
"
∑

!=1

B!
A ⋅ B!

=
7

@
= 1*"!+,'#

Based on the above results, we see that the Uni-

form and Proportional allocation strategies lead to the

same search size, which means that these two strate-

gies have the same query cost, and the query cost is

independent of the query distribution.

The square-root allocation strategy assumes that

the replica of each data in the network is propor-

tional to the square-root of its access frequency, i.e.,

5! =
)∑"

!=1

√
-!

⋅ √B!. Then the average search size is

101*/'2',,. =
"
∑

!=1

B!1!

= "
"
∑

!=1

B!
)∑"

!=1
-!

⋅ √B!

= "
"
∑

!=1

√
B! ⋅

∑"
!=1

√
B!

A

=
1

@
(

"
∑

!=1

√
B!)

2
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Since (
∑"

!=1

√
B!)2 ≪ 7, 101*/'2',,. is consid-

erably smaller than 1*"!+,'# and 1-',-,'.!,"/&.

Actually, [6] and [23] have revealed that square-root

is the optimal data allocation strategy.

Achieving Square-Root Data Allocation in VANETs:

We use E! = {6!$ ∣for all #$} to represent the state of
vehicle 8!’s buffer where:

6!$ =

{

1 if #$ is in the buffer of 8!

0 if #$ is not found in 8!

The access frequency of each vehicle to each data

item is denoted as:

; =

⎛

⎜

⎜

⎜

⎝

011 012 ⋅ ⋅ ⋅ 01..&
021 022 ⋅ ⋅ ⋅ 02..&
...

...
. . .

...

0"1 0"2 ⋅ ⋅ ⋅ 0"&

⎞

⎟

⎟

⎟

⎠

where
∑&

$=1
0!$ = 0! ∝ B!.

Furthermore, we use *!$( to represent the cost in
terms of query delay for vehicle 8! to access data #$
from vehicle 8(. Then, for vehicle 8!, its total access
cost can be calculated as:

F+,9! =
4

∑

$=1

0!$ ×!3"{*!$(∣for all 8(} (4)

Therefore, the goal of data allocation is to find the

best replication arrangement in order to optimize the

following objective function:

!3"{
&

∑

!=1

(F+,9!)} (5)

subject to:

&
∑

$=1

6!$ ≤ @ for all 8!

and
"
∑

!=1

6!$ ∝
√
B!

This allocation problem can be reduced to the

multi-Knapsack problem (MKP) [7] that is known as

NP-complete. Therefore, we present heuristics to pro-

vide square-root data allocation and near optimal per-

formance only with local and distributed data replace-

ment technique.

IV.B. The Popularity Aware Data Re-
placement Algorithm

In Roadcast each data item is stored locally after it

has been downloaded to serve local requests. Each

buffered data item is associated with a cost value.

Intuitively, if one data item has more replications in

the network, it will be easier to find and its access

cost (delay) is low. When the memory is full, the data

with the lowest cost value will be replaced by the

newly obtained data. The idea of our data replace-

ment comes from the GreedyDual-Size algorithm

proposed by Cao and Irani in [5], which is used for

web cache replacement. However, GreedyDual-Size

could not capture and leverage the knowledge of

the long-term access frequencies of different data.

Recent studies have shown the prevalence of Zipf-like

distributions in data access, which implies that the

probability of future access depends on past access

frequencies. Therefore, in the popularity aware data

replacement algorithm, we incorporate the temporal

popularity factor. Different from the web cache

replacement algorithms, we use the latest retrieval

delay to represent the access cost of one particular

data. The proposed data replacement algorithm

can help replace the most suitable data and achieve

the global optimal data allocation in a distributed way.

The Algorithm:

We incorporate the temporal popularity factor (i.e.,

access frequency) into the original GreedyDual-Size

algorithm through the use of a new cost value for each

data. In Roadcast, the cost value G! of data #! is de-
fined as the expected normalized cost saving as a re-

sult of having data #! locally, i.e.,

G! =
*! × 0!
,!

(6)

where 0! is the popularity score (defined in Section
III.C.2) of data #!, *! is its estimated retrieval cost (i.e.,
last retrieval delay), and ,! is the size of the data #!.
A new value H, which equals to the lowestG value

of all the data in local memory, is used as the “in-

flation” value in data replacement. When a new data

item is brought in, itsG value is set as its normalized
access cost plus theH value. At the same time, if there
is no memory space left, the data with the lowest G
value has to be evicted and H is set to this G . Al-
gorithm 2 presents the details of the data replacement

algorithm.

Intuitively, if a data item has a higher retrieval delay

due to its low replication density, based on this data

replacement algorithm, it will be able to stay locally

8 Mobile Computing and Communications Review, Volume 13, Number 4



Algorithm 2 : The Popularity-Aware Data Re-

placement Algorithm
1: Input:

2: p: the data that is obtained;

3: 7 []: popularity score;
4: '[]: retrieval cost (i.e., access delay of last retrieval);
5: 5[]: data size;
6:

7: INITIALIZE

8: L=0.0;

9: FOR each obtained data 3
10: IF 3 is in the memory
11: 8# = 9+ 7# × '#/5#;
12: ELSE

13: WHILE there is not enough free memory for 3
14: 9 = 2:!{8$ ∣ 6 is in the memory};
15: Evict 6 which satisfies8(6) = 9;
16: ENDWHILE

17: Store 3 in the memory;
18: 8# = 9+ 7# × '#/5#;
19: END IF

20: END FOR

for a longer time. Meanwhile, a data item with high

density in the network is more likely to be obtained

from neighboring vehicles. Also its retrieval cost is

low and its initial G! will be small, which means it

may be evicted easily. With this algorithm, the num-

ber of replications of different data items is controlled

by the popularity factor.

Theorem 2. The popularity aware data replace-

ment algorithm (Algorithm 2) can achieve the optimal

square-root data allocation.

Proof: Assume the network consists of " vehicles,
each with capacity @which is the number of data items
that the vehicle can hold. Let 5! denote the number of
replications of one particular data #!. Then the density
of data #!, denoted as I!, equals to

'!
"×5 . It is easy to

see that I! is a random variable evolving over time.
When the replications of the data are evicted from the

network, I! decreases. When new copies are repli-
cated in the system, I! increases. It is not hard to see
that when the local memory is all used by data repli-

cations,
"−1
∑

!=0

I! = 1 (7)

Then we have a dynamic system with a differential

equation:
dI!
d9

= −JI! + K ×
0!
I!

(8)

where J (0 < J < 1) is the rate at which the copies
of the data are evicted, and K is the density increasing
constant. In Equation 8, −JI! indicates that random
copies are evicted and the density decreases linearly.

K× +!
4!
represents that each request for data #! results in

an increase of the density. The increase is proportional

to both the access frequency 0! and its life time. In
particular, the expected lifetime is proportional to the

expected access cost (i.e., retrieval delay) in Equation

6. With the assumption that each vehicle queries its

encountered vehicles to check if they have the inter-

ested content, the retrieval delay of one specific data

#! through such blind search is inversely proportional
to the number of data replications (5!) in the network,
which is also proportional to the density of #! (I!), i.e.,

life time of data item #! ∝ *! ∝
1

5!
∝

1

I!
(9)

By setting d4!d. = 0 in Equation 8, we can get the
equilibrium point of this equation, i.e.,

dI!
d9

= −JI! + K ×
0!
I!

= 0

⇒ JI! = K ×
0!
I!

⇒
J

K
× I2! = 0!

⇒ I! ∝
√

0!

(10)

The result of Equation 10 shows the nonlinear sys-

tem (Equation 8) converges to the square-root alloca-

tion at its steady state. Therefore, by using the pro-

posed popularity aware data replacement algorithm,

the data allocation obeys the optimal square-root rule.

■

V. Performance Evaluations

In this section, we evaluate the performance of the

proposed Roadcast content sharing scheme and com-

pare it to other solutions.

V.A. Simulation Setup

In our simulation setup, vehicles move within a fixed

region of 3D! × 3D!. Each vehicle can initiate
queries for some interested content. If the query can-

not be served locally, it is sent to other encountered

vehicles. When the requested data is sent back, the

data is available to use. If the local memory of the

vehicle is full, one or more data items will be evicted

according to the data replacement algorithm. We im-

plement Roadcast on the ns-2 simulator [2]. Since ns-

2 is developed for generic ad hoc networks, it does not

support VANET specific topologies and traffic control

models. To provide a real VANET environment, we

Mobile Computing and Communications Review, Volume 13, Number 4 9



Figure 2: Simulation setup (3D!× 3D! area in Pittsburgh, PA)

use the GrooveNet simulator1 [1] and a map of the

Pittsburgh area (as obtained by the US Census Bureau

data for street-level maps [3]) to generate the street

topology (Figure 2) and vehicle mobility trace file.

The mobility trace is used in the ns-2 simulations.

There are 150 or 300 moving vehicles following the

street topology and the speed limits. 100 data items,

with different data size (1, 3, or 5 units), are gener-

ated at the start of each simulation. Each vehicle can

store up to 20 data units in its local memory but ini-

tially it randomly picks data items as its local data un-

til the local memory is full. To describe the data con-

tent, the vocabulary dictionary consists of 40 different

terms, and each data can randomly choose 2∼8 terms
as its keywords. Similarly, each query consists of 3∼5
keywords from the same dictionary. The data access

follows L3B0 distribution, where the access probabil-
ity of the 3.ℎ term in the dictionary is represented as
C! =

1

!%
∑"

&=1

1

&%

, where M ≥ 0, " is the dictionary size.

In Roadcast, the query requirement can be relaxed

so that the data item that does not match all query re-

quirements can still be used to serve the query. The

default satisfaction degree is set to 75%, which means
that if one query consists of 4 keywords, any data item

that matches at least 3 of these 4 keywords can be used

to serve the query. Most of the system parameters and

their default values are listed in Table 5.

Roadcast consists of two components: the popular-

ity aware content retrieval scheme and the popular-

1GrooveNet is a VANET simulator, which uses the map of the

US Census Bureau’s TIGER/Line 2000+ database [3] to generate

a real city/street topology and provides a variety of useful mod-

els for mobility, traffic control, and etc, for VANET simulations.

Therefore, we use GrooveNet to design the simulation scenario.

We also rewrite the logger class of GrooveNet so that the logged

mobility trace can be used in ns-2.

Table 5: Simulation configurations.
Parameter Default Value

Simulation Time 20 minutes

Number of Vehicles 150, 300

Simulation Area 3km×3km (Pittsburgh)
Communication Range 200m

Data Size 1 unit, 3 units, 5 units

Memory Size 20 units

Keyword Set Size 40

Number of Keywords in

Data Description 2∼8
Number of keywords in

Query Description 3∼5
;:37 Parameter < 0.8

Satisfaction Degree 75%
Vehicle Speed Street speed limit±25%
Mobility Model StreeSpeedModel [1]

Trip Model SightSeeingModel [1]

ity aware data replacement algorithm. To evaluate the

performance of Roadcast, we compare it to three other

content sharing schemes. The first two schemes use

the same data replacement algorithm as Roadcast but

different content retrieval schemes. Scheme I requires

the data to be 100%-matched, while Scheme II relaxes
the query requirement based on the satisfaction degree

but without taking the popularity factor into consider-

ation. Scheme III uses the same popularity aware con-

tent retrieval scheme as Roadcast but its data replace-

ment is based on LRU (i.e., Least-Recently-Used).

The performance of these content sharing schemes are

measured by the query delay.

V.B. Query Delay

Figure 3 and Figure 4 compare Roadcast and other

three content sharing schemes in terms of query delay

in a 150-vehicle scenario and a 300-vehicle scenario,

respectively.

10 Mobile Computing and Communications Review, Volume 13, Number 4
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Figure 3: Query delay in the 150-vehicle scenario
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Figure 4: Query delay in the 300-vehicle scenario

As shown in Figure 3 (a), when the memory size

is small (e.g., 10 units), all schemes have relatively

higher query delay. When the memory size increases

(e.g., to 30 units), the query delay decreases. This

is because as the memory size increases, vehicles are

able to buffer more data items. Hence, there will

be more data replicas and the queries can be served

by these replicas quickly. As shown in Figure 3

(a), Scheme I, which only accepts exactly matched

data, has a much longer query delay than other three

schemes (e.g., up to 175% of Scheme II, 190% of

Scheme III, and 282% of Roadcast). This confirms the

fact that it would take much longer time to find the ex-

actly matched content in an intermittently connected

VANET. Roadcast has the shortest query delay since it

considers data popularity in content delivery and data

replacement. It allows a more reasonable data dis-

tribution in the network, which further improves the

data access performance. From the figure, we can see

that Roadcast can save up to 32% and 38% query time

compared to Scheme II and Scheme III, which either

fails to consider popularity in content retrieval or ig-

nores the popularity factor in data replacement.

From Figure 3 (a), we can also see that the query

delay of Scheme II is much shorter than that of

Scheme III when the memory size is small compared

to that when the memory size is large. This is because

when the memory size is small, the data replacement

algorithm is much important. Moreover, LRU (used

in Scheme III) does not consider the data size and its

global popularity, but the popularity aware data re-

placement algorithm (used in Scheme II) achieves a

better tradeoff between data size and popularity thus

it can help achieve better performance. Figure 4 (a)

shows similar results in the 300-vehicle scenario.

Figure 3 (b) compares the query delay of different

schemes as a function of the content access skewness.

In Zipf distribution, when M=0, the access pattern is
uniformly distributed, and different keywords have

similar popularity. As M increases, the access pattern
becomes more skewed. As can be seen from the fig-

ure, when the content access is close to uniform distri-

bution, the popularity aware content retrieval scheme

and the data replacement algorithm do not have much

Mobile Computing and Communications Review, Volume 13, Number 4 11



25 50 75 100
0

50

100

150

200

250

Satisfaction Degree (%)

Q
u
er

y
 D

el
ay

 (
S

ec
o
n
d
s)

150 vehicles

300 vehicles

Figure 5: Impact of satisfaction degree

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

Data Access Frequency (proportion of totoal data access)

N
u
m

b
er

 o
f 

R
ep

li
ca

ti
o
n
s ∝ X

1/2
Y

(a) 150 vehicles

10
−3

10
−2

10
−1

10
0

0

20

40

60

80

100

120

140

Dada Access Frequency (proportion of total data access)

N
u
m

b
er

 o
f 

R
ep

li
ca

ti
o
n
s Y ∝ X

1/2

(b) 300 vehicles

Figure 6: Data allocation of Roadcast

advantage. But Scheme II, III and Roadcast still have

much shorter query delay than Scheme I due to the

relaxation on query requirement. As content access

becomes skewed, Roadcast consistently outperforms

other schemes. Here, the skewness of content access

also helps data allocation. Therefore, as M increases,
the query delay decreases.

Meanwhile, the difference between Figure 3 and

Figure 4 implies that vehicles can find the useful data

more quickly in a dense VANET than in a sparse

VANET.

V.C. Satisfaction Degree in Roadcast

In Roadcast, an important factor is to relax the query

requirement so that users can have more choices to

get the satisfying, but not exactly matched content

quickly. Figure 5 illustrates how the satisfaction de-

gree affects the performance. As the figure shows,

when the satisfaction degree decreases, the query de-

lay drops quickly. For example, when the satisfac-

tion degree changes from 100%-match to 75%-match,

the query delay can be reduced by 47% (150-vehicle)

and 55% (300-vehicle). However, as the satisfaction

degree decreases, the quality of the retrieved content

may be degraded. Thus, there is a tradeoff between

content quality and system performance.

V.D. Data Allocation

In Section IV, we prove that the popularity aware data

replacement algorithm can achieve square-root data

allocation in the system steady state. Here, we use

simulation to verify it. Figure 6 plots the number

of replicas for each data in the system at the end of

the simulation, as a function of data access frequency.

As can be seen from both Figures 6 (a) and (b), for

those popular data items which have a high access

frequency, they have more replicas than other less ac-

cessed data. Also the number of replicas for each data

item closely follows the curve of the square-root func-

tion (the red curve). Consequently, the simulation re-

sults confirm that the popularity aware data replace-

ment algorithm can help achieve the optimal square-

root data allocation.

VI. Conclusions

This paper raises a simple question: how can we help

users get the useful data as quickly as possible through

vehicle-to-vehicle content sharing in an intermittently

connected VANET? To answer this question, we pro-

pose Roadcast, a novel P2P content sharing scheme

for VANETs. Roadcast relaxes the query requirement

a little bit so that users can get the requested content

quickly. Furthermore, Roadcast ensures more pop-

ular data is more likely to be shared with other ve-

hicles. Roadcast consists of two components: pop-

ularity aware content retrieval and popularity aware

data replacement. The popularity aware content re-

trieval scheme makes use of IR techniques to find the

most relevant data towards user’s query, but signifi-

cantly different from IR techniques by taking the data

popularity factor into consideration. To deal with the

long delays of accessing the less popular data, we rely

on the popularity aware data replacement algorithm,

which can achieve the optimal square-root data allo-

cation according to data popularity by only using local

information.

This paper focuses on content sharing among inde-

pendent vehicles. As future work, we are also inter-

ested in sharing content through cooperative retrieval

and delivery among vehicles grouped as a “platoon”

[9]. Besides, proactive caching is another important

issue for content sharing in VANETs.
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