
Tracking Multiple Mouse Contours (without Too Many Samples)

Kristin Branson and Serge Belongie
Dept. of Computer Science and Engineering

UC San Diego
La Jolla, CA 92093-0114

Abstract

We present a particle filtering algorithm for robustly
tracking the contours of multiple deformable objects
through severe occlusions. Our algorithm combines a mul-
tiple blob tracker with a contour tracker in a manner that
keeps the required number of samples small. This is a natu-
ral combination because both algorithms have complemen-
tary strengths. The multiple blob tracker uses a natural mul-
titarget model and searches a smaller and simpler space.
On the other hand, contour tracking gives more fine-tuned
results and relies on cues that are available during severe
occlusions. Our choice of combination of these two algo-
rithms accentuates the advantages of each. We demonstrate
good performance on challenging video of three identical
mice that contains multiple instances of severe occlusion.

1. Introduction
We address the problem of tracking the contours of mul-

tiple identical mice from video of the side of their cage; see
Figure 3 for example frames. Although existing tracking al-
gorithms may work well from an overhead view of the cage,
the majority of vivaria are set up in a way that prohibits this
view. A solution to the side view tracking problem would
be very useful for medical researchers wishing to automati-
cally monitor the health and behavior of lab animals [3].

This problem is also interesting and uniquely difficult
from a computer vision standpoint. Because mice are highly
deformable 3D objects with unconstrained motion, an accu-
rate contour model is necessarily complex. Because mouse
motion is erratic, the distribution of the current mouse po-
sitions given their past trajectories has high variance. The
biggest challenge to tracking mice from a side view is that
the mice occlude one another severely and often. Tracking
the mice independently would inevitably result in two track-
ers following the same mouse. Instead, we need a multitar-
get algorithm that tracks the mice in concert. As the num-
ber of parameters that must be simultaneously estimated
increases linearly with K, the number of mice, the search
space size increases exponentially with K [13]. Thus, us-

ing existing approaches to directly search the contour space
for all mice at once is prohibitively expensive.

In addition, tracking individual mouse identities is dif-
ficult because the mice are indistinguishable. We cannot
rely on object-specific identity models (e.g. [4, 9]) and must
instead accurately track the mice during occlusions. This
is challenging because mice have few if any trackable fea-
tures, their behavior is erratic, and edges (particularly be-
tween two mice) are hard to detect. Other features of the
mouse tracking problem that make it difficult are clutter (the
cage bedding, scratches on the cage, and the mice’s tails),
inconsistent lighting throughout the cage, and moving re-
flections and shadows cast by the mice.

Our algorithm is of general interest to the tracking com-
munity because the challenges to successful mouse track-
ing are common to many real world tracking applications.
While many video sequence testbeds are constructed to
show off the novelty of an algorithm, our algorithm is con-
structed to address the challenges of a specific tracking
problem. Thus, our feature extraction algorithm must be
powerful, our objects’ state representation must be detailed,
and our algorithm must be able to search the complex pa-
rameter space with a limited number of samples.

We propose a solution that combines existing blob and
contour tracking algorithms. However, just combining these
algorithms in the obvious way does not effectively solve the
difficulties discussed above. We propose a novel combina-
tion of these algorithms which accentuates the strengths of
each individual algorithm. In addition, we capitalize on the
independence assumptions of our model to perform most of
the search independently for each mouse. This reduces the
size and complexity of the search space exponentially, and
allows our Monte Carlo sampling algorithm to search the
complex state parameter space with a reasonable number of
samples. Our algorithm works with a detailed representa-
tion of a mouse contour to achieve encouraging results on a
video sequence of three mice exploring a cage.

The paper is organized as follows. In Section 2, we de-
scribe the algorithms we build off of: the Bayesian Multiple
Blob (BraMBLe) tracker [7] and MacCormick et al.’s con-



tour likelihood model [12]. In Section 3, we describe the
model assumed for the blob and contour tracking problem.
In Section 4, we describe our particle filtering algorithm for
fitting contours given this model. In Section 6, we present
specific details of our algorithm, and the results for a chal-
lenging video sequence.

2. Previous Work
Our algorithm builds off of the Bayesian Multiple Blob

(BraMBLe) tracker [7] and MacCormick et al.’s contour
tracker [12, 2]. Both approaches are based on particle filter-
ing. In this section, we first introduce standard particle fil-
tering (a.k.a. bootstrap filtering, sequential importance sam-
pling) to introduce our notation; see [5] for a complete treat-
ment. Then, we describe and compare the blob and contour
tracking algorithms.

2.1. Particle Filtering

Particle filtering is a sequential importance sampling al-
gorithm for estimating properties of hidden variables given
observations in a hidden Markov model. For tracking from
video, xt, the state at time t, represents the positions of
the objects in frame t, and yt, the observation at time t,
is a function of video frame t. Standard particle filtering
assumes that we can directly sample from p(xt|xt−1), the
density of transitioning to state xt from xt−1. It also as-
sumes that we can easily evaluate the observation likeli-
hood, p(yt|xt), the likelihood of observing yt in state xt.

Particle filtering sequentially applies importance sam-
pling to construct a particle set representation of p(xt|y1:t),
the posterior density of state xt given the sequence of ob-
servations y1:t = (y1, . . . ,yt), from a particle set repre-
sentation of p(xt−1|y1:t−1). In its standard form (bootstrap
filtering), the importance function and weights are

x(j)
t ∼ p(xt|y1:t−1) ≈

∑
i w

(i)
t−1p(xt|x(i)

t−1)
w

(j)
t ∝ p(yt|x(j)

t ),
where the weights are normalized to sum to one.

2.2. BraMBLe Likelihood

In this section, we briefly describe the Bayesian Multi-
ple Blob (BraMBLe) tracker; see [7] for details. The BraM-
BLe tracker provides a solution to tracking multiple occlud-
ing blobs/objects from video. The novelty of BraMBLe
is its robust and natural multitarget observation likelihood
model. BraMBLe searches for K blobs such that all pixels
inside the blobs look like foreground and all pixels outside
the blobs look like background, using learned models of the
foreground and background appearance.

Given the hypothesized blob positions x, BraMBLe first
computes the label lg(x) for each image location g on a
grid as either foreground (within some blob) or background

(outside all blobs). The likelihood of the observed fea-
tures yg at grid point g given the label is modeled as a
Gaussian mixture model (a separate background GMM is
learned for each grid location, a common GMM is learned
for the foreground). The grid features are assumed to be
independent given the state, so the likelihood of the en-
tire frame is p(y|x) =

∏
g pg(yg|lg(x)), where p(yg|fore)

and pg(yg|back) are the GMMs.
The features yg consist of six values. For each of the

three opponent channels, we combine pixels in a small win-
dow around grid point g using a Gaussian and LoG filters
at a set scale, as in [7]. The LoG filter is useful in differen-
tiating the smooth mouse texture from the variable bedding
texture, which are similar in color. The only noticeable fail-
ure for this choice of features is the mouse’s shadow on the
bedding. Figure 3(a) shows the log-likelihood ratio of fore-
ground over background for some example frames.

The space searched by BraMBLe does grow exponen-
tially with the number of targets. However, its likelihood
function is smooth and well-behaved, in comparison to
those used for contour tracking (Section 2.3). In addition,
the number of parameters describing the blob is minimal.
These properties make the search simple and robust.

Empirically, BraMBLe performs well at estimating the
mouse positions (up to a permutation of identity labels).
The main failure is that our blob representation of the mouse
state (an ellipse) is not detailed or exact enough. First, for
our application of automatic behavior analysis, it is bene-
ficial to compute detailed model fits. Second, the approx-
imate model makes the likelihood higher for some reason-
able fits than others based on the relationship between the
blob model and the true object shape (in the common case
that the mouse is not precisely elliptical). Because of the
grid independence assumptions, some reasonable fits score
orders of magnitude higher than others. This is evident dur-
ing occlusions, when the set of reasonable blob fits is large.
BraMBLe greedily gives one fit a disproportionately large
weight early in the occlusion. The particle sets produced
are thus extremely sparse, and BraMBLe cannot later re-
cover from its mistake.

2.3. MacCormick et al.’s Contour Likelihood

We combine the blob likelihood from BraMBLe with the
“generic contour likelihood” described in [12]. Contour
tracking searches for a contour model that matches edges
in the image. The likelihood we use models the edges de-
tected in the video frame along a sparse set of short mea-
surement lines normal to and centered on the contour. The
intersection between the hypothesized contour model and a
measurement line is the center of the measurement line.

Briefly, we describe the measurement line likelihood
model p(ym|x); see [12, 2] for details. Let ym be the be the
binary vector indicating where edges are detected on mea-



surement line m, n be the number of edges detected, and L
be the measurement line length. If n = 0, then the mea-
surement line likelihood is p(ym|x) = p01. If n ≥ 1, with
probability 1 − p01, one of these edge detections was pro-
duced by the hypothesized intersection, and the rest were
produced by background clutter. With probability p01, they
were all produced by background clutter. The location of
the edge produced by the hypothesized intersection is Gaus-
sian around the line center with variance σ2. Clutter edge
detections are uniformly distributed along the line. The
number of clutter detections follows a Poisson distribution
with parameter λ. Thus, for nm ≥ 1,

p(ym, n|x) = (1−p01)
b(n − 1)

Ln−1

nX
i=1

ymiN(i; L/2, σ2)+p01
b(n)

Ln
.

The measurement line observations are assumed inde-
pendent given the state, so the total contour likelihood is
p(y|x) =

∏
m p(ym|x).

We found that, even for one mouse, the search performed
by contour tracking was much more difficult than that per-
formed by BraMBLe for multiple mice. In our occlusion-
free training sequence of 300 frames, the generic contour
tracker lost one of three mice completely. This is first be-
cause the contour model is of higher dimension, but mostly
because the observation likelihood is much less smooth than
the blob likelihood; if a pair of contours are not extremely
close to the true fit, then the ranking given to the contours is
often not meaningful. However, for contours that are close
enough, the likelihood is usually peaked around a meaning-
ful fit. This is in contrast to BraMBLe, in which the rank-
ings are usually meaningful on a large scale but not a small
scale. Even for one object, low-level blob tracking is useful
for guiding the contour search [6]. Thus, while there is an
explicit multitarget contour likelihood [13], we found that
it alone did not work well for our data. We include contour
tracking firstly because it estimates a more detailed position
and secondly because there is more contour signal available
during occlusions, both in the silhouette of the occlusion
and the boundary between mice.

3. Blob and Contour Model
We use a particle filtering algorithm to approximate

p(xt|y1:t), the posterior distribution of the state of all K
mice in frame t, xt = xt,1:K , given blob and contour ob-
servations for frames 1 to t. In this section, we describe the
combined blob and contour model we assume. In Section
3.1, we describe our model of the position of the mouse.
In Section 3.2, we describe the observation likelihood. In
Section 3.3, we describe the transition distribution.

3.1. Blob-Contour State
We represent the blob state of one mouse by an ellipse,

parameterized by five shape and three velocity parameters:
the center coordinates (µx, µy), the semimajor and semimi-
nor axis lengths a and b, the rotation after scaling θ, the

center velocity (vx, vy), and the semimajor axis velocity va,

xbk = (µxk, µyk, ak, bk, θk, vxk, vyk, vak)>.

Figure 1. The 12 B-spline contour templates
chosen to represent a mouse contour. The
circles are locations of measurement lines.
We represent the contour state of one mouse by any

affine transformation of any of the 12 B-spline templates
shown in Figure 1. As the shape of the 2D mouse image
is highly variable, there is no natural sense of correspon-
dence between many pairs of templates. Thus, we cannot
linearly combine contours, preventing the use of learned
contour models such as [2]. We plan to explore methods
for contour model learning in future work. This represen-
tation has the an application advantage over more flexible
models such as [10, 8]: we can annotate the templates with
e.g. ear, nose, or eye positions, useful for behavior analysis.

The locations of the measurement lines along each con-
tour template are set by hand (see Figure 1). In addition, the
minimum and maximum allowed eccentricity, pre-scaling
rotation, and post-scaling rotation are set for each contour
(no limits on post-scaling rotation are given for mice hang-
ing from the ceiling). Each contour is also labeled as facing
left, right, or both left and right. We parameterize the con-
tour state by the eight ellipse parameters, the rotation before
scaling φ, the contour template c, and whether the template
is flipped f : xk = (xbk, φk, ck, fk)>. The state of all K
mice is the concatenation x1:K = (x>1 . . .x>K)>.

3.2. Blob-Contour Observation Likelihood
We represent the useful information in an image obser-

vation by two sets of the features. The blob features yb are
those used by the BraMBLe tracker to determine how much
each location matches the foreground and background mod-
els. The contour features yc are the edges in the image. This
representation encompasses much of the available signal, as
the interior of the mouse is nearly featureless, preventing the
use of image maps (e.g. [4, 1, 9]) or feature trackers [18].
Our current model ignores optical flow features [11, 22].
These features are useful in the mouse tracking domain [3],
and we plan on incorporating them in the future.

To combine the BraMBLe likelihood p(yb|x) and a
soft version of the generic contour likelihood p(yc|x) =∏

k p(yck|x) (see Section 3.2.1), we assume conditional in-
dependence given the state of the mice:



p(y|x) = p(yb|x)
K∏

k=1

p(yck|xk).

ICondensation[6] avoids this assumption by using a blob
posterior (note that this posterior is not BraMBLe) as the
importance function for contour tracking. It is essential that
p(yb|x) be included in our likelihood in order to use BraM-
BLe to model the multitarget dependencies.

3.2.1. A Soft Contour Likelihood
Contour tracking relies on an accurate edge detection algo-
rithm. This is a challenge for our video sequence because
there is a large amount of clutter in the scene. Much of the
bedding has a high image intensity gradient and there are
scratches on the cage. It is difficult to detect edges between
the mice and bedding because the bedding in the shadow of
the mice is very similar in color to the mouse. In addition,
the edges between pairs of mice are subtle, if visible at all.
We tried numerous edge detection methods, and the only
one that gave reasonable results was the boundary detec-
tion algorithm used by the Berkeley Segmentation Engine
(BSE) [14]. BSE computes the posterior probability of an
edge based on the brightness, texture, and color gradient us-
ing a classifier trained on 12,000 manually labeled images.
We credit BSE’s superior performance in part to the texture
gradient, which is robust to the types of clutter described.
Figure 3(b) shows example images illustrating BSE’s per-
formance. The major downside of the BSE boundary de-
tector is it is expensive – processing one entire image took
over five minutes on a 2.8 GHz machine. We hypothesize
that this algorithm can be optimized for tracking applica-
tions to reduce this cost.

Because the BSE boundary detector outputs meaningful
probabilities rather than hard edge classifications, we used
a soft version of the generic contour likelihood. This was
essential for detecting edges between pairs of mice, as BSE
often outputs a weak response for these edges (see Figure
3(b)). The BSE output for location i is p(edge|yi), the
probability that i is an edge given the observations yi. We
model the probability of a binary classification of each mea-
surement line pixel z given the edge features y as:

p(z|y) =
L∏

i=0

p(edge|yi)zi(1− p(edge|yi))1−zi .

We assume equal priors for all z, so this is equal to p(y|z).
The probability of observing measurement line y given the
hypothesized contour is the sum over all these possibilities:

p(y|x) =
∑

z∈{0,1}L+1

p(y|z)p(z, n|x),

where p(z, n|x) is the generic contour likelihood described
in Section 2.3. While this computation is extremely fast for
small L, it grows exponentially with L. To combat this, the
sum can be taken only over z such that p(y|z) is significant.

3.3. Motion Model

We make standard, simple assumptions in our model
of the transition distribution p(xt|xt−1). First, we as-
sume that the mice move independently, so we can factor
p(xt,1:K |xt−1,1:K) =

∏
k p(xtk|xt,k−1). Second, all con-

tinuous shape parameters xs = (µx, µy, a, b, θ, φ) follow
independent constant velocity and/or autoregressive Gaus-
sian diffusion models:

xst|xt−1 ∼ N ((I− Γ)(xs,t−1 + Λvs,t−1) + Γx̂s,Σs),

where Γ is the diagonal autoregressive constant (0 for µx,
µy , and θ), Λ is the diagonal dampening constant (0 for b, θ,
and φ), and Σs is the assumed diagonal covariance matrix.
Velocities are set by subtracting the previous state from the
current state.

There is a high probability that the contour template does
not change. The probability of changing to a different con-
tour template is based on whether the current and new con-
tour face the same direction. We first determine which con-
tours are allowed given the generated shape. If no contour
is allowed, we rotate the shape after scaling by the mini-
mum amount to allow at least one contour. We then de-
cide which direction (left or right) the generated contour
should face (if contours facing both directions are allowed).
We flip the direction with probability proportional to the
squared eccentricity. Given the direction, we choose an al-
lowed contour facing that direction. If the direction has not
changed, we choose the same contour with high probabil-
ity. All other contours allowed in a given direction are given
equal weight.

4. Blob-Contour Particle Filtering

In this section, we describe our algorithm for efficiently
sampling from the combined blob and contour posterior dis-
tribution of the K mice, p(xtk|yb,1:t,yc,1:t), given the mod-
els and independence assumptions described in Section 3.

At each iteration of particle filtering, we generate a set of
weighted samples {(x(i)

t , w
(i)
t )}N

i=1 such that p(xt|y1:t) ≈∑N
i=1 w

(i)
t δ(xt − x(i)

t ) from the previous set of weighed
samples {(x(i)

t−1, w
(i)
t−1)}N

i=1. The most popular particle fil-
tering algorithm is the bootstrap filter. As described in
Section 2.1, the importance function used in this algo-
rithm is p(xt,1:K |xt−1,1:K), and the importance weight is
p(ybt,yct|xt,1:K). Three properties of our problem cause
this direct application to fail for any practical number of
samples N . First, because the motion of the mice is er-
ratic, the variance of p(xt,1:K |xt−1,1:K) is high. Second,
because the contour feature is sparse, the scores given by
p(yct|xt,1:K) are only meaningful within a short radius of
the optimal fits for all K mice. Third, the dimension of
xt,1:K is proportional to K, thus the search space size is
exponential in K. Because of these three properties of the



relationship between the importance and true posterior dis-
tributions, a huge number of samples must be generated so
that enough fall within the short radius of the optimal fits.

We address these problems by performing three sam-
pling steps, instead of just one. Each step incorporates a
subset of the observations to gradually hone in on the small
subspace truly important in the posterior distribution. The
first step performs bootstrap filtering using only the blob ob-
servations. This step localizes the search space for the mice
by moving the distribution toward the optimal fits and de-
creasing its variance. The second step performs bootstrap
filtering using the contour observations independently for
each mouse. This allows the algorithm to find the important
regions for each mouse independently, exponentially reduc-
ing the search space by preventing a good fit for one mouse
from being rejected because it is paired with a bad fit for
another (this problem is also addressed in the sensor obser-
vation literature [15]). The third step of sampling combines
the K sets of particles by sampling independently from
each, then weights by the necessary importance weight.

One can interpret the first two filtering steps as generat-
ing samples from the posterior marginals. Then, the impor-
tance function in the third sampling step is the product of
the posterior marginals:

q3(xt|y1:t) =
K∏

k=1

p(xtk|y1:t−1,bt,ctk).

We describe these three steps in more detail next. Figure 2
shows the algorithm steps.

For t = 1, 2, . . . :
1. Sample from the marginal posteriors:

For i = 1, . . . , N:

a. Choose x̃
(i)
t−1,1:K ∼ {(x(j)

t−1,1:K , w
(j)
t−1)}.

b. Generate b
(i)
1:K ∼ p(b1:K |x̃(i)

t−1,1:K).

c. Compute the weight w
(i)
b ∝ p(ybt|b(i)

1:K).

d. Choose b̃
(i)
1:K ∼ {b̃(j)

1:K , w
(j)
b )}

e. For k = 1, . . . , K,

Generate x̃
(i)
tk ∼ p(xtk|b̃(i)

k ).

f. Compute the weight w
(i)
tk = p(yctk|x̃(i)

tk ).
2. Sample from the joint posterior:

For i = 1, . . . , N:
a. For k = 1, . . . , K,

Choose x
(i)
tk ∼ {(x̃(j)

tk , w
(j)
tk )}.

b. Concatenate: x
(i)
t,1:K = (x

(i)
t1 , . . . , x

(i)
tK).

c. Compute the importance weight:

w
(i)
t ∝ p(ybt|x(i)

t,1:K)
PN

j=1 w
(j)
t−1

QK
k=1 p(x

(i)
tk |x

(j)
t−1,k).

Figure 2. Blob and Contour Particle Filtering
Step 1: Blob Sampling

In the first sampling step, we perform an iteration of
bootstrap filtering (with systematic resampling with re-
placement) using only the blob observation ybt. Given
{(x(i)

t−1,1:K , w
(i)
t−1)} representing p(xt−1,1:K |y1:t−1), we

generate {b(i)
t,1:K}N

i=1 from

q1(bt|y1:t) =
∫

p(bt|xt−1)p(xt−1|y1:t−1)dxt−1,

where p(bt|xt−1) =
∏

k p(btk|xt−1,k) and p(btk|xt−1,k)
has the same form as p(xtk|xt−1,k) for all blob parameters,
and is a δ function around the previous state for the contour
parameters. We then weight by w

(i)
bt ∝ p(ybt|bt) so that

p(bt|y1:t−1,bt) ≈
∑

i

w
(i)
bt δ(bt − b(i)

t ).

The marginal is

p(btk|y1:t−1,bt) =
∫

p(bt|y1:t−1,bt)dbt1:K\k

≈
∫ ∑

i

w
(i)
bt δ(bt−b(i)

t )dbt,1:K\k =
∑

i

w
(i)
bt δ(btk−b(i)

tk ).

Step 2: Independent Contour Sampling
In the second sampling step, we perform an iteration of

bootstrap filtering using the contour observation yctk for
each mouse k independently. Given {(b(i)

tk , w
(i)
bt )} repre-

senting p(btk|y1:t−1,bt), we generate {x̃(i)
tk } from

q2(xtk|y1:t) =
∫

p(xtk|btk)p(btk|y1:t−1,bt)dbtk,

where p(xtk|btk) is the same as p(xtk|xt−1,k) for the con-
tour parameters and Gaussian (with a different, smaller vari-
ance) around btk for the blob parameters. We then weight
by w

(i)
tk ∝ p(yctk|x̃tk) so that

p(xtk|y1:t−1,bt,ctk) ≈
∑

i

w
(i)
tk δ(xtk − x̃(i)

tk ).

Step 3: Combining the Marginals
In the final sampling step, we perform an iteration

of sampling to combine the individual mouse marginals.
Given {(x̃(i)

tk , w
(i)
tk )} representing p(xtk|y1:t−1,bt,ctk) for

k = 1, . . . ,K, we generate {x(i)
t } from

q3(xtk|y1:t) =
K∏

k=1

p(xtk|y1:t−1,bt,ctk)

by independently sampling from {(x̃(i)
tk , w

(i)
tk )} for k =

1, . . . ,K and concatenating. We then weight by
w

(i)
t ∝

p(x(i)
t |y1:t)

q3(xt|y1:t)

∝
p(ybt|x

(i)
t )

Q
k p(yctk|x

(i)
tk

)
R

p(x(i)
t |xt−1)p(xt−1|y1:t−1)dxt−1Q

k p(xtk|y1:t−1,bt,ctk)

≈
p(ybt|x

(i)
t )

Q
k p(yctk|x

(i)
tk

)
R

p(x(i)
t |xt−1)

P
j w

(j)
t−1δ(xt−1 − x

(j)
t−1)dxt−1Q

k
P

j w
(j)
tk

δ(x(i)
tk

− x̃
(j)
tk

)

=
p(ybt|x

(i)
t )

Q
k p(yctk|x

(i)
tk

)
P

j w
(j)
t−1p(x(i)

t |x(j)
t−1)Q

k p(yctk|x
(i)
tk

)

= p(ybt|x
(i)
t )

X
j

w
(j)
t−1p(x(i)

t |x(j)
t−1)

Our sampling algorithm is consistent because it is a se-
quence of three consistent steps. The first two steps are stan-
dard applications of bootstrap filtering, and are thus consis-
tent. So, each of the K particle sets input in step 3 in the
limit as N → ∞ converge pointwise to the true marginal
posterior. Step 3 generates samples from the product of the
marginal posteriors. If any of the marginals has zero den-
sity, then the joint density is also zero. Finally, we weight by
the ratio of the joint posterior to the particle approximations
of the marginal posteriors. As these particle approximations
are consistent, the ratio is also consistent.



5. Comparison to Related Work

A number of algorithms address the shortcomings of
bootstrap filtering for multitarget tracking. One set incor-
porates information from the current frame in the impor-
tance function. The other modifies the algorithm to perform
sampling independently for each target. Our algorithm per-
forms both of these modifications, incorporating the blob
observation and sampling from the target marginals.

Within the first category falls [16], which incorporates
object detection [21] in the importance function, which is
similar to incorporating the blob observation. ICondensa-
tion [6] uses a single-blob observation in the importance
function, but this algorithm is only a contour tracker (the
effect of the blob observation is divided out), and is not
a multitarget algorithm. The unscented particle filter [19]
uses the unscented Kalman filter to incorporate the current
observation into the importance function. We found that
this performed poorly on our data because our likelihood
function is extremely nonlinear.

The problems with tracking many targets is often ad-
dressed in applications in which observations are from non-
visual sensors such as radar. The most popular approach
is the Joint Probabilistic Data Association Filter (JPDAF)
[17], which estimates the product of the marginal posterior
distributions instead of the joint posterior distribution. A
number of algorithms similar to the JPDAF are described in
[20]. Algorithms from this literature are not directly appli-
cable to our application because our observation likelihoods
are more complicated, and do not factor over targets. In the
contour tracking literature, partitioned sampling [12] also
addresses the multitarget dimensionality issue by first es-
timating the position of the target in front, then using this
estimate to determine the position of the second target, and
so on. However, this algorithm uses only the contour like-
lihood, which is a local measure for the image, allowing
them to compute the likelihood given the states of any num-
ber of targets, while the BraMBLe likelihood requires the
states of all targets. In addition, the state of the front target
is resampled as the state of each of the rest of the targets is
resampled, thus it is resampled K times in each iteration,
leading to sample depletion.

6. Experiments

We evaluated our blob and contour tracking algorithm on
a video sequence of three identical mice exploring a cage,
available at http://smartvivarium.calit2.net.
This sequence contained 11 occlusions of varying difficulty.
The model parameters were chosen by hand using a sepa-
rate video sequence. Many of the parameters were set us-
ing our knowledge about the problem. These include the
variance of the transition models and the constraints on the
state. Other parameters, including the damping and autore-

gressive constants, were set to values used in [2]. The con-
tour likelihood parameters were set so that the ranking of
the probability of each vector of observed edge detections
seemed reasonable. Some of the parameters were chosen
somewhat arbitrarily and never varied – these include the
number of measurement lines and the parameters used in the
BraMBLe likelihood. The number of samples was chosen
to be N = 2000. While we had qualitatively similar per-
formance with N = 1000 samples, the results returned by
particle filtering varied quite a bit. We thus chose to present
results with N = 2000 samples, for which the output of our
particle filtering algorithm was stable. This number of sam-
ples compares favorably to the 4000 samples used to track
a pair of leaves in [13] and the 1000 samples used to track
two people/blobs in [7].

We provide with this paper a video of our results. Sum-
mary still frames are shown in Figure 4. These results
demonstrate the following strengths of our algorithm:
• Our contour tracking algorithm is robust to erratic mouse
behavior – we never lose a mouse. For instance, we fol-
low mice that jump, drop from the ceiling, and make quick
turns and accelerations that are not fit by our simple dynam-
ics model (see Figure 4(a)).
• Two contours never fit the same mouse.
• Our algorithm is rarely distracted by background clutter.
This implies that our feature extraction methods and the
blob and contour combination provide robust observation
likelihoods. The only exceptions are when both algorithms
make mistakes: when the blob tracker mistakes shaded bed-
ding for foreground and the contour tracker fits to the edge
of a tail (see Figure 4(b) for an example).
• Perhaps the most impressive result is that our algorithm
accurately tracks the mice through 7 out of 11 occlusions
and partway through the other 4. This is because of the de-
tailed fit provided by the contour tracking algorithm and its
ability to use features available during occlusions. Example
successful frames are shown in Figure 4(c).
• In general, our algorithm usually found very good contour
fits outside of occlusions, much better than those obtained
using contour tracking alone.

Our algorithm has a couple of failure modes which we
plan on addressing in future work. First, it occasionally gets
stuck in local optima in which the contour fit was facing the
wrong direction (see Figure 4(b)). We plan to address this
problem with a better model of the probability of the direc-
tion changing. Second, our algorithm swaps identity labels
in four occlusions (see Figure 4(d)). The reason for this is
that the fit of our algorithm is heavily biased by the fit of the
BraMBLe algorithm. For occlusions in which the contour
observation signals are weak, this bias from BraMBLe can
dominate. We propose a solution to this in Section 7.

For comparison, we also implemented a combined blob-
contour tracking algorithm which performed two steps of



sampling instead of three, resulting in the final importance
function

q′(xt|y1:t) =
∫

p(xt|bt)p(bt|y1:t−1,bt)dbt.

This algorithm has the disadvantage that samples of all k
mice are weighted by the product of the contour likelihood
for each mouse. Thus, the number of samples fitting blobs
is the same, but the effective number of samples used when
fitting contours is much smaller. We tested this algorithm
on 500 frames with 6 occlusions (our algorithm works on
4). The results fit our theory. While this algorithm was
resistant to drift (blob tracking is the same in both algo-
rithms), the contour fits found were less satisfactory. In
general, they were less fine-tuned and more variable from
frame to frame, suggesting that more samples are needed.
This is particularly evident during occlusions. The fits dur-
ing occlusions are less fine-tuned to the contour data, and
therefore more influenced by the blob tracking results. This
causes worse fits in every occlusion in the sequence. This
algorithm swapped identities twice more than the algorithm
proposed in this paper.

7. Conclusions and Future Work
Our algorithm combines the BraMBLe likelihood [7]

with the ”generic contour likelihood” [12] to utilize a robust
set of features necessary for our noisy, real world mouse
video. Our algorithm breaks each iteration of particle fil-
tering into three steps, each incorporating a subset of the
observations to gradually hone in on the small space in
which most mass of the posterior density lies. This can
also be seen as modifying the importance function of the
particle filtering algorithm to be the product of the posterior
marginal densities, thus incorporating the current observa-
tion in the importance function. This dramatically reduces
the number of samples necessary for accurate tracking.

In future work, we plan on exploring algorithms that use
information from both the past and the future to determine
the positions of the mice during an occlusion. We hope that
this will solve the main failure of the algorithm proposed
in this algorithm by making BraMBLe return a more global
fit. We are exploring heuristic solutions to this problem, in
the direction of [3].
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(a) The log-likelihood ratio of foreground over background
for selected frames. Image ii shows an occlusion. Image iii
shows the tail and shadow of the mice.

(b) The second column shows the BSE output; the third shows the canny edge detector’s
output. In image i an edge between a pair of mice is found. In image ii, BSE gives a weak
response to an edge between a pair of mice. In image iii, BSE is robust to scratches.

Figure 3. Features extracted for the (a) blob and (b) contour observation likelihoods.

(a) Tracking results for a mouse jumping, a mouse falling from the ceiling, and a mouse turning quickly.

(b) The contour is fit to a tail and the blob is fit to a shadow; the tracker is robust to scratches on the cage; the contour is flipped.

(c) The first three occlusion sequences in which our tracking algorithm performs well.

(d) The first two occlusion sequences on which our algorithm swaps mouse identities.
Figure 4. Still frame summary of our results. We plot the average affine transformation applied to the
contour with the most total weight.


