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Abstract—Demand for clean products and services is increas-
ing as society is becoming increasingly aware of climate change.
In response, many enterprises are setting explicit sustainability
goals and implementing initiatives to reduce carbon emissions.
Quantification and disclosure of such goals and initiatives have
become important marketing tools. As enterprises and individuals
shift their workloads to the cloud, this drive toward quantification
and disclosure will lead to demand for quantifiable green cloud
services. Thus, we argue that cloud providers should offer a new
class of green services, in addition to existing (energy-source-
oblivious) services. This new class would provide clients with
explicit service-level agreements (which we call Green SLAs) for
the percentage of renewable energy used to run their workloads.

In this paper, we first propose an approach for High Perfor-
mance Computing cloud providers to offer such a Green SLA
service. Specifically, each client job specifies a Green SLA, which
is the minimum percentage of green energy that must be used
to run the job. The provider earns a premium for meeting the
Green SLA, but is penalized if it accepts the job but violates
the Green SLA. We then propose (1) a power distribution and
control infrastructure that uses a small amount of hardware
to support Green SLAs, (2) an optimization-based framework
for scheduling jobs and power sources that maximizes provider
profits while respecting Green SLAs, and (3) two scheduling
policies based on the framework. We evaluate our framework
and policies extensively through simulations. Our main results
show the tradeoffs between our policies, and their advantages
over simpler greedy heuristics. We conclude that a Green SLA
service that uses our policies would enable the provider to attract
environmentally conscious clients, especially those who require
strict guarantees on their use of green energy.

I. INTRODUCTION

It is well known that datacenters consume an enormous
amount of electricity. This consumption translates into high
carbon emissions, since most of the electricity is produced
using fossil fuels. A 2008 study estimated world-wide dat-
acenters to emit 116 million metric tons of carbon, slightly
more than the entire country of Nigeria [1]. With increasing
societal awareness of these emissions and climate change, there
is increasing demand for cleaner products and services.

In response, enterprises have started to set explicit sus-
tainability goals and create initiatives to reduce their carbon
emissions. Such efforts have become important marketing
tools. For example, in 2012, the Global Reporting Initiative [2],
a non-profit organization that seeks “to make sustainability
reporting standard practice for all organizations,” registered
2,295 reports from companies such as AMD, Dell, and Mi-
crosoft. As enterprises and individuals shift their workloads to
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the cloud, this drive toward quantification and disclosure of
the sustainability of business activities will lead to demand for
quantifiable green cloud services.

A few small green cloud service providers, e.g., Green
House Data [3], AISO [4], and GreenQloud [5], have already
sprung up to meet the demand for clean computing. However,
it is difficult to quantify how green such providers are. For
example, while two of Green House Data’s datacenters are
100% powered by renewable (wind) energy, a third (equipped
with solar power) is not [6]. Furthermore, cloud clients may
have different goals for their carbon emissions (e.g., 100%
vs. 30% green energy). In fact, since not all clients would
need a 100% green service, creating fully green systems
unnecessarily increases costs.

Thus, instead of a one-size-fits-all approach, we argue that
Infrastructure-as-a-Service (IaaS) cloud providers should offer
a new class of services, with explicit service-level agreements
(SLAs) for the percentage of renewable energy used to run
the clients’ workloads. We refer to these renewable-energy
SLAs as Green SLAs. Importantly, this class of services should
not replace existing services (which are oblivious to energy
sources). Rather, it would allow environmentally conscious
clients to explicitly contract for use of green energy for their
workloads. For example, a client interested in near-zero carbon
emissions would contract for virtual machines (VMs) in its
workload to run 100% on green energy. Others could contract
for lower percentages of green energy. An enterprise could
even contract for different SLAs over time, as their business
goals and progress toward meeting those goals evolve.

Cloud providers can offer the above differentiated Green
SLA service in different manners. For example, one approach
is to account for the entire amount of green and brown (i.e.,
electrical-grid-sourced) energy consumed within an accounting
period (e.g., a month) irrespective of which workload con-
sumed how much of each type of energy. In this accounting
approach, it suffices for the provider to show that enough green
energy was used to meet all Green SLAs. Although simple, this
approach would not suffice for some clients. Specifically, we
expect that an increasing number of clients will require guar-
antees that their workloads are executed with specific fractions
of green energy, especially if they are required to demonstrate
so by legislation. For example, the UK government requires
businesses consuming more than 6 GWh of brown energy per
year to purchase carbon offsets from the market [7].

In this paper, we propose and evaluate a stricter paradigm
for High Performance Computing (HPC) cloud providers,
where a client’s Green SLA can only be satisfied by actually
using green energy to run that client’s job (i.e., a collection of



VMs). Specifically, we assume that each job submitted by a
client specifies a desired Green SLA, in the form of a minimum
percentage of green energy that must be used to run the job.
The provider can accept or reject the job.1 If it accepts a job,
the provider earns a premium for the percentage of the client’s
job that must be run using green energy. However, the provider
must pay a penalty if it violates the Green SLA. Meeting Green
SLAs in the presence of intermittent sources of green energy,
such as solar and wind, is a challenging proposition.

As the cloud provider needs to differentiate green energy
from brown energy to satisfy Green SLAs, we assume that it
operates a datacenter that either generates its own green energy
(self-generation) or draws it directly from an existing nearby
plant (co-location). In either scenario, the datacenter can also
draw on brown energy as needed. (Importantly, note that we
do not argue that self-generation or co-location will be the best
approach for all sustainability-conscious datacenter operators.
Rather, we argue that self-generation or co-location will be
the approach of choice for many operators, as suggested by
the many examples in [3]–[5], [8]–[10].)

However, having two distinct sources of energy (green and
brown) is not enough to provide Green SLAs. The provider
needs to bring the green energy all the way to the servers in the
portion of the datacenter reserved to provide the Green SLA
service. Thus, we propose a new power delivery infrastructure
in which each rack reserved for the Green SLA service
is dynamically switched between two energy sources, one
entirely green, and one possibly a mixture of brown and green.
The switching of the racks between the two energy sources is
controlled by software running on a control module.

Next, we propose a software framework for optimization-
based scheduling of client jobs and energy sources for the
racks. We design two optimization-based scheduling policies
using this framework. The policies seek to maximize the profit
that the cloud provider can accrue by admitting and running
clients’ jobs. They predict the amount of green energy that
will likely be produced in the future, and use these predictions
together with jobs’ execution information and Green SLAs to
decide whether to admit jobs. They also generate schedules
for executing the admitted jobs and for controlling the energy
source of each rack. We also use two greedy heuristic schedul-
ing policies as baselines for comparison.

Finally, we evaluate our proposed infrastructure and
scheduling policies using simulation. Our main results show
the tradeoffs between our optimization-based scheduling poli-
cies, and their advantages over the simpler greedy heuristic
policies. Importantly, policy parameters for the optimization-
based policies can be adjusted to reflect different values placed
on meeting Green SLAs. For example, the penalty can be set
very high (even if the actual penalty the provider has to pay
out to clients is lower) to force the policies to be conservative
and avoid missing Green SLAs. Alternatively, the penalty can
be set low to reflect a best effort environment, where Green
SLA violations are not serious failures. Based on these results,
we conclude that a Green SLA service that uses our policies

1The client can easily resubmit a rejected job with a lower Green SLA. In
particular, a job with 0% Green SLA would always be accepted if there is
sufficient computing capacity. The provider can also negotiate a Green SLA to
reflect its commitments to other clients and the expected availability of green
energy. We leave this as future work.

would enable the provider to attract environmentally conscious
clients, especially those who require strict guarantees on their
use of green energy.

In summary, this paper makes the following contributions:
(1) we propose a new HPC cloud service that provides explicit
SLAs for the use of green energy, (2) we propose a hardware
infrastructure to support this new service; (3) we propose
an optimization-based framework for admission control and
scheduling to maximize profit while respecting green SLAs;
(4) we use the framework to design two optimization-based
policies; and (5) we evaluate our framework and policies
extensively through simulation.

II. RELATED WORK

In [11], Klingert et al. introduced the notion of Green
SLAs. However, their work focused on identifying known
hardware and software techniques for reducing energy con-
sumption and integrating green energy, and how applications
might specify preferences/requirements for these techniques.
They did not propose a specific type of Green SLAs and did
not explore approaches for satisfying Green SLAs.

In [12], Deng et al. explored the strategic placement of grid
ties to concentrate green energy in areas of the datacenter used
to support workloads of environmentally conscious clients.
In [13], Li et al. proposed a static partitioning of a datacenter
into separate green and brown parts, and migration of VMs
between the two parts to maximize use of green energy while
minimizing performance overheads. Again, these works did
not propose Green SLAs, and did not explore approaches
for satisfying Green SLAs. We could have adopted a static
partitioning as in [13]. However, we decided to trade off some
additional hardware (i.e., the per-rack transfer switches) for
increased flexibility (e.g., the possibility of achieving x% green
energy consumption without requiring migration).

Many recent papers have focused on datacenters that
exploit green energy [14]–[23]. Of these, [15], [16], [18]
studied the scheduling of deferrable batch jobs to maximize
the use of renewable energy. Krioukov et al. proposed to
adjust service quality in non-deferrable interactive workloads
[19]. For datacenters that run a mix of interactive and batch
workloads, [14] and [21] proposed to adapt the amount of
batch processing dynamically. Goiri et al. considered both
deferrable and non-deferrable workloads [17]. In general, these
works have sought to maximize the use of green energy
while maintaining performance bounds. Our work shares this
goal. However, we also seek to precisely assign green energy
to client jobs according to Green SLAs. We propose novel
hardware and software to accomplish this assignment.

A number of prior works have also addressed VM place-
ment to reduce energy cost and/or performance SLA violations
[24]–[28]. These works either proposed migrating VMs across
datacenters or carefully packing VMs within a datacenter to
achieve lower energy consumption with bounded performance
loss. None of these works considered green energy.

III. POWER DISTRIBUTION INFRASTRUCTURE

Figure 1 shows the power distribution and control infras-
tructure we propose for a module that would be used to support
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Fig. 1. Power distribution infrastructure. The vertical dashed line shows an example partitioning of the racks into a brown part (where racks are switched to
the Mixed Bus) and a green part (where racks are switched to the Green bus) by a scheduling policy. This scheduling is discussed in Section IV.

the Green SLA service. One or more of these modules can be
housed in a larger datacenter that also houses infrastructure
for providing regular services (i.e., services to clients not
interested in Green SLAs). Current IaaS providers already offer
many classes of services, such as the Cluster Compute and
Cluster GPU service classes of Amazon EC2.

The infrastructure contains two separate power buses, with
the Green Bus carrying strictly green power and the Mixed
Bus carrying a mix of brown and green power. Each rack
is connected to a software-controlled transfer switch, which
switches the power source for the rack between the Green and
Mixed buses. The Grid Inverter/Charge Controller (GICC) is
configured to charge the battery when there is excess green
power, and discharge it when there is insufficient green power.
Once the battery is full, excess green power is routed to the
Mixed Bus. The GICC is configured to never allow power flow
from the Mixed bus to the Green bus or to the battery.

The control module executes software that configures the
GICC and the transfer switches. We detail this software in
Section IV. The overall idea, however, is to use the solar power
source, battery, and Green Bus to deliver pure green power to
racks that can then be used to satisfy Green SLAs. This is why
brown power is never allowed to enter the Green Bus and the
battery. While excess green power may be routed to the Mixed
Bus (so that it is not wasted), this green energy will not be
counted toward any Green SLA.

Green energy is produced by a solar plant, either located
on-site or at a nearby location. The solar source is sup-
plemented by a small battery to smooth out any short-term
variability in the solar power production (e.g., less energy is
produced in a 15-minute interval than was predicted) as well
as variability in power consumption. (Longer term matching of
green energy and workload is done by the control software.)

In the proposed infrastructure, the solar inverter and GICC
are both required for integrating a local green power source
into the datacenter, independent of our proposal of a Green
SLA service. Thus, the hardware cost of providing the Green
SLA service is the extra power bus, the per-rack transfer
switches, and the small battery. We comment further on the
size of the battery in Section V.

This design is based on our experience building an actual
solar-powered micro-datacenter [17]; we have direct experi-

ence with all components, except for the software-controlled
transfer switches. However, similar switches are available
commercially and are commonly used in current datacenters
for redundant power delivery [29], [30]. In addition, while
this paper considers solar as the source of green energy, our
framework can be easily applied to other sources of green
energy, such as wind, as long as it is possible to predict the
near-future production of the green energy.

IV. SCHEDULING FRAMEWORK

Given the above power distribution and control framework,
our goal is to schedule client jobs, and brown and green
energy consumption to maximize the cloud provider’s profit
while meeting the clients’ Green SLAs. In this section, we
first describe the proposed Green SLA service in more detail.
We then overview the scheduler, formulate scheduling as an
optimization problem, and propose two approaches for solving
the optimization problem (leading to two different scheduling
policies). We also describe two heuristic-based scheduling
policies as baselines for comparison with the optimization-
based policies. Finally, we describe our approach for predicting
the future production of green energy, which is a needed input
to three of the four scheduling policies.

A. Green SLA Service

Each arriving job includes information about the number of
VMs in the job, its run-time (i.e., the contracted service time
for running the job), and a Green SLA specifying the required
percentage of green energy. A job with a Green SLA of x%
means that at least x% of the energy used to run the job must
come from the Green Bus.

The provider charges clients a rate for each resource-time
unit that can be run using either type of energy (e.g., $0.24
per machine-hour). The provider charges a higher rate for
each resource-time unit that should be run using only green
energy (e.g., $0.29 per machine-hour). The higher rate reflects
the added value that the provider places on the differentiated
service provided by Green SLAs.

The provider can reject a job at arrival if it does not have
sufficient processing capacity and/or expected green energy
production to execute the job and meet its Green SLA.
However, if the job is admitted and the provider fails to
meet the job’s Green SLA, the provider must pay a penalty



proportional to how much of the Green SLA was missed (e.g.,
$0.50 per machine-hour of Green SLA not fully powered by
green energy).

B. Scheduling Overview

The provider runs a scheduler that is designed to maximize
profit while meeting jobs’ Green SLAs, where the cost to the
provider includes the cost for brown energy and any penalty
that must be paid for violations of Green SLAs. Specifically,
the scheduler divides time in a scheduling window (e.g., the
next 48 hours) into epochs, with an epoch of time on a machine
called a slot. It then predicts the green energy production, and
produces a schedule that specifies for each time epoch in the
scheduling window: (1) the number of VMs of each active
job j that should be running on each rack r, and (2) the
power bus to which each rack should be connected. A slot
in a rack connected to the Green Bus is called a green slot;
one connected to the Mixed Bus is called a brown slot.

While the infrastructure described in Section III allows for
arbitrary configurations of the power switches, the scheduler
uses a more constrained configuration to simplify the schedul-
ing problem. Specifically, the racks are divided into “left” and
“right” partitions for each epoch; the vertical dashed line in
Figure 1 shows an example partitioning. The racks in the right
partition will be completely powered with green energy during
the epoch, while the racks in the left partition will be powered
mostly with brown energy. A small amount of green power
may be routed to the Mixed bus, but only if this excess green
energy is insufficient to allow another entire rack to be moved
to the green (right) partition. This excess green energy is used
to reduce the amount of brown energy needed, and so reduces
cost, but cannot be used toward meeting Green SLAs. In this
approach, the leftmost rack will be the brownest rack, i.e.,
it has the highest brown-to-green energy ratio over time, the
rightmost rack will be the greenest rack, and the racks become
“greener” from left to right.

The scheduler runs toward the end of an epoch, leaving
enough time for turning servers on for the next epoch if
necessary, when a new job has arrived in the current epoch
and/or when the system detects that Green SLAs may be vio-
lated because green energy production is lower than previously
predicted. The scheduler assumes that each VM will consume
the maximum amount of energy in each slot, and meets the
Green SLA of a job by scheduling its VMs on a sufficient
number of green slots. If VMs running on green racks consume
less than the allocated energy, the excess green energy will be
automatically routed to the Mixed bus.

To minimize energy consumption and cost, unneeded
servers are either turned off or put into a low-power state (e.g.,
S3 ACPI). For simplicity, we assume that data is stored on
network-attached storage so that turning servers off does not
affect data availability. We have solved this availability prob-
lem without requiring this assumption in a similar context [16].

We assume that VMs can be migrated live from one phys-
ical machine to another (i.e., a VM keeps running while it is
being migrated) with no slowdown. During migration, energy
is consumed on both the source and destination machines.

We handle failures in the same manner as Amazon’s
EC2 [31]. Specifically, if a VM is lost due to a crash or a

TABLE I. FRAMEWORK PARAMETERS. TIME EPOCHS IN THE
SCHEDULING WINDOW ARE NUMBERED FROM 1 TO T . RACKS ARE

NUMBERED FROM 1 TO RA, WHERE RACK i IS ADJACENT TO THE LEFT OF
RACK i+ 1 (LEFT-TO-RIGHT NUMBERING OF RACKS SHOWN IN FIGURE 1).

Symbol Meaning
T The number of time epochs in the scheduling window
J Set of active jobs
Vj Number of VMs in job j
Gj Number of (remaining) green slots required for job j
Tj Number of (remaining) time epochs in job j’s execution
Rb Revenue earned per contracted execution of a VM in a brown slot
Rg Revenue earned per contracted execution of a VM in a green slot
L Penalty per slot of Green SLA not met
RA Number of racks used to implement the Green SLA service
RC Capacity of (i.e., number of machines in) each rack
EV Amount of energy consumed by a machine running a VM in an epoch
EM Amount of energy consumed by the migration of a VM
PB Energy price that the cloud provider pays per brown slot
OPr Opportunity cost for using a slot in rack r
GPt Predicted green energy production in epoch t

ebrt Amount of brown energy scheduled for rack r during epoch t
egrt Amount of green energy scheduled for rack r during epoch t
xjrt Number of VMs of job j scheduled on rack r in epoch t

software or hardware failure on the hosting server, the job
is counted as having 1 fewer VM for its remaining runtime,
and the fee for its execution and the Green SLAs are adjusted
accordingly.

C. Optimization Framework

Table I lists the set of parameters for our optimization
framework. Using these parameters, we formulate the opti-
mization problem shown in Figure 2.

In this formulation, the profit (Equation 1) that the cloud
provider earns is the sum of revenues earned from running
admitted jobs minus the penalty incurred for missing Green
SLAs and the energy cost of running the admitted jobs. An
opportunity cost (OppCostj), representing expected future
earning that is given up when slots are assigned to current
jobs, is also subtracted. We introduce this cost to ensure that
VMs are not scheduled on “greener” racks than needed to
satisfy their Green SLAs. Otherwise, the system may need to
migrate VMs (incurring migration costs) or reject new jobs
(loosing opportunities to increase profit) when they arrive in
the future. The profit formulation does not include the capital
and operating costs of the solar setup because all scheduling
policies we seek to compare embody these same costs.

The revenue earned per job (Equation 2) is the revenue
earned for the promised number of green slots and for the
number of brown slots. The penalty (Equation 3) is propor-
tional to the number of promised green slots replaced by brown
slots because the cloud provider did not produce enough green
energy while the job was running. The opportunity cost of
each job (Equation 7) is the sum of the opportunity cost of
all slots assigned to the job during its run-time. The cost to
the provider of running the admitted jobs includes the cost of
supplying racks with brown energy (Equation 8).

The optimization problem involves many constraints, with
the main ones listed and described briefly in Figure 3.

We use an optimization solver to instantiate, for each time
epoch t in the scheduling horizon, the number of VMs from
each job j to run on each rack r (xjrt), the amount of brown



Profit =
∑
j∈J

(Revenuej − Penaltyj −OppCostj)−
T∑

t=1

RA∑
r=1

Cost(r, t) (1)

Revenuej = Gj ×Rg + ((Tj × Vj)−Gj)×Rb (2)

Penaltyj =

{
L× (Gj −NumActGreenSlotsj) if Gj > NumActGreenSlotsj
0 otherwise

(3)

NumActGreenSlots =

RA∑
r=1

T∑
t=1

(xjrt ×RackIsGreenrt) (4)

RackIsGreenrt =

{
1 if egrt ≥

∑
j∈J(xjrt × EV +NumMigratesjrt × EM)

0 otherwise
(5)

NumMigratesjrt =

{
xjrt − xjr(t−1) if xjrt > xjr(t−1)
0 otherwise

(6)

OppCostj =

RA∑
r=1

T∑
t=0

(xjrt ×OPr) (7)

Cost(r, t) = ebrt × PB (8)

Fig. 2. Optimization framework.

energy supplied to each rack (ebrt), and the amount of green
energy supplied to each rack (egrt). Each time the problem is
solved, Tj and Gj of each job that has already been running
have to be updated to reflect how long the job has already run,
and how many green slots it has already been allocated.

Note that our framework does not include the explicit
management of the battery shown in Figure 1. Although we
could have included this management [17], we have chosen
to exclude it for simplicity. We believe this omission has
little impact (if any) on our results since we propose only
a small power “smoothing” battery. We also assume that each
physical server only hosts one VM; if a server can host
multiple VMs, an additional per-rack optimizer as in [24] can
be added to maximize consolidation in the presence of inter-
rack VM migration. In this case, it may be necessary reserve
a small amount of green energy for intra-rack migration in the
green partition. We do not account for the power consumed by
turning nodes on/off because these operations take little time
compared to the scheduling epochs; e.g., we have measured
45 and 15 seconds to turn a server on and off, respectively,
and 4 and 3 seconds to enter and exit an S3 ACPI state that
consumes 5% of the peak power, compared to the 15-minute
epochs used in our evaluation. We have also chosen simplicity
(e.g., constant brown energy pricing and constant penalty per
missed slot) whenever the added complexity would be unlikely
to affect our fundamental findings. Finally, the framework
currently focuses solely on the servers, assuming that cooling
and network-attached storage fully rely on green energy and
(larger) batteries. We will eliminate these simplifying assump-
tions in future work.

D. Solving the Optimization Problem

Simulated Annealing. We use Simulated Annealing (SA) [32]
to solve the above non-linear formulation for maximum profit.
Recall that this optimization is executed each time a new job
arrives, or the system detects that one or more Green SLAs
might be missed.

When a new job arrives, SA first solves a simpler, linear
reformulation of the problem (see below) to schedule the new
job, assuming that the current schedule for jobs already in
the system cannot be changed. This produces a starting point
for SA. When the system detects that Green SLAs might be
violated, the current schedule is the starting point.

SA then iteratively explores new schedules, relying on
randomization to avoid local maxima. To limit the size of the
search space, SA does not explore completely random new
schedules. Instead, it maintains three job sets: (1) an “unmet”
set of jobs whose Green SLAs are expected to be violated
under the current schedule, (2) an “extra” set of jobs that are
expected to receive more green energy than is needed to satisfy
their Green SLAs, and (3) a “migration” set of jobs whose
schedules contain more than a threshold of migrations in the
future. SA produces a new schedule by randomly choosing a
small subset of each job set, removing them from the current
schedule, and rescheduling them as if they were new arrivals
using the linear reformulation.

For a new job, if SA cannot find a schedule that increases
profit, the job is rejected. Otherwise, the best schedule found
by SA is adopted. In the case of detecting possible Green
SLA violations, the best schedule found by SA is adopted,
regardless of whether one or more Green SLAs are still
expected to be missed or not. Once admitted, jobs must be
executed to completion. If Green SLAs are missed, the cloud
provider must pay the penalty.

Linear Programming. We can reformulate the optimization
problem in Figure 2 into a simpler one that is solvable
using Linear Programming (LP). In this reformulation, the
optimization problem becomes one of minimizing the sum of
the penalty, opportunity cost, and migration cost. We assume
that the racks in the green partition are always completely full,
allowing the green/brown energy routing to be predetermined
into the future. Intuitively, the minimization problem leads
to a solution that tries to meet Green SLAs (minimizes the



∀j∈J∀0<t≤Tj

RA∑
r=1

xjrt = Vj ⇒ Must run all VMs of each job j in every epoch during j’s run-time (9)

∀0<r≤RA∀0<t≤T
∑
j∈J

xjrt ≤ RC ⇒ Total number of VMs running in a rack must not exceed its capacity (10)

∀0<r≤RA∀0<t≤T (((EV ×
∑
j∈J

xjrt) + (EM ×
∑
j∈J

NumMigratesjrt)) ≤ (ebrt + egrt))⇒ (11)

Enough energy must be scheduled for each rack to run VMs scheduled there
and migrate VMs moving to another rack

∀0<t≤T 6 ∃r|(RackIsGreen(r−1)t = 1) ∧ (RackIsGreenrt = 0) ∧ (RackIsGreen(r+1)t = 1)⇒ (12)
All green racks must be next to each other

∀0<t≤T 6 ∃r|(r 6= RA) ∧ (RackIsGreenrt = 1) ∧ (RackIsGreenRAt = 0)⇒ Green racks must start from right end

∀0<r≤RA∀0<t≤T

RA∑
r=1

egrt ≤ GPt ⇒ Can schedule no more green energy than the amount of expected production (13)

Fig. 3. Optimization constraints.

penalty) without using greener slots than needed (minimizes
the opportunity cost) and without unnecessarily moving VMs
(minimizes the migration cost).

The reformulated problem is a Mixed Integer Linear Pro-
gramming (MILP) problem that we solve using a MILP solver.
Since MILP solvers are only efficient for reasonably sized
problems, LP can only be used to schedule a small number
of jobs. Thus, when using just LP, we assume that once a
job has been scheduled, its schedule cannot be changed in the
future. When a new job arrives, it is scheduled using only
resources (i.e., slots) that are not already used in the current
schedule. It is rejected if the solution leads to lower profits.
As already described, when used as a part of SA, LP may be
used to produce a schedule for a small set of jobs, assuming
the current schedule for the remaining jobs is fixed.

Greedy Heuristics. As baselines for comparison, we propose
two greedy heuristic placement schemes. The first is a First-Fit
(FF) scheme that is oblivious to energy type and admits all jobs
as long as there is sufficient computing capacity. The second
is a more sophisticated, green-energy-aware heuristic that we
call Static Green-aware Placement (SGP). Specifically, when
a job arrives with a Green SLA of g%, SGP places the job’s
VMs on the rack r with expected green percentage during the
job’s runtime closest to but not less than g%. If there are more
VMs than available slots in r, the needed percentage of green
is recomputed for the excess VMs, and the same placement
procedure is repeated. VMs are never migrated. The job is
rejected if a placement that is expected to meet or exceed the
job’s Green SLA cannot be found.

E. Green Energy Prediction

We use the method from [16] to predict solar energy
production. This method combines the model from [33] with
the approach for improving accuracy from [15]. Specifically,
the model relates solar energy generation to cloud cover
as Ep(t) = B(t)(1 − CloudCover), where Ep(t) is the
amount of energy predicted for time t, B(t) is the amount of
energy expected under ideal sunny conditions for time t, and
CloudCover is the forecasted percentage cloud cover. For the
cloud cover information, we use forecasts from Intellicast.com,

which predicts CloudCover for each hour of the next 48
hours. This leads to prediction granularity (i.e., t) of one hour.
We set B(t) for each hour of the day to the amount of energy
generated during that hour on the day with the highest energy
generation from the previous month.

Of course, weather forecasts are sometimes wrong, which
may lead to inaccurate predictions. To improve accuracy, we
compute CloudCover from the amount of energy generated in
the previous hour. This approach then compares the accuracy
of the two methods, and uses the most accurate one to predict
the remainder of the horizon. For example, at the beginning of
hour t, we compute CloudCover for the next hour using (1)
the weather forecast, and (2) the energy produced in hour t−1.
At the beginning of hour t + 1, we compare the accuracy of
the two methods and use the best one to predict the remainder
of the horizon. At hour t+ 2, the process repeats.

V. EVALUATION

A. Methodology

We use simulation to evaluate our framework and policies.
Our simulator takes a workload trace, a solar energy production
trace, a solar energy prediction trace, and the price for brown
energy as inputs. Using these inputs, it simulates job arrivals
and executions using a given scheduling policy, while tracking
job energy consumption and whether Green SLAs are met.

Workloads. We study two real traces. The first and primary
trace, called Grid5k, comes from the Grid Workload Archive
[34]. The original trace was collected on the Grid’5000 sys-
tem [35], a 2,218-node distributed system spread across 9 sites
in France, from May 2004 to November 2006. We selected
an arbitrary 48-hour portion of the trace. The chosen period
has 675 jobs, with a peak processing demand of 1,654 nodes.
Most of the results presented below were obtained using this
workload trace.

The second trace, called Intrepid, comes from the Parallel
Workload Archive [36]. The original trace was collected on the
Intrepid system, a 40-rack, 40,960-node Blue Gene/P system
deployed at Argonne National Laboratory, from January 2009
to August 2009. We selected an arbitrary 48-hour portion
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Fig. 4. Workload power demand assuming all jobs are admitted. The green areas represent the demand for green energy given by the Green SLAs.

of the trace, and then scaled down the processing load to
match the peak demand of Grid5k (so that we can simulate
the same datacenter). Specifically, we scaled down each job’s
node demand by a factor of 24, reducing the total system size
from 40,960 to 1,680 nodes. We correspondingly scaled up
job runtimes by a factor of 8 (assuming that jobs run longer
when running on smaller numbers of nodes). We also filtered
out 35 very large jobs to make sure the trace does not ask for
more nodes than the capacity of the simulated datacenter. The
final workload trace contains 446 jobs, with a peak processing
demand of 1,620 nodes.

We map the workloads into our environment by assuming
that each job can be split into VMs, one VM per node
requested by the job. Thus, each arriving job specifies the
number of VMs needed, the contracted service time for
running the job, and a Green SLA. We assume discrete
service time periods equal to our scheduling epochs. Thus,
each job’s runtime is converted into d runtime

epochsizee slots. The
Green SLA of each job that runs for less than 48 hours is
chosen randomly according to a uniform distribution from the
set {0%, 25%, 50%, 75%, 100%}. For the jobs with runtimes
longer than 48 hours (7 in Grid5k and 1 in Intrepid), we set the
Green SLA to be 0% because we currently have predictions
of green energy production only for the next 48 hours. This is
done only for simplicity. We can extend our predictions further
into the future using more coarsed-grained predictions (e.g.,
most weather services provide predictions 10 days into the
future, allowing us to predict approximate daily green energy
production). Figure 4 plots the power demand over time for
the two workloads assuming that all jobs are admitted.

Datacenter. We simulate a datacenter containing 42 racks,
each rack containing 40 servers. This computing capacity is
chosen to accommodate the Grid5k workload without requiring
any scaling. Each server consumes 140W when executing a
VM, giving a peak datacenter power demand of 235.2kW. The
140W value is the measured power consumption of a server
equipped with a 2.4GHz 4-core Xeon CPU, 8GB of memory,
1 7200rpm disk, and a 1Gb Ethernet card.

Energy Prices. We use the average brown energy price for
New Jersey: 10.55 cents/kWh [37]. We assume self-generation
of solar energy, so that green energy has zero (incremental)
cost. Note, however, that our framework can be easily extended
to account for a non-zero green energy cost.

Service Pricing. Customers pay $0.29 per contracted VM-
hour in their Green SLAs and $0.24 per each remaining
contracted VM-hour. These prices are modeled after the green
cloud provider GreenQloud’s pricing [38] and Amazon EC2’s

pricing [39], respectively, for a large VM instance running
Linux. These prices place a premium of approximately 20%
for each contracted green VM-hour.

If the cloud provider fails to meet a job’s Green SLA,
it pays a penalty of $0.50 per missed VM-hour. We have
chosen a relatively large penalty (10 times the 5 cents premium
for requiring green energy) to ensure that the cloud provider
does not lightly dismiss Green SLAs to garner greater profits.
We explore the sensitivity of our policies to different ratios
between the service prices and penalty below.

With the above prices and penalty, if the provider admits a
1-VM job that runs for 1 hour and has a Green SLA of 100%,
it earns 29 cents if it meets the job’s Green SLA, earns 4 cents
(29 cents fee - 25 cents penalty) if it misses the Green SLA
by 50%, and pays the client 21 cents (29 cents fee - 50 cents
penalty) if it does not use green energy to run the VM at all.

Opportunity Cost. We could compute the opportunity cost by
scheduling a representative workload over an appropriate time
frame, and computing the average profit earned per slot within
each rack. However, for simplicity, we currently use an ε value
that increases from the brownest rack to the greenest rack.
This ε opportunity cost is sufficient to prevent unnecessary
placement of VMs on green slots, which may later require
migration so that the slots can be recovered to admit new jobs.

Solar Power Generation. We model the solar power gen-
eration as a scaled-down version of a solar farm at Rutgers
that has a rated production capacity of 1.4MW. We scale
the farm’s production down to 750 solar panels capable of
producing 176.2kW. After derating, the peak production can
provide 75% of the peak power consumption of our simulated
datacenter. We choose 75% because on days with high solar
energy production, this is sufficient to admit almost the entire
workload while solar energy is being produced.

We evaluate our scheduling policies using three pairs
of consecutive days with different amounts of solar energy
production. Specifically, we select two sunny days (5/9/11
and 5/10/11) with high solar energy production (totaling
3.23MWh), two days (6/16/11 and 6/17/11) with medium
solar energy production (totaling 1.94MWh), and two days
(5/15/11 and 5/16/11) with low solar energy production (to-
taling 626kWh). We call these the “High”, “Medium”, and
“Low” days, respectively.

Interestingly, the three pairs of days show different levels
of accuracy for predictions of solar energy production. Predic-
tions are mostly accurate for the High days, although there are
some under-predictions for the first day. Predictions are also
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Fig. 5. Comparison of normalized profit, normalized green energy use, number of admitted jobs, and number of Green SLA violations for the Grid5k workload
running over the Medium days.

mostly accurate for the Low days. However, predictions for
the Medium days contain significant errors, which are mostly
over-predictions. We evaluated our solar energy predictions in
more detail in [16].

Optimization. The scheduling horizon is set to 48 hours,
the extent of time into the future that we currently predict
green energy production. The horizon is divided into 15-minute
epochs, implying that the scheduling policy is rerun at most
once every 15 minutes. We use the Gurobi solver [40] to solve
the MILP optimization problem described in Section IV.

B. Results

Figure 5 compares the profit, green energy usage, num-
ber of admitted jobs, and number of missed Green SLAs
achieved on the Medium days for the Grid5k workload by
the four policies described in Section IV-D. The profits and
green energy usage are normalized to those of SA (left Y-
axis), whereas the numbers of admitted jobs and Green SLA
violations are absolute (right Y-axis). These results show
that the two optimization-based policies, SA and LP, can
significantly outperform the two greedy policies, with FF and
SGP achieving only 79% and 75%, respectively, of SA’s profit.

Interestingly, the greedy policies under-perform the
optimization-based policies for opposing reasons. FF, as ex-
pected, is overly aggressive since it admits all jobs, regardless
of their Green SLAs and expected green energy production.
Thus, it violates many Green SLAs and incurs large penalties.
However, it can use more green energy because the other
policies sometimes reject jobs even when green energy is
available.

In contrast, SGP is overly conservative in trying to not
violate any Green SLA at all. Thus, it misses opportunities
where the cloud provider can earn a profit because the penalty
is relatively small compared to the revenue earned (e.g., when
Green SLAs are only missed by small amounts). However,
SGP violates the fewest Green SLAs among all the policies; it
only violates the Green SLAs of 26 out of 509 admitted jobs
(5%). This can be advantageous if violating Green SLAs has
negative implications beyond the penalty; e.g., clients seeking
to reduce the carbon footprint of their computing workloads
may become unhappy if too many Green SLAs are missed,
despite the compensating penalties.

For the current parameters, there is little difference between
the performance of LP and SA for maximizing profit. SA

admits jobs more aggressively (3% more jobs than LP), but
violates Green SLAs more frequently (5% more missed Green
SLAs), and so pays higher penalties. SA takes substantially
longer (11.3 secs on average in our experiments with a 2.4GHz
Xeon server) to compute a schedule than LP (0.15 secs on
average). However, both overheads are low compared to our
15-minute epochs. Also, LP runs less frequently (only when
a new job arrives, i.e., 675 times) than SA (866 times) in
our experiments. We explore the scalability of SA’s and LP’s
runtimes with datacenter and workload sizes below.

For a more detailed look at the behaviors of the policies,
Figures 6(a)-(b) show the power consumption profiles of FF
and SA. Overall, SA consumes less energy because it rejects
jobs when it predicts that there will not be sufficient green
energy to profitably admit the jobs. As already observed, this
makes SA more susceptible to leaving some green energy
unused, especially if green energy production is higher than
predicted. In this case, both FF and SA leave some green
energy unused on the first day because more green energy was
produced than is required to support the entire workload for
several hours. (Excess green energy can be either net-metered
or stored in batteries for later use.) However, SA uses more
green energy to meet Green SLAs than FF, and so earns higher
profits from the produced green energy.

Impact of ratio between green revenue and penalty. The
ratio between the fee for meeting Green SLAs (green revenue)
and the penalty for not meeting them significantly impacts
the behaviors of LP and SA, and their performance relative
to the greedy policies. As the penalty increases compared
to the revenue, both LP and SA will admit fewer jobs to
avoid violations of Green SLAs. Thus, their performance will
become comparable to that of SGP. For example, on High
days, the ratio of SGP’s profit to SA’s profit is 0.74:1, 0.88:1,
and 0.96:1 for low ($0.20), medium ($0.50), and high ($0.80)
penalty, respectively. We observe similar results for Medium
and Low days. Further, FF’s relative performance will worsen
because its obliviousness to green energy production becomes
increasingly expensive. As the penalty decreases compared to
the revenue, both LP and SA will admit more jobs to increase
profit, even though more Green SLAs will be missed. Thus,
their performance will become more comparable to that of FF.
SGP’s relative performance will worsen because it does not
recognize that violations of Green SLAs can be profitable.

Impact of green energy availability. We now evaluate the
policies across the three pairs of days with different levels of
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Fig. 6. Power profile of FF and SA when running Grid5k over the Medium days. The “Green used (Green SLA)” areas represent green energy used for meeting
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green energy production. Figures 7(a)-(b) show the results of
running Grid5k over the High and Low days. As one might
expect, the advantages of the optimization-based policies over
FF become clearer when the availability of green energy is
more limited. On the Low days, FF only achieves 50% of
SA’s profit. On the other hand, as green energy becomes more
available, FF becomes more comparable, achieving 85% of
SA’s profit on the High days. SGP’s performance compared to
LP and SA is relatively insensitive to green energy production.

While not visible in the figures (the differences are less
than 1%), SA outperforms LP slightly. This is because SA
can migrate VMs from already admitted jobs to correct for
inaccuracies in green energy prediction. If green energy pro-
duction is greater than predicted, SA can migrate VMs from
jobs receiving more green energy than expected to browner
racks in order to admit more jobs. If production is less than
predicted, SA may be able to migrate VMs to avoid or reduce
the penalty from missed Green SLAs.

We have also simulated scenarios with peak green energy
production providing 25% and 50% (compared to the above
base case of 75%) of the peak power consumption of the
datacenter. Trends in these results are consistent: the perfor-
mance gap between the optimization-based and heuristic-based
policies widens as the availability of green energy decreases.

Impact of green energy prediction inaccuracies. Inaccurate
green energy predictions can harm profit. Over-predictions

(i.e., predicted production is greater than actual production)
can be especially bad since they also lead to increased viola-
tions of Green SLAs. Thus, it may be desirable to make the
green energy predictions more conservative.

To study the impact of conservative predictions, we rerun
our simulations while reducing all B(t) (Section IV-E) values
by 10%, 20%, and 30%. These conservative predictions lead
to slightly lower profits for both SA (<3%) and LP (<3%)
but significantly fewer missed Green SLAs (up to 18% and
12% fewer, respectively). We conclude that it is worthwhile to
make the green energy predictions more conservative than the
method described in Section IV-E, perhaps by up to 30%.

Impact of workload characteristics. Thus far, we have
focused exclusively on the Grid5k workload. We have also
studied the Intrepid workload, which was collected on a
distinctly different system from that of Grid5k, to validate
our findings. Observations from results obtained using Intrepid
are consistent with those based on Grid5k. In fact, because
Intrepid exhibits a less distinct diurnal pattern than Grid5k, it
has more jobs asking for green energy when none is available
(i.e., at night). Thus, the difference between FF and the other
policies is more significant since admission control becomes
more important for profitability. For example, for the Medium
days, FF’s profit when running Intrepid is only 64% of SA’s
profit compared to 79% when running Grid5k. Also, there are
more VMs per job in Intrepid than Grid5k, giving SA and
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LP more flexibility for scheduling. As a result, both policies
migrated VMs less often.

Impact of limiting SA’s search space. Recall from Sec-
tion IV-D that we limit SA’s execution time by rescheduling
only a subset of the active jobs; for the results discussed above,
we limited SA to reschedule at most 30 jobs. To study the
impact of this heuristic on the quality of SA’s solutions, we
compare SA’s performance to a version of SA, called SA-
All, that reschedules all active jobs. Results show that SA-All
achieves 3.5% higher profit than SA when running Grid5k
over the Medium days, but is 28 times slower. Thus, we
conclude that our heuristic makes it practical to use SA without
significantly degrading the quality of SA’s solutions.

Scalability of SA and LP. We explore the scalability of SA
and LP by running experiments for datacenters with 11, 21, and
84 racks. We also scale the workload proportionally (e.g., the
workload of a datacenter with 84 racks is twice that of a dat-
acenter with 42 racks). As we are increasing the problem size
exponentially, the runtimes also grow exponentially. However,
the overheads for a 84-rack system are still low compared to
our 15-minute epochs. Average runtimes for LP are 0.02, 0.04,
0.15, 0.23 for 11, 21, 42, and 84 racks, respectively. Average
runtimes for SA are 0.1, 1.0, 11.3, 58.3 secs. As systems and
workloads increase further, the provider may consider utilizing
more machines to run our policies, or simply increase the
epoch length.

Battery size. Finally, we estimate the size of the battery
needed for our simulated datacenter to validate our claim
that the proposed infrastructure only requires a small battery.
In particular, we study a fine-grained trace of solar energy
production collected in March 2013 from our solar-powered

micro-datacenter [17], scaled to match the size of the simulated
datacenter (42 racks, 40 machines per rack). We choose this
particular month because there were events such as snow
storms that can lead to inaccurate prediction of green energy
production. In this month, the green energy predictor over-
predicted green energy production for 60 epochs (2%). The av-
erage over-prediction is 11.7kW with a maximum of 29.9kW.
If we were to tolerate the maximum deficit for 10 seconds
before switching racks from the green to the brown partition,
we would need a 0.08kWh battery. For the 60 epochs, on
average we need to switch 2 racks from the green to the brown
partition (maximum 5 racks). The 10 seconds buffer is also
more than sufficient to tolerate fine-grained variability in green
energy production. This battery size is quite small compared
to the battery capacity to sustain 8-10 minutes of operation at
peak load already provisioned in typical datacenters [41]. For
our simulated datacenter, this provisioning would translate to
31.3 to 39.2kWh.

VI. CONCLUSION

In this paper, we proposed that HPC cloud service
providers should offer a novel green service. In this service,
each client job specifies a Green SLA, which is the minimum
percentage of green energy that must be used to run the job. We
then proposed a power distribution and control infrastructure,
together with an optimization-based scheduling framework and
policies, for providing such a Green SLA service. We also
proposed two simple greedy heuristic policies for achieving the
same goals. We evaluated our proposals extensively using sim-
ulations. Our evaluation results showed that the optimization-
based policies can significantly outperform the greedy policies.
The results also showed that the choice of optimization-based



policy depends on whether the cloud provider prefers to accept
more jobs or violate fewer Green SLAs. We conclude that
a Green SLA service that uses our policies can be useful
for the provider to attract environmentally conscious clients,
especially those who require strict guarantees on their use of
green energy.
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