Visual Comput (2005) 21: 601-610
DOI 10.1007/s00371-005-0313-3

Yun-Tao Jia
Shi-Min Hu
Ralph R. Martin

Published online: 31 August 2005
© Springer-Verlag 2005

Y.-T. Jia (<) - S.-M. Hu

Tsinghua University, Beijing, China
jlayt@cg.cs.tsinghua.edu.cn

R.R. Martin

Cardift University, Cardiff, UK
ralph@cs.cf.ac.uk

ORIGINAL ARTICLE

Video completion using tracking and

fragment merging

Abstract Video completion is the
problem of automatically filling
space—time holes in video sequences
left by the removal of unwanted
objects in a scene. We solve it using
texture synthesis, filling a hole
inwards using three steps iteratively:
we select the most promising target
pixel at the edge of the hole, we find
the source fragment most similar

to the known part of the target’s
neighborhood, and we merge source
and target fragments to complete the
target neighborhood, reducing the
size of the hole.

Earlier methods were slow, due to
searching the whole video data for
source fragments or completing holes
pixel by pixel; they also produced

blurred results due to sampling and
smoothing. For speed, we track
moving objects, allowing us to use
a much smaller search space when
seeking source fragments; we also
complete holes fragment by fragment
instead of pixelwise. Fine details are
maintained by use of a graph cut
algorithm when merging source and
target fragments. Further techniques
ensure temporal consistency of hole
filling over successive frames.
Examples demonstrate the
effectiveness of our method.

Keywords Video completion -
Texture synthesis - Mean shift -
Graph cut - Tracking

1 Introduction

Video completion is the problem of automatically filling
holes (missing parts) in video sequences caused by the
removal of unwanted objects. We solve it by using infor-
mation from other parts of the sequence to suggest suitable
in-fill. Video completion has become viable as hardware
advances, as evidenced by [3, 15,21, 23]. It has many ap-
plications, in areas such as video editing and film postpro-
duction.

Image completion has been widely studied. Image in-
painting methods [4, 8, 17] can quickly fill small nontex-
tured holes in time proportional to the size of the hole. Tex-
ture synthesis methods [5, 11, 13,20,22] are more useful
for larger, textured holes but generally take time propor-

tional to the size of the image as suitable filling material is
sought elsewhere in the image.

Existing methods for video completion include video
inpainting, analogous to image inpainting [3], space—time
video completion, which is based on texture synthesis
and is good but slow [21], motion layer video comple-
tion, which splits the video sequences into different mo-
tion layers and completes each separately [23], and video
repairing, which repairs static background with motion
layers and repairs moving foreground using model align-
ment [15]. Much earlier work does not, however, ade-
quately address important differences between image and
video completion: there are much more data, and temporal
inconsistencies are visually important in completed video.

We overcome these issues with a new approach based
on texture synthesis. It is efficient and produces visu-
ally appealing results. It completes each hole iteratively.
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Each iteration is divided into three steps. First we select
the most promising target pixel at the edge of the hole.
A space—time target fragment is defined around it; its con-
tents are partially known. Next, we find the source frag-
ment most similar to the known part of the target fragment
in a carefully chosen search region of the video. Finally,
we merge the source and target fragments to complete the
latter, reducing the size of the hole. We use rules to meas-
ure each candidate target pixel’s merit to select the best
target. When searching for a suitable source fragment, we
track moving objects to generate a much smaller relevant
search space. We complete holes fragment by fragment
instead of pixel by pixel to gain further speed. We use
a graph cut algorithm to merge source and target frag-
ments in a way that retains fine details. Further steps are
taken to ensure the temporal consistency of completed re-
sults over successive frames.

The rest of the paper is organized as follows. We sur-
vey prior work in Sect. 2 and outline our new method in
Sect. 3. Key ideas are then described in detail in Sects. 4—
7: target pixel selection, tracking to quickly find matching
source fragments from suitable parts of the video, use of
the graph cut method to merge source and target frag-
ments, and enforcement of temporal consistency. Results,
a discussion, and conclusions are given in Sects. 8—10.

2 Related work

We now review prior work on image and video comple-
tion, as well as on mean shift tracking and graph cut image
merging, both used as components of our approach.

2.1 Image completion

Video completion basically extends image completion to
3D space-time. We thus consider how existing image
completion techniques are relevant to video completion.

There are two main approaches to image completion.
Image inpainting [4] methods use PDEs to repair minor
damage to images. Levin [17] extended this idea by meas-
uring global image statistics and bases inpainting on prior
image knowledge as well as local color information. For
small, nontextured regions, such methods achieve visually
satisfactory results. However, the lack of generated tex-
ture in larger more complex reconstructed areas is clearly
visible.

Texture synthesis methods comprise the other ap-
proach. After selecting a farget pixel whose neighborhood
is partially inside the hole, a source fragment, with texture
matching the target’s known neighborhood, is sought else-
where in the image. This source fragment is then merged
into the neighborhood of the target pixel. Such methods
are suited to filling large holes in images. The method
in [13] uses these ideas together with hierarchical image

approximation and adaptive neighborhood sizes, lead-
ing to impressive results, but at high computational cost.
Zhang et al. [22] used a method to preferentially select
pixels to be filled, choosing better known neighborhoods
having low texturing. A graph cut algorithm is used to find
the best way to merge the source fragment with the target
fragment; we also do so. This approach completes natural
images smoothly and quickly.

2.2 Video completion

Video completion is more challenging for two reasons.
Firstly, the amount of data in video sequences is much
greater, so texture synthesis methods cannot be directly
applied to video completion: searching for a source frag-
ment in the whole video dataset would be much too slow.
Secondly, temporal consistency is a necessity; it is more
important than spatial aliasing in images, due to the eye’s
sensitivity to motion [21]. Simply completing video se-
quences frame by frame using image completion methods
leads to flickering and is inappropriate.

Bertalmio et al. [3] consider extending image inpaint-
ing techniques to video sequences using ideas from fluid
dynamics. As before, such video inpainting is useful for
filling small nontextured holes in video sequences, but is
unsuitable for completing large space—time holes caused
by removal of macroscopic objects.

Wexler et al. [21] treat video completion as a global
optimization problem, to enforce global spatiotemporal
consistency during video completion. They solve the prob-
lem iteratively: missing video portions are filled pixel by
pixel. Multiple target fragments are considered at differ-
ent locations for the unknown pixel; for each, it seeks the
most similar space—time source fragment elsewhere in the
video. The fragments are merged according to similarity
criteria to complete the unknown pixel. For speed, this
method is performed at several scales using spatiotempo-
ral pyramids and nearest-neighbor search algorithms [2].
Overall, however, this approach is slow, and the results ap-
pear blurred due to the fragment merging and smoothing
operations.

Zhang et al. [23] segment video sequences into dif-
ferent nonoverlapping motion layers, each of which is
completed separately. After removal of unwanted video
objects in each layer, the method selects a reference frame
in each layer and completes that frame. The solution is
then propagated to other frames using the known motion
parameters. This yields good results but is limited to rigid
bodies for which the transformation between frames can
readily be determined: for example, their appearance may
not vary with time by rotating in three dimensions.

2.3 Mean shift and graph cut

Our method tracks moving objects to limit the search
space when trying to find the best source fragment for re-
pair. We use the mean shift algorithm [10]. It can rapidly
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and robustly track nonrigid objects in videos using fea-
tures such as color or texture using a Bayesian framework
to find the most probable location for the tracked object
in each frame. The mean shift algorithm has been applied
to various vision problems, including robust feature space
analysis [9], spatiotemporal video segmentation [12], and
video tooning [19].

To merge source and target fragments smoothly, we
use the graph cut technique [7] to find the best bound-
ary between them—we wish to minimize pixel differ-
ences across the boundary. It works by expressing the
problem as having to find the min-cut in a weighted
graph. This method was used by Boykov [6] to segment
N-dimensional images and later applied to image and
video texture synthesis [16], foreground extraction for im-
ages [18], and photomontage [1]. It has already found use
in fragment merging for filling holes in images in [22] and
is well suited to this purpose for video completion.

The next section explains our algorithm in outline.

3 Overview and contribution

Our algorithm is based on texture synthesis; it is efficient
and produces temporally coherent results.

The video completion problem is: given an input video
sequence V = v(x, y,t) with holes H where some un-
wanted objects have been removed during a sequence of
frames, represented by a matte M, a bitmask indicating lo-
cations of each hole, our goal is to fill the holes one by
one with plausible (background) pixel values based on the
known regions.

Each single hole is filled in an iterative manner. Each
time on the iteration, we complete a single video fragment
in the hole. A fragment is a cubical neighborhood around
some pixel. The fragment size is chosen according to the
scale of the underlying hole in the video sequence. Itera-
tion terminates when the hole has been filled.

A video fragment is completed using texture synthe-
sis. We select a target fragment T centered at a pixel at
the boundary of the hole; its pixels are partly unknown.
We then search appropriate known parts of the video for
a source fragment S having the greatest similarity to the
known part of 7. If the similarity is too low, we exit this
iteration, otherwise, we merge the source fragment S with
the target fragment 7 to fill unknown pixels in the target
fragment (see discussion below).

Video completion must address two main problems:
the time taken given the large amount of data and the
control of temporal consistency between frames for added
pixels. We use three main ideas to resolve these issues:

— Search pruning using tracking: To avoid searching
the entire video for the best source fragment S, we use
the mean shift method to track moving objects. This

quickly determines a much smaller search space for
plausible source fragments with high similarity to the
target fragment. This greatly improves speed.

— Fragment completion using graph cut: We complete
holes in the video sequence fragment by fragment.
When merging the source information with the tar-
get, we use a graph cut algorithm to ensure that pixel
differences across the boundary between the original
material and the synthesized material are kept as small
as possible. This is much faster than pixel by pixel
video completion yet maintains fine details and pro-
duces smoothly merged results.

— Temporal consistency: To ensure the temporal consis-
tency of new material and avoid flickering, we do the
following: if two target fragments 77 and 7, are neigh-
bors in time, we favor choosing corresponding source
fragments S and S, which are also neighbors in time.
This simple method performs well.

The main contributions of this paper are thus threefold.
The first is to introduce tracking into video completion, for
two purposes. When selecting target fragments, consider-
ing whether a target is trackable is useful for comparing
the merit of different targets in order to get a good tar-
get T. Then, we use tracking to limit the size of the search
space for source fragments.

Secondly, we introduce graph cut methods into video
completion to find the best seam between a target fragment
T and a source fragment S. This enables us to merge T’
and S with the least visible seam while retaining high reso-
lution details. This is crucial when performing fragment-
by-fragment, rather than pixel-by-pixel, filling. Thirdly,
we preserve temporal consistency during video comple-
tion by ensuring consistency of source fragments at adja-
cent time steps.

The next three sections give further details of each
step.

4 Optimal target selection

In order to select a good target video fragment 7" for each
iteration, we consider the merit of the fragment centered
at each pixel in the hole. We take into account two factors:
how much information is known in the target fragment and
how well the target fragment can be tracked through the
video sequence. The former information is stored in an
info map, I, of the same size as the video sequence (or at
least as big as the holes) at each pixel that is at the cen-
ter of a target fragment. The latter information is stored in
a similar trackability map, C. Both are explained shortly in
more detail. As holes are filled incrementally, these maps
can be quickly updated locally, after initial construction.
Suppose I7 stands for the info map value for a target
video fragment T and C7 for the trackability map value.
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Fig. 1. Target selection

We define the overall merit O for the target T as:

Or=I1r+kCr, (1)
where an optimum choice for k seems to be about 2 or 3,
to give more importance to Cr. It is simple to keep Or
updated as filling occurs, using a sorted list for all targets,
allowing us to quickly find the target fragment with max-
imum merit.

As explained, if a suitable source fragment cannot be
found for a given target, we ignore this target and try again
with a new target. In practice, many target fragments have
almost the same maximum merit value. We thus first se-
lect the N best target fragments and randomly choose one
of them as the target. (We set N to about 40; if no suitable
source is found, we adaptively increase N.)

4.1 Info map

The idea of the info map is to tell us how much informa-
tion is known in the target video fragment 7 [13]. Let M,
be the matte value at pixel v(x, y, 7). The info map value I
for T is given by:

Iy = ZMU.

veT

@

Clearly, the info map can easily be calculated initially by
applying an all-in-one filter of the same size as T to the
matte and multiplying the result by the negation of the
matte, as shown in Fig. 2.

Figure 2 shows that larger values in the info map cor-
respond to target fragments having more known neigh-
boring pixels. Such target fragments are preferred (Fig. 1,
left, middle). Two candidate targets and surrounding video
fragments are marked in red. We prefer the target in the
middle figure to the left figure because there is more
known information in this video fragment. (We assume for
this example that this hole is fixed over time.)

4.2 Trackability map

The trackability map measures how well a target fragment
can be tracked through the video sequence. Trackability is
computed for every candidate target fragment. For a target
fragment 7 it is measured by the number of unknown pix-
els that are trackable in it—an unknown pixel is trackable

Frame 30 of 240 Frame 100 of 240

Frame 30 of 240 Matte

Filtered matte

Fig.2. Top left to bottom right: source frame, its matte, filtered
matte, info map. Video data from [21]

oy 1 o
3 .

1 8

b Untrackable
~Brass

Frame 56 of 240 Frame 100 of 240

Fig.3. Top left to bottom right: 56th source frame, 100th source
frame, image completion of 56th frame, video completion of 100th
frame

if and only if there is an adjacent known neighborhood that
contains an object that can be tracked through the video.
Let 7, be a Boolean value saying whether pixel v is track-
able. The trackability Ct is given by:

Y o

veT, My=0

Cr= €©))

Using this information during target selection allows
us to give priority to those rare objects which are trackable
in the entire video. In Fig. 3, for example, a hole exists in
the video across many frames. There are two kinds of ob-
jects in this video: a trackable woman and the grass. The
left frame can be completed easily because sufficient in-
formation (about the grass) can be obtained from many
other frames. On the other hand, only a few possibilities
exist for correctly completing the right frame, as there are
far fewer neighborhoods including the (trackable) woman
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Fig. 4. Top left to bottom right: source frame, trackable target frag-
ments, trackable neighborhoods of target fragments, trackability
map of source frame

in an appropriate stance. If we select a target for filling this
space—time hole using the left-hand frame, it will be very
hard to complete the right frame in a globally temporally
consistent way by the time we get to it. It is better to select
trackable targets first like those shown in the right-hand
frame. This is even more important than choosing a higher
info map value. (Fig. 1, right). There is a neighborhood
(green dashed lines) containing part of the woman, which
can be tracked in the video sequence (Fig. 5). Thus, all un-
known pixels in the target fragment are trackable, and we
prefer this target fragment, in Fig. 1 (right), to the one in
Fig. 1 (middle).

Trackability map computations are very quick for two
reasons. Firstly, all pixels inside the same fragment can
be considered to share the same neighborhood outside the
fragment and so have common trackability information.
The trackability map can thus be computed per fragment,
rather than pixel by pixel, as shown in Fig. 4. The col-
ored rectangles at the bottom left indicate trackable neigh-
borhoods of various target fragments shown in white at
the top right. Secondly, target fragments only exist at the
edges of holes, limiting where trackability maps need to be
processed.

5 Source selection using tracking

After choosing a target video fragment 7', we now need to
find the most appropriate source video fragment S.

We must avoid searching the whole video sequence,
which is much too time consuming. Previous solu-
tions [21] used spatial and temporal derivatives to estimate
motion parameters of video fragments. The portion of
the video to search for a suitable source fragment was
restricted according to the motion parameters of the tar-
get fragment. This avoids much unnecessary computing,
but can be improved. Spatial and temporal derivatives are
useful for separating a moving foreground from the back-
ground, but less useful for processing static objects. Take

the target in Fig. 1 (left), for example: its spatial and tem-
poral rates of change are approximately zero. Using these
motion parameters to limit the search range, all the grass
must be searched. Generally, then, the search space in [21]
is still highly redundant.

Instead, we use tracking to control the search, as shown
in Fig. 5. Trackable and untrackable targets are treated dif-
ferently. If a target is untrackable, as in Fig. 5 (1.1,right),
the known video neighborhood around it is not track-
able in the video sequence. Such a target fragment has
unchanging color and texture throughout the whole se-
quence and belongs to the background. In part 2 of Fig. 5,
for example, the woman is trackable, but all grass re-
mains still and untrackable through the video. The need
for global temporal consistency tells us that such back-
ground should be filled in the same way in each frame.
A global search of the whole video for the best target is
pointless, and instead we just search the frame containing
the target pixel (any frame is as good as any other): see
part 3 in Fig. 5 (right).

For a trackable target, e.g., the part of the woman
shown in Fig. 5 (left), a known trackable neighborhood
N overlaps it (green). This is active through the whole
video. The target fragment belongs to a moving ob-
ject in the video sequence, separate from the stationary
background. In this situation, we apply the mean shift
tracking algorithm to follow N through the video se-
quence, giving a precise space—time route for N(7). This
gives a set of small windows which include the moving
N(?) in each frame, as shown in part2 of Fig. 5 (left).
The areas to be searched are exactly determined by the
tracked neighborhood, marked by green squares in part 3
of Fig. 5 (left).

In both trackable and untrackable cases, we only have
to search a small portion of the whole video to find the best
source fragment, giving high efficiency.

Apart from the two cases described above, we must
also consider the case in which we cannot find a source
fragment that is sufficiently similar to the target. For ex-
ample, take the target fragment shown in the first row of
Fig. 7. Using the criteria in Sect. 4, we do not select the
target illustrated because of its low trackability map value:
it only has grass (background) in the known neighborhood
around it. The difference between this target and the best
source is very large as part of the woman’s leg is present
in earlier frames in the space—time fragment. We skip such
targets (Sect. 7).

6 Graph cut fragment updating

After we have determined both the target and source frag-
ments 7 and S, we must combine them to produce an out-
put video fragment. Simply copying target pixels where
known, and source pixels otherwise, can lead to an obvi-



606  Y.-T.Jia et al.

Trackable target fragments

Untrackable target fragments

1.1 Target selection

Frame 100 of 240

1.2 Target video fragment with size 11*11*11(width*height*frames)

Fram

Frame 45 of 240

Frame 1 of 240

2. Some frames in current video sequences in the completion process

Composed from
all frames

Seaching

R R YRR R RIRN O

4.2 Completed video frame

Frame 10

4.1 Completed vido frament with size 11*11*1 1(width*height*frames)

Frame &

Fig. 5. Source search for trackable (leff) and untrackable (right) target fragments

ous join in the output. We avoid this problem by finding
the least visible seam between target and source fragments
in the overlap region.

The least visible seam is the one for which pixel dif-
ferences across the seam are as small as possible. The
best seam can be found by finding the minimum cut of
a weighted graph formed by joining neighboring pixels
in a difference image. This graph cut method has already
been used for merging textures in images [16]. Note that
we only apply this method to the region of overlap, O,
of the target and source fragments, which we first have
to compute: O = T N S. We compute the color difference
values c,, expressed as an r, g, b vector, at each pixel

o(x, y, t) in the overlap region O:
CO = Icl _csl’ O(X, y» t)’ t(-x9 y» t)’ S(X, ya t) S 0’ Ta S
4

We now build an undirected weighted graph G using the
pixels in O. For each edge between a pair of connected
pixels o; and o; in O, with color differences c,; and ¢, s We
define the weight w;; of that edge to be:

wij={ ‘! (1-ex0 (- )) it Neo) )

otherwise,

llco; I+lico;
202
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Fig. 6. Comparison of graph cut and direct fragment update

where || -|| denotes the length of avector, N(.,.) re-
turns true if the pixels are six-connected, and « and o
are constants (about 10 and 5 in practice). This weight
is less when corresponding adjacent pixels in 7 and S
are similar, which is where we want the seam to be.
Thus, the best seam is the one giving a minimum cut for
graph Gg.

The advantages of using the graph cut method are
shown in 2D in Fig. 6. On the left is an input image of
a wall, with a hole to be filled. At the center is the com-
pleted result using graph cut, while on the right is the
direct fragment update result from [22] showing a struc-
tural discontinuity inside the blue circle.

7 Achieving temporal consistency

Achieving temporal consistency is the other main require-
ment for video completion: people are highly sensitive to
motion. Temporal aliasing is much more important than
spatial aliasing in image completion. Consider Fig. 3. The
image completion result for frame 56 and the video com-
pletion result for frame 100 are incompatible in the same
video sequence. The large difference between their back-
grounds will produce obvious flicker in the output video.
In [21], temporal consistency is achieved using costly
global optimization. The objective function forces coher-
ence of all video fragments containing the same completed
pixel. To complete one pixel, many source fragments are
considered for many target fragments around any un-
known pixel, and source fragments are merged according
to similarity. In this way, the completed pixel maintains
high coherence with all fragments around it, but at high
computational cost.

To achieve temporal consistency, we use a simpler ap-
proach which encourages the source fragments to be tem-
porally consistent with each other. The basic idea is to
supplement the current search space for source fragments
with an extra region R. These extra candidates are cho-
sen to be temporally consistent with previously completed
video filling. R must be computed explicitly because it is
not necessarily included by default in the search region

i" completion iteration

Mo appropriate source
under threshold 471
T
Quit the iteration

Frame 121 of 240
™ completion iteration

kl

" completion iteration

One completion’ -

Fig.7. Supplemental search region

found by the tracking algorithm. Take Fig. 7, for example.
During the ith iteration of hole filling, we may encounter
atarget T with no trackable neighborhood around it, as
explained in Sect. 5, and for which no appropriate source
fragment can be found, so we skip this iteration. If later in
the jth iteration we select a target fragment some frames
before 7T, like that marked in Fig. 7, we can complete
it successfully as it is trackable through the video se-
quence (it contains part of a moving leg). If later still,
in the kth iteration, we select 7' again, this time we can
complete it using candidates from the supplemental re-
gion R.

When searching for the best source fragment, we add
a bonus to the similarity measurement between the target
and source fragments in the supplemental region R. Doing
so gives greater weight to such results than ones from else-
where in the search space, providing temporal consistency
in the results.

The idea of the supplemental region is illustrated in
Fig. 8. Suppose during the previous completion step we
found source fragment S; for target fragment 77 (top line
of Fig. 8). We record 77 and S as a pair in a list L. When
we select a new target fragment, 7>, we check the list L to
see if there is any filled target fragment overlapping with
T, in space and within a certain time before or after 7». In
this example, we find 77 occurring before the current tar-
get T», shown by the yellow arrow in Fig. 8. If more than
one such target exists, we prefer ones with greater overlap
or, if equal overlap, ones which are more trackable. There
is a strong possibility that the best source fragment for 7,
is somewhere just after S7 in time, in the known portion
of the video sequence, and using it will ensure temporal
consistency is maintained.
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Last completion iteration

Search regions provided by
using tracking method

[ >Chain leading to candidate from
v supplemental search region R

Fig. 8. Bonus for supplemental search region

8 Results

Our algorithm has been applied to various videos of com-
plex dynamic scenes. Since the perceived quality of the
completed video frames depends on human judgement,
rather than mathematical measures, we show some frames
taken from video sequences to demonstrate the effective-
ness of our method. Processing times are given in Table 1.
The time taken is proportional to both the hole size (pix-
els) and the video length (frames). The former decides the
number of filling iterations, while the latter is related to the
size of search space.

Figure 9 demonstrate the results from a two-woman
video sequence after one woman has been removed. This
sequence is tricky as the hole is large. More significantly,
in addition to removing the stationary woman, we have
also removed the woman walking in and around the hole
for tens of frames, as an unwanted side effect. We wish
to keep the moving woman, and indeed our filling method
successfully puts her back. The visual results and the per-
formance table show that our algorithm is efficient and
robust.

9 Discussion
9.1 Comparison with Wexler’s method

Compared to Wexler’s method [21], the main advantage
of our algorithm is efficiency. If we spend the same time
on source patch searching, we can complete the video
N*/K times faster than their method, where N is the
patch size in both algorithms, typically 5, and K is their
speedup factor due to use of spatiotemporal pyramids
(but which also causes blurring), typically 8. One fac-
tor of N? is due to pixel-by-pixel completion in their
case—we fill a whole fragment at once; the second fac-
tor of N? is due to the number of source patches they
must search for each pixel. In practice, our algorithm
can find source patches more quickly because our search
space is carefully selected by tracking, typically at the
scale of asingle frame, and theirs is much larger. Our
implementation of their algorithm takes over 4h for the
“Space” video example, whereas ours takes 17 min. An-
other advantage compared to [21] is that our algorithm
maintains finer details in the output, as seen, for example,
in Fig. 10.

9.2 Handling dynamic cameras

We cannot currently deal with scenes from dynamic cam-
eras: scaling, rotation, and other transformations occur
between the target and candidate source fragments. Find-
ing a suitable source fragment requires knowledge of the
motion parameters of the camera, which is also a prob-
lem for [21]. Estimating motion parameters from video
sequences is possible [14], but even so, the search would
be more complex. Secondly, temporal consistency would
be more difficult to maintain in dynamic scenes, as the
neighborhood would need to take into account the motion
parameters of the camera. Thus, extending our algorithm
to handle dynamic cameras is not impossible in principle,
but it needs further work.

9.3 Artifacts

When merging target and source fragments using graph
cut, a special case arises at the boundary of the hole. In this
case, we should not modify the known part of the video se-
quence adjacent to the hole but leave it as is and only fill in
the unknown pixels. There is thus no need to apply graph

Table1l. Timings for . . ) . . .
video completion using Video Length Video size ' Hole size  Time for completlpn
a 2.4-GHz Pentium 4 (frames) (pixels) (pixels x frames) (min)
CPU
Hopping (from [21]) 240 288 x 96 1768 x 240 75.25
Space 100 320 x 240 1942 x 100 16.75
Beach  (from [21]) 83 180 x 60 609 x 49 12.00
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Fig. 9. Top to bottom: input video, removal of stationary woman, filling results

Fig. 10. Left to right: frames 45, 47 of input video, one lady removed, results from [21], our results

cut in this case, and we should just copy from the source
fragment to the unknown part of the target fragment. How-
ever, this approach can lead to visible artifacts at the edge
of the holes, as there is nothing to enforce smoothness of
pixel intensities across the edge of the hole (see the earlier
discussion).

A simple approach to diminishing such artifacts would
be to apply the border matting technique from [18].

9.4 Loss of tracking

At the beginning of video completion, tracking works very
well, as our method selects targets with high trackabil-
ity. As completion proceeds, cases can arise in which we
lose tracking, and we cannot find a good source fragment.
In such situations, the supplemental regions explained in
Sect. 7 often still provide an appropriate source fragment.
If no good source fragment is found in the supplemen-
tal region either, we abandon filling this target fragment
and select a new target (this happens in less than 10% of

cases for all three example videos), as described in Sect. 3.
Overall, even when tracking fails, we still get good re-
sults.

10 Conclusions and future work

We have given a novel, efficient, and visually pleasing ap-
proach to video completion. We carefully select suitable
target fragments and limit the search for source fragments
using tracking. Holes are filled fragment by fragment with
a texture synthesis algorithm, using a graph cut algorithm
to find good seams between target and source fragments.
Temporal consistency is achieved by further control of
source fragment selection to avoid flickering.

Good results have been achieved to date. We wish to
extend the work to more complicated and dynamic scenes,
involving, for example, complex camera and object mo-
tions in three dimensions.
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