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AbstractWe study online gradient{descent learning in multilayer networks ana-lytically and numerically. The training is based on randomly drawn inputsand their corresponding outputs as de�ned by a target rule. In the thermo-dynamic limit we derive deterministic di�erential equations for the orderparameters of the problem which allow an exact calculation of the evolu-tion of the generalization error. First we consider a single{layer perceptronwith sigmoidal activation function learning a target rule de�ned by a net-work of the same architecture. For this model the generalization errordecays exponentially with the number of training examples if the learningrate is su�ciently small. However, if the learning rate is increased above acritical value, perfect learning is no longer possible. For architectures withhidden layers and �xed hidden{to{output weights, such as the parity andthe committee machine, we �nd additional e�ects related to the existenceof symmetries in these problems.PACS. 87.10, 02.50, 05.901 IntroductionNeural Networks [1, 2] can realize a classi�cation scheme: they assign an outputvalue to any possible input, de�ned by the architecture of the net, the activationfunctions of its units, and the actual set of network parameters or weights.�permanent address: Institut f�ur theoretische Physik, Universit�at W�urzburg, Am Hubland,D{97074 W�urzburg, Germany email: biehl@physik.uni-wuerzburg.deyemail: holm@thep.lu.se 1



The ability of such systems to learn a rule by choosing suitable weights hasbeen studied successfully using statistical mechanics [3, 4, 5]. Mostly, the trainingprocess is interpreted as a stochastic minimization of an energy function de�nedin weight space, which measures the performance of the student network on agiven set of examples. The term generalization is used for the student's ability toinfer an unknown input/output relation from the examples and apply it to novelinput data.Statistical physics provides the tools for investigating typical properties of theequilibrium solution to this optimization problem by performing the average overrandom example inputs in the limit of in�nite dimensionality.The most thoroughly studied model in this context is the so{called simpleperceptron, a single binary threshold unit which realizes a linearly separableclassi�cation [6, 7]. Convergence of the training process can be guaranteed fordeterministic learning algorithms which yield good generalization of a linearlyseparable rule [3, 4, 5].However, the learning scheme by far most commonly used in practice is gradi-ent descent learning in multilayered networks of continuous units. It is the basisof the well known `backpropagation of error' [8{11] and its modi�cations (see e.g.[1]). The objective function is very often simply the quadratic deviation of thestudent output from the correct one, summed over all training examples.In o�ine or batch learning the evolution of the weights follows the direction ofsteepest descent in an energy landscape de�ned for a set of input/output pairs. Inthis paper we consider, however, learning by online gradient descent. The changeof weights is given by the gradient of the error evaluated for only the latest ina sequence of examples. The performance on previous examples is not takeninto account, and no explicit storage of a training set is necessary. Recently, theproperties of online gradient{descent learning have been studied in the contextof master equations for stochastic dynamics, which, in the limit of small learningrates, can be approximated by a Fokker{Planck equation (e.g. [12{15]).Here, we study the dynamics of online learning for speci�c models of two{layernetworks in a well{de�ned thermodynamic limit. This leads us to deterministicdi�erential equations for the order parameters of the problem, which can besolved exactly. Assuming that all training inputs are drawn independently fromthe same distribution we study the generalization ability for di�erent types ofstudent networks and rules to be learned.We introduce online learning formally in the next section. Mainly for explain-ing the method of analysis, we discuss |as a �rst example| a single neuron witha continuous sigmoidal activation function. The unknown rule is represented bya single unit of the same type (the teacher) but with an unknown weight vec-tor. Thus, the problem is learnable, and we study how the generalization errordecreases to zero as more and more examples have been used for training.In our second example (sec. 4) the rule is still de�ned by a single neuron,but the student network consists of two hidden units with a �xed linear hidden{2



to{output relation. The coe�cients of the latter determine whether the rule isindeed learnable for the actual student and various scenarios can be modeled.In section 5 we consider a student network with 2 hidden units, whose outputis de�ned to be the product of their respective states. The rule to be learned isrepresented by a network of the same structure.A summary and discussion of the results is given in the last section where weconclude with an outlook on further applications of the method.2 The modelConsider a student network with continuous output �(J; �) where � is an N{dimensional input vector and J is the set of all variable weights in the net.The desired output � (�) is de�ned by a target rule, and the error"(J; �) = 12h�(J; �)� � (�)i2 (1)measures the deviation of the student from the rule for a particular input �.The generalization error of a student with weights J is de�ned as"g(J) = D"(J; �)E� (2)where h: : :i� denotes the average over the distribution of inputs. In the follow-ing we consider independently drawn input vectors with uncorrelated randomcomponents of zero mean and unit variance.At each learning step �, a new uncorrelated vector �� is presented, and thecurrent weight vector J� is updated according to the gradient of "(J�; ��) withrespect to the weights:J�+1 = J� � �NrJ "(J�; ��)= J� � �N h�(J�; ��)� � (��)irJ �(J�; ��) (3)Here, � is the so{called learning rate which has been explicitly scaled with thenetwork size N . It controls the size of the steps made in the direction of steep-est descent. Note, that the architecture of the student net and the activationfunctions of its units determine the actual form of the gradient term.For the speci�c examples considered in the following, it is possible to derivefrom (3) recursion relations for order parameters, which in turn determine thestudent's properties completely in the thermodynamic limit N ! 1. In thesame limit we can interprete � = �=N as a continuous `time' and solve thecorresponding di�erential equations for the order parameters numerically. Thus,the evolution of the generalization ability in the above online learning process isobtained. 3



3 A single unit with continuous outputAs a simple example of online gradient{descent learning we �rst consider agraded{response perceptron [16, 17] whose output is given by�(J; �) = g(J � �) (4)with a nonlinear, di�erentiable activation function g. A standard choice for g isg(x) = tanh(x) because of its property g0(x) = 1 � g2(x). However, in order tosimplify the analytic treatment of our model, it is more convenient to use thefunction g(x) = erf(x=p2) = R x�x dt e�t2=2=p2� instead. Both functions are verysimilar in shape and we do not expect our results to depend critically upon thischoice. This network is trained from a stream of examples (��; ��) whose outputs�� are de�ned by a target perceptron�� = � (��) = g(B � ��) (5)where B is the unknown teacher weight vector, and jjBjj = 1. For this model thegradient descent learning rule (3) readsJ�+1 = J� + �N [g(y�)� g(x�)] g0(x�) �� (6)with g0(x) = q2=� e�x2=2 and the abbreviations x� = J� � �� and y� = B � �� forthe internal �elds (or net inputs) in the student and teacher network, respectively.Note that (6) formally resembles the Hebb{rule [18, 19] for the e�ective targetoutputs �� = [g(y�)� g(x�)] g0(x�): (7)In the backpropagation algorithm, these ��'s play the role of the backpropagatederrors.The generalization error for this model can be calculated in a straightforwardmanner and expressed as a function of the overlap of the student with the teacherweight vector R = J �B and the norm of the student weight vector Q = pJ � J .If the inputs �i are drawn independently from a common distribution with zeromean and unit variance, the average over inputs in (2) leads to"g(R;Q) = 1� arcsin Q21 +Q2!� 2� arcsin0@ Rq2(1 +Q2)1A + 16 : (8)In contrast to a simple threshold unit the generalization error of the graded{response unit explicitly depends on the length of the student vector. It vanishesonly if the student vector is perfectly aligned with the teacher (R = Q) and hasthe same length (Q = 1). 4



In order to calculate the generalization error (8) at time step � we need tocompute the overlaps R� = J� � B and [Q2]� = J� � J�. From the learning rule(6) using (7) we obtain the di�erence equationsR�+1 �R� = �N �� y�hQ2i�+1 � hQ2i� = 2�N �� x� + �2N �2�: (9)These equations can be averaged over the current training input noting that thedependence on the inputs is only through the internal �elds x� and y�. In the limitN !1 these are correlated Gaussian variables with zero mean and covariances< x2� >= Q2, < y2� >= 1 and < x� y� >= R. In the same limit, we can introducea continuous `time' � = �=N and rewrite (9) as di�erential equationsdRd� = � h� yid[Q2]d� = 2� h� xi + �2D�2E (10)where h: : :i denotes an average over the joint distribution of x and y, and wherewe have suppressed the index �. For the choice g(x) = erf(x=p2) the averagesin (10) can be performed analytically, leading todRd� = 2� �1 +Q224 1 +Q2 �R2q2(1 +Q2)�R2 � Rp1 + 2Q235d[Q2]d� = 4� �1 +Q224 Rq2(1 +Q2)�R2 � Q2p1 + 2Q235+ 4�2 �2p1 + 2Q2 "arcsin Q21 + 3Q2!+ arcsin 1 + 2(Q2 �R2)2(1 + 2Q2 �R2)!� 2 arcsin0@ Rq2(1 + 2Q2 �R2)p1 + 3Q21A35 : (11)From the numerical solution of these equations we �nally obtain the time evolu-tion of the generalization error (8).3.1 The role of the learning rateFigure 1 shows the evolution of the generalization error of the graded{responseperceptron for di�erent choices of the learning rate �.For small learning rates the generalization error smoothly decreases with in-creasing � and approaches the optimal value "g = 0. The speed of this approach5
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Figure 1: Generalization error of the graded{response perceptron for di�erentlearning rates. The analytic results (solid lines) are compared to simulations(symbols) for a network with N = 100 weights (standard error bars would beapproximately the size of the symbols). All curves are for initial conditionsR(0) = 0 and Q(0) = 0:5.can be controlled by varying �. If � is chosen too large, the learning processslows down until a critical learning rate �c � 4:06 is reached. For � > �c thegeneralization error does not decay to zero any longer but approaches a value"g(�!1) > 0. We have performed simulations using a network with N = 100weights and found a very good agreement with our analytic results (see �gure 1).We can investigate the asymptotic behavior of the generalization error ingreater detail by linearizing (11) around its �xed points given by dR=d� =d[Q2]=d� = 0. As can be easily veri�ed, (11) has a �xed point at (R;Q) = (1; 1)for all values of �. Linearizing around this point yields a system of linear di�er-ential equations for the deviations r = 1 �R and q = 1 �Q, given by r0q0 ! = A rq !; with A = 43p5 ��c  �23 1213 � ��c ��c � 12 ! (12)with �c = q5=3 � � 4:06. The eigenvalues of A are �1 = 4p53 ��c ( ��c � 1) and �2 =�2p5 �=(9�c) (see �gure 2). Therefore, for subcritical values of � the parametersR and Q approach their optimal value exponentially fast, with r; q / e�(�)�, where�(�) = max(�1; �2). Note that as �!�c the relaxation time �1=�1 diverges like(�c��)�1 (critical slowing down). For � > �c, one of the two eigenvalues becomes6



positive and (R;Q) = (1; 1) is not an attractive �xed point any longer. However,in this regime we can numerically �nd a second �xed point of (11) with R;Q 6= 1.Hence, perfect learning is not possible and "g(�!1) > 0.The eigenvalues of the linearized system governing the approach to this sub-optimal �xed point are also shown in �gure 2. Note, that for 4:45 <� � <� 5:05 theeigenvalues have imaginary parts corresponding to oscillations around the �xedpoints. However, these oscillations are strongly damped due to the larger realparts of the eigenvalues.If the learning rate is greater than �d = �= arcsin (1=3) � 9:24, no �xed pointexists and R;Q!1 as �!1.
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Figure 2: Eigenvalues of the linearized system (12) governing the asymptoticbehavior of the generalization error of the single graded response unit. Thedashed lines correspond to the imaginary parts of the eigenvalues. The dashed{dotted line represents 2�2.In order to �nd the learning rate �opt, which yields the fastest asymptoticdecay of the generalization error, we expand (8) to second order in r and q"g � 2p3 1� (r � q)� 13�p3h(r � q)2 + q2i: (13)Since the eigenvector corresponding to the eigenvalue �2 is (1; 1)>, this modecannot contribute to the asymptotic behavior of the linear combination (r � q).Hence, for small �, (r � q) decays faster than r and q, and the behavior of "g7



depends on the actual order of (r � q) compared to the quadratic terms. If, forgiven �, q2 is larger than (r � q), the generalization error decays proportional toe2�2 �, while we have "g / e�1 � if (r � q) is larger than q2. This change of theasymptotic behavior happens at �opt = 2�c=3 � 2:704, where �1 and 2�2 coincide(see �gure 2). Therefore, the fastest asymptotic decay of "g is achieved for �opt.However, it should be noted that this discussion only holds for the asymptoticbehavior. The initial decay of the generalization error is faster for values of� di�erent from �opt, and an online adjustment of the learning rate would bedesirable in order to optimize the network behavior [20].Even though learning a simple perceptron with another perceptron is a learnabletask, this simple example illustrates the importance of a proper choice of thelearning rate in an online gradient{descent scheme. The convergence becomesslow if the learning rate di�ers from the optimal one, and a large learning ratecauses a failure to converge to the optimal solution. This result is in agreementwith the behavior observed by many authors for the backpropagation algorithm.Furthermore, the step{size dependence of o�ine gradient{descent minimizationschemes is well known. In one dimension Newton's method utilizes the fact thatthe optimal step size for an iterative minimization of a quadratic cost function bygradient descent is 1=(2�), where � is the second derivative of the cost function.If the step size is larger than twice this value the procedure does not converge.In higher dimensions, minimizing a quadratic error surface corresponds to batchlearning in a single linear unit. In this case, the largest step size which guaranteesconvergence is the inverse of the largest eigenvalue of the Hessian (see e.g. [22,23]). Note, however, that these considerations do not apply directly to online{learning, where the gradient of the training error is calculated with respect toone example only.4 The Soft{Committee MachineAfter having illustrated the basic features of online gradient{descent learning ina simple perceptron we now turn to networks with hidden units. As an examplefor this situation we consider a fully connected two{layer network with 2 hiddenunits of the type described above and with the hidden{to{output weights �xedto +1. The overall output of this machine is given by��J1; J2; �� = gohg�J1 � ��+ g�J2 � ��i; (14)where we choose a linear output unit with go(x) = �x, � > 0. Hence, the overalloutput is proportional to the average `decision' of the hidden units. This networkis trained to implement a simple task de�ned by a teacher perceptron as in (5).Note that this is a learnable task (i.e. "optg = 0) only for the choices � = 1=2and � = 1, and an unrealizable rule for all other values of �. For � = 1=2 theoptimal generalization error is achieved for a symmetric student network with8



J1 = J2 = B, while for � = 1 the optimal student is a specialized one withJ1 = B and jjJ2jj = 0 or vice versa. Therefore, this simple model includes avariety of possible learning scenarios.Similar to the single unit, the generalization error for this model can be expressedin terms of the relevant overlaps Rl = J l � B, Ql = pJ l � J l and C = J1 � J2(l = 1; 2). We obtain"g(R1; R2; Q1; Q2; C) = 2Xl=1 24�2� arcsin Q2l1 +Q2l !� 2�� arcsin0@ Rlq2(1 +Q2l )1A35+ 2�2� arcsin0@ Cq1 +Q21q1 +Q221A+ 16 : (15)Again, from the learning rule (3) we obtain di�erence equations for the rele-vant parameters, which in the limit N ! 1 can be written as the di�erentialequations: dRld� = � h�l yid[Q2l ]d� = 2� h�l xli + �2D�2l Ed[C]d� = � h�1 x2 + �2 x1i+ �2h�1 �2i (16)where the averages are over the joint distribution of the xl's and yl's, and with�l = [g(yl)� g(xl)] g0(xl) analogous to (7) for the individual hidden units. All theaverages can be performed analytically (see appendix A), and from the numericalsolution of the resulting set of �ve coupled di�erential equations we get the timeevolution of the generalization error (15) and its asymptotic value.First we will discuss the case � = 1. It can easily be seen from (27){(29) thatthe network will always evolve symmetrically with R1 = R2 and Q1 = Q2 if itis started from symmetric initial conditions. Only if the initial conditions breakthis symmetry, can the system leave the symmetric subspace and approach theoptimal solution. Figure 3 shows the evolution of the student{teacher overlapsR1;2 for two di�erent choices of initial conditions.Initially, the overlaps rapidly approach values close to a �xed point whichis stable within the symmetric subspace. However, due to the non{symmetricinitial conditions the system does not evolve within this subspace, and eventuallythe repulsive mode takes over. For large values of �, the system approachesthe optimal �xed point which breaks the symmetry between hidden units. Thisdelayed repulsion is due to the fact that the corresponding positive transverseeigenvalue of the linearized system is very small compared to the absolute valuesof the negative longitudinal ones. As can be seen from �gure 3, the number oflearning steps necessary to escape from the symmetric �xed point is very sensitive9
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Figure 3: Evolution of the parameters R1 and R2 of the soft{committee machinewith � = 1 and learning rate � = 1. The solid line represents the solution ofthe di�erential equations for nonsymmetric initial conditions (R1 = R2 = Q1 =C = 0 and Q2= 0:1). The symbols show the results of simulations for di�erentsystem sizes. The dotted lines correspond to the analytic solution for the initialconditions R1=R2=Q1=C = 0 and Q2= 0:01.to the degree of asymmetry in the initial conditions. For the same reason we �ndstrong �nite size e�ects in our simulations in the region, where the specializationof hidden units occurs.In order to study the �{ and �{dependence of the network behavior we havenumerically looked for stationary solutions of the di�erential equations and com-puted the eigenvalues of the corresponding linearized system; the results areshown in �gure 4.For �xed � = 1 (�gure 4a) and small � < �c � 1:89 the network behavior isqualitatively similar to the situation at � = 1. The initial generalization behavioris dominated by a repulsive symmetric �xed point while for large training setsthe network approaches the optimal nonsymmetric solution. A careful numericalevaluation of the �xed{point equations shows the existence of a further symmet-ric �xed point. However, this �xed point is repulsive even within the symmetricsubspace and does not inuence the network performance. As in the single unitthere is a critical learning rate �c � 1:89, above which the optimal �xed point be-comes unstable and the network approaches a suboptimal but still nonsymmetricsolution. If the learning rate is increased above �s � 2:17, the network does notrealize the necessity of a specialization any longer, and the symmetric �xed point10
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becomes the stable one. A further increase of the learning rate above �d � 3:29causes the norms of the student weight vectors to diverge, and the algorithmeven fails to �nd an approximative solution. Finally we note, that in contrastto the single unit, the speed of both the escape from the symmetric region andthe approach to the optimal solution below �c are inuenced by the choice of thelearning rate. Therefore, tuning the learning rate to obtain the optimal behavioris a more di�cult task than in the single unit.Figure 4b shows the asymptotic properties of the soft{committee as a functionof the gain parameter � in the linear output unit with � = 1 �xed. For small � �0:5 the network approaches a stable symmetric �xed point. The correspondingresidual error depends on the choice of �: For � = 1=2 the rule is realizablefor the student network ("g(� ! 1) = 0) while it is unrealizable for � < 1=2.Again, we �nd a second symmetric �xed point, which is repulsive for all values of� and in general does not inuence the dynamical evolution. Its generalizationerror is very close to that of the stable �xed point, closer than the resolution in�gure 4b. In the region 1=2 < � < �s � 1:44 the �xed point structure is againsimilar to the one described for � = � = 1: A stable nonsymmetric �xed pointwith R1 6= R2 and a pair of repulsive symmetric �xed points, one of which isattractive within the symmetric subspace and inuences the initial behavior ofthe training process for a wide range of initial conditions. The residual errorvanishes only at � = 1 and sharply increases even for a slightly mismatched gainparameter. For large values of � we �nd a behavior similar to the large{� regime:In the region 1:44 <� � < �d � 1:59 one of the symmetric �xed points becomesthe stable one and for � � �d the norm of the student vector diverges while Rremains bounded.5 The Soft{Parity MachineHere we consider a student{network with two hidden units again, but withnonoverlapping receptive �elds: each of the units is connected to only half ofthe input nodes. The output of the net is taken to be the product of theirrespective states, as an example for a nonlinear hidden{to{output relation:�(J1; J2; �) = g(J1 � �1) g(J2 � �2) with g(x) = erf(x=p2): (17)Here J1;2 2 IRN , and we consider the total input to be 2N{dimensional, consist-ing of uncorrelated N{dimensional vectors �1;2. Thus, the normalization of thevectors and the de�nition of overlaps are formally the same as in the above cases.The error is calculated with respect to a teacher of the same structure, withunknown, normalized B1;2. The generalization error is determined through the12



order parameters Rl = Bl � J l and Ql = pJ l � J l as"g(R1; R2; Q1; Q2) = 19 + 4�2 arcsin Q211 +Q21! arcsin Q221 +Q22!� 8�2 arcsin0@ R1q2(1 +Q21)1A arcsin0@ R2q2(1 +Q22)1A: (18)Note, that no cross overlaps of the type J1 �B2 or J1 �J2 enter, because the inputsto the hidden units are taken to be drawn independently.We consider the learning procedureJ�+1l = J�l + �N ��l ��l l = 1; 2 (19)where �1;2 = h� (��)� �(J�1 ; J�2 )i g0(x�1;2) g(x�2;1) and x�1;2 = J�1;2 � ��1;2.In continuous time � = �=N one arrives at the system of di�erential equationsdRld� = � h�lylid[Q2l ]d� = 2� h�lxli + �2D�2l E: (20)The averages are over the joint density of all internal �elds, which in this casefactorizes: P (x1; x2; y1; y2) = P (x1; y1)P (x2; y2). The full form of (20) can befound in the appendix. Note however, that the average h�2l i cannot be performedanalytically in general.The di�erential equations conserve a physical symmetry of the type R1 =R2; Q1 = Q2 between the hidden units. In fact it can be shown analytically,that |in the subspace of Q1 = Q2| the system is stable against small perturba-tions from R1 = R2. Simulations of the algorithm for �nite N also indicate thatthis symmetry is favored for general initial conditions and no nonsymmetric �xedpoints of (20) were found numerically. Therefore, we restrict the following dis-cussion to the simpli�ed two{dimensional system of di�erential equations whereR1 = R2 = R and Q1 = Q2 = Q in (31,32).Due to the fact that �(J1; J2; �) = �(�J1;�J2; �) for this type of network, theactual sign of the overlap R for any �xed point (R;Q) is determined by the initialconditions and is otherwise irrelevant. Note, that dR=d� is an odd function ofR, whereas dQ=d� is even. For simplicity we consider only non{negative valuesof R in the following.From equ. (19) it is clear already that J1 = J2 = 0, i.e. R = Q = 0, is asteady state of the learning procedure. Furthermore, if the student starts fromany initial con�guration having zero overlap with the teacher weights, it willnever leave the subspace with R = 0. For � > �c the corresponding asymptoticvalue of Q diverges. 13



Thus, a priori knowledge is required for successful learning in this model.Any nonzero initial overlap will eventually yield nontrivial generalization, becauseR = 0 is repulsive. A similar e�ect was recently observed in online unsupervisedlearning [21].The second obvious �xed point is the `perfect student' R = Q = 1. A lin-earization of the system around this point reveals a behavior qualitatively verysimilar to the case of a single unit, see sec. 3. Provided the learning rate is suf-�ciently small, � < �c � 6:165, the system approaches R = Q = 1 exponentiallyfast in �. The decay is asymptotically given byR;Q / e�(�)� where �(�) = max(�1; �2) with�1 � �0:2450 � + 0:03975 �2 and �2 � �0:7461 � (21)The evolution of the generalization error for �xed � and di�erent initial conditionsis shown in �gure 5. Note again, that "g explicitely depends on Q, hence the �{dependence of the generalization error even for R = 0.
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unit, for � > �d = �= arcsin (1=3) no �xed point exists and both Q(�!1) andR(�!1) diverge.In the vicinity of R = Q = 1 we �nd for the generalization error"g � 83p3� (r � q) + 23�2 h(q + 2r)2 � 8r2i� 4p327� h(r � 2q)2 � 2q2i (22)where r = 1�R and q = 1�Q. Again, the eigenvalue �2 corresponds to a decayalong r = q, and this implies, like for the single unit, that the relaxation of thegeneralization error is according to"g(�) / ( e2�2� for 0 < � < �opte�1� for �opt � � < �c (23)In the sense of the discussion in section 3 the optimal learning rate would bede�ned by the condition �1 = 2�2, yielding �opt � 2:411.6 Summary and OutlookWe have studied an exactly solvable model of online gradient{descent learningin multilayer networks. For di�erent student/teacher pairs and randomly drawntraining examples we have investigated the generalization performance of the on-line learners. Averaging over the distribution of inputs in the thermodynamiclimit allows us to write down deterministic di�erential equations for the orderparameters, which can be solved numerically. For a single graded{response unitlearning a realizable rule with su�ciently small learning rates we �nd an expo-nential decay of the generalization error. However, if the learning rate is increasedabove a critical value, the network approaches a suboptimal �xed point with anon{vanishing generalization error instead. Not surprisingly, this behavior is sim-ilar to that of a linear unit [22, 23], because in the vicinity of the optimal solutionB the error surface is to leading order quadratic in (B� J) as in the linear case.For both the soft{committee machine learning a rule de�ned by a singleunit and the soft{parity machine learning from another soft{parity machine theasymptotic approach to the �xed point is exponentially fast as in the case ofthe single unit. Again, we �nd critical values of the learning rate, above whichperfect learning becomes impossible. In contrast to the single unit, the two{layersystems show additional features related to their internal symmetries. The out-put of the committee machine is invariant under permutations of the hidden{unitweight vectors. Correspondingly, we �nd �xed points of the di�erential equationsfor the order parameters that also obey this symmetry and strongly inuencethe small{� behavior of the learning dynamics. Even though these �xed pointsare unstable, the repulsion from the symmetric subspace is slow compared tothe attraction within the symmetric subspace. A similar e�ect of delayed learn-ing was recently observed in the equilibrium behavior of o�ine Gibbs learning in15



large committee machines with binary threshold units [24, 25]. In this model per-fect generalization required a specialization of hidden units. However, for smalltraining sets the equilibrium solution was a committee{symmetric one with poorgeneralization ability. Only for su�ciently large training sets could the networkrealize the necessity of breaking this symmetry.The output of the soft{parity machine is invariant under a simultaneouschange of sign of both weight vectors. The corresponding �xed point of thedi�erential equations is R = Q = 0, a student that has not inferred any in-formation about the rule. Again, a similar situation of `memorization withoutgeneralization' was observed in the o�ine equilibrium behavior of the correspond-ing model with binary units [26, 27]: for small training sets the existence of alocal minimum of the free energy with R = 0 causes the student network to failcompletely.It would be desirable to gain further understanding of these similarities be-tween o�{and online learning, also in order to understand to what extent resultsfrom statistical mechanics carry over to stochastic online gradient{descent strate-gies, whose equilibrium distributions are not of the Gibbs type [15].Recently, Kabashima studied online learning in a parity machine with binaryunits according to the so{called least{action algorithm [28]. There, a loss ofgeneralization is observed when only noisy training outputs are available. Itwould be interesting to study how such noisy example outputs or inputs inuencethe outcome of our model, in particular with respect to the dependence of theasymptotic behavior upon the learning rate. Furthermore our studies should beextended to a more detailed analysis of situations in which the rule is unlearnablefor the student.It should also be possible to apply the method to the minimization of moresophisticated cost functions, such as entropic or well formed error measures [1],as well as modi�ed learning schemes, e.g. [29].AcknowledgementsWe would like to thankW. Kinzel and G. Reents for useful discussions. H. Schwarzewas supported by the Swedish Natural Science Research Council. M. Biehl ac-knowledes �nancial support by the Deutsche Forschungsgemeinschaft. He thanksthe Department of Theoretical Physics at Lund University, where this work wascompleted.
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A The Soft{Committee MachineIn the limit N ! 1 the average over internal �elds in (16) is an average overthe distributionP (x1; x2; y) = det(C)�1=2(2�)�3=2 exp ��12(x1; x2; y)C�1 (x1; x2; y)>� (24)with the covariance matrix C = 0B@ Q21 C R1C Q22 R2R1 R2 1 1CA: (25)After a lengthy but straightforward calculation using g(x) = erf(x=p2), g0(x) =q2=� e�x2=2 and the identity+1Z�1 dxp2� e�x2=2 erf (ax) erf (bx) = 2� arcsin0@ 2abq(1 + 2a2) (1 + 2b2)1A (26)we arrive at the di�erential equationsdR1d� = 2� �1 +Q2124 1 + �1q2 +Q21 +�1 � R1q1 + 2Q21 � (1 +Q21)R2 � CR1p� 35 (27)d[Q21]d� = 4� �1 +Q2124 R1q2 +Q21 +�1 � Q21q1 + 2Q21 � Cp�35+ 4�2 �2q1 + 2Q21 "arcsin Q211 + 3Q21!+ arcsin 2� +Q22�1 !+ 2arcsin0@ Cp�1q1 + 3Q211A� 2 arcsin0B@ R1q1 + 3Q21q2(1 +Q21 +�1)1CA� 2 arcsin0@ R2(1 + 2Q21)� 2R1Cp�1q2(1 +Q21 +�1)1A� 2 arcsin 1 + 2�12(1 +Q21 +�1)!35 (28)dCd� = 2� �1 +Q2124(1 +Q21)R2 � CR1q2 +Q21 +�1 � Cq1 + 2Q21 � Q22 +�p� 35+ 4�2 �2p� 24arcsin Q21 +��1 !� 2 arcsin0@ (1 +Q22)R1 � CR2p�1q(1 + �1) (1 + �2)��2 + �1A+ arcsin Cp�1�2!+ 12 arcsin (1 + �1) (1 + �2)��2(1 + �1) (1 + �2)��2 + �!#+ (1 ! 2) (29)19



where we have used the abbreviations� = Q21Q22 � C2 � = (1 +Q21) (1 +Q22)� C2�1 = Q21 �R21 �1 = (1 + 2Q21) (1 +Q22)� 2C2�2 = Q22 �R22 �2 = (1 +Q21) (1 + 2Q22)� 2C2: (30)The equations for dR2=d� and d[Q22]=d� are similar to (27) and (28), respectively,just with the indices 1 and 2 interchanged.B The Soft{Parity MachineThe system of di�erential equations (20) readsdR1d� = 4��2(1 +Q21) 24 1 +Q21 �R21q2(1 +Q21)�R21 arcsin0@ R2q2(1 +Q22)1A� R1q1 + 2Q21 arcsin Q22(1 +Q22)!35 (31)d[Q21]d� = 8��2(1 +Q21) 24 R1q2(1 +Q21)�R21 arcsin0@ R2q2(1 +Q22)1A� Q21q1 + 2Q21 arcsin Q221 +Q22!35+ 4�2�2q1 + 2Q21 "arcsin 1 + 2(Q21 �R21)2 + 4Q21 � 2R21 !Dg2(x2)g2(y2)E� 2 arcsin0@ R1q2 + 4Q21 � 2R21q1 + 3Q211ADg3(x2)g(y2)E+ arcsin Q211 + 3Q21!Dg4(x2)E# (32)and correspondingly for R2 and Q2.Averages are over P (x1; y1) � P (x2; y2), where P (xl; yl) is identical with thedistribution for the single unit (section 3).20



In the simpli�ed case of physical symmetry, R1 = R2 = R and Q1 = Q2 = Q,the linearization around the �xed point (R = 1; Q = 1) is of the form r0q0 ! = A rq ! (33)where r = 1 �R and q = 1�Q. The matrix A is given byA = � �9�20@ �6 + 8p3� 9� 2p3��6� 4p3� 9 + 2p3� 1A+ 2�2p3�20@ 0 0�25q35 + dGdR ���(1;1) 25q35 + dGdQ ���(1;1) 1AwithG = arcsin�14�hDg4(x)E� 2Dg3(x)g(y)E+ Dg2(x)g2(y)Eiand dGdQ �����(1;1) = � dGdR �����(1;1) � 0:1183 � arcsin�14�: (34)
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