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Abstract

We study online gradient—descent learning in multilayer networks ana-
lytically and numerically. The training is based on randomly drawn inputs
and their corresponding outputs as defined by a target rule. In the thermo-
dynamic limit we derive deterministic differential equations for the order
parameters of the problem which allow an exact calculation of the evolu-
tion of the generalization error. First we consider a single-layer perceptron
with sigmoidal activation function learning a target rule defined by a net-
work of the same architecture. For this model the generalization error
decays exponentially with the number of training examples if the learning
rate is sufficiently small. However, if the learning rate is increased above a
critical value, perfect learning is no longer possible. For architectures with
hidden layers and fixed hidden—to—output weights, such as the parity and
the committee machine, we find additional effects related to the existence
of symmetries in these problems.

PACS. 87.10, 02.50, 05.90

1 Introduction

Neural Networks [1, 2] can realize a classification scheme: they assign an output
value to any possible input, defined by the architecture of the net, the activation
functions of its units, and the actual set of network parameters or weights.
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The ability of such systems to learn a rule by choosing suitable weights has
been studied successfully using statistical mechanics [3, 4, 5]. Mostly, the training
process is interpreted as a stochastic minimization of an energy function defined
in weight space, which measures the performance of the student network on a
given set of examples. The term generalization is used for the student’s ability to
infer an unknown input/output relation from the examples and apply it to novel
input data.

Statistical physics provides the tools for investigating typical properties of the
equilibrium solution to this optimization problem by performing the average over
random example inputs in the limit of infinite dimensionality.

The most thoroughly studied model in this context is the so—called simple
perceptron, a single binary threshold unit which realizes a linearly separable
classification [6, 7]. Convergence of the training process can be guaranteed for
deterministic learning algorithms which yield good generalization of a linearly
separable rule [3, 4, 5].

However, the learning scheme by far most commonly used in practice is gradi-
ent descent learning in multilayered networks of continuous units. It is the basis
of the well known ‘backpropagation of error’ [8-11] and its modifications (see e.g.
[1]). The objective function is very often simply the quadratic deviation of the
student output from the correct one, summed over all training examples.

In offline or batch learning the evolution of the weights follows the direction of
steepest descent in an energy landscape defined for a set of input/output pairs. In
this paper we consider, however, learning by online gradient descent. The change
of weights is given by the gradient of the error evaluated for only the latest in
a sequence of examples. The performance on previous examples is not taken
into account, and no explicit storage of a training set is necessary. Recently, the
properties of online gradient—descent learning have been studied in the context
of master equations for stochastic dynamics, which, in the limit of small learning
rates, can be approximated by a Fokker—Planck equation (e.g. [12-15]).

Here, we study the dynamics of online learning for specific models of two—layer
networks in a well-defined thermodynamic limit. This leads us to deterministic
differential equations for the order parameters of the problem, which can be
solved exactly. Assuming that all training inputs are drawn independently from
the same distribution we study the generalization ability for different types of
student networks and rules to be learned.

We introduce online learning formally in the next section. Mainly for explain-
ing the method of analysis, we discuss —as a first example— a single neuron with
a continuous sigmoidal activation function. The unknown rule is represented by
a single unit of the same type (the teacher) but with an unknown weight vec-
tor. Thus, the problem is learnable, and we study how the generalization error
decreases to zero as more and more examples have been used for training.

In our second example (sec. 4) the rule is still defined by a single neuron,
but the student network consists of two hidden units with a fixed linear hidden—



to—output relation. The coefficients of the latter determine whether the rule is
indeed learnable for the actual student and various scenarios can be modeled.
In section 5 we consider a student network with 2 hidden units, whose output
is defined to be the product of their respective states. The rule to be learned is
represented by a network of the same structure.
A summary and discussion of the results is given in the last section where we
conclude with an outlook on further applications of the method.

2 The model

Consider a student network with continuous output o(J,§) where { is an N-
dimensional input vector and J is the set of all variable weights in the net.
The desired output 7(¢) is defined by a target rule, and the error

L6 = 5lolL.&) ()] (1

measures the deviation of the student from the rule for a particular input .
The generalization error of a student with weights J is defined as

e0() = ((L,9), (2)

where (...), denotes the average over the distribution of inputs. In the follow-
ing we consider independently drawn input vectors with uncorrelated random
components of zero mean and unit variance.

At each learning step u, a new uncorrelated vector {* is presented, and the
current weight vector J* is updated according to the gradient of ¢(J",¢") with
respect to the weights: -

lu+1 — lu _ %vif(luaéu)

= S — 2 [o(Ih ) = 7(€)] Vao (2. (3)
Here, n is the so—called learning rate which has been explicitly scaled with the
network size N. It controls the size of the steps made in the direction of steep-
est descent. Note, that the architecture of the student net and the activation
functions of its units determine the actual form of the gradient term.

For the specific examples considered in the following, it is possible to derive
from (3) recursion relations for order parameters, which in turn determine the
student’s properties completely in the thermodynamic limit N — oo. In the
same limit we can interprete & = p/N as a continuous ‘time’ and solve the
corresponding differential equations for the order parameters numerically. Thus,

the evolution of the generalization ability in the above online learning process is
obtained.



3 A single unit with continuous output

As a simple example of online gradient—descent learning we first consider a
graded-response perceptron [16, 17] whose output is given by

o(L,§) =9(L-¢) (4)

with a nonlinear, differentiable activation function ¢. A standard choice for ¢ is
g(z) = tanh(z) because of its property ¢'(z) = 1 — ¢*(x). However, in order to
simplify the analytic treatment of our model, it is more convenient to use the
function g(z) = erf(x/v/2) = 7, dt e=*/?/\/2x instead. Both functions are very
similar in shape and we do not expect our results to depend critically upon this
choice. This network is trained from a stream of examples (", 7,) whose outputs
7, are defined by a target perceptron

T =7(8") = 9(B-¢") ()

where B is the unknown teacher weight vector, and ||B|| = 1. For this model the
gradient descent learning rule (3) reads

U
S = T+ la(ya) — g(@a)l g () € (6)
with ¢'(z) = 1/2/7 e=**/* and the abbreviations z, = J* - §" and y, = B-£" for
the internal fields (or net inputs) in the student and teacher network, respectively.
Note that (6) formally resembles the Hebb—rule [18, 19] for the effective target
outputs

8" = [g(yu) — g(wu)l g'(4). (7)
In the backpropagation algorithm, these 6*’s play the role of the backpropagated
errors.
The generalization error for this model can be calculated in a straightforward
manner and expressed as a function of the overlap of the student with the teacher
weight vector R = J - B and the norm of the student weight vector Q) = +/J - J.
If the inputs &; are drawn independently from a common distribution with zero
mean and unit variance, the average over inputs in (2) leads to

—larcsin L? —garcsin L l
()(1.Q) = Larcsin (2 ) -2 ( 2(1+Q2))+6. )

In contrast to a simple threshold unit the generalization error of the graded—
response unit explicitly depends on the length of the student vector. It vanishes
only if the student vector is perfectly aligned with the teacher (R = @) and has
the same length (Q = 1).



In order to calculate the generalization error (8) at time step p we need to
compute the overlaps R* = J" - B and [Q?*]* = J" - J*. From the learning rule
(6) using (7) we obtain the difference equations

Ru-l—l — R+ = %5# Yy
ptl I 2n 772

These equations can be averaged over the current training input noting that the
dependence on the inputs is only through the internal fields x, and y,,. In the limit
N — oo these are correlated Gaussian variables with zero mean and covariances
< l‘i >=(Q? < yi >=1and < z,y, >= R. In the same limit, we can introduce
a continuous ‘time” o = /N and rewrite (9) as differential equations

Z—i = 1{0y)
d[g] = 2 (6x) +9n*(6?) (10)

where (...} denotes an average over the joint distribution of @ and y, and where
we have suppressed the index u. For the choice g(z) = erf(x/v/2) the averages
in (10) can be performed analytically, leading to

R 2 oy [ 1+@-R R ]
da w1+ Q2 _\/2(1—|—Q2)—R2 \/1—|—2Q2_
aQy 4y | R Q]
do 71+ Q? _\/2(1 +Q?) — R V1 +2Q7 ]

_|_

iniz arcsin @ + arcsin L+2(Q° - /)
T2 y/1 4 20Q)? 1+3Q? 2(1 4+2Q2 — R?)

—  2arcsin ( 1t )] ) (11)
V201 +2Q2 — R?)yT+3Q7

From the numerical solution of these equations we finally obtain the time evolu-
tion of the generalization error (8).

3.1 The role of the learning rate

Figure 1 shows the evolution of the generalization error of the graded-response
perceptron for different choices of the learning rate 7.

For small learning rates the generalization error smoothly decreases with in-
creasing « and approaches the optimal value ¢, = 0. The speed of this approach
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Figure 1: Generalization error of the graded-response perceptron for different
learning rates. The analytic results (solid lines) are compared to simulations
(symbols) for a network with N = 100 weights (standard error bars would be
approximately the size of the symbols). All curves are for initial conditions

R(0) =0 and Q(0) = 0.5.

can be controlled by varying n. If 5 is chosen too large, the learning process
slows down until a critical learning rate 7. ~ 4.06 is reached. For n > n. the
generalization error does not decay to zero any longer but approaches a value
gy4(a — 00) > 0. We have performed simulations using a network with N = 100
weights and found a very good agreement with our analytic results (see figure 1).

We can investigate the asymptotic behavior of the generalization error in
greater detail by linearizing (11) around its fixed points given by dR/da =
d[@Q*]/da = 0. As can be easily verified, (11) has a fixed point at (R, Q) = (1,1)
for all values of . Linearizing around this point yields a system of linear differ-
ential equations for the deviations r =1 — R and ¢ = 1 — @), given by

(r/)—A(T) with A—%\/gi( A ) (12)
¢ ) =\a) =73 e \s5—% -3

with 7. = 1/5/3 ® ~ 4.06. The eigenvalues of A are \; = 4£%(:—c —1)and Xy =

—2v/51/(91.) (see figure 2). Therefore, for subcritical values of 5 the parameters
R and @ approach their optimal value exponentially fast, with r, ¢ oc e’ where
A(n) = max(Ag, A2). Note that as n— 7. the relaxation time —1/X; diverges like
(ne—n)~! (critical slowing down). For n > ., one of the two eigenvalues becomes
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positive and (R, Q) = (1, 1) is not an attractive fixed point any longer. However,
in this regime we can numerically find a second fixed point of (11) with R, Q) # 1.
Hence, perfect learning is not possible and ¢,(a0 — o0) > 0.

The eigenvalues of the linearized system governing the approach to this sub-
optimal fixed point are also shown in figure 2. Note, that for 4.45 S5 S 5.05 the
eigenvalues have imaginary parts corresponding to oscillations around the fixed
points. However, these oscillations are strongly damped due to the larger real
parts of the eigenvalues.

If the learning rate is greater than 1y = x/arcsin (1/3) & 9.24, no fixed point
exists and R, () — o0 as a — oo.

Figure 2: Eigenvalues of the linearized system (12) governing the asymptotic
behavior of the generalization error of the single graded response unit. The
dashed lines correspond to the imaginary parts of the eigenvalues. The dashed—
dotted line represents 2\,.

In order to find the learning rate 7,,,, which yields the fastest asymptotic
decay of the generalization error, we expand (8) to second order in r and ¢

R PR
€gN\/§ﬂ'r q 37T\/§

Since the eigenvector corresponding to the eigenvalue Ay is (1,1)7, this mode

(=9 + ¢ (13)

cannot contribute to the asymptotic behavior of the linear combination (r — ¢).
Hence, for small n, (r — ¢) decays faster than r and ¢, and the behavior of ¢,
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depends on the actual order of (r — ¢) compared to the quadratic terms. If, for
given n, ¢* is larger than (r — ¢), the generalization error decays proportional to
¢?2 while we have g, o< e if (r — ¢) is larger than ¢?. This change of the
asymptotic behavior happens at 7,,, = 2n./3 & 2.704, where A\ and 2A, coincide
(see figure 2). Therefore, the fastest asymptotic decay of ¢, is achieved for 7,,,.
However, it should be noted that this discussion only holds for the asymptotic
behavior. The initial decay of the generalization error is faster for values of
n different from 7,,,, and an online adjustment of the learning rate would be
desirable in order to optimize the network behavior [20].

Even though learning a simple perceptron with another perceptron is a learnable
task, this simple example illustrates the importance of a proper choice of the
learning rate in an online gradient—descent scheme. The convergence becomes
slow if the learning rate differs from the optimal one, and a large learning rate
causes a failure to converge to the optimal solution. This result is in agreement
with the behavior observed by many authors for the backpropagation algorithm.
Furthermore, the step—size dependence of offline gradient—descent minimization
schemes is well known. In one dimension Newton’s method utilizes the fact that
the optimal step size for an iterative minimization of a quadratic cost function by
gradient descent is 1/(2u), where p is the second derivative of the cost function.
It the step size is larger than twice this value the procedure does not converge.
In higher dimensions, minimizing a quadratic error surface corresponds to batch
learning in a single linear unit. In this case, the largest step size which guarantees
convergence is the inverse of the largest eigenvalue of the Hessian (see e.g. [22,
23]). Note, however, that these considerations do not apply directly to online—
learning, where the gradient of the training error is calculated with respect to
one example only.

4 The Soft—-Committee Machine

After having illustrated the basic features of online gradient—descent learning in
a simple perceptron we now turn to networks with hidden units. As an example
for this situation we consider a fully connected two-layer network with 2 hidden
units of the type described above and with the hidden—to—output weights fixed
to +1. The overall output of this machine is given by

U(ilvl%é) :go[g(ll‘§)+g(lz‘§)]v (14)

where we choose a linear output unit with g,(x) = Sz, 8 > 0. Hence, the overall
output is proportional to the average ‘decision’ of the hidden units. This network
is trained to implement a simple task defined by a teacher perceptron as in (5).
Note that this is a learnable task (i.e. ** = 0) only for the choices g = 1/2
and # = 1, and an unrealizable rule for all other values of 3. For § = 1/2 the
optimal generalization error is achieved for a symmetric student network with



J = B, while for § = 1 the optimal student is a specialized one with
J and ||.J,]| = 0 or vice versa. Therefore, this simple model includes a
variety of possible learning scenarios.

1212
125

Similar to the single unit, the generalization error for this model can be expressed
in terms of the relevant overlaps R, = J;,- B, Q; = /J;-J;, and C = J, - J,
(I =1,2). We obtain

_ p? - ( Q7 ) 2p : ( Ry )]
g(F1, Ry, 1,02, C) = — arcsin 5| — —arcsin | ——=
! ) IZ[” +er) - 2(1 4 Q7)

232 . C 1
—— arcsin —. 15
i (¢1+@%¢1+@3)+6 "

Again, from the learning rule (3) we obtain difference equations for the rele-

vant parameters, which in the limit N — oo can be written as the differential

equations:

dR,

_—— = h)
- n{ory)

d[Q7] 2/ §2

o = ) s

e

% = (612 + 8y1) + 77 (é1 65) (16)

where the averages are over the joint distribution of the x;’s and y;’s, and with
6 = [g9(y1) — g(1)] ¢'(x1) analogous to (7) for the individual hidden units. All the
averages can be performed analytically (see appendix A), and from the numerical
solution of the resulting set of five coupled differential equations we get the time
evolution of the generalization error (15) and its asymptotic value.

First we will discuss the case 3 = 1. It can easily be seen from (27)—(29) that
the network will always evolve symmetrically with By = Ry and (1 = @), if it
is started from symmetric initial conditions. Only if the initial conditions break
this symmetry, can the system leave the symmetric subspace and approach the
optimal solution. Figure 3 shows the evolution of the student—teacher overlaps
R,y 5 for two different choices of initial conditions.

Initially, the overlaps rapidly approach values close to a fixed point which
is stable within the symmetric subspace. However, due to the non-symmetric
initial conditions the system does not evolve within this subspace, and eventually
the repulsive mode takes over. For large values of «, the system approaches
the optimal fixed point which breaks the symmetry between hidden units. This
delayed repulsion is due to the fact that the corresponding positive transverse
eigenvalue of the linearized system is very small compared to the absolute values
of the negative longitudinal ones. As can be seen from figure 3, the number of
learning steps necessary to escape from the symmetric fixed point is very sensitive



Figure 3: Evolution of the parameters R; and R, of the soft—committee machine
with # = 1 and learning rate = 1. The solid line represents the solution of
the differential equations for nonsymmetric initial conditions (R; = Ry = Q1 =
C'=0 and Q3= 0.1). The symbols show the results of simulations for different
system sizes. The dotted lines correspond to the analytic solution for the initial

conditions R1=R,=0Q:=C = 0 and ();= 0.01.

to the degree of asymmetry in the initial conditions. For the same reason we find
strong finite size effects in our simulations in the region, where the specialization
of hidden units occurs.

In order to study the n— and S—dependence of the network behavior we have
numerically looked for stationary solutions of the differential equations and com-
puted the eigenvalues of the corresponding linearized system; the results are
shown in figure 4.

For fixed § = 1 (figure 4a) and small < 5. ~ 1.89 the network behavior is
qualitatively similar to the situation at n = 1. The initial generalization behavior
is dominated by a repulsive symmetric fixed point while for large training sets
the network approaches the optimal nonsymmetric solution. A careful numerical
evaluation of the fixed-point equations shows the existence of a further symmet-
ric fixed point. However, this fixed point is repulsive even within the symmetric
subspace and does not influence the network performance. As in the single unit
there is a critical learning rate 1. ~ 1.89, above which the optimal fixed point be-
comes unstable and the network approaches a suboptimal but still nonsymmetric
solution. If the learning rate is increased above ns &~ 2.17, the network does not
realize the necessity of a specialization any longer, and the symmetric fixed point
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Figure 4: Asymptotic generalization error of the soft-committee a) as a function
of the learning rate 5 for fixed # = 1 and b) as a function of 3 for fixed n = 1. Solid
lines indicate attractive fixed points while dashed lines indicate repulsive fixed
points. The symbols correspond to estimates of the asymptotic generalization
error extrapolated from simulations (if not included, standard error bars would
be smaller than the size of the symbols).
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becomes the stable one. A further increase of the learning rate above n; ~ 3.29
causes the norms of the student weight vectors to diverge, and the algorithm
even fails to find an approximative solution. Finally we note, that in contrast
to the single unit, the speed of both the escape from the symmetric region and
the approach to the optimal solution below 7. are influenced by the choice of the
learning rate. Therefore, tuning the learning rate to obtain the optimal behavior
is a more difficult task than in the single unit.

Figure 4b shows the asymptotic properties of the soft—committee as a function
of the gain parameter 3 in the linear output unit with = 1 fixed. For small g <
0.5 the network approaches a stable symmetric fixed point. The corresponding
residual error depends on the choice of 3: For f = 1/2 the rule is realizable
for the student network (g,(c — o0) = 0) while it is unrealizable for 7 < 1/2.
Again, we find a second symmetric fixed point, which is repulsive for all values of
f and in general does not influence the dynamical evolution. Its generalization
error is very close to that of the stable fixed point, closer than the resolution in
figure 4b. In the region 1/2 < § < [, ~ 1.44 the fixed point structure is again
similar to the one described for n = § = 1: A stable nonsymmetric fixed point
with Ry # Ry and a pair of repulsive symmetric fixed points, one of which is
attractive within the symmetric subspace and influences the initial behavior of
the training process for a wide range of initial conditions. The residual error
vanishes only at § = 1 and sharply increases even for a slightly mismatched gain
parameter. For large values of 3 we find a behavior similar to the large—n regime:
In the region 1.44 S 3 < 3; ~ 1.59 one of the symmetric fixed points becomes
the stable one and for 3 > f; the norm of the student vector diverges while R
remains bounded.

5 The Soft—Parity Machine

Here we consider a student—network with two hidden units again, but with
nonoverlapping receptive fields: each of the units is connected to only half of
the input nodes. The output of the net is taken to be the product of their
respective states, as an example for a nonlinear hidden-to—output relation:

oLy, 45, 8) = g(Ly - €)g(L,-€)  with g(x) = erf(x/V2). (17)

Here J, , € IRYN , and we consider the total input to be 2N-dimensional, consist-
ing of uncorrelated N—dimensional vectors §172. Thus, the normalization of the
vectors and the definition of overlaps are formally the same as in the above cases.

The error is calculated with respect to a teacher of the same structure, with
unknown, normalized B, ,. The generalization error is determined through the
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order parameters R; = B; - J; and Q; = /J; - J; as

14 i : :
5g(Rl,Rz,Q17Q2) = §—|—Farcsm(lfb%) arcsm(lfz?%)
8
T

— arcsin (L) arcsin (L) (18)
2(1+ Q1) 2(1+Q3)

Note, that no cross overlaps of the type J; - B, or J; - J, enter, because the inputs
to the hidden units are taken to be drawn independently.
We consider the learning procedure

N S i [=1.2 (19)

where 615 = [7(£") — o(J4, J8)] ¢/(e) g(wh,y) and 2, = JH 5 - €2

In continuous time o« = p/N one arrives at the system of differential equations

% = (0w
d 2
[dcil] = 2 (81) +0*(6})- (20)

The averages are over the joint density of all internal fields, which in this case
factorizes: P(x1,x9,y1,y2) = P(a1,y1) P(as2,y2). The full form of (20) can be
found in the appendix. Note however, that the average (67) cannot be performed
analytically in general.

The differential equations conserve a physical symmetry of the type Ry =
Ry, @1 = Q2 between the hidden units. In fact it can be shown analytically,
that —in the subspace of ()1 = (Jo— the system is stable against small perturba-
tions from Ry = R. Simulations of the algorithm for finite NV also indicate that
this symmetry is favored for general initial conditions and no nonsymmetric fixed
points of (20) were found numerically. Therefore, we restrict the following dis-
cussion to the simplified two-dimensional system of differential equations where
Ri=Ry=Rand @1 = Q2 = Q in (31,32).

Due to the fact that o(J,,J,, &) = o(—Jy, —J,, &) for this type of network, the
actual sign of the overlap R for any fixed point (R, @) is determined by the initial
conditions and is otherwise irrelevant. Note, that dR/da is an odd function of
R, whereas d@)/da is even. For simplicity we consider only non-negative values
of R in the following.

From equ. (19) it is clear already that J, = J, = 0,1i.e. R =@ =0, is a
steady state of the learning procedure. Furthermore, if the student starts from
any initial configuration having zero overlap with the teacher weights, it will
never leave the subspace with B = 0. For n > 5. the corresponding asymptotic
value of () diverges.
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Thus, a priori knowledge is required for successful learning in this model.
Any nonzero initial overlap will eventually yield nontrivial generalization, because
R =0 1is repulsive. A similar effect was recently observed in online unsupervised
learning [21].

The second obvious fixed point is the ‘perfect student” R = ¢ = 1. A lin-
earization of the system around this point reveals a behavior qualitatively very
similar to the case of a single unit, see sec. 3. Provided the learning rate is suf-
ficiently small, n < 7. & 6.165, the system approaches R = () = 1 exponentially
fast in a. The decay is asymptotically given by

R,Q o ‘M  where A(n) = max(A, Ay)  with
Ao~ —0.2450 + 0.039757%  and Ay &~ —0.7461 9 (21)

The evolution of the generalization error for fixed n and different initial conditions
is shown in figure 5. Note again, that ¢, explicitely depends on (), hence the a-
dependence of the generalization error even for R = 0.
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Figure 5: Evolution of the generalization error of the soft—parity machine for
fixed n = 3 and different initial overlaps (Q(0) = 1 for all curves). Simulations
were done with N = 200, averaged over 100 independent runs. Standard error
bars would be smaller than the size of the symbols.

Learning slows down critically as n — 5.. For even larger learning rates the

first eigenvalue is positive, therefore (1,1) becomes unstable and a new attractive
fixed point appears with a corresponding ¢,(av — o0) > 0. Like for the single
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unit, for n > ng = 7/ arcsin (1/3) no fixed point exists and both Q(a— oo) and
R(a— 00) diverge.
In the vicinity of R = () = 1 we find for the generalization error

8 ( )+ 2
- 2
3V3x 1 32

where r =1 — R and ¢ = 1 — (). Again, the eigenvalue A, corresponds to a decay
along r = ¢, and this implies, like for the single unit, that the relaxation of the

Eg N

[(q +2r)? — 87“2] T [(r —2¢)° — 2q2] (22)

generalization error is according to

ey o {

e for 0 < n < Nopy

MY for Rope < < 10 (23)

€

In the sense of the discussion in section 3 the optimal learning rate would be
defined by the condition A\ = 2A,, yielding n,,, ~ 2.411.

6 Summary and Outlook

We have studied an exactly solvable model of online gradient—descent learning
in multilayer networks. For different student/teacher pairs and randomly drawn
training examples we have investigated the generalization performance of the on-
line learners. Averaging over the distribution of inputs in the thermodynamic
limit allows us to write down deterministic differential equations for the order
parameters, which can be solved numerically. For a single graded-response unit
learning a realizable rule with sufficiently small learning rates we find an expo-
nential decay of the generalization error. However, if the learning rate is increased
above a critical value, the network approaches a suboptimal fixed point with a
non—vanishing generalization error instead. Not surprisingly, this behavior is sim-
ilar to that of a linear unit [22, 23], because in the vicinity of the optimal solution
B the error surface is to leading order quadratic in (B — J) as in the linear case.

For both the soft-committee machine learning a rule defined by a single
unit and the soft—parity machine learning from another soft—parity machine the
asymptotic approach to the fixed point is exponentially fast as in the case of
the single unit. Again, we find critical values of the learning rate, above which
perfect learning becomes impossible. In contrast to the single unit, the two—layer
systems show additional features related to their internal symmetries. The out-
put of the committee machine is invariant under permutations of the hidden—unit
weight vectors. Correspondingly, we find fixed points of the differential equations
for the order parameters that also obey this symmetry and strongly influence
the small-a behavior of the learning dynamics. Even though these fixed points
are unstable, the repulsion from the symmetric subspace is slow compared to
the attraction within the symmetric subspace. A similar effect of delayed learn-
ing was recently observed in the equilibrium behavior of offline Gibbs learning in
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large committee machines with binary threshold units [24, 25]. In this model per-
fect generalization required a specialization of hidden units. However, for small
training sets the equilibrium solution was a committee-symmetric one with poor
generalization ability. Only for sufficiently large training sets could the network
realize the necessity of breaking this symmetry.

The output of the soft-parity machine is invariant under a simultaneous
change of sign of both weight vectors. The corresponding fixed point of the
differential equations is R = () = 0, a student that has not inferred any in-
formation about the rule. Again, a similar situation of ‘memorization without
generalization” was observed in the offline equilibrium behavior of the correspond-
ing model with binary units [26, 27]: for small training sets the existence of a
local minimum of the free energy with R = 0 causes the student network to fail
completely.

It would be desirable to gain further understanding of these similarities be-
tween off-and online learning, also in order to understand to what extent results
from statistical mechanics carry over to stochastic online gradient—descent strate-
gies, whose equilibrium distributions are not of the Gibbs type [15].

Recently, Kabashima studied online learning in a parity machine with binary
units according to the so—called least—action algorithm [28]. There, a loss of
generalization is observed when only noisy training outputs are available. It
would be interesting to study how such noisy example outputs or inputs influence
the outcome of our model, in particular with respect to the dependence of the
asymptotic behavior upon the learning rate. Furthermore our studies should be
extended to a more detailed analysis of situations in which the rule is unlearnable
for the student.

It should also be possible to apply the method to the minimization of more
sophisticated cost functions, such as entropic or well formed error measures [1],
as well as modified learning schemes, e.g. [29].
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A The Soft—Committee Machine

In the limit N — oo the average over internal fields in (16) is an average over
the distribution

|
P(a1,22,y) = det(C)7?(2m) ™% exp [—§($1,xz,y)gl (1,22,y) | (24)

Qf C B
C=| C Q@ R |. (25)
Ry Ry 1

with the covariance matrix

After a lengthy but straightforward calculation using g(z) = erf(z/v/2), ¢'(z) =
/2/7 e /2 and the identity

+oo
dv_ a2 erf (ax)erf (bx) = 2 arcsin 2b ) (26)

. Vo m (\/(1+2a2)(1 + 202)

we arrive at the differential equations

@ _ % n L+ A B Ry B (1+ Q)R = CRy (27)
do TI+QT [\ 24+0Q2+ A, /1 +2Q? VA
Qs _ 4+ o | R 3 C
do Tl+Q | 24+Q2+A (J1+207 VA
LA [ . ( Q1 )+ . (2A+Q§)
— —F/————— |al'CS8IN | arcsimn | ———
T 4202 1+ 3Q% Ay
L9 ) ( C ) 5 ) Ry
arcsin — Zarcsin
VAL /1 +3Q? VI+3Q3/200+ Q2 +A))
2 R
~ 2arcsin [ LLUE2QD2HC )y ( o ) (2)
VA2 +QF + Ay 2(1 4+ QF + Ay)
¢ 2 g [+ QHR-CR C  @QtA
do T1+Q1| JrreA J1 4202 VA
4 7’ : (Qf + A) : (1+ Q3R — Chy
+ — —~ |arcsin — 2 arcsin
VA Ay VAL A (14 Ag) — A2+ A

+ arcsin( ¢ )-l-larcsin( (14 Ap) (1 4+ Ay) — A? )]
Mdz) 2 (L4+ A1+ A) - AT+ A

+ (1+—2)
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where we have used the abbreviations

A= Q- A=(14Q7)(1+Q3) -
A= QF — R? A= (14207) (1+Q3) —2C?
= Q3 - R A =140} (1+20) —2C% (30)

The equations for dRy/da and d[(Q)3]/da are similar to (27) and (28), respectively,
just with the indices 1 and 2 interchanged.

B The Soft—Parity Machine

The system of differential equations (20) reads

@ = S L+ @i 2 arcsin 7]%2
da 71401 | 21+ Q) - 2(1+ Q3)
- L arcsin L) 31
V1 + 202 ((HQ%) ] (31)
d[Qﬂ = 8 fh arcsin 7]%2
da 74O |21+ Q) - 2(1+ Q3)

— 7621 arcsin ( Q% )]
1+ 202 1+ @3

4n? C(142Q* =R\, , ,
=N T [n (2 TAQ — 2R} )<g (2200 (02])

— 2 arcsin ( i ) <93($2)9(92)>

V2H4Q7 — 2R3 /1 4303
+ arcsin (1 —I-QQ;Q%) <94($2)>] (32)

and correspondingly for Ry and ().
Averages are over P(wx1,y1) - P(x2,y2), where P(x, 1) is identical with the
distribution for the single unit (section 3).
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In the simplified case of physical symmetry, By = Ry = R and )y = Q2 = @,
the linearization around the fixed point (R = 1,Q = 1) is of the form

(7)-a(1) 3

where r =1 — R and ¢ = 1 — ). The matrix A is given by

4 n [ —6+ 57 9-2V3x
= 7 9r? —6—%% 9+ 237

2 0 0
+— 2 /3, dG 2 /3, dG
V372 _5\/;+ dR |(1,1) g\/;—F Q| (1,1)
with

G = arcsin (i) [<g4(l‘)> — 2<93(51?)9(?J)> + <92($)92(y)>]
__d
(1) dR

e

1
@ ~ (0.1183 - arcsin (1)

(1,1)

and
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