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Abstract—In this paper, we study the capacity of the diamond
channel. We focus on the special case where the channel between
the source node and the two relay nodes are two separate links
of finite capacity and the link from the two relay nodes to the
destination node is a Gaussian multiple access channel. We call
this model the Gaussian multiple access diamond channel. We
first propose an upper bound on the capacity. This upper bound
is a single-letterization of the n-letter upper bound proposed by
Traskov and Kramer, which is tighter than the cut-set bound.
Next, we provide a lower bound based on sending correlated
codes through the multiple access channel. Since the upper and
lower bounds take on similar forms, it is expected that they
coincide for certain channel parameters. To show this, we further
focus on the symmetric case where the separate links to the
relays are of the same capacity and the power constraints of
the two relays are the same. For the symmetric case, we give
necessary and sufficient conditions that the upper and lower
bounds meet. Thus, for a Gaussian multiple access diamond
channel that satisfies these conditions, we have found its capacity.

I. INTRODUCTION

The diamond channel was first introduced by Schein in 2001
[1]. It models the communication from a source node to a
destination node with the help of two relay nodes. The channel
between the source node and the two relays form a broadcast
channel as the first stage and the channel between the two
relays and the destination node form a multiple access channel
as the second stage. The capacity of the diamond channel in its
most general form is open. Achievability results were proposed
in [1], while for the general diamond channel, the best known
converse results is still the cut-set bound [2]. Capacity has
been found for some special classes of diamond channels in
[3], [4].
The problem of sending correlated codes through a multiple

access channel was studied in [5]. This channel model can be
regarded as a special case of the diamond channel where the
broadcast channel between the source node and the two relay
nodes are two separate links of finite capacity. We call this
the multiple access diamond channel. Achievability results for
the discrete multiple access diamond channel were proposed
in [5], [6]. In [6], an uncomputable n-letter upper bound is
also provided which is tighter than the cut-set bound.
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In this paper, we consider the multiple access diamond
channel where the multiple access channel from the two
relay nodes to the destination node is Gaussian, see Figure
1. We call this channel model the Gaussian multiple access
diamond channel. We first obtain an upper bound on the
capacity by single-letterizing the n-letter upper bound in [6].
The main technique we use in the upper bound derivation is the
introduction of an imaginary random variable used to bound
the correlation between the two relay signals. This technique
has also been used in solving the Gaussian multiple description
problem [7]. We then propose a lower bound on the capacity
where the relays send correlated codewords into the channel.
Comparing the upper and lower bounds, we find that they are
of similar forms and therefore, when the channel parameters
satisfy certain conditions, they would coincide, yielding the
capacity. To illustrate this, we focus our attention on the
symmetric case, where the power constraints of the relay nodes
are the same and the links from the source node to the two
relay nodes are of the same capacity. For the symmetric case,
we give necessary and sufficient conditions that the upper and
lower bounds meet. Thus, for a symmetric Gaussian multiple
access diamond channel that satisfies these conditions, we have
found its capacity.

II. SYSTEM MODEL

We consider the Gaussian multiple access diamond channel,
see Figure 1. The capacity of the link from the source node to
Relay k is Rk, k = 1, 2. The received signal at the destination
node is

Y = X1 +X2 + U

where X1 and X2 are the input signals from Relay 1 and
Relay 2, respectively, and U is a zero-mean unit-variance
Gaussian random variable. It is assumed that U is independent
to (X1, X2).
Let W be a message that the source node would like to

transmit to the destination node. Assume that W is uniformly
distributed on {1, 2, · · · ,M}. An (M,n,ε n) code consists of
an encoding function at the source node

fn : {1, 2, · · · ,M} →{ 1, 2, · · · , 2nR1}×{ 1, 2, · · · , 2nR2},

two encoding functions at the relays

fn
k : {1, 2, · · · , 2nRk} → R

n, k = 1, 2
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Fig. 1. The Gaussian multiple access diamond channel

which satisfy the average power constraint: for any xn
k that

Relay k input into the Gaussian multiple access channel, it
satisfies

1

n

n
∑

i=1

x2
ki ≤ Pk, k = 1, 2

and one decoding function at the destination node

gn : Rn → {1, 2, · · · ,M}

The probability of error is defined as

εn =
M
∑

w=1

1

M
Pr[gn(Y n) $= w|W = w]

Rate R is said to be achievable if there exists a sequence
of

(

2nR, n,ε n

)

codes such that εn → 0 as n → ∞. The
capacity of the Gaussian multiple access diamond channel is
the supremum of all achievable rates.
We would like the characterize the capacity of the Gaussian

multiple access diamond channel in terms of the channel
parameters R1, R2, P1 and P2.
To simplify presentation, we define the following functions

of ρ ∈ [0, 1]:

f1(ρ)
!
= R1 +

1

2
log[1 + (1− ρ2)P2]

f2(ρ)
!
= R2 +

1

2
log[1 + (1− ρ2)P1]

f3(ρ)
!
= R1 +R2 −

1

2
log

(

1

1− ρ2

)

f4(ρ)
!
=

1

2
log

(

1 + P1 + P2 + 2ρ
√

P1P2

)

III. AN UPPER BOUND

Theorem 1 An upper bound on the capacity of the Gaussian
multiple access diamond channel is

max(T1, T2)

where

T1 = max
0≤ρ≤ρ∗

min {f1(ρ), f2(ρ), f3(ρ), f4(ρ)} (1)

T2 = max
ρ∗≤ρ≤1

min {f1(ρ), f2(ρ), f3(0), f4(ρ)}

and
ρ∗ =

√

1 +
1

4P1P2
−

1

2
√
P1P2

Remark: The cut-set bound for the Gaussian multiple access
diamond channel is

max
0≤ρ≤1

min {f1(ρ), f2(ρ), f3(0), f4(ρ)}

Hence, our upper bound is tighter than the cut-set bound.
Proof: From the cut-set bound, we always have

R ≤ R1 +R2 (2)

We also have

nR = H(W )

= H(Xn
1 , X

n
2 ) +H(W |Xn

1 , X
n
2 ) (3)

≤ H(Xn
1 , X

n
2 ) +H(W |Y n) (4)

≤ H(Xn
1 , X

n
2 ) + nεn (5)

≤ I(Xn
1 , X

n
2 ;Y

n) +H(Xn
1 , X

n
2 |Y n) + nεn

≤ I(Xn
1 , X

n
2 ;Y

n) + 2nεn (6)
= h(Y n)− h(Y n|Xn

1 , X
n
2 ) + 2nεn

= h(Y n)−
n

2
log(2πe) + 2nεn (7)

where (3) is because without loss of generality, we may
consider deterministic encoders, i.e., (Xn

1 , X
n
2 ) is a deter-

ministic function of W , (4) is because of Markov chain
W → (Xn

1 , X
n
2 ) → Y n, and (5) and (6) both follow from

Fano’s inequality. We also have

nR = H(W )

≥ H(Xn
1 , X

n
2 ) (8)

≥ I(Xn
1 , X

n
2 ;Y

n)

= h(Y n)−
n

2
log(2πe) (9)

(8) is follows from the same reasoning as (3). Now, we upper
bound h(Y n) as

h(Y n) ≤
n
∑

i=1

h(Yi)

≤
n
∑

i=1

1

2
log(2πe)

(

P1i + P2i + 2ρi
√

P1iP2i + 1
)

(10)

where in (10), we have defined Pki
!
= E[X2

ki], k = 1, 2 and
ρi =

E[X1iX2i]√
P1iP2i

, and used the fact that given power constraint,
the Gaussian distribution maximizes the differential entropy.
Another upper bound on R is

nR ≤ H(Xn
1 , X

n
2 ) + nεn (11)

= H(Xn
1 |Xn

2 ) +H(Xn
2 ) + nεn

≤ H(Xn
1 |Xn

2 ) + nR2 + nεn

= I(Xn
1 ;Y

n|Xn
2 ) +H(Xn

1 |Y n, Xn
2 ) + nR2 + nεn

≤ I(Xn
1 ;Y

n|Xn
2 ) + nR2 + 2nεn

1500



≤
n
∑

i=1

I(X1i;Yi|X2i) + nR2 + 2nεn

≤
n
∑

i=1

1

2
log

[

(1 − ρ2i )P1i + 1
]

+ nR2 + 2nεn (12)

where (11) is because of (5) and (12) follows from the same
reasoning as (10). Similarly,

nR ≤
n
∑

i=1

1

2
log

[

(1− ρ2i )P2i + 1
]

+ nR1 + 2nεn

Since the inputs from Relay 1 must satisfy the average power
constraint P1, we have

0 ≤
1

n

n
∑

i=1

ρ2iP1i ≤
1

n

n
∑

i=1

P1i ≤ P1

Thus, there exists a ρa ∈ [0, 1] such that ρ2aP1 = 1
n

∑n
i=1 ρ

2
i

P1i. Due to the concavity of the logarithm function, from (12),
we have

R ≤
1

2
log

(

1

n

n
∑

i=1

[

(1− ρ2i )P1i + 1
]

)

+R2 + 2εn

≤
1

2
log

[

(1− ρ2a)P1 + 1
]

+R2 + 2εn (13)

By a similar argument, from (10), we have
1

n
h(Y n)

≤
1

2
log(2πe)

(

1

n

n
∑

i=1

[

P1i + P2i + 2|ρi|
√

P1iP2i + 1
]

)

≤
1

2
log(2πe)

(

P1 + P2 +
1

n

n
∑

i=1

2
√

ρ2iP1iP2i + 1

)

From Cauchy-Schwarz inequality, we have

1

n

n
∑

i=1

√

ρ2iP1iP2i ≤

√

√

√

√

(

1

n

n
∑

i=1

ρ2iP1i

)(

1

n

n
∑

i=1

P2i

)

≤
√

ρ2aP1P2

Thus, we have
1

n
h(Y n) ≤

1

2
log(2πe)

(

P1 + P2 + 2ρa
√

P1P2 + 1
)

(14)

Similarly, there exists a ρb ∈ [0, 1] such that ρ2bP2 =
1
n

∑n
i=1 ρ

2
iP2i, and we have

R ≤
1

2
log

[

(1 − ρ2b)P2 + 1
]

+R1 + 2εn (15)
1

n
h(Y n) ≤

1

2
log(2πe)

(

P1 + P2 + 2ρb
√

P1P2 + 1
)

(16)

Define ρ ∈ [0, 1], which is a function of h(Y n) as follows: If
1

n
h(Y n) ≤

1

2
log(2πe)(1 + P1 + P2) (17)

then ρ = 0; otherwise, ρ is such that
1

n
h(Y n) =

1

2
log(2πe)(1 + P1 + P2 + 2ρ

√

P1P2) (18)

For the case when ρ = 0, from (13), (15), (7), (17) and (2),
and letting n → ∞, we have

R ≤ min (f1(ρ), f2(ρ), f3(ρ), f4(ρ))

which means, for the case of ρ = 0, R ≤ T1.

For the case of ρ > 0, since h(Y n) must satisfy (14) and
(16), we see that ρ ≤ min(ρa, ρb). This means from (13), (15),
(7) and (9), that we have

R ≤ min(f1(ρ), f2(ρ)) + 2εn (19)
f4(ρ) ≤ R ≤ f4(ρ) + 2εn (20)

If ρ further satisfy 0 < ρ ≤ ρ∗, which is equivalent to√
P1P2

(

1
ρ
− ρ

)

− 1 ≥ 0, we define additional random
variables

Zi = Yi + U ′
i i = 1, . . . , n

where U ′n is an i.i.d. Gaussian sequence with mean zero and
variance

N =
√

P1P2

(

1

ρ
− ρ

)

− 1 (21)

and is independent to everything else. We have

2nR ≤ 2H(Xn
1 , X

n
2 ) + 2nεn (22)

= H(Xn
1 , X

n
2 )− I(Xn

1 ;X
n
2 ) +H(Xn

1 ) +H(Xn
2 ) + 2nεn

≤ H(Xn
1 , X

n
2 )− I(Xn

1 ;X
n
2 ) + nR1 + nR2 + 2nεn

≤ I(Xn
1 , X

n
2 ;Y

n)− I(Xn
1 ;X

n
2 ) + nR1 + nR2 + 3nεn

(23)

where (22) follows because of (5), and (23) follows from (6).
Note that

I(Xn
1 ;X

n
2 )

= I(Xn
1 ;Z

n)− I(Xn
1 ;Z

n|Xn
2 ) + I(Xn

1 ;X
n
2 |Zn)

≥ I(Xn
1 ;Z

n)− I(Xn
1 ;Z

n|Xn
2 )

= I(Xn
1 , X

n
2 ;Z

n)− I(Xn
2 ;Z

n|Xn
1 )− I(Xn

1 ;Z
n|Xn

2 )
(24)

We further have

I(Xn
1 ;Z

n|Xn
2 ) ≤

n
∑

i=1

1

2
log

(1 − ρ2i )P1i + 1+N

1 +N
(25)

≤
n

2
log

(1− ρ2)P1 + 1 +N

1 +N
(26)

where (25) follows by similar arguments as (12) and (26)
follows by similar arguments as (13) and (19). Similarly, we
have

I(Xn
2 ;Z

n|Xn
1 ) ≤

n

2
log

(1 − ρ2)P2 + 1 +N

1 +N
(27)
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We also have

I(Xn
1 , X

n
2 ;Z

n) = h(Zn)− h(Zn|Xn
1 , X

n
2 )

= h(Zn)−
n
∑

i=1

1

2
log(2πe)(1 +N)

From Entropy Power Inequality (EPI) [8, Lemma I], we have

h(Zn) ≥
n

2
log

[

2(
2

nh(Y n)) + 2πeN
]

Therefore,

h(Zn)− h(Y n)

≥
n

2
log

[

1 +
2πeN

2(
2

nh(Y n))

]

=
n

2
log

[

1 +
N

P1 + P2 + 2ρ
√
P1P2 + 1

]

(28)

=
n

2
log

P1 + P2 + 2ρ
√
P1P2 + 1 +N

P1 + P2 + 2ρ
√
P1P2 + 1

where (28) follows from (18). Thus,

I(Xn
1 , X

n
2 ;Y

n)− I(Xn
1 , X

n
2 ;Z

n)

≤
n

2
log

(N + 1)(P1 + P2 + 2ρ
√
P1P2 + 1)

P1 + P2 + 2ρ
√
P1P2 + 1 +N

(29)

Using (23), (24), (26), (27) and (29), we have

2nR

≤
n

2
log(P1 + P2 + 2ρ

√

P1P2 + 1)

−
n

2
log

(P1 + P2 + 2ρ
√
P1P2 + 1 +N)(1 +N)

((1 − ρ2)P1 + 1 +N)((1− ρ2)P2 + 1 +N)

+ nR1 + nR2 + 3nεn

plugging in N in (21), we have

2R ≤ f4(ρ) + f3(ρ) + 3εn (30)

Hence, for the case of 0 < ρ ≤ ρ∗, from (19), (20) and (30),
and letting n → ∞, we have proved R ≤ T1.
Finally, for the case where ρ >ρ ∗, though we do not have

(30), (19), (20) and (2) still hold, and by letting n → ∞, we
have proved R ≤ T2.
Hence, for all cases of ρ ∈ [0, 1], we have proved that the

achievable rate either satisfy R ≤ T1 or R ≤ T2, and thus,
Theorem 1 is proved.

IV. A LOWER BOUND
Theorem 2 A lower bound of the capacity of the above
Gaussian multiple access diamond channel is

max
0≤ρ≤ρ◦

min {f1(ρ), f2(ρ), f3(ρ), f4(ρ)} (31)

where

ρ◦ =
√

1− exp(−2min(R1, R2))

Proof: Consider a pair of zero-mean jointly Gaussian
random variables (X1, X2), such that the covariance of Xk

is Pk, k = 1, 2 and the correlation coefficient between X1

and X2 is ρ. Note that the condition 0 ≤ ρ ≤ ρo is equivalent
to min(R1, R2) ≥ 1

2 log
1

1−ρ2 .
Codebook generation: Randomly generate 2nR1 indepen-

dent codewords xn
1 (i), i = 1, . . . , 2nR1 according to p(x1)

and randomly generate 2nR2 independent codewords xn
2 (i),

i = 1, . . . , 2nR2 according to p(x2). Then, with probability
1, for every codeword xn

1 (i), i = 1, . . . , 2nR1 , there are
2
n
(

R2− 1

2
log 1

1−ρ2

)

xn
2 sequences jointly typical with xn

1 (i)
according to the given Gaussian distribution. Similarly, with
probability 1, for every codeword xn

2 (i), i = 1, . . . , 2nR2 , there
are 2n

(

R1− 1

2
log 1

1−ρ2

)

xn
1 sequences jointly typical with xn

2 (i).
We collect all the jointly typical codeword pairs (xn

1 (i), x
n
2 (j))

among all the possible (i, j) combinations and index them as
(xn

1 , x
n
2 )(k), for k = 1, . . . , 2nR, where

R = R1 +R2 −
1

2
log

1

1− ρ2
= f3(ρ) (32)

Encoding: When the message W = w, for w = 1, . . . , 2nR,
the source nodes finds the pair (i, j) that corresponds
to(xn

1 , x
n
2 )(w). It sends index i ∈ {1, 2, · · · , 2nR1} to Relay

1 and index j ∈ {1, 2, · · · , 2nR2} to Relay 2. Relay 1 upon
receiving index i, sends xn

1 (i) into the multiple access channel.
Relay 2 upon receiving index j, sends xn

2 (j) into the multiple
access channel.
Decoding: Upon receiving Y n, the receiver declares w

is sent if (xn
1 , x

n
2 )(w) is jointly typical with the received

codeword. If no such w exists, or if there is more than one
such, an error is declared.
Probability of Error: By a similar argument as in [2, Sec.

14.3.1], we can show that the probability of error goes to zero
if following conditions are satisfied

R1 ≤ I(X1;Y,X2), R2 ≤ I(X2;Y,X1), R ≤ I(X1, X2;Y )

which means

R ≤ min (f1(ρ), f2(ρ), f4(ρ)) (33)

Thus, based on (32) and (33), Theorem 2 is proved.

V. SYMMETRIC CASE AND CAPACITY
Comparing the upper and lower bounds proposed in Theo-

rems 1 and 2, we see that they take on similar forms, more
specifically, the four functions after the minimum in (1) is
exactly the same as that in (31). Thus, if the parameters of
the Gaussian multiple access diamond channel, R1, R2, P1

and P2, is such that ρo ≥ ρ∗ and T1 ≥ T2, the upper and
lower bounds meet providing us with the exact capacity of
the channel.
To show that there indeed exist channels such that the

upper and lower bounds meet, in this section, we focus on
the symmetric case, i.e., P1 = P2 = P and R1 = R2 = R0.
If the channel is such that R0 ≥ 1

2 log (1 + 4P ), it is clear
that the multiple access channel in the second stage is the
bottleneck of the whole network, and thus, the capacity is
equal to 1

2 log (1 + 4P ). On the other hand, if the channel
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is such that 1
2 log (1 + 2P ) ≥ 2R0, it is clear that the two

separate links in the first stage is the bottleneck of the whole
network, and the capacity is equal to 2R0. Thus, we only need
to focus on the nontrivial cases where

1

4
log (1 + 2P ) < R0 <

1

2
log (1 + 4P )

Define the following functions of ρ ∈ [0, 1]:

fs
1 (ρ)

!
= R0 +

1

2
log[1 + (1− ρ2)P ]

f s
3 (ρ)

!
= 2R0 −

1

2
log

1

1− ρ2

f s
4 (ρ)

!
=

1

2
log[1 + 2(1 + ρ)P ]

Theorem 3 For the symmetric Gaussian multiple access dia-
mond channel, if the channel parameters satisfy

ρo ≥ ρ̄3, ρ∗ ≥ ρ̄1, f s
1 (ρ

∗) ≤ f s
3 (ρ̄3) (34)

then its capacity is fs
3 (ρ̄3). Here, ρ̄1 and ρ̄3 are the positive

roots of the second order equations fs
1 (ρ) = fs

4 (ρ) and
f s
3 (ρ) = f s

4 (ρ), respectively.

Proof: : The proof of Theorem 3 is omitted due to limited
space.
To show that there indeed exist symmetric Gaussian mul-

tiple access diamond channels that satisfy (34), take for
example, P = 3 and R0 = 1.2, we then have

ρo = 0.9003, ρ∗ = 0.8471, ρ̄1 = 0.7734, ρ̄3 = 0.7643,

fs
1 (ρ

∗) = 1.6426, fs
3(ρ̄3) = 1.7671

Thus, for P = 3 and R0 = 1.2, (34) is satisfied and the upper
and lower bounds coincide, yielding the capacity, which is
1.7671.
To illustrate further, we plot the upper and lower bounds

in Theorems 1 and 2 and depict them in Figure 2 and Figure
3 for the cases of P = 3 and P = 30, respectively. The
cut-set bound is also plotted to show the improvement of our
upper bound over the cut-set bound, which is the best-known
upper bound on the capacity. As can be seen, for small R0,
the proposed upper bound is much smaller than the cut-set
bound. Also, the gap between our lower and upper bounds is
rather small, especially when R0 is relatively small and/or P
is relatively large.

VI. CONCLUSIONS
We have studied the Gaussian multiple access diamond

channel and provided upper and lower bounds on the capacity.
Focusing on the symmetric case, we gave necessary and
sufficient conditions that the upper and lower bounds meet.
Thus, for a symmetric Gaussian multiple access diamond
channels that satisfies these conditions, we have found its
capacity.
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